THE UNIVERSALITY THEOREMS ON THE CLASSIFICATION
PROBLEM OF CONFIGURATION VARIETIES AND CONVEX

POLYTOPES VARIETIES
N.E.Mnev

Institute for Social and Economic Problems

USSR Academy of Sciences

The results which we present here form the part of guiding by A.M,
Vershic topological investigations of combinatorially defined confi-
guration spaces (see his article in this wvolume). In this paper we
shall outline the proof of coincidence of the two classes of variety:
first - the spaces of point configurations in Rf having certain
oriented combinatorial type, the second ~ all semi-algebraic varieties
over rational numbers. (The oriented combinatorial type of point con-
figurations is a dual object to the well-known combinatorial type of
hyperplane arrangements (see [G2] }.) as a corollary we obtain the
similar fact concerning the spaces of convex polytopes of a fixed
combinatorial type. The complete proof of these results is contained

in the authors thesis [M] .
1°. Introduction

By a projective point configuration we mean an ordered finite set
d
of {(not necessarily different) points of the projective space P&

It is natural to identify the space of all projective configurations

d dyn
of NI points in pp with (pR ) . Two configurations X ’ylé
e(R:')n are said to be combinatorially equivalent provided for
arbitrary subset O C {'n the subconfigurations &:LL}LéS‘: X

and {9L3%e8C2>/ generate the projective subspaces of equal di-
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dyn
mensions. So we obtain the partition Tp(m,d) of the space (P&)

into the combinatorial equivalence classes. A combinatorial type .o_g

N -point d, -configurations is a stratum of Tp[n,d,) {an equi~

valence class of such a partition considering as a variety is called
stratum) . The combinatorial types of the projective point configu-
rations are naturally subdivised on the oriented combinatorial types.

Two point configurations are crientedly combinatorial equivalent if

its dual ordered hyperplane configurations can be translated one to
d .
another by the homeomorphism of PGR . 50 we obtain the partition

TPO (I’L,d,) ‘?“Tp (h,,d,) of the space (P: )n into the oriented combi-

natorial types.

Now we assume that in PRd' a certain projective basis ({ d+2,
points in general position) is chosen . Basis configuration is a point
configuration which have the fixed basis as the subconfiguration of
its first d,+2 points. On the space %C (I’L,d,) e | P,{i)n of
all basis N -point d—configurations (h = d,+2) the partitions
TP(l’b,d/) and TPo(n7d,) induce the partitions T%(n,,d,) and

T()O (n“d,) into basis combinatorial types and basis oriented combi~-

natorial types respectively. One can consider a basis {(oriented) com-

binatorial type as a factorspace of the corresponding (oriented) com-
binaterial type by the free action of PGL HR‘) « With the help
of the non~homogeneous coordinates on pd, connec?:’ed with the fiS:—
ed basis we can to identify a basis combinatorial type « ¢ Tg (r‘/» d)
with a subvariety of the space of [Rd‘H -vector [, -tuples. Orien-
tation of [R(LH induce the orientation of (d,‘-f)—tuples of points of
the configurations belonging to . Fixing the orientations of all the
( *ﬂ‘tuples we obtain precisely the partition of &K into the basis
oriented combinatorial types. Two convex polytopes with odered vertices

are said to be combinatorial eguivalent if the order-preserving cor-

respondence between the vertices induces the isomorphism of the face-

lattices. Combinatorial equivalence determines the partition Tpo?,(h,,d,)
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of the space PGK (I’L’(L) < (Rd)n of all convex d, -po-

lytopes with [l odered vertices. A combinatorial type of convex po-

lytopes is a stratum of TP(}'& (ﬂ,,d,) . Combinatorial types of generic
configurations and combinatorial types of generic (i.e. simplicial)
polytopes we call generic. The topological structure of generic com-
binatorial types is of the extreme interest.

One can easily establish that every basig oriented combinatorial

type is a primary semi-algebraic, defined over @ (i.e. determined

by polynomial equalities and strict unequalities with rational coeffi~-
cients) subset of a principal affine set in B(‘,(n,,d/) . The same
is true in the case of polytopes. As we shall see the converse (modulo
sertain stabilization) may be proved:
THEOREM A.
1} For every natural k&’ d (d > Z) , every primary semi=-
algebraic subset M of , defined over @ there exist a natural
n and basis oriented combinatorial type & of projective
I -point (i —configurations which is stable equivalent to .

