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The results which we present here form the part of guiding by A.M. 

Vershic topological investigations of combinatorially defined confi- 

guration spaces (see his article in this volume). In this paper we 

shall outline the proof of coincidence of the two classes of variety: 

first -the spaces of point configurations in having certain 

oriented combinatorial type, the second - all semi-algebraic varieties 

over rational numbers. (The oriented combinatorial type of point con- 

figurations is a dual object to the well-known combinatorial type of 

hyperplane arrangements (see [G2] ).) As a corollary we obtain the 

similar fact concerning the spaces of convex polytopes of a fixed 

combinatorial type. The complete proof of these results is contained 

in the authors thesis [M] . 

I ° . Introduction 

By a projective point configuration we mean an ordered finite set 
I 

of (not necessarily different) points of the projective space P~ 

It is natural to identify the space of all projective configurations 

of ~ points in P~ with (P~)~ . Two configurations X ~y ~ 

~(pR~) ~ are said to be combinatorially equivalent provided for 

arbitrary subset S ~ ~ "~ the subconfigurations ~ ~{~{65 ~ ~ 

and ~%~%~ ~ / generate the projective subspaces of equal di- 
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Tp(L) mansions. So we obtain the partition ~C of the space 

into the combinatorial equivalence classes. A combinatorial type of 

n,-point ~-configurations is a stratum of mp[N,~l Inn equi- 

valence class of such a partition considering as a variety is called 

stratum). The combinatorial types of the projective point configu- 

rations are naturally subdivised on the oriented combinatorial types. 

Two point configurations are orientedly combinatorial equivalent if 

its dual ordered hyperplane configurations can be translated one to 

another by the homeomorphism of P~ So we obtain the partition 

Tp0(~} ~-mR (~) of the space (p~)~ into the oriented combi- 

natorial types. 

Now we assume that in P~ a certain projective basis (i~l 
points in general position) is chosen . Basis configuration is a point 

configuration which have the fixed basis as the subconfiguration of 

its first ~+~ points. On the space ~C (~I ( P~l ~ 
I 

of 

all basis ~ -point ~-configurations ([b~ ~+2 ~ the partitions 

Tp( ,i) and Tp0(~7~) induce the partitions Tt(~) and 

(~) into basis combinatorial types and basis oriented combi- 

natorial types respectively. One can consider a basis (oriented) com- 

binatorial type as a factorspace of the corresponding (oriented) com- 

type by the free action of P~L~(~I . With the help binatorial 

of the non-homogeneous coordinates on connected with the fix- 

ed basis we can to identify a basis combinatorial type ~ ~ T~ (~, 4) 

with a subvariety of the space of I~ ~+{ -vector ~-tuples. Orien- 

tation of ~ induce the orientation of (~-tuples of points of 

the configurations belonging to ~. Fixing the orientations of all the 

(i÷~)-tuples we obtain precisely the partition of ~ into the basis 

oriented combinatorial types. Two convex polytopes with odered vertices 

are said to be combinatorial equivalent if the order-preserving cor- 

respondence between the vertices induces the isomorphism of the face- 

lattices. Combinatorial equivalence determines the partition -- -, -,T~0~[~,~-'} 
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of the space p0£ of all convex ~-po- 

lytopes with ~ odered vertices. A combinatorial type of convex po- 

lytopes is a stratum of rp0~ (~ 4) . combinatorial types of generic 

configurations and combinatorial types of generic (i.e. simplicial) 

polytopes we call generic. The topological structure of generic com- 

binatorial types is of the extreme interest. 

One can easily establish that every basis oriented combinatorial 

type is a primary semi-algebraic, defined over ~ (i.e. determined 

by polynomial equalities and strict unequalities with rational coeffi- 

cients) subset of a principal affine set in ~ (~) . The same 

is true in the case of polytopes. As we shall see the converse (modulo 

sertain stabilization) may be proved: 

THEOREM A. 

