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Stretchability of Pseudolines is NP-Hard
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ABSTRACT. We prove that the problem of determining whether a pseudoline
arrangement is stretchable is NP-hard. We also use our techniques to find
a symmetrical pseudoline arrangement that is stretchable but not stretch-
able to a symmetrical line arrangement. The NP-hardness result can also
be obtained from a paper by Mnév (Lecture Notes in Math., vol. 1346,
Springer, 1988, pp. 527-544) which implies the stronger result that deter-
mining stretchability is equivalent to the existential theory of the reals. We
give a short explanation of Mnév’s proof, viewed from a complexity theory
point of view, which may be more comprehensible than the original paper
to readers who do not know much topology.

1. Introduction

A line arrangement is the partition of the plane induced by a set of lines
in the plane. A pseudoline is a simple curve in the plane that goes to infin-
ity in two directions. (In other words, a pseudoline is the image of a line
under a homeomorphism of the plane.) A collection of pseudolines is a set
of pseudolines such that any two members of the set intersect at most once,
and cross if they intersect. A pseudoline arrangement is the partition of the
plane induced by a collection of pseudolines. A pseudoline arrangement is
stretchable (or realizable) if there is an arrangement of lines with the same
combinatorial structure. A line or pseudoline arrangement is uniform if no
three lines intersect in a point and no two lines are parallel. :

The stretchability of pseudoline arrangements has a long history. .ln pamc-
ular, given a pseudoline arrangement, the question of finding a reghzauon of
it has been studied extensively [BS]. We show that this problem 1s NP-hafd.
We also answer a question of Bokowski and Sturmfels [BS, p. 80] by showing

that there exists a symmetrical pseudoline arrangement which is stretchable,

but which is not stretchable to a symmetrical line arrangement. '
angement is the set of line ar-

The realization space of a pseudoline arr
. g s shown
rangements realizing this pseudoline arrangement. Mnev [Mn] ha
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that the topology of the realization space of a pseudoline arrangement can be
the same as the topology of any semialgebraic variety (a semialgebraic variety
is the solution space of a set of polynomial inequalities and equations over
the reals). Mnév’s result also implies that determining the stretchability of
a pseudoline arrangement is equivalent to the existential theory of the reals.
This is stronger than our result.

In §2 of this paper we give our proof of the NP-hardness of determining
if a pseudoline arrangement is stretchable. In §3, we use our techniques to
show that there exists a symmetric pseudoline arrangement which is stretch-
able, but not stretchable to a symmetric line arrangement. In §4, we give
Mnév’s proof that determining the stretchability of a pseudoline arrange-
ment is equivalent to the existential theory of the reals, with one argument
in his proof simplified so as to require less topology than he uses. In §2 and
3, we will be working with pseudoline arrangements—our basic objects will
be lines. In §4, we will (as Mnév does) work with “pseudo-point™ arrange-
ments, i.e., a configuration of points for which we know the orientation of
all triples. This is an equivalent problem, as pseudo-point arrangements are
the projective dual of pseudoline arrangements.

2. Proof of NP-hardness

Our proof is based on incidence theorems of projective geometry, namely
Pappus’ and Desargues’ theorems. More specifically, we use the nonrealizable
arrangements of pseudolines that can be obtained from these two theorems.
The Pappus and Desargues configurations are shown in Figures 1 and 2.
The Pappus configuration contains nine lines, each incident with three of
the points, and nine points, each on three of the lines. In the Desargues
configuration, there are ten lines and ten points. (Note that we do not draw
the Desargues configuration in the standard manner.) Pappus’ theorem is
that in the Pappus configuration, if any eight of these triples of lines are
concurrent (or eight of the triples of points are collinear), the last triple must
also be concurrent (collinear). Similarly, Desargues’ theorem is that if nine
of these triples of lines (points) are concurrent (collinear), the last triple must
also be. From either of these configurations, we can obtain a nonrealizable
arrangement of pseudolines. We do this by slightly bending each of the
lines to “go around” the points; that is, we replace each of the points in the
configuration by a small triangle. By bending all lines in the right way (see
Figure 3 and 4), we obtain nonrealizable uniform configurations [Gr].

We prove NP-completeness by reducing a variant of the NP-complete
3-SAT problem to the stretchability problem. The 3-SAT problem is: Given
a Boolean expression in conjunctive normal form containing only three vari-
ables in each clause, is there an assignment of the variables making the expres-
sion true [GJ]? It is easy to show that this problem is still NP-complete if we
require that in each clause either only nonnegated variables or only negated
variables appear. We use this variant of 3-SAT, called monotone 3-SAT

STRETCHABILITY OF PSEUDOLINES 1§ NP-HARD
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FIGURE 3. A nonrealizable Pappus configuration.
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A B c
FIGURE 5. A Pappus configuration with three “imaginary” lines.

FIGURE 6. A Desargues configuration with two “imaginary” lines.

STRETCHABILITY OF PSH‘D“HNFS 1S NP-HARD =
[GJ, p. 35"1; We calla clause positive if it contains only
and negative if it contains only negated variables, To |
is NP-hard, we can reduce 3-SAT to it by
each variable x , and setting X, =y
XV v, vl We then replace X, by Vi
either positive or negative,

Given a mupolonc 3-S.»\T formula, we will construct a pseudoline arrange-
ment which is stretchable if and gnly if the formula is satisfiable. In the
pSfl{dOllﬂl‘ :1rr:mgcmgm. clauses will correspond to modified Pappus config-
urations, variables will correspond to certain triples of points, and variables
will be linked to clauses by modified Desargues configurations.