(Two semi-algebraic varieties A ,% are stable equivalent if there

is a piecewise biregular homeomorphism between A and B * le for
a certain natural 4 )
k

2y If M is an open subset of P then the type ¥ may be
chosen to be generic.

The similar fact concerning polytopes is a consequence of the
Theorem A and the Gale's duality:

THEOREM B.

1} Foxr every natural &,m’ (m' z 4) , every primary semi=-
algebraic subset M of [R&' defined over @ their exist a na-
tural d, and a combinatorial type of d, -polytopes with d,+m ver-
tices § which is stable equivalent to M x GLd(R)

2) If M is an open subset of {R than the type E may

be chosen to be simplicial.
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It should be mentioned that every combinatorial type of % -polytopes
([S.R.])and the combinatorial types of d, ~-polytopes with d +3

odered vertices are topologically trivial (i.e., stable equivalent to

GLg(fR\ and GLCL({R) respectively) . The combinatorial type
of -polytopes with 10 vertices constructed in [BEK] is the
minimal known example of disconnected (modulo GLZ; UR) } polytope

combinatorial type. Every generic basis oriented combinatorial type
of [} -point 2-configurations is trivial when L & 7 (see the paper
by S.Finashin in this volume). The author has constructed the example
of disconnected type for {1 = 19 (see p.6}.

Obviously, it is sufficient to prove the Theorems A and B for
the cases of point 2~configurations and d ~-polytopes with d’fq ver-
tices, respectively. According to which the term configuration fur-
ther means a configuration of points of sz .

2°, Before we proceed to the proof of the Theorem A it is nece-

ssary to introduce some new objects.

2.1, A computation of rational map. Partition of the map's

domain of definition generated by a computation of this map.

tet | be a field and 1et #  be a subset of F . consider
the sets of words mi, 31-'54:27“' over the alphabet ‘%U{(,”U T
where = {+,— %, ) Ol=d 0= (AR A LD ¢
¢ By yoeF) 0 Dpae OLd) = Lim O

The set of words ( () with the natural action of the ope-
rations from 7 is called free algebra of words (see [B] ). Let
654,;:: 0{/(94) - FU ‘.m} be the map of "removing the parenthesis"

and let { be an element of [F . A computation of !; in 0{,(‘54)

is an arbitrary word from 691—,4&: (“ € Ul(&’” . For A € OL(J”

denote by OW(A)  the set of all subwords of A  belonging to

od) -, SFIAY =6,  (SWIA) = F ctet E=Xy,., Xy) be a

&, -tuple of independent variables, 9{ (= H—_(‘I) + A computation
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of rational vector-function g = (% ey ?m} S (Fm( X,) in 0((«7“
is a collection of words ¥ = ( Py ,.oen, ({)m)é Olm(&“ where 4)4, is

a computation of % for 4 € ’fim . We denote by SW(W} the

set Q{ SW(%)C O((\?“ and by SF(W) the set Q{ SF((PQ -
= Gara) SWW)e F . The computation L " £ is called

formula if the map . e is a bijection.
tormula Gy (1)

tet F <R . In this case let 'ge(}, (?"&{f) =1 mefR&l all the

functions from SF(W) are regular at .T,} . Consider the
equivalence relation on 'ZQ(} (% 71}{) . X "}’ \}/ if and
only if ’J{,%I’L (r(z)-wlx)= b'tg,n (U(l})" u(l})) for all pairs
U € SF(Y) , WE Y . The partition of 7@9(¥,W)determined

by ,'q7 we denote by Z (‘{71”) . W
SW(W)

TR
2.2. The biregular imbedding P .Ze(}({i,W)X[R — (the

space of basis configurations).

Let z be a vector~-function from QE)’X: (IJC“...,I.,L), and letv
be a computation of ¥ in OL(O,‘,X) Put SW(Y)" SW(\V)\{O,1,X} - Let
X={X;,., Le )€ ’269 (L\V)C:R‘: 62{6"}A¢W(Y)e(”{* W:N{Arhere R = [R~ {0} .Consider

the basis configuration I‘,, presented by Fig. 1. Here {P,(, y P°7
Pe,Pee’ is a fixed projective basis. Pu Pz 8)

ki
On the line LR= pe . P"" the points A N

P, lT), .., PI&(I;} are marked such that {p '5’},\;5';5{;
RUPg (D), Pys Py, Pe)= Ty for velb -