I) For every natural ~, d (~ >2 Z) , every primary semi- 

algebraic subset ~ of ~, Q defined over there exist a natural 

and basis oriented combinatorial type ~ of projective 

-point i -configurations which is stable equivalent to . 

(Two semi-algebraic varieties A ~ are stable equivalent if there 

is a piecewise biregular homeomorphism between ~ and ~ ~ ~ for 

a certain natural { ) 

2) If H is an open subset of ~ then the type ~ may be 

chosen to be generic. 

The similar fact concerning polytopes is a consequence of the 

Theorem A and the Gale's duality: 

THEOREM B. 

I) For every natural ~[~ (~ ~ ~) , every primary semi- 

algebraic subset H of ~ defined over Q their exist a ha- 

tural 

rices 

2) If 

be chosen 

and a combinatorial type of ~ -po!ytopes with ~+~ vet- 

which is stable equivalent to H x 0 L ~(~) 

M is an open subset of ~ than the type ~ may 

to be simplicial. 
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It should be mentioned that every combinatorial type of ~ -polytopes 

( [ S.R.]] and the combinatorial types of ~ -polytopes with ~ +5 

odered vertices are topologically trivial (i.e. stable equivalent to 

G~(~ and GL~(~] respectively) . The combinatorial type 

of -polytopes with 10 vertices constructed in [B.E.K.] is the 

example of disconnected (modulo G L 4 (R] ) polytope minimal known 

combinatorial type. Every generic basis oriented combinatorial type 

of ~ -point 2-configurations is trivial when ~ ~ 7 (see the paper 

by S.Finashin in this volume). The author has constructed the example 

of disconnected type for ~= ~ g (see p.6). 

Obviously, it is sufficient to prove the Theorems A and B for 

the cases of point 2-configurations and i -polytopes with ~%~ ver- 

tices, respectively. According to which the term configuration fur- 

means a configuration of points of p z ther 

2 ° . Before we proceed to the proof of the Theorem A it is nece- 

ssary to introduce some new objects. 

2.1. A computation of rational map. Partition of the map's 

domain of definition generated by a computation of this map. 

Let F be a field and let ~ be a subset of F . Consider 

the sets of words ~{ ~{= 4~2~... over the alphabet ~U {( ~ ]}U T 

where ~= {~--~ X ;" ] ~ ~4= ~ ~ ... ~%= { (~o~] I A ~ ~ 

~{-{ ~° ~ ~ ]~ .... Put ~ (~) = ~ ~ 

The set of words ~ (~) with the natural action of the ope- 

rations from ~ is called free algebra of words (see [B] ). Let 

~M,F" ~ (~) -~ F U [o~ ] be the map of "removing the parenthesis" 

and let { be an element of F . A computation of { in ~(~] 
-{ 

an arbitrary word from I{l  A 

denote by 5W( ~] the set of all subwords of A belonging to 

0~(~] , S F[~] = %~F~/[A]] ~ F . Let I=[X{~..., ~] be a 

-tuple of independent variables, ~ c F(Z ) . A computation 
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of rational vector-function I in G(~) 

is a collection of words ~=(~4 ~---~)~ ~r~(j) where ~{ is 

a computation of ~ for ~ { ~" ~ . We denote by 5~(~) the 

set U S~ (~] C ~(~) and by % F ( ~ )  

= ~M,F(Z) (5~{~)) C F . The computation 

formula if the map ~,F(~): 5W[~)~ 9F(~) 

Let Fc~ . In this case let Te~ (I ~ ) = { 

f~nctions from SF(~) are regular at ~ 

equivalence relation ~ on q ~ £ ~ ( l ~ )  " 

only if 5{~ (V(~)- 14,(~)) 

by ~ we denote by ~ (~,~) 

2.2. The biregular imbedding P (~ '~) 

space of basis configurations). 