We I\O\‘\ loo?( at tl‘}e Papp_us configuration more closely. We let three of the
lines he_“lmagmary' (see Figure 5), i.e., the lines do not appear in our final
pseudoline arrangement, but are used implicitly in the proof. We call the
three points on each of these “imaginary” lines a triple. In our construction,
each Pappus configuration corresponds to a clause of the Boolean formula
and each of the three triples in the Pappus configuration corresponds to one
of the variables in the clause. Furthermore, the position of the points in the
triples corresponds to the truth (or falsehood) of the variables. Specifically, let
PQR be the triple corresponding to the variable x,, with point Q between
points P and R. We will put point Q above (or on) the line PR if x; is
true and below if x; is false. Unless all three triples of points are collinear,
the Pappus configuration is realizable if and only if not all the variables are
the same; i.e., if in at least one of three triples ABC, DEF , and GHI the
middle point is above the segment between the end points of that triple, and
in at least one of these triples the middle point is below the segment.

In our pseudoline arrangement, we will have many different Pappus config-
urations, one corresponding to each clause. This gives rise to many triples all
corresponding to the same variable. We must connect these triples §omeh9w
50 as 1o ensure that they all give the same value of x;. To do this, we in-
troduce three new points for the variable x;, and m.ake the position of thlese
three points correspond to the value of X;. We will call these thre; po;nt:
the master triple for x,. We then hook this master U’jlple u& to all‘11 :l ; 05 ::;s
triples that correspond 10 , in the Pappus configurations. T& 500/ L
by using more Pappus configurations, but for reasons whic w:onﬁguration
later we use Desargues configurations instead. In a Dc?at“?) the resulliné
if we take out the two lines ABC and D.E F (oo .Flgl-lAfz a;ld point E is
configuration is realizable only if point B is gbove l}nebove puhiingelcn
below line DF or if point B is below and point E 1: :Of the slave triples in
dealing with a positive clause. We wish 10 h(_wlf t‘;]!; ‘:n aster triple for x;. TO
the clause (corresponding to variable x;) wit tion with the bottom triple
do this we introduce a new Desargucs conf-lslfaDEF being the slave triple-
ABC being the master triple and the top trip! e to the opposite of true and
We now define true and false

nonnegated variables
‘ how monotone 3-SAT
ad:?mg a separate variable y for
by adding the clauses X Vy, v b' and
where needed so as to make :;ll clauses

for a master triP
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false for a slave triple; i.e., in a master triple, for a false variable, the middle
point is above the other two points, and for a true variable, the middle point
is below the other two points. This ensures that if the points in the master
triple are false, then the points in the slave triple are false (and vice versa).
Our actual construction will use a modified Desargues configuration having
only the property that if the points in the master triple are false, then the
points in the slave triple are. However, this is exactly what we want: in a
Pappus configuration corresponding to a positive clause, the configuration is
nonrealizable if and only if the three corresponding master triples are in the
false position. For Pappus configurations corresponding to a negative clause,
we will turn the Desargues configuration upside-down, so the Pappus config-
uration is nonrealizable if and only if the three master triples are in the true
position.

The astute reader may have noticed that we are using both Desargues
and Pappus configurations, where intuitively it seems that only one of these
configurations would suffice. We could probably obtain a proof using just one
of these configurations, but each has properties which make the proof simpler
if we use them both. The advantage of the Desargues configuration is that
it has more degrees of freedom than the Pappus configuration; this makes it
easier to show that a pseudoline configuration corresponding to a satisfiable
formula is stretchable. The advantage of the Pappus configuration is that
there are three disjoint lines contained in a Pappus configuration, one for
each of the variables in a clause, whereas a Desargues configuration contains
only two disjoint lines.

We are now ready to give the construction. First, we describe how to con-
struct the pseudoline arrangement corresponding to a given Boolean formula.
This arrangement will be stretchable if and only if the formula is satisfiable.
During most of the construction of our pseudoline arrangement, we will ac-
tually be constructing a line arrangement. It is only in the last step of our
construction that we will perturb this line arrangement to get a pseudoline
arrangement that may not be stretchable. :

To start constructing the arrangement, for each variable we place a triple
of three points (the master for this variable) on a line. All these variables will
be placed near some horizontal line, say y = 0, but in “general position™;
i.e., the only relations between the points are that the three points in a triple
lie on a line. This can be accomplished by putting all the triples down on the
line y = 0 and then perturbing them slightly (see Figure 7). We will later
show how to accomplish this in polynomial time.

We must include the values 1 and 0 among our variables. There are two
ways of doing this: we can either add an extra line in the master triples
corresponding to 0 and 1, which forces the middle point to be above (or
below) the line through the end points, or we can add a set of clauses which
forces one variable to be 0 and another to be 1.

STRETCHABILITY OF PSEUDOLINES IS NP-HARD
537

(%W W

FIGURE 7. The general layout of our construction, with Pappus configurations
corresponding to positive clauses on top, Pappus configurations correspond-
ing to negative clauses on bottom, and master triples in the middle.

Next, for each positive clause, we place a modified Pappus confi ion
above the horizontal line y = 0 which all the master triples lie near, and
for each negative clause we place a modified Pappus configuration below this
horizontal line (see Figure 7). Here, by modified Pappus configurations, we
mean a Pappus configuration missing the three horizontal lines as in Figure
5. Again, although all the triples in these modified Pappus configurations are
nearly horizontal, all these configurations must lie in general position, so the
only relations between points are those implied by the fact that they are all
modified Pappus configurations. The important part of this placement is that
the top side of each of the master triples “sees” the bottom of the triplgs in
positive Pappus configurations, and the bottom of each of the master triples
“sees” the top of the triples in negative Pappus configurations.