where R - ,) is a cross-ratio, La Py o \‘
' O A0 e e
Py = L& n (P”" . PE\) . On the line L, ' 13
| =D, ints { Pop(8)),ccm Fig.1
. Po P« the points P(O,M }AéSW(‘V) P

are marked such that R( p(Q’M( )1P(o,{);Po,p,c)= W n

- +
= BA for Aé SW(W) , where P(OM): B
=Lon (P""PE) . Consider the constructions

Pe
of sum, difference, product and quotent of \_* A 79 (x+y) W

Fig.2a
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LIR -points defined by Fig.2. By iterating Pu
of these constructions according to increas-

ing of the 1}1‘ ~-subwords we can supplement

8
the configuration P(fﬁ,%) to the configu-
Pao
ration P@,W) (\T,,??) which has points L2 T k
P(P {.T/) ¢ L such that . 2
1,

P(P P*’PO’PW %((Lfor pel:m - at
the step correspondlng to a subword Aﬁ SW(W)

the point PA )€ LIR ,R Pa -T/),P1 ) P°’P°° =

=(6Q($) (A))(I,) is constructed. As a

point with the index B at the primary

construction, corresponding to A € g\}\?“{f}

the point P(O,A)(g) is chosen. So we

obtain the biregular imbedding Du"w)

ze% ¥ Uf SW(W) 86(5\1:2), where SW x

R
g Py 2
is a naturally defined set of indeces, FIS 2"& ty ¢

card (SY)=card (SWIW)+4dcazd (SWT WD+ Seard (SWHY)+3,
SWHW) = {Ae SWW) T A=(A, £ 7)),

SW (W)= LA e SWIVI A = (A% A))

D(LW)

The image of is a union of entire basis combinatorial

types.

2.3. Free basis configurations

Let C be a basis configuration, B is a fixed projective
basis, Bc"' C , Cﬂ,"ld, (B)=4 . Denote by oiP (C) the set of
all projective lines which are incident with more then two points of
C et z¢C . rat Volz)=cazd ( {Ke |I‘{)/]J)

The point I is said to be proper if vc( )73 , otherwise
is unproper point of C « In the latter case C is said to be a

free extension of the subconfiguration C\{f/} . The configuration
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C is said to be free if it is possible to order the points of
C\B (C\B=(C4,...,C&)) in such a way that the configuration @__\1
U{Cq,...,(ij‘} is a free extension of BU{(‘“,,..,CJ_{} for 161&,
Generic configurations and the configurations presented by Fig. 1,2

are examples of free configurations. A free basis oriented combinato-

rial type of configurations is an oriented combinatorial type of free

basis configurations.

3°. The Theorem A is a corollary of the following three Lemmas
which connect the objects defined in p.2.

LEMMA 1.

1) For every primary semi-algebraic variety M , defined over
@, there exist a natural &,,m , a regular vector-function
£ (S Qm[xh ?ng] and its formula Wﬁ ULm(0,4,X4 s H,’X&/)such
that the partition Z ( ]E ,w) has a stratum [ stable equivalent
to M .

2) If M is open (i.e. is defined by strict inequalities only)
then the stratum T’ can be chosen to bhe open.

LEMMA 2.

1) For every rational vector-function ¥6 @m(xi ,---,X&,) , its
computation ‘%’ in 0(1(0,1,XQ ,...,XQ and a stratum § € Z (!,W)
there exists a basis oriented combinatorial type ﬁc Im Pt M
stable equivalent to T.

k

2} If the stratum T is open in IR and 1‘\'( is a formula
than the type B  can be chosen to be free.

LEMMA 3. For every free basis oriented combinatorial type ﬁ of
configurations there exists a generic basis oriented combinatorial

type which is stable equivalent to ﬁ .

4°, PROOF OF THE LEMMA Z.L
4,
s, pae QU =Im P = b (5Y)  (eee p. 2.2) .consider

the projection []: 8({1‘1}” — ]R& , M= ﬂ4°( DumW , where
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l_h - projection of IR&'X ([R*)SWW) on the first factor. Let

X be an oriented combinatorial type of basis configurations,
X < QW’W) . Let P4 7P2'e pé and let H(P")'—' v for 1'/"1,2/.
pu.¥)

By the definition of the set of points Pi’n LR={P4; }AeS-W("r')U

U{Pw} is such that R(PA P15 Po,Pem )= (@Qm(/\))(ﬂ) , where A€

«SWIY) 4=12 . since P+ and P2 belong to one oriented com-
binatorial type the points from (P'\ Pl g ana (P*\ D)l g
are arranged in the same order on the affine line L \P.. Hence !