Let I be a vector-function from ~"~(X)~X= (3c 4 .... ,3£&), and let~ 

be a computation of ~ in ~{0, I,X). Put SW(~) = SW(~)\{o,~,X}. Let 

3~--(x, .... '~)eY£~(~)c~t ~={~}A~(~)(~) ' where ~\{0] .Consider 

the basis configuration P(%7~) presented by Fig. I. Here {p~ ~ p07 

pc, p- } is a fixed projective basis. P~-~_ P {z,~ ) 

0n the line LR ~ P0p- the points 

F~D (2")7 "''~ V~a {~ are marked such that {PI%AI)A ~{'L I /  - -  I 

where ~[ , ; , ) is a cross-ratio, L-_L~ .... \i 

p4 = L& f] ( p¢." PE ) • On the line Lo Fig". 1 
L° = pl'P4,, the points { p(O,A)(6)}A{~(t~) .~ .  

are marked such tha_~t E( p(o,~}( ~),PlO,~);po,P~)= ~ " 4 ~ " '  

= ~ for A 6 S W ( ~ )  , where P(0,4)= 
Cons.e  ,econs  uc  ons 

of sum, difference, product and quotent of ~-~11"~ ~-~ {i ~l 
Fig-. 2a  

the set ~ 5 F ( ~ )  = 

of ~ is called 

is a bijection. 

~ £~I all the 

. Consider the 

35 ~ ~ if and 

= ~ (~(~)- ~(~)) for all pairs 

. The partition of ~(I~)determined 

" ~(I,~)XE SW(~/)--~- (the 
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L~ -points defined by Fig.2. By iterating ~ ,  ,, 

of these constructions according to increas- 

ing of the ~ -subwords we can supplement 

the configuration P(~&) I A . ,  I)~ to the configu- ~({. ~ ~ p  

ration ~(~'~) ~) which has points LIK .~ 

p~(~) ~ t~ such that FIE. 2 b 

R(p~ (m),p~ ~ p0,p~)=I~ I~) fo= ~ ~ 4rn,  _[At 
the step corresponding to a subword A6 SW(~ f) 
the point pA(Z)~ L~ ,R(p~(~),p,;p~p~) ~ 

=(O~(~)(A))(~) is constructed. As a 

point with the index B at the primary 

construction, corresponding to A ~ SW(~) 

the point p(0,A)(&) is chosen. So we 

obtain the biregular imbedding p(~'~) • 

ze~(~f) x (~,)~(I~)___~. ~c[S~Z), where S ~ 
is a naturally defined set of indeces, 

Fi~.2c 

Fi~r.2~ 

c~z 4(Sv) = c~z 4(SW(V))+ 40~4 ($W +(V))+ 5c~4 (SW~(?))+ ~, 

SW+(V)  -- { A ~ SW(~)  I A = (A, +- A~)) , 

SW~(V )  = {A ~ SW(V) I  A = (A, x. A~)} 

The image of P I~'14f) is a union of entire basis combinatorial 

type s. 

2.3. Free basis configurations 

Let C be a basis configuration, B is a fixed projective 

basis, B~ C ~ 6 ~  (b) =4 . Denote by Z~ (C) the set of 

all projective lines which are incident with more then two points of 

C . Let ~ ~ C . Put V¢(~)=c~/([~Zp(C)I~ ~ 7) 

The point ~ is said to be proper if Vc(~) ~ 3 , otherwise 

is unproper point of C . In the latter case C is said to be a 

free extension of the subconfiguration C\[ ~ . The configuration 
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C is said to be free if it is possible to order the points of 

£\~ (C\~ =(6~ ~---7 C~)) in such a way that the configuration ~ 

U ~4,...~} is a free extension of ~U {~i,...,~_i~ for i ( i: ~ . 

Generic configurations and the configurations presented by Fig. 1,2 

are examples of free configurations. A free basis oriented combinato- 

rial type of configurations is an oriented combinatorial type of free 

basis configurations. 

3 ° . The Theorem A is a corollary of the following three Lemmas 

which connect the objects defined in p.2. 

LEMMA I. 

