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We sketch a universal local combinatorial formulas for Euler class of an oriented
PL fiber bundle with fiber Sn. They can be interpreted as certain Euler n+1 cocycles
on the nerve NSn of introduced in [Mnë07] category Sn of n-dimensional oriented
spherical regular cell complexes and combinatorial subdivisions. I.e. the formula is
an invariant of n+ 1- chain of combinatorial subdivisions measuring certain twist of
the chain together with a way to compute this invariant. All the local formulas for
Euler cocycles can be described using N.A. Berikasvili predifferential - a chain-level
disassembly of transgression differential in Serre spectral sequence. Fixing freedoms
in the predifferential can be done using combinatorial Hodge theory, which produces
combinatorially invariant rational formula expressed in terms of iterated Green op-
erators of the cell complexes in the chain of subdivisions.

1. Euler class Consider oriented piecewise-linear oriented Sd spherical bun-

dle Sd −→ E
p−→ B on a finite PL polyhedron B. It has an integer Euler characteristic

class. Topologically Euler class is an invariant of associated fibration, i.e. it survives
reduction of bundle structure group to the group-like monoid of orientation preserv-
ing homotopy equivalences of d-dimensional sphere and lives on its classifying space
[May75]. Euler class of oriented spherical Serre fibration Sd −→ E

p−→ B is the integer
cohomology class ep ∈ Hd+1(B), the cohomlogy avatar of boundary map ∂p in exact
homotopy sequence of the fibration

· · · −→ πd+1E −→ πd+1B
∂p−→ πd(S

d) −→ · · ·
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reflecting the twist of the bundle. One may clever apply Hurewicz homomorphism
([McC01, Hat01]) to get the base class out of fiber Sd orientation class.

For the Euler class local spherical triviality is irrelevant, dimensions of fibers
can jump in the homotopy class. (The tangent spherical “bundle” or “combinatorial
microbundle” of a combinatorial manifold is actually a Dold quasifibration [Mnë14])
The associated constant orientation sheaf is the principal player. The local spherical
triviality only provides canonical fundamental classes of fibers which are easy to
imagine and useful for local formulas.

2. Simplicial local combinatorial formula Piecewise linear category is
defined by triangulations. Triangulation of a PL map is a triangulation of source and
target such that the map is simplicial relatively to the triangulations. Combinatorics
of any such a triangulation fixes the map up to isomorphism. An oriented spherical
bundle on a finite polyhedron has countable number of triangulations related by
common subdivisions. In a given triangulation over every simplex of the base sits
elementary triangulated oriented spherical bundle over the simplex (this means that
projection map sends each simplex of total space to a face of base simplex) definig
combinatorial elementary oriented Sd bundle (see Figure 1). Suppose that the base

Figure 1: Elementary simplicial circle bundle

simplicial complex is locally ordered. Therefore it has a complex of rational ordered
cochains, which algebraic cohomology compute singular cohomology of the base.
We wish to find a universal combinatrorial rational function of the combinatorial
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isomorphism class of elementary triangulated oriented Sd-bundles over d+ 1 simplex
such that its value being associated to the base simplex is a cochain reperesnting
Euler class of the bundle.

Since Euler class in an integer characteristic class the rational formula should
have integer periods, now in the combinatorial setting. I.e. its evaluation on integer
d + 1 simplicial cycles in the base are integer numbers depending on isomorphism
class of the bundle and homology class of the cycle and independent of triangulation.
Particularly, if we triangulate differential Sd bundle on differential closed d+ 1 base
we should obtain the same Euler number of the bundle out of combinatorial and out
of differential considerations. Therefore the arithmetics of the formula is nontrivial.

There are two situations where a simple local combinatorial formula is known
- the tangent microbundle bundle of combinatorial manifold and triangulations of
circle bundles. In the case of tangent bundle the answer is simple, can be obtained
by resorting terms in standard Euler-Poincare expression for Euler characteristics
[Găı05].

In the case of circle bundle the answer for all powers of Euler class is surprisingly
simple, has canonical look. It was obtaned in [Igu04] for Allain Connes’ cyclic cat-
egory combinatorics and by ignorance “rediscovered” in [MS17] for simplicial com-
binatorics. The formula jumps out of the fact that triangulated circle bundle has
canonical associated piecewise-differential structure and associated to combinatorics
piecewise-differential Kontsevich’s cyclic invariant connection form. Then the com-
putation of curvature integral by base simplex collapses to very simple formula using
sum of minors - Pfaffian identities ([MS17]) Both tricks has no straightforward ex-
tension to the case of general triangulated oriented PL spherical bundles.

3. Category of oriented spherical ball complexes Sn The object of our
current interest is the categorty of spherical abstract ball complexes endowed by
homology orientation with an assembly maps preserving orientation. We denote this
category by Sn. To define it we recall few points from [Mnë07, Sec. 2]