and 1% belong to one stratum of y_ (1. ¥)

4.2, It is not difficult to show that ﬂlx:x ——’ﬂ(x) is a

S0
trivial fibration with a fibre [R .
4.3. Fix any order X on the set SWW) . Let be a
stratum of Z (‘p ’W) . Note that independently of IeT the

v *
configuration pl, ( N {3 }AeSTV(W) ) lies in the same oriented type

/G(T, = ) & 9(¥,W) when % > Z 8 for arbitrary A e
(—S_W(W) From the p.4.1 it follows that ﬂ ﬁ )" T . Hence,
by p.4.2 we obtain that ﬂ T,"{) is homeomorphic to TX ‘RSWW)‘
This homeomorphism may be chosen piecewise biregular,defined over Z
4.4. The statement 2) of Lemma 2 may be proved by the induction

on the increasing of the W -subwords.
5°. PROOF OF THE LEMMA 3.

Let C be a basis point configuration, B “ C is the fixed

projective basis. {(Here we follow the notations of p.3.3). Put V(C/)=

“\/ [C] Z \/(‘, I/) ; Where [C] is the basis oriented

combinatorlaiiype containing C/ . We prove Lemma 3 by the in-
auction on V(B) . 1t V(p)=1 then B is generic, by the de-
finition. Let \/(/5)> 0,Cep . In this case among the points of
C\B there exists an improper point & . Consider the two

situations: 1) VC(.'L)=1 and 2) Vc(‘r’)= Z .
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0 et Vel@)=1 LeL (0}, zel (see Fig. 3a)
Dencte by vf(C) the set of all projective lines which are in-
cident with more than one point of C . S X X Flg 3a
Denote by SC(IJ) the star of the // '

point I in the geometric complex ﬁ />

2 7 =7 N\
generated on Plk by the line confi- ) 7

guration o( (C) . Choose the line

position with respect to the points 6
i
of C\{X}’EHC"{JL} . Fix on

1
the open segment SC(I} n€ two points

\
8‘ é o{,(C} such that ei is in general z /
¢

(1)
Qy,0,; separated by L  (see Fig.3b). - \
Consider the configuration C= (C\ {L}) U

U {aﬂ,a'z,} (Fig. 3c) . By the trivial arguments it can be proved

that the oriented basis combinatorial type [(] is piecewise- bireqular

nomeomorphic to [C]xR%= pxR’, V([T]=V(C) = V(0)-1  ana [{]is free.

2): ret Ve (z)=2; 8, X, (C); ze{, n{, (see Fig.4a)
s /L L, ¢

17 )<7 < LA //X(\
Fig.4a ></ Fig.4k Fig.4c

o o/

& . 1

Fig.4d Fig.4e

Fix on the open segment f,{ n Sc (I,) two points %4 , %2, sepa-

{
rated by & (Fig.4b) . Consider the configuration C = (C\{ "L]])U
U i%4 ,gz } (Fig.4c) . The configuration Ct is free, L Cx ] =

=[C]xR*=pxR* VILCDN=VIO) = V(p)
P

VC'{%*\}=4 and &*4 B we are at the situation of 1). (see
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Fig, 44, 4e).
6°. Examples

6.1. For {é@m(xh'__’xk) and its formula ¥ in (0{( 1,
K,y Kg) put G(¥)=card (SWIWD+ 16 card (SW™ (V)

+ 20 card (SW (W) +3

(see p.2.2 for the definitions SW * and SW * ). Because the
proof of the Lemma 2.3 has a constructive character it enables us to
obtain the following evaluation:

COROLLARY 1.

For every rational vector-function 2&@ (X& yeces ng)its formula

W in UL(O,LXM...,X&)and a stratum ”6\’ S i(g,W) their exists
a generic oriented combinatorial type of G(W) -point 2-configurations
stable equivalent to 1 .

On the basis of the Lemma 2 and 3 one can easily construct various
particular examples of generic oriented combinatorial types with non-
trivial topology. The fact is that even very simple couples (vector-
function, its formula) generate partitions Z which have open

strata with non-trivial topology.

6.2. An example of a disconnected generic oriented basis combina-

torial type of configurations.