Next, with a “contracted” Desargues configuration (see Figure 8(a)), we
will connect each master variable to the Pappus configurations correspond-
ing to clauses containing it (see Figure 9(a)). A cantmmfd Desargues canﬁ;;
uration has had points D, G, and I identified a:;:q pomst(sa)l" , H, and
identified, so that it contains only six points, as in Figure ota). :

We have now placed down essentially all the lines that wel T‘eeit:;b?:;
arrangement. We will obtain the final arrangement by sllgh”“lv)ile] replace
the arrangement that we already have. In our penurbzlxtnor;eweAlso i
certain lines by pairs of lines which differ by fa‘smal azging'lhroug.h e
neighborhood of certain points which have many lmeslf concurrent. We can
we will perturb the lines so that they no longer are &
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perturb the lines to make only the desired changes because everything is in
general position.

We perturb the configuration by replacing each of the contracted Desargues
configurations by a new, more complete Desargues configuration. Specifically,
we replace the configuration in Figure 8(a), first by the configuration in Figure
8(b). and then by the one in Figure 8(c). Thus, we perturb the two lines b,
(originally BD) and b, (originally BF ) slightly inward, and add the new
points G =b,NAD, H=5b,nCF, I=bNCD,and J =b,NAF . Next,
line DEF is replaced by the two lines GEJ and JEH. This gives the
configuration in Figure 8(b). Figure 9(b) shows this configuration connected
10 a Pappus configuration as it would appear in our construction.

As the points (and Pappus configurations) were placed in general position,
the only triple intersections containing lines b,, b, or DF in the original
Desargues configuration are B, D, E, and F . If the amount we perturb the
lines b, and b, by is sufficiently small, the only place that the arrangement
changes is in the neighborhood of D, E, and F. It is easy enough to see
what happens at D and F (see blown-up neighborhood of D in Figure 10);
all lines previously passing through E still pass through it.

So far, it is possible to make all our perturbations using not just pseudoline
arrangements but actual line arrangements, as in Figure 9(b). The arrange-
ment can still be realized with every triple of points lying on a line and with
all our incomplete Pappus and Desargues configurations being actual Pappus
and Desargues configurations and not perturbed versions of them. This all
changes in the next step.

The last step in our construction is to replace the points / and J by very
small triangles /,7,1; and J,J,J;, as shown in Figures 8(c) and 9(c). This is
easy 10 do with pseudolines. In a line arrangement, by Desargues’ theorem,
replacing / and J by triangles in this way either forces point E or point
B to move down. This makes it no longer possible to realize the pseudoline
arrangement while having every triple of points lie on a line, and thus forces
decisions about how to perturb these triples. We will show that it is possible
to find a consistent set of such decisions if and only if the Boolean formula
is satisfiable.

We will show that the above procedure finds, given a monotone 3-SAT
Boolean formula, a pseudoline arrangement which is equivalent. That is, the
pseudoline arrangement is realizable if and only if the expression is satisfiable.
We still have not quite shown how to produce the pseudoline arrangement in
polynomial time—we must give an algorithm for our initial step of putting
the Pappus configurations and the sets of three points in a row down in
“general position.” As one might expect, this step is not hard. We also have
not yet obtained a uniform pseudoline configuration, which we must do to
show that the problem is NP-complete in the uniform case. There is a trick
discovered by both Mnév and Sturmfels and White [Mn, SW] which we can
apply to turn the above configuration into a uniform one. We will discuss
these steps in more detail later.

STRETCHABILITY OF PSEUDOLINES IS NP.-HARD
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i The intermediate
4" Desargues configuration. (b) :
o < s configuration. (c) The final step:

FIGURE 8(a) A “cont!
step in expanding a comraqed D_esargue
replacing points / and J with triangles.

above pseudoline configuration is
nerating it is satisfiable. We ﬁ_rst
retchable, then the expression

What we do now is to show thatvthe
stretchable if and only if the expression £
do the easy direction: if the configuration 1S st
is satisfiable. We later do the hard direction. ider a realization of the ar-

Suppose the arrangement is stretchable. COBS:me if in the master triple
rangement. Let the value of a variable X; . the Jine segment joining the
corresponding to ¥, , the middle point 1 be'lov:] middle point is above this
other two points. Let the variable be false L Z et the variable be €ither
segment. If the point is On the segmem, we l:laiZeS the Boolean expression
false or true. Now if this truth assignment
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(b)

(©)

FIGURI'! 9(a) A contracted Desargues configuration in place: ABC is the
mastcr' triple and DEF the corresponding slave triple in the Pappus con-
figuration at top. (b) The intermediate step in expanding the contracted

Desargues configuration in (a). (c) Replacing points I and J in (b) with
triangles.

false, there must be some clause which
clausc‘, Say X, VX, Vox, , then all the variables in it are false, This means
lhgt. in the master triple corresponding to cach of these variables the middle
Pom{ is above (olr on) the line segment joining the other two. Sin(gc the points
in (hls_mas}cr triple are connected by a modified Desargues configuration to
|th points in the slave triples in the Pappus configuration corresponding to
this clause, ll}e middle point lies strictly below the line segment joining the
other two points in all three triples in this Pappus configuration. However,

is false. If this clause is a positive
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FIGURE 10. The neighborhood of point D before point
I is replaced by a triangle.

this gives a nonstretchable version of the Pappus configuration. Similarly, a
false negative clause also gives a nonstretchable configuration.