I) For every primary semi-algebraic variety ~ , defined over 

there exist a natural ~,~ , a regular vector-function 

~ ~ ~%[~I~...~] and its formula ~6~n%(0 ~,~l,...~)such 

that the partition ~ (~ ,~) has a stratum [ stable equivalent 

to M 

2) If H is open (i.e. is defined by strict inequalities only) 

then the stratum ~ can be chosen to be open. 

LEMMA 2. 

I) For every rational vector-function ~ ~(~I ~.. ~ , its 

computation ~ in ~(0~I,~i .... ~ and a stratum ~ E (~,~) 

there exists a basis oriented combinatorial type ~c I~ P(~'~) 

stable equivalent to [ . 

2) If the stratum ~ is open in ~ and ~ is a formula 

than the type ~ can be chosen to be free. 

LEMMA 3. For every free basis oriented combinatorial type ~ of 

configurations there exists a generic basis oriented combinatorial 

type which is stable equivalent to ~ . 

4 ° . PROOF OF THE LEMMA 2. 

4.1. Put 0(~,~) = I~L P (~'I~) ~ ~ [ 5 I~) (see p. 2.2) .Consider 

the projection ~ • ~[~,~)--~- ~ ~ ~= ~4o( p[~,~f))-~ , where 
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~4 - projection of ~x (~]~(~;) on the first factor• Let 

be an oriented combinatorial type of basis configurations, 

c 0(~,~) . Let p4 ~p~ ~ ~ and let ~[~)= ~ for ~-~,Z. 
• = ' 

By the definition of P(~'~;) the set of points p#~L K {p~}A~(~U 

[p~} is such that ~(piA,~p 0 ~p~)=(o~(~)[~))(~ i) , where A~ 

5W(~) 75 = ~2 . Since p4 and pz belong to one oriented com- 

binatorial type the points from (p4\ p~)~ L~ and (pz\ ~_) ~ L~ 

are arranged in the same order on the affine line L~\~. Hence 354 

and ~Z belong to one stratum of ~ (~,~) . 

4.2. It is not difficult to show__ that ~I~5[ ~ ~[~) is a 

trivial fibration with a fibre ~$~/(~ 

4•3. Fix any order -~ on the set 5W{~) . Let [ be a 

stratum of ~ (~ ~) . Note that independently of ~ ~ the 

configuration W [~ {~A IA~(~) ) lies in the same oriented type 

~[~-~ ] ~ ~({~) when ~A ~ ~ ~C for arbitrary A 
c~A 

6 SW(~)" From the p.4.1 it follows that ~ [~(r, -4 ])= r . Hence, 

by p.4.2 we obtain that .~ (~-~) is homeomorphic to ~× ~(~/) 

This homeomorphism may be chosen piecewise biregular,defined over Z. 

4.4. The statement 2) of Lemma 2 may be proved by the induction 

on the increasing of the ~ -subwords. 

5 ° . PROOF OF THE LEMMA 3. 

Let C be a basis point configuration, ~ ~ C is the fixed 

projective basis. (Here we follow the notations of p.3.3) . Put V(~) = 

=V(EC ]) = ~ V¢, [~-,~ , where ~C] is the basis oriented 

combinatorial type containing 

duction on V ( / 6 )  • I f  V(~)=0 

finition. Let V(~) > 0 ~ C 6 j6 

• we prove Lemma 3 by the in- 

then ~ is generic, by the de- 

. In this case among the points of 

C\~ there exists an improper point ~ . Consider the two 

situations: I)VC[~) = ~ and 2) Vc(~l = Z . 
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1): Let V6(~)=t , ~£ 'Zp (6 ) ,  ,T..,(" ~ (see Fig. 3a) 

Denote by --  ~ (C) the set of all projective lines which are in- 

cident with more than one point of 0 ~(%) ~' F i g. 3 a 
Denote by 5G(~)~ the star of the ~ / ~  

point ~ in the geometric complex 

generated on ~ by the line confi- ~. ~ 

guration Z (C) . Choose the line 

~' ~ Z (C) such that 6' is in general 

position with respect to the points 

of C\[3]) ~INC = [/~) . Fix on 

the open segment $6(~) ~' two points 

~.~ ~ 0~z separated by ~ (see Fig.3b) . 