2 {
Consider the wvector-function (}e Q [ ] i ’( Z_ —"') and its

formula q3=[CP4,CPz]=[((X‘X)~X) (0 /1 1)_ - )] €

¢ (0,4, X) 5 SF(P)= 10’4,-1,—2,—3;4 ,-Z,x,xﬁ&x‘-x)sc@mon-
sider the stratum Y,  of }:(9,@) , where "L=IL$€§R147137I2'7
) (50> -k 525235 4) = (zeR 1 D> (523055 )

(0 7,'42,)U(é, 1) . The stratum 'V is open and disconnected., Hence

by 2} Lemma 2 and by the evaluation of C(l"ﬂd/(S ) from p.2.2 there

exists a disconnected free oriented basis combinatorial type of 43—
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-point configurations. By Corollary 1 there exists a disconnected ge-
neric oriented basis combinatorial type of 144-point configurations.
By specialization of the general construction for the particular case
of (9’ (D) the author had constructed the examples of a disconnect-
ed free oriented basis combinatorial type of 16-point configurations
and a disconnected generic oriented basis combinatorial type of 19-

-point configurations (see [M]).

6.3. An example of generic oriented combinatorial type which is

1
homotopically equivalent to S

Consider the vector-function fL ﬁq %/ )( -7+ >/2' >/)
(-1% )) € @Z [ X ,y ] . The function ﬁ X >/> has unique minimum
at the point x*: ( 2(_ ’ _2:) , &4( = - -‘5 PL . According to the

definition, for arbitrary formula W of the vector-function ’F\/

the set of rational functions SF (W)= (Q(X,Y)  contains the

functions ¥L4 and ﬁbz . Hence, the partition 2 \1,W¥) contains

the partition J_ S(h}l,f) of the set §={(z, 4) HZL (x, %bh -2 3-*
= R*\ {x*} . Suppose that the formula W has the follow-

ing property:
(=) u(x*)~ U’(I,*)”é@ for every U,V €& SF(W)
such that {T«L,U’B‘#{hq,&z} , WU,

Then by the definition of Z (AHW) there exists uniqgue open

stratum ])((X,*,W) € ZS(&’W) such that ‘))("X,*,w>3(\/(x*)ﬂ 5)“

=V(x )\{I*} for a sertain neighbourhood V(X*) of point I*,
Obvicusly 7t (1} (13*,WD #* 0

Consider the following formula of the vector-function ‘Fl/

X=D% = TUOX ) = (2 + LY -1,

o e e D) 0= =T e ™ (0,1.%.Y)
5 16
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SF(M)={-16,-45, ... ,-2,~1 ,1Y=1) by b O 0, 0x5- 5 )
0,08 KLY 2,5

One can easily verify by direct calculations the correctness of con-
dition (=)} for X . Hence, 7174 {\) (.I,*, X/))#O . More detailed ana-
lysis enables wus to establishe that V(I*,/X/) is homotopically
equivalent to 84 {see Fig.5}. By 2} of \){x*,X)
Lemma 2 and by the evaluation of C(l'Zd,(SX')

from p.2.2. there exist a free basis %"

oriented combinatorial type of 146-point

configurations which is homotopically

|

Fig.5

1 there exists a generic basis oriented combinatorial type of 514-

equivalent to V(I,*,X/) . By Corollary

point configurations which is homotopically equivalent to ))((L*”X/)
7°. PROOF OF THE LEMMA 1.

We prove the Lemma 1 by the extension of the procedure used in
p.6.3. Here we shall outline the proof of statement 2) of Lemma 1. The

statement 1) is proved by the analogous but more refined analysis.

7.1. Let I y (ﬁ be a fields, @ = H: and £ be a vector-
m
function, 4{ € ]F ( X) , where \£ =(X4 y ey Xfo) . We introduce
the following notations: {2; ={x¢ Gk l ¥(I’) =0} and in the case of
b
G-R: I"={xz<R" [ Hx)>01.
m
DEFINITION. A computation W of a vector-function ¥ 3 ]F (I/)
0

is said to be non-degenerate at point &' € (¥¢, n ’ZG(},(%,W)) if Wlxd+
+ U‘(JZ*) for arbitrary U,V € SF(W) such that ‘L%,U"] &
& {1, 4., 0w,