The other direction is harder. Assume that we are given a satisfying assign-
ment of the Boolean formula. We must show that the corresponding pseudo-
line arrangement is stretchable. We start by putting the Pappus configuration
and the master triples down in general position, with the three points in all
triples collinear. We will then show that we can move the middle poipls
of the master triples up or down, depending on whether the corresponding
variable is false or true, perturb the Pappus configurations by a very small
amount, and add the Desargues configurations linking the slave triples to'lhe
“master” triples to give a realization of the desired pseudoline conﬁguraugn.
We will do this by proving a series of lemmas showir}g that we can realize
the configuration by perturbing the original configuration in a certain way.

Before we can proceed with the lemmas, we must give some dfﬁ"“mnﬁ
For each line in our configuration, we will call two o: three points ‘on;o
“anchor points.” We will consider the line to be “fixed” t0 !he;c g;ls:rs‘ucs
that when these points are perturbed, the line is perturbed. For the D 5 F
configurations, the lines, listed by their two anchor points, ar¢ & ijho;
€D, CF, BG, BH, EG, EH . For thsPaopl Conf?:‘rlalu'o\‘v‘;‘en we move
points will be ADH , AEI, BDG, BFI, CEG.and must‘mﬂkc sure that
anchor points in a line having three anchor points. wed the effects of small
they remain collinear. We use anchor points 10 boun
perturbations on the overall configuration.

LEMMA 1. There exists an ¢ such that if @

MOt ¢, any three lines not originally concurre
tions,

Il anchor points are ","Md by at
nt retain their relative orienta-
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PRrOOF. This is clear for any specific three lines. To obtain an ¢ that works
for all lines, simply choose & to be the minimum over all sets of three lines
of the &’s for each set. O

For our next lemma, when we talk about the line arrangement of a De-
sargues configuration, we also include all lines passing through points in the
configuration, although these lines may technically not be in the configura-
tion.

Using this lemma, we will show that there is some ¢, and a corresponding
&, such that if we move all the middle points of the master triples either
up or down by &, , depending on whether the corresponding variable in the
satisfying assignment is true or false, then the points of the Pappus configu-
rations can be moved by a distance ¢, so as to realize the arrangement. We
first show the existence of these &’s for each Desargues configuration sepa-
rately, and then show that we can choose these &’s to be valid for the whole
arrangement. Showing that these &’s exist for each Desargues configuration
is the substance of Lemma 2.

LEmMA 2. For each Desargues configuration connecting a master triple to
a positive clause, the following assertions hold:

(1) For every &, 0 < e, <¢/2, there exists an &, > 0 such that if point
B is moved up by ¢, to B', if points D, E, and F are moved by less than
e, to D', E', and F', and if point E' is below line D'F', then the points
G, H, I, 1,, I, J, J,, and J; can be added so as to make the resulting
line arrangement of the Desargues configuration be combinatorially the desired
arrangement, even if all the anchor points not in this Desargues configuration
are moved by at most ¢/2.

(2) For every &, 0 <& <¢&/2, there exists an &, > 0 such that if point
B is moved down by &, to B', if points D, E, and F are moved by less
than e, to D', E', and F', and if point E' is above line D'F', then the
points G, H, I, I,, I, J,, J,, and J; can be added so as to make the
resulting line arrangement of the Desargues configuration be combinatorially
the desired arrangement, even if all the anchor points not in this Desargues
configuration are moved by at most ¢/2 .

(3) There exists an &, > 0 such that if point B is moved down by at most
¢, to B', then the points G, H, L, L, I, J,, J,, J can be added so
as to make the resulting line arrangement of the Desargues configuration be
combinatorially the desired arrangement, even if all the anchor points not in
this Desargues configuration are moved by at most ¢ /2.

ProoOF. (1) We will first show (1), assuming that I , I, and I; are all
identical to point 7, and similarly the J;’s are idemic]al t(f J , as in Figure
8(b). Let us consider points D' and F' 1o be fixed. Let us also consider all
anchor points outside the Desargues configuration to be fixed (

. p except on lines
with three anchor points, one of them a point in the Desargu,

es configuration,
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in which case we only fix one of the two outsi

de anchor poj
ard t / A points). As B w;
moved upware 1o (P roduce B, b): D§53T8UCS theorem no matter where "
place thf: lines BG and BH, E' will be below D'F'. How we
make E' approach segment D'F’ by moving : ever, we can

g ; ine BG towards D’
towards F'. By moving only BG towards D', we move £’ to the nt;lctl frg
by moving only BH towards F', we move E' to the left, We can ther;fore

move these tw,o l,ines simlllllaneously 50 as to make E' approach any point
on segmen} D F'. Thus, in sor/nel sufficiently small neighborhood of E, we
can put £ anywhere below D'F’. This involves moving points G, H, I,
and J by some amount that we can make arbitrarily small by making ¢,
arbitrarily small. It is easy to see that by making ¢, sufficiently small, the
combinatorial structure of the arrangement near points B, D, E, and F
is unaffected. By Lemma 1, the combinatorial structure cannot be affected
anywhere else. Finally, we can perturb the lines GE and HE by a tiny
amount to make triangles at / and J without affecting the combinatorial
structure of the arrangement elsewhere.