Consider the configuration ~=(C\[~}I~ 

Fi9.3]  
/%'V \ 

U [~,~Zl (Fig. 3C) . By the trivial arguments it can be proved 

that the oriented basis combinatorial type [C] is piecewise-biregular 

homeomorphic to [C]x~3=~ ', V([CbVIC) = V(~)- ~ and It]is free. 

Fig.4a ig. b 

{z (see Fig.4a) 

I )  t ,  _ 4 )  " ,,, 

Fig .4d Fig.4e 
Fix on the open segment 6~ ~ 56 (~) two points 64 , ~Z sepa- 

el rated by ~ (Fig.4b). Consider the configuration = (C\[ ~)U 

U i64 ,6Z I (Fig.4c) • The configuration C' is free, [ C'] -~ 

--~ [ C ] ~ ~z=~ ~%, V([C~])= V(CI ~ V(~) . since 

V6,[~): ~ and ~ ~ we are at the situation of I). (see 
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Fig. 4d, 4e). 

6 ° . Examples 

6.1. For . -- - ~ ~ Q~ (X~ ~..., ~] and its formula ~ in ~(0~I~ 

÷ 20 c zt + 5 

(see p.2.2 for the de f in i t i ons  %~ + X and ~ ). Because the 

proof of the Lemma 2.3 has a construct ive character i t  enables us to 

obtain the following evaluation: 

COROLLARY I. 

For every rational vector-function ~ (~4,.--,  ~ O i t s  formula 

in ~(0~l~4~...~X~)and a stratum ~ 6 ~ (~) their exists 

a generic oriented combinatorial type of G(~) -point 2-configurations 

stable equivalent to ~. 

On the basis of the Lemma 2 and 3 one can easily construct various 

particular examples of generic oriented combinatorial types with non- 

trivial topology. The fact is that even very simple couples (vector- 

function, its formula) generate partitions ~ which have open 

strata with non-trivial topology. 

6.2. An example of a disconnected generic oriented basis combine- 

torial type of configurations. 

Consider the vector-function ~ ~Z[ ] ~0~i(X%_~ _~) and its 

formula ~= [~4,~] = [((~ x X)-~) , (4 " (((( ]-~)- ~)-~))] ~ 

~ Z ( 0 , 4 ,  X]  ~ ~ F ( ( P ) =  [ 0~4 , - { , -~ , -~ , -~  , - ~ , X ,  ~%,{xZ-x)~C~[x]" Con- 
sider the stratum ~ of ~(~,~) , where ~= {Z~RI 4~ ~>#~ 

= lO ,~ )U  (~ ,~) • The stratum % is open and disconnected. Hence 

by 2) Lamina 2 and by the evaluation of ~ ( 5  ~) from p.2.2 there 

exists a disconnected free oriented basis combinatorial type of 43- 
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-point configurations. By Corollary I there exists a disconnected ge- 

neric oriented basis combinatorial type of 144-point configurations. 

By specialization of the general construction for the particular case 

of (~, ~] the author had constructed the examples of a disconnect- 

ed free oriented basis combinatorial type of 16-point configurations 

and a disconnected generic oriented basis combinatorial type of 19- 

-point configurations (see [M] ) . 