Let M  be the variety being introduced in the statement 2),
i + m
Lemma 1, let M=h , where #\,=(¥L4’,,,’hm)€[k [X4,,_,,Xé.wit—

hout loss of generality (i.e. substituting if it is necessary the va-

riety M by a stable equivalent one) we can assume that the poly-
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i i ip
nomials ?\/j are homogeneous, %'j = Z ?L T X 4 X for
P iy=dh) toe e
jE 1 117 and the following assumptions are valid:
(=) ?’\, \j 2‘/ L}/} 7.7 g‘m(%’) for arbitrary point

%Qh which is near to origin;

{#x) the set C(?\/)={¥Li . ) . m CR is

f et Wit thp =D)L e
algebraic independent over @
7.2. PROPOSITION 1.
Let 9,& Q [X{ . Xk be a polynomial vector-function and

*
let X be a point from %z . Suppose that for (9, 7_'[,*) the

following assumptions are valid:

1) There exist a non-~degenerate at JL* formula CPQ UL (0713

X“,,,,Xk) of (}/ 3

2) (}/«(%)> L7 gm(%) for arbitrary point % € g,+ which
is near to 1%
~ 119
Then there exist the other vector-function (},& @ ! [-y4 geees y&q] and

its formula @ ¢ UC""& (U ’1[ , yi Yo es )/h) such that the partition

Z{g,@?) contains an open stratum which is stable equivalent to the

cone over 9’+ with the apex x”
For the proof see p. 7.5.
m
Consider a vector-function % € Z [3‘,‘%] where -94 =
j

j o o =K K KA D)= 2 A

{Ah, L&,_}tﬁ...*%—[)(m jel ’x R ki), %y frrgDlh)
i

. X X v for jﬁ 1 i . The vector-function % can be re-

b _pm
garded as the generic homogeneous polynomial vector-function [R [R
of degree D”\z\ . From the assumption (=x) on C(»F\,) it follows
that COME ¢y ,®) p » toneg b (we denote by % a stable

equivalence of semi-algebraic varieties). For the couple (%,(C(&ﬂ,@»

the assumption 2) of Proposition 1 is valid (it follows from ()},
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while the assumption 1) is not. Consider a vector-function %4 - the

b .
composition of % and the “generic translatlon of R "ol

B (AT 8] wmere T(T,, Ty  #j=5 A -

i i . Pyt ‘D(M
'(XﬁT,)t,,_'(Xk*'\ID for je ['m
Choose a point ‘t*m H’,:‘ s ,Tz:,) such that the set
?l,)u{t } <= R&' is algebraic independent over (D, . Eut
1 3
—+, = ( t&,)‘: ’R . Obviously, COH’Q(C(M,t*,—t*) (% ) N
%l
(’O”’e((',(k) 0)% M !b be the composition of and the
"generic homotety of {R " 2 {.@v {84 T &, _%} 217 =" % for
jﬁ 1 ‘M . Choose a point e iR e 70 such that the set
k
CH\,)U {t): }ig( U {o(z*y <« R is algebraically independent over
. 4
@, . Obviously, W”“"’(cm,t*,oc*;t*) ,é‘] x (/Ol’be(c(h),t*ﬁ*) % .Put

9(2‘/):; (C(h),tio(,*,.-t*} . For the couple { 7 ,gﬂb)) the assumption
2)of Proposition 1 is valid (it follows from the construction). We

shall complete the proof of statement 2), Lemma 2 by presenting of

the non-~degenerate at 9( l‘l/) formula of $°7 in UL (0,1 N 9Q . ﬂ-,o(z, x)

7.3. The Horner-type computation H(}Iﬂ of a polynomial vector-

function.

Let F be a field and let \XM..., XL]J be a collection of inde-

pendent variables. Consider the family of the maps {K S.hge oo

where Ki"F[X;,,...,Xq,]*""IF[X“...,X;,”“X(,H,-- X] Ktb(‘p

is a coefficient of L for 1 -degree of Xj
For (}Q IF put Ho%n((}/)z (}/ |
for geFLX, ..., Kgl put

Hown (g) = [Hon (Kj (g X,  (Hown (K; (g +

X Hown (KB (g N € L(Clg) Xe o Ky
tet }= L,...,;mvenf DXy Ry )
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Pat Hogn (1= (Hown (§4),..., Hown (e CE™(CUD, X, L. Xy ).
7.4. Consider the vector- function %4 (p.7.2}) as an element

of @ [34,7_“:};]

——n

#i= 5 H (AT KX e jedim

i x4 D) oot

Denote by (—T) the point (“ T&,) (% )(Il(a‘ .T)