We have now proved (1) with points D', F', and anchor points outside
the Desargues configuration all fixed. However, by compactness, this implies
(1) even when these points are not fixed: the set of all positions for these
points at most &/2 away from their original positions is a compact set, and
as the maximum possible ¢, is a continuous function of these positions, &,
as a function of the positions of these points must be bounded away from 0
on this set. : :

(2) This proof is very similar to the proof of (1), and will be o.mmed.l

(3) We first place points G and H on lines AD apd CF , sufficiently close
to points D and F , respectively, so that the corgbmatonal cor:jﬁgura:x:loz
as in Figure 8(b), even if all the other anchor points are move tsy Sauppose
¢/2. Now, for the time being, let us fix all these o}her anc'hor poan ‘nd E
B’ is below line AC. Let B” be the intersection of lines /'41 G;1 closer 0
Since B” is on line AC and E is online DF, by movmir:::’:e point B to
D orpoint H closer to F , we can keep point E fixed an i

: Y int B',

B" . Now, note that if we move B” downward alonggllel:;irﬁn:: go:md I,
. y rian

keeping points G and H fixed, we open il The amount that we can

producing the desired configuration of Figure 8(c) ‘ 1o other lines through
move B” downward is constrained by what happe::e B down too far, we
D and F (see Figure 11). For example, if we:mo

iat D (to another
. : ine through point
may put I, on the wrong side of a gifferent I and B’ close enough 10 ke

. i t
master triple). However, if we keep p(:;;s sﬁﬂiciemly small angle: ‘;; d]?hl:)(;
as 10 move lines BG and BH throy ing lines BG 0oF 27+ 4
change the combinatorial conﬁgufat;;’n b,y r;l;oglecinms arbitfaffﬂz,is;]a;kcmi
if we m nough, the ang: s, the proo
we obta?:et:é rse:::lltlsein (gh)- Again, bY corgr::::::;: points:
Points fixed implies the result With nonfix®
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FIGURE 11. The dotted line must pass below point 7, .

Now, we use Lemma 2 to prove the following:

LEMMA 3 In our construction, if the Boolean formula is satisfiable then the
corresponding pseudoline arrangement is realizable.

ProOF. To show the pseudoline arrangement is realizable, we use Lemma
2 A§sume we are given a satisfying assignment for the Boolean formula.
Consider a Pappus configuration in our construction. This configuration cor-
responds to a clause of the Boolean formula. Assume that this is a positive
clause, so the Pappus configuration is above the line y = 0. (If it corre-
qunds to a negative clause, the argument is symmetric.) In the satisfying
assignment, this clause must have either one, two, or three variables set t0
true, and the rest set to false. If all three variables are set to true, we do not
move any points of the Pappus configuration. If two variables are true and
one false or if two variables are false and one true, we move all the points of
the P.appus configuration by at most &, (which is a quantity that will be de-
termined later) so that for the true slave variables, the middle point is above
the other two, and for the false slave variables, the middle point is below the
other two. (This can easily be done.) Now, we go back to Lemma 2. We
first choose an &, smaller than all the ¢,’s of Lemma 2(3) for the Desargues

conﬁgural.ions in our construction. We then move all middle points of the

;’L‘I’Z‘: f‘;llplcs up or \(;vown by exactly ¢, , depending on whether the vari-
se or true. We then choose ¢ S o of

Lemma 2(1), (2) , S0 it is smaller than all the &,

B L o cac;();)lhc Desargues configurations in our construction. NOW»
Y h esargues configurati iately,
a0 by Laronay | and. 3 guration can be perturbed appropr

none of these perturbations interferes with another

STRETCHABILITY OF PSEUDOLINE ISNP-HARD

(all the anchor points have been moved b =

realization of our pseudoline arrangement,

i conclludc e e Cr determining stretchability of e
NP-hard, we need to show how to constryct the pseudolj pseudolines is
polynomial time. To do this, we need to show o l0 llne arrangement in
triples and the Pappus configurations in general positio;? an out the master
is to first lay out all the configurations, but not necesmril)" inne way to dg Phls
and then perturb them to obtain a configuration in general gi)l;ietl;al po\shlluon,
not need to obtain actual coordinates for the perturbed lines»p we n?:& e do
the combinatorial structure of the resulting line arrangemen!L It thus s{Jfr;'xe:d
to perturb the lines symbolically. To perturb a Pappus configuration, we ﬁ::
symbolically translate the configuration by an “infinitesimal” amou;n, This
eliminates all degeneracies between lines in the Pappus configuration and
lines outside it, except for those at points at infinity. To remove these, we
symbolically rotate the Pappus configuration. A similar procedure works to
put the master triples into general position.

We have now shown that determining the stretchability of a pseudoline
arrangement is NP-hard. The arrangements we have constructed, though,
are not uniform. To show that it is still NP-hard with a uniform arrange-
ment, we use a lemma proved both by Mnév and by Strumfels and White on
constructible pseudoline arrangements.

A pseudoline arrangement is constructible if we can produce it by adding
the pseudolines one at a time, while never placing a pseudoline through more
than two points defined by intersections of previously placed pseudolines.

Y less th
b a0 ¢/2), 50 we have a

LEMMA 4 [Mn, SW]. Givena constructible pseudoline arrangement ,.”f hqn;
can find (in polynomial time) a uniform pseudoline arrangement £ Whic
is stretchable if and only if & is stretchable.