6.3. An example of generic oriented combinatorial type which is 

homotopically equivalent to S 4 

Consider the vector-function ~=(~i,~z)=(( XZ-~ 4-/z_y~ ~ 

(-~))~ ~ [ ~y ] . The function ~(X~ Y) has unique minimum 

~ ~ , ~ = ~ . According to the at the point ~=( ~ ) ~(~*)= -~ 

definition, for arbitrary formula ~ of the vector-function 

the set of rational functions 

functions ~4 

the partition 

ing property- 

(x) ~(/~*)-- V(~*)~O for every 1]-,!/-~ SF(~ f f )  

s ch t h a t  

Then by the definition of ~ (~,~) there exists unique open 

stratum ~(~+,~) ~ ~S(~,~ ) such that ~(~*~)~ IV(~)~5) = 

= V(~)\ { ~*} for a sertain neighbourhood V(~ ~) of point ~ 

Obviously ~ I~ (~*,~)} ~ 0 

Consider the following formula of the vector-function 

SF(T)~ ~(X,Y)  contains the 

and ~l~ • Hence, the partition ~ [ ~ , ~ )  conta ins  

Suppose t ha t  the formula ~ has the f o l l o w -  

((... (~*11+...+t)." ( . . . ( 0 - ~ ) - . . . - t l ] ]  ~ ~ ( O , ~ , X , Y )  
5 ~6 
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S F (1(,)= {-16 , -~5 ,  . . . , - Z , - ~  , l X - ' 1 ) , ~ , ~ ,  ,( Y~-,t),~,- X * ' -x  ) , 
o,x~, x ,X ,Y,~, ~, . . . ,  5} 

One can easily verify by direct calculations the correctness of con- 

0 dition I*l for . Hence, X~t~ 

lysis enables us to establishe that "~(~,%) 

S equivalent to (see Fig.5). By 2) of 

Lem/na 2 and by the evaluation of ~[qi(5~l 

from p.2.2, there exist a free basis 

oriented combinatorial type of 146-point 

configurations which is homotopically 

• More detailed ana- 

is homotopica!ly 

equivalent to 9 ( ~  ~, ~) . By Corollary 

I 
I ! 

9 (~-,x) 

Fig .5  
I there exists a generic basis oriented combinatorial type of 514- 

point configurations which is homotopically equivalent to ~(~ k,~) 

7 ° . PROOF OF THE LEMMA I. 

We prove the Lemma I by the extension of the procedure used in 

p.6.3. Here we shall outline the proof of statement 2) of Lemma I. The 

statement I) is proved by the analogous but more refined analysis. 

7. I. Let ~, ~ be a fields, ~ ~ F and I be a vector- 

function, ~ ~ F W~(3~) , where 

the following notations: I 

R ~ 

DEFINITION. A computation 

= (X4 ,..., ~ ~) . We introduce 

~ I I(~) =0) and in the case of 

of a vector-function { % F v~(~) 

is said to be  egenerate at point if 

÷ ~(~) for arbitrary ~,V ~ 5 F(~) such that ~,~ 

Let ~ be the variety being introduced in the statement 2), 

Lamina I, let M= k ~, where ~ = [k4, ...,kV~l~ ~L[~ I ,...,~.Wit- 

hout loss of generality (i.e. substituting if it is necessary the va- 

riety M by a stable equivalent one) we can assume that the poly- 
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nomials ~ j 

j ~ ~  

~e ~+ which is near to origin; 

(xx) the set 0(~ = { ~! 

are homogeneous, ~j = ~ ~J " ~'" • ~for 

and the following assumptions are valid: 

for arbitrary point 

is 

algebraic independent over 

~.~. P,OPOS~=O, 1. 
Let ~ ¢ ( ~ X t  , . . . ,  ~ ] 

let ~ ~ be a point from ~0 

following assumptions are valid: 

I) There exist a non-degenerate at formula 0~ 

X~,. . . ,  X~l of ~ ; 

2) ~¢I~I~ .. ~ 9 ~ ( ~ )  for arbitrary point ~ 6 ~+ which 

be a polynomial vector-function and 

. Suppose that for (~ ~ ~) the 

is near to ~ 

Then there exist the other vector-function ~ ~ ~4 L/4 ~"'~ /14 ] and 

its formula ~ 6 ~4 (0 II ~/I ~---, /~ such that the partition 

(~)contains an open stratum which is stable equivalent to the 

~+ ~ cone over with the apex • 

For the proof see p0 7.5. 