1
PROPOSITION 2. The computation HO'EH/(% ) of the vector-function
1
% is a non-degenerate at point (‘7) formula of % in

CUH, e T iy com 2 B)

je Iom

One can obtain the proof of Proposition 2 by direct calculation.
Now we are able to construct a non-degenerate at point e{h)

formula of in 05(0,1,96,7,0(1 , £ ) < Let {Hj

e ,vk}a“:ﬁb < ik

be a certain formula of the vector~function

{Hiv (s T)}$+ *qu) (/Z(OJ, A ,T) . Replace in formula

;;e{m

Hoen (%4) the subword Hj i (A 77) by the word (& x H‘: P
(7 vl [RSRETAS
for every (j,h,..., ka) . Thus we obtain a formula ¥ of the
vector-function in (ff (0’4 , 947?'70(,’ ) . The non-degeneracy
of W at point @{h) follows immediately from the Proposition
2, linearity and homogenity on {Hi‘ "k} of the polynomials
from SF(HO"{,I’L (%4)) and from the algebraic independence

over Q of the set {C(&)}U {t: };’;4 u {4y .

7.5. PROOF OF THE PROPOSITION 1 (p.7.2).

We shall demonstrate how to rearrange the couple (q/ ,CP) from
the statement of Proposition 1 to obtain a new couple (g/.,cP) which
has the following property: the partition Z(g ,@} has a stratum

which is stable equivalent to 9/+ n V(I*) , where V(x*) is a
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small convex neighbourhood of x* .

Because of the assumptions 1), 2) of Proposition 2 their exists
114 —
a collection of rational numbers /\—{)\/@}‘H{;k =42 such

that

a) I,*QKA"‘{I,&[R!L‘)V;/\J‘,@LXL‘; for 1'/€1:¥i/

b) the primary semi-algebraic set conex* (}‘L is piecewise-bi-

regular homeomorphic to (}/+ n K,\ .

c) 3 gt (ufx)- vl(x)= 2ign Wiy - viy)
and arbitrary points m,lp K,\ N 9’+‘
Consider the vector function

for arbitrary ratiocnal

functions U,V ¢ SF ( CP)

Let Z be a certain new variable.

Q™ I, X 2], GLE g0 - ree abs (W)=l

where /I,Li "ij AN
Consider the following computation P e ’g:'- P = CP,

m+\M(Oa4y$,Z) , where
M
— A ~ T —— j
K(Z “'Z)“"..."’ Z)((Z‘*’ Z)“'*’Z)) , when )\/L7O

j
LY b jera € X
>
¥

§
, when X,ﬁg

1=
D CZ R 202 )
d m’;

)
SE(®) = SF(PIuNy thZy v

It is easy to check that
; and that CP

U {‘*k Z },::2'{ for a certain [TL4y anda M,

is a formula when CP is a formula. Let T be a stratum of

2 (g/, CP) which contains the point (lj/*, ¢*) , where L}*é KA(]
n gj’, ¢*>mox {Ul{\f) fveSF {CP)U N} According to the construction,

the stratum r is biregular isomorihic to

i +
(KAn %’r}xa{ Y K,\n(}, ;C()max*(}f.
8°. The Theorem B is a simple corollary of the Theorem A and the
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n
Gale duglity. Consider an ordered configuration C= {Cb}i,s{ of

@? -vectors. The Gale face of C is a subconfiguration C( of

C such that Q¢ 'zeEmt cone  (C\C') . rLet G(C) e the
lattice of Gale faces of the configuration C . If all points of
C are Gale vertices than their exists a convex polytope D €
¢ 90{ Ol“4,rt) such that (}(C} is the face-~lattice of D .
Moreover, there is the canonical biregular isomorphism between
[C1g/GLLRY ana [PI/AGL, ., (R)  where [(,] and [P],
are the combinatorial type of Gale diagramms and of convex polytopes
which contain C and p , respectively; A(}i_nfq(ﬁz) is the
group of affine automorphisms of an_q (see [G1] ). By the con-
struction similar to the Perle's ocne (see [GT, § 5.5 Theorem 4 ])
we can to put in correspondence to arbitrary oriented basis combina-
torial type &£ of point 2~configurations the combinatorial type
(k) of [RB ~Gale diagramms such that X"(,(,)/G—LE([R\ZNO(,
If the type &« is generic then the type !KYOC) can be chosen

generic too.
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