PrOOF. To produce ., consider the order of placing the Pf"d::;‘:;;:::
shows the arrangement % is constructible. We will examine thc [1’1811 one or
in the reverse order, and replace pseudolines that Passei“llof‘;r four new
two points previously defined by inlersgcuons by euhermrough e
pseudolines. When processing a pseudoline L that p;SStf:o pseudolines as in
P defined by intersections of pseudolines, replacc 1t yes {hrough two points
Figure 12. When processing a pseudoline L et Tssfour pseudolines as in
defined by intersections of pseudolines, teplace lteugoline arrangement "
Figure 13. This process will pl‘_o;}lc.e a]\;nl;qn; zirelchable, one candplrod':;:
Clearly, if % is stretchable, is. B 7' and undoing
a stretching of % by starting with the realiz al;::r: getail in (Mn, SW)- O
process we used to construct ", as SIOWD m]'es to uniform

Now, to show the NP-hardness result app™ ced 1S construct
we need to show that the arrangement ¥¢ pr:s configuration®:
first put down the master triples and the e
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P
% is replaced by %gé‘:j

FIGURE 12. 'Making a constructible arrangement uni-
form: replacing a line through one point.

\\ #

P

%i——g is replaced by
7N

FIGURE 13. 'Makir-xg a constructible arrangement uni-
form: replacing a line through two points.

g:[e] lm;s Gin eg(gl of the Desargues configurations in the order ADG, CFH
o ,p TCVi(),uSl d, ﬁAF 5 BQ, BH, we never put a line through more than
L 1}‘l ef rlxed pom?s. Our arrangement is thus constructible, so by

realizability of uniform pseudoline arrangements is also NP-hard.

3. A symmetric pseudoline arrangement
not symmetrically stretchable

syrgryn:zs:irtcgalt}:)esgglsﬁmrc)duced in the previous section, it is easy to produce 2
line arrangement Wne fll;rangemem that is not stretchable to a symmetrical
constructed the bse Z“{' construct this in much the same manner that we
in the previous fectlilortlJ mle_hérrangemem from an arbitrary 3-SAT formula
(XVY)A(XV5). The onlls arrangement will correspond to the formula
clearly, x = 1, y = 0, and ;’ja(t;sﬁ'mg assignments for this formula are,
pseudoline anangeme;lt with g o _We will construct the symmetric
Dutdov G ol b i alvemcz?l a.xns of symmetry. To do this, we
for x, and on the right oefvi,rtlcal axis, in general position, a master triple
x, a master triple for ()l e vertical axis, symmetrical to the triple for
general position a Pa V. On the left of the axis of symmetry, we put in
triples. We then put tll)lglsles lsonﬁgura"on both above and below the master
of the line (see Figure 14) ag-pus configurations symmetrically to the right
to clauses containing two va.iriag;:: til:s:dx;appus configurations correspond
three triples : » an extra line of the
CO“ﬁBur:tion(sszyi;hig:gh Sy DE.F in Figure 5). NO\;/}Trl(::ii}; ?)neesargues
o points ABC in the PPrekus section, we connect the master triple for X

appus configurations on the left and to points GH 1

STRETCHABILITY OF PSEUDOLINES IS Np. HARD

N XK
KK

FIGURE 14. The master triples and Pappus configu-
rations for a symmetrical pseudoline arrangement not
symmetrically stretchable.
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the right. Similarly, we connect the master
he Pappus configurations on the left and to
right. By the arguments
onfiguration is realizable
f the master triple for x

in the Pappus configurations on
triple for y to points GHI in tl
points ABC in the Pappus configurations on the
in the previous section, the resulting pseudoline ¢
only by configurations in which the middle point of the | ¢
is above the line through the other two points in this triple and the middle
point of the master triple for ¥ is below the line through the other two
points, or vice versa. Again, by the arguments in the Previous secuor:l, :-hls
configuration can indeed be realized. Thus, we have & symmetric pseudoline
arrangement which is not symmetrically stretchable. t into a uniform

By using Lemma 4, we can turn this pseudoline arraﬂgeme: nd retain the
one. All we need to show is that we can apply Lemm; Zn?erseclion ofa
symmetry. We can do this because in this arrangement the

i two lines.
symmetric pair of lines never lies on more than these

jentist’s view
ality theorem
hen translated into com-
g the stretchabil-
ry of the

4. A computer sC
of Mnév's univers:

an even stronger t
his theorem 1mph
ments iS equivalent tot

heorem. When 1
es that determinit

Mnév [Mn] proved
he existential theo!

plexity theory terms,
ity of pseudoline arrange
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reals. What he actually shows is the following stronger t{heér:m} %lvcn any
primary semialgebraic variety (i.e., the soluthn space Oda]_bc ? €quations
and strict inequalities over the reals) there exists a pseu o.me drr&ngemem
whose realization space has the same topology (more pr.ecxscly‘ the semial-
gebraic variety and the realization space gre s{ably equl\talcm). For more
details, see [Mn]. If the semialgebraic variety is empty (i.e., the ¢quations
and inequalities have no solution) the pseudoline arrangement will not be
stretchable. To show that this implies the complexity result, all that is neces-
sary is to show how to find this pseudoline arrangement in polynomial time,
This can be done by carefully following Mnév's proof [Po]. We will show
how to find such a pseudoline arrangement using a variant of his proof which
is not as topological, and is thus easier for computer scientists to understand.
Mnév uses an intermediate step to reduce stretchability of pseudoline ar-
rangements to the existential theory of the reals. That is, he reduces the
existential theory of the reals to an intermediate problem, which he then
reduces to the stretchability of pseudoline arrangements. We will call the in-
termediate problem “the existential theory of totally ordered real variables.”
The problem is:

Given a set of variables Xy, Xy, X3, ..., X, , @ set of equations
on these variables of the forms

X1+XJ=Xk) X, %X =X,
and the inequalities

1=x|<xz<x3<x4<~~<x",

does there exist a set of real numbers satisfying these equations
and inequalities?