Consider a vector-function ~ ~ Z~L[~,~] where ~ 

~,, ,~}~,+. +~=D~ j ~ : ~  3~ =(X~.,,,~<~),/{i(~ I )  = J A~,,. ,~. 

• X~''.." ~ for j £ I " ~I~ . The vector-function ~ can be re- 

garded as the generic homogeneous polynomial vector-function ~i ~n% 

of degree b[~l . From the assumption (xx) on C(~) it follows 

that 60~e ([I~]~@) ~ ~ ~0bvg@ ~+ (we denote by ~ a stable 

equivalence of semi-algebraic varieties). For the couple (~I~(~,~)) 

the assumption 2) of Proposition I is valid (it follows from (M)), 
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while the assumption 1) is not. Consider a vector-function ~ 4 - the 

composition of ~ and the "generic translation of R ~ " " 

A! ~ ~"%[~ ~T~ ~ ] where T(T 4 ..... T~) ~ = 

"(X,+T,)J4....-(X~*~]iifor 3(: {'rru ' ~'+'"+i'~=b(~'] ¢''""~" 
¢-(< b Choose a point ~ ...,~ such that the set 

C(k)U{t:}[=( ~ ~ is algebraic independent over 0 . Put 

" . . . ,  . 0bviousl~, r ,0~(c~k) ,V , - t ' )  (~)+ 
÷ 

~ c ° r ~ ( ~ , e ~  ~g 2 M • set  ~ be the composit ion of ~ t  and the 
4 "generic~ homotety of ~ ",:M~ ~QIg[~,T,~<~, ~ ] ,  t~j =~.M~j for 

] £ I "~L Choose a point ~6 ~ ~ ~t~7 0 such that the set 

{., U {~*] = R is algebraically independent over 

I~ . Obviously, ~0~(~m~,t.,~L_C) /:7 ~ ~o~(c~),~V) ~.Put 

~(k) = (Ctk),t,~ ,-~) " For the couple ( ~ ,Olk)) the assumption 

2)of Proposition I is valid (it follows from the construction). We 

shall complete the proof of statement 2), Lemma 2 by presenting of 

the non-degenerate at 0(~) formula of ~ in ~(0~I ~ ~0~,~] 

7.3. The Horner-type computation HOZ~ of a polynomial vector- 

function. 

Let F 

pendent variables. Consider the family of the maps { K{£]%~O~ 

where K ~  F[X~,...,X~]-'-FEX~,...,X~_4,f,~+4,..-,Y,~] , 
is a coefficient of ~ for ~ -degree of ~ 

~or %~ IF put Ho~lc~)~ ~ 

be a field and let {X~,..., X~'~ be a collection of inde- 

K~ 

fo~ c~ tF[X~, . . . ,  X~] put 

... + )%, H o ~  (K~ ~ ' ~  (~ ) ) . . . ~  ~ ~ ( C ( ~ , ) , X ~ ,  . . . .  )~0 - 
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Put ~'40"6l'u (~]= [H0q.I'D ({4 ] , . . . ,  ~0"LI'b (~ttv]) (- (]~[rb(C(¢), ~ 4 . . . .  ,X~,.). 

7.4. Consider the vector- function ~4 (p.7.2) as an element 

of Q [J,73[~] , 

~= ~_ H j - . . _ 

0 
Denote by ( - 7 )  the point (-"]-I , .--, -T~. ) (<(74~l)a(,.4 cj. ) 

PROPOSiTIO~ ~. The computat ion H o ~ r ~ { g  ~) o f  the v e c t o r - f u n c t i o n  

is a non-degenerate at point ( - 7 )  formula of ~{ in 

0{, ( {  H!  (~I  T ) ]  ~ J , )  , , . 

One can obtain the proof of Proposition 2 by direct calculation. 