. Fnstead of proving directly that this problem is equivalent to the stretcha-
bx}ny Qf pseudoline arrangements, we will show that it is equivalent to the re-
ahza@lily of point configurations, as Mnév does. A point configuration is a set
of points together with an orientation on every triple of points (i.e., we know
whethe_r each ordered triple is clockwise, counterclockwise, or collinear). Be-
gzzslie‘imsel r::rznlgjgrents a}'ld point configurations are related by projective
iy 'gonﬁgucl-a?i()lx::y 35 line arrangemepts is equivalent to realizability of
S g i-s X ‘e'elc):'odu;e a point configuration which is realizable
b e Or of real numbers satisfying our equations and

We first 4 &
o e t:};(;;i::g];& nglgc:i ;:mc :x;lstemigl theory of totally ordered real
reduce the existential theory of the > a].‘d the.n e S0 1o
ordered real variables, reals 1o the existential e

For the first reduction (
Mnév's proof. We first pla
1oss of generality that thes
(Otherwise we apply a pr

to realizabilily
ce three lines i t
¢ are the x-axs,
ojective trangfo,

of point configurations) we use
he plane. We can assume without
the y-axis, and the line at infinity-
mation to obtain these.)
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0 L

Xy Xty

FIGURE 15. Addition in Mnév’s construction. The large
circle is the line at infinity.

1 3 B
FIGURE 16. Multiplication in Mnév’s construction. The
large circle is the line at infinity.

We next place points P, , P, .- Py corresponding to our v?n;bles‘;x—l
the x-axis. The x-coordinate of point £, i he valr}feoseltof’:gims
sponding variable x, . To perform an a.ddn,wn e .mtro‘;i i the set of points
in Figure 15, and to perform a multiplication we u?tro ucle5 pivg e
in Figure 16. The y-coordinate of point B in Flg}msb, et
different for each equation; we will denlote thesg pom:]s‘i 1)11'3,! ilz;n. Zr;erfonn-
the order that we place these equations in the point C°r isgan old technique:
ing additions and multiplications in a similar maln‘nle‘cations and additions
Mnév’s contribution was to realize that {f i tllp Sland 16 is placed suf-
are done in this manner, and pOimB B, Bm Flgm;S |, then the resulting lline
fici than points By, 5y, - imt he realizability
a:;:ﬁ:gnfel?:el:;: ayf;;ique combinatorial structure. and thus tl
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of the point configuration is equivalent to the solvability of these equatj ons

and inequalities. ) . )
The next step is to reduce the existential theory of the reals to the existep.

tial theory of totally ordered real variables. We do this in three steps. The
first is by reducing the existential theory of the reals to the problem: Givep
a set of equations and inequalities in the forms

X+ X=X XXX =X, X <X,
is there a solution? .

One can take any polynomial equation and reduce it to an equation of this
form just by introducing variables for all the intermediate zlepg and building
the polynomial term by term. For example, the equation x”+y” = 2 reduces
to the following set of equations (where new variables are introduced by Vs,
with subscripts standing for the expression which the s are supposed to
represent):

sz+Vy:=2, sz=Vx4xx,

Vx4=VX:xVx1, R=XXX, Vyzzyxy.

Constants can be built by starting with 1 and adding and multiplying to ob-
tain integers, dividing to obtain rationals, and solving polynomial equations
0 obtain algebraic numbers. The number of such equations is clearly no more
than a constant factor times the size of the input. Thus, we only require the
basic constant 1. For complexity purposes, an inequality of the form x >y
can be taken care of by replacing it with the equation x = y + V%, where
V is a new variable. For the topological equivalence to hold, it seems that
we need to restrict ourselves to strict inequalities (i.e., primary semialgebraic
varieties).

We now reduce this problem to the same problem of determining if a set of
equations of the above form has a solution, but with the additional restriction
that all the variables be greater than 1. To do this, we replace each variable X;
with a variable l;’_a , which will be assumed to have the value x;+a for some
a, where a can be arbitrarily large. We also must introduce the variables
K, Vp:.and V,, ., and the relations V,xV,=V, and V, + V= Vy.zt-
We now sh_ow that by introducing a few extra equations, we can add and
multiply using only these new variables,

Comparisons are easy, since X; < x; is equivalent to V,,, < V; .a- To
add, we replace x, + X; =x, with ’ !

V. +V =
x+a X +a Vx‘d-x}-»la 2 Vx,+x,v2a =7 kaﬂi i V" )
It is easy i
o C:S) 1o see that if welet x, =V — ¥ and similarly obtain X, %’
n the above equations imply that x A X=X
i Jige

STRETCHABILITY OF PSEUDOLINES IS NP-HARD
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Multiplying is somewhat more complicateq Inst

use tead of x, x X =x, we
xV . =V
X+a X, +a x‘x/+ax,+ax,+az "
V: i
aX Vx,m = an,mz’

VxV =
V v =
ax+a T ax +a® = V.,x‘ﬂ,xlﬂaz,

v, 2+ V2=V,
XX, +aX,+ax +a a+a XX +ax+ax +a+2at

V
g W =
ax,+ax,+2a x,+a Vx,xl+ax,+nxl+a+2a‘ :

Itis again easy to see that these equations force the desired relation x, = x x
to hold. i)
Thus, by replacing variables x; with variables ¥, _ , and replacing equa-
tions and inequalities as described above, we obtain an equivalent set of
equations and inequalities. It is easy to see that they are equivalent, because
any solution for the x; can be turned into a solution for Vs satisfying V' > 1
for all Vs by simply choosing a > |x,|+ 1 for all x,. Similarly, one can
obtain the x; from a solution for the Vs by letting x, =V, ., - V,.

Finally, we show how to obtain an ordered set of variables. The idea is
essentially the same as the previous one, but somewhat more complicated.
Again, we introduce a new variable, this time b. We make b larger than
any of the previous variables (these were previously denoted by V; but will
now be denoted by x,,X,,..., X, ). Now, we will work with a variable
Ve =X + b’ instead of with the original x;’s. Note that we are now
us'ing a different power of b for each variable. To obtain the powers of l_),
we introduce the equations me =VyxV, for 1 < i< r, where we vy1ﬂ
determine the value of r later. Since b > x; for all x,, we know the ordering
of the variables V, ;i . ) ;

To add, multiply, and compare the V. s, we again choose different
powers of b, at most three for each equation or inequali}y. The 1deal|( 1s_t§
choose several unused powers of b, say b” , for each equation, al"‘td w::r <w;
V, ., instead of V, ., . The easiest case1s again the inequality d:x e l{AC
For this, we choose an unused power of b, say a> 7 and intro
equations and inequalities

Vo=Vy+Vpyr Te=Vut V.,_b,’;
Vio_y = b
Vx @t V"—b' = Vx,+b" s Vx‘+b/ + Vv X+

Vyr < Vit

ions because it is
The last inequality will not be in our final set of equat

implicit in the ordering of the variables.
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We need to check that we know the ordering of all the new variables we
just introduced. This is true: if i< j,then

Vbn_b; < Vio_y < Vb" < Vxﬁ-b" < Vrﬁ-b" .

If j < i,the order of Vj._, and Vye_p is reversed. Because these variables
are the only ones with a V. term in them, we know their relative ordering
with respect to the other variables in our problem..

To perform addition, suppose we have the equation x; +x; = x, . We first
choose three unused powers of b, say b”, b? ,and b7, with n <o < f < 7.
We then introduce the equations

Vip = Vit Via_pis
Vba = Vb’ + Vbﬂ_b; 5
Vb" =Ygk + be_bk,

Vx‘+b‘ + V"-b' = Vxbs
ij+b’ +Vpy = Vx/.,,bﬂ B

ka-»b" V= ka+b7 >

Vo =Yoo+ Vg

Veca=Vip + Vi _jo_yp»
Vx,+bn + VX,“JA = Vx‘+x/+b,,+bp 5
Vx,+x‘+b"+b’ + V'I_b'r_bl = Vxﬁ-b’ :

The first six equations produce variables of the form V., instead of the

form Vx,+b" The remaining four do the work of addin'g x, and x,. We
know the ordering of the variables, because ' '

Vi <V < Vs

Vig_yy <V,
- s <V
. b b x4b? < Vx,+x/+b’+b" 5
vt <Vy_ga <V,
b b-p < Vy < ka+b’-

Multiplication i
will choc?se ;::(e): ;:uise:il 5:::;;}15 Ifml;SI Cgmplﬂicated operation. As before, we
ISof b, 5%, b’ and b’
R ,and n<a< f <7

but this ti i
1s time we also require that 7=a+ f. We now introduce the same
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first six equations as for the case of addition as well as the equati
¥ uations

‘/IJ’+I/z;f=V2,,/,
Fo.msm¥V

x,+b" s=V
J x;+b X.x,+b’x,+b"x]+b/ s

Vx‘x/+b’xl+b"xl+b, + V2

b = X,x,+b"x,+b"x,+3bl,
Vo X Vg = Vi,
Vx/+b’ % Vb" = Vb“xﬁb' s
Vb"x,-rb" + VI?‘X,+b’ = Vb"xﬁb"x]db""

Vll“xl+b’x,+2b7 + Vx,«-b"
Again, it‘ is easily checked that we know the ordering of the variables.

By going through the above proof with more care, we can show that if the
semialgebraic variety was defined only by inequalities, then we can produce
an equivalent uniform point configuration. We do this by showing that the
point configuration we obtain is constructible, and then applying Lemma 4
(this time in the dual version for points and not lines, as it is used in [Mn,
SWI]).

The above proof also gives the original version of Mnév’s theorem. We
have to show that the solution space of our set of equations on ordered
variables is topologically equivalent to the solution space of the semialgebraic
variety. This follows in the first (or second) reduction if, given a solution
with some value of a (or b), we can always increase a (or &) and still
have a solution. This can easily seen to be the case for a. For b, this is
not clear; however, we can show this holds for b if we introduce some extra
variables and equations. We introduce the extra variables V., and V.,
for 1 < i < n, along with the corresponding equations that force them to
have the appropriate values, thus ensuring that Vi < Vx,*b, < Vyipps SO
1 < x; < b. We also introduce another equation ensuring that b > 6. Now,
if we choose any b > max(6, X;, Xy, ---» Xx,) we can show'xhay for any set
of x;, given a solution, this b leads to a set of ¥y, p whichisa solution

of the equations with ordered variables.

V)r,xl+b’x,+b”x‘+3b’ =
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