Now we are able to construct a non-degenerate at point 01k] 

formula of in ~t~(0,{,~,T,a(, ,  ,~ ) . Let {H]~,,,...,i, ] { , [~ ,D(~ ,  ] ,  

be a certain formula of the vector-function 

j~ h~ 
H0~t~ ( ~ 4 )  the subword 

for e~e~y (],~,, .... , ~ ) 

vector-function 

of ~ at point O(k) 

2, linearity and homogenity on { H! " } 
from 

(/}~IO,t, ¢94 ,V)  . Replace in formula 

H j (~,TI by the word (~x H j ~ ,'",~'k. ~t ,---,¢'~ 
• Thus we obtain a formula ~ of the 

in ~ ( 0 ~ 4 ~ 0 ~ )  . The non-degeneracy 

follows immediately from the Proposition 

of the polynomials 

5F(H0~rb (~4)I and from the algebraic independence 

q of the set {C(k)}U {t~} ~ over 

7.5. PROOF OF THE PROPOSITION I (p.7.2). 

We shall demonstrate how to rearrange the couple (~,~) from 

the statement of Proposition I to obtain a new couple (~) which 

has the following property: the partition ~ (~) has a stratum 

which is stable equivalent to 9+ N V(~C~) , where V(~*) is a 
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small convex neighbourhood of 3~ ~ . 

Because of the assumptions I), 2) of Proposition 2 their exists 

a collection of rational numbers A=[~ ~%}{{V~,j=4,Z such 

that 

b) the primary semi-algebraic set C0~C~ ~+ is piecewise-bi- 

regular homeomorphic to ?+ R K A . 

c) 5~(i/~(~)- ~(~)= ~$rb(]~{~-v(~)) for arbitrary rational 

functions I~,~ ~ 5F(~) and arbitrary points ~,~% KA ~ ~ +. 

Let Z be a certain new variable. Consider the vector function 

~ £~*'A'[X4 X~ Z ]  # ( X , Z ) = ( 9 , A )  Let Oj~)(tJj) 'J/-J , - . - ,  , , • = ~  " ~  

~onsider the following computation e of { "  q~ = <q~, 

f i~ t~ , j .~ ,~  ~ 0,4,3£,Z) where 

t( . .  ( Z  . Z )+ . . +  Z ) : ( .  ( Z  + Z ) + . .  + Z )) 

4- Z ) ' ( . . . ( O - Z ) - . . . - Z ) )  , when 
........ q{ 

M%4 
SF(9)= SF(q))uA u {IZ}~o~u 

• when tJ;v>O 

/(...(Z 4- Z ) * . . .  

It is easy to check that 

U l- ~ Z ~=| for a certain ~ ~ and 

is a formula when ~ is a formula. Let 

~-- (~ ~) which contains the point I~ ~) 

N ~+~ 6~> nlj~ {I~I~ ~) I~ 5FII~uA*~ . According to the construction, 

the stratum ~ is biregular isomorphic to 

8 ° . The Theorem B is a simple corollary of the Theorem A and the 

~rSz , and that 

be a stratum of 

, where ~£ KAN 
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Gale duqlity. Consider an ordered configuration C = {C~}~t~ of 

C' ~5 -vectors. The Gale face of C is a subconfiguration of 

C such that ~ & ~e~t C0~e (£\£') . Let ~(~I be the 

lattice of Gale faces of the configuration C . if all points of 

C are Gale vertices than their exists a convex polytope P 

po~ I~-~) such that G(C) is the face-lattice of 

Moreover, there is the canonical biregular isomorphism between 

[£]~/GL~(~ and [P]c/AGL~_4 (R~ , where [C~] and [~]6 

are the combinatorial type of Gale diagramms and of convex polytopes 

which contain C and P , respectively; AGL~_ 4 (~ is the 

group of affine automorphisms of (see [GI] ) . By the con- 

struction similar to the Perle's one (see [GI, § 5.5 Theorem 4 ] ) 

we can to put in correspondence to arbitrary oriented basis combina- 

torial type 

~(~) of 

If the type 

generic too. 

of point 2-configurations the combinatorial type 

~B -Gale diagramms such that ~(~/~L3(~ 

is generic then the type T(~ can be chosen 
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