Let X - compact PL manifold. Geometric ball complex B on X is a covering of X
by collection of closed embedded PL balls B such that interiors of balls forms a parti-
tion of X and boundary of a ball is a union of balls. The notion is not more irrational
than the classic notion of PL triangulation of manifold since order complex of the
poset of the balls ordered by face inclusions is PL homeomorphic to X and defines a
triangulation - “derived subdivision” of B ([Bjö84]). All the PL combinatorics irra-
tionality sits the in fact that generally we don’t know what is simplicial sphere. But
we know its properties and special interesting classes. Geometric ball complex B0 is a
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subdivision of of B1 (or B1 is assembly of B0 ) if relative interior of any ball from B0

is contained in relative interior of a ball from B1. The specific of PL category is that
any two geometric ball complexes on X has common subdivision (as triangulations
has), therefore all the poset R(X) of ball complexes on X ordered by subdivisions
is contractible. Taking apbstract poset of closed balls and inclusions P(B) we arrive
to notion of “abstract ball complex” where k balls are represented by rank k prin-
cipal ideals, Face inclusions - by inclusions of the ideals. The nice thing is that we
have combinatorial Poincare duality – the maximal ideals of the opposite poset is
abstract ball complex of Poincare dual to B. Geometric assemblies goes to maps of
ball posets which we call combinatorial assemblies and opposite arrow - combina-
torial subdivisions. They can be easily combinatorially characterised, but the point
that they are representable by some geometric assembly, which is now not unique,
but defined only up to homeomorphism modified by coherent system of isotopies.
Thus we got a category R(X) of abstract ball complexes of type X and abstract
assemblies. The discrete group PLδ(X) acts on contratible poset of geometric ball
complexes R(X) and R(X) is the category of orbits of this highly non-free action.
It was speculated [Mnë07, Theorem A] that this action can be improved up to free
action of simplicial group PL(X) on contractible space and thus the nerve NR(X)
of R(X) has homotopy of BPL(X). This strong statement has only philosophical
use here.

The category R(X) is a place for parametrised combinatorics of complexes. For
example stellar subdivisions one can consider as some (not all perhaps) generators
of the category. In the case of sphere Sn the simplicial set NR(Sn) has interesting
subsets. For example realisable convex subdivisions of convex polytopes one can not
compose, but realisable those chains forms a simplicial subset. Deletion maps of
pseudosphere arrangements forms very interesting subcategory of R(Sn) Realizable
chains of delitions of realizable arrengements forms a simplicial subset of NR(Sn).

Here we are interested in the category of spherical abstract ball complexes en-
dowed by homology orientation with assembly maps preserving orientation. This
category we denote by Sn.

4. Resorting the triangulated bundle combinatorics to combinatorial

subdivisions Consider elementary triangulated Sn bundle over simplex E
p−→ ∆k

with ordered vertices v0, ....vk and the interior point x ∈ int∆k. Take 0-face ∆k−1 δ0−→
∆k and a point in 0-face x0 ∈ int∆k−1. The fiber p−1(x) has induced from trian-
gulation E cellular structure of multi-simplicial complex composed from simplicial
prisms. This prisms are products of simplices. It comes from the fact that general
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fiber of simplicial projection of a simplex onto simplex is a product of simplices –
the fibers of the projection over the base vertices. When we move the point x in
the base to point x0 in the 0-face all the multipliers of the prisms in fiber coming
from p−1(v0) shrinks to points. This creates multi-simplicial boundary degeneration

Figure 2: Elementary triangulated circle bundle over interval and dual pattern of
circle subdivisions

maps p−1(x)
δ∗0−→ p−1(x0). So we see over 1-st barycentric subdivision of ∆k iterated

cylinders of this maps. This boundary degeneration are “simple maps” – the maps
having contractible preimages of prisms [WJR13] – the fundamental case of simple

homotopy equivalences. Consider the Poincare dual complexes p̃−1(x) and p̃−1(x0).
On the Poincare duals this degenerations canonically goes to combinatorial subdivi-

sion morphism p̃−1(x0)
δ̃∗0−→ p̃−1(x). Therefore over 1-st barycentric subdivision we got

a combinatorial subdivisions diagram of dual ball complexes (see Fig. 2). Poincare
dual of all the total space of elementary bundle is a decomposition of the bundle on
prismatic combinatorial [Mnë07] bundles corresponding to the diagram of subdivision
morphisms.

This duality has remarkable (and guiding) geometric avatar in the theory of
fibered convex polytopes [GKZ08] (and therefore toric varieties). If the total space of
elementary bundle is a simplicial convex polytope and projection is linear projection
onto base simplex then generic fiber looks like Minkowski sum of polytopes over the
vertices (Fig. 3) and the dual picture is common geometric subdivision of those polar
dual simple spherical fans in generic position.
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Figure 3: Cuboctahedron is a Minkovski sum ∆3 ⊕M (∆3)∗ of simplex and its polar
dual, represents triangulation of S2-bundle over interval

This construction identifies elmenentary triangulated bundles with a subset in
Kan simplicial set ExNSn, serving as classifying object for triangulated oriented
Sn bundles. Therefor a local formula for Euler cocycle on NSn canonically induces
local formula on elementary triangulated bundles.

5. Canonical local system on NSn After fixing orientations on balls a ball
complex became regular CW complex with ±1 incidence numbers and thus obtains
complex of cellular chains C∗(B) with fixed basis marked by balls. Now consider
subdivision of ball complexes. It is representable by some homeomorphism. Therefore
if cells are oriented they got relative orientation ±1 which are invariant of the choice

of homeomerhism. We can correctly form a chain map C(B0)
ε(f)−−→ C(B1) sending a

k-ball from B0 to the sum of k-balls in the image with relative orientation. By acyclic
carriers argument this maps are quasi-isomorphisms and they are obviously commute

with compositions. Therefore we got a functor Sn C−→ Ch(Z) to the category of based
chain complexes and quasi-isomorphisms. This functor induces canonical local system
(or “constructible sheaf”) on NSn.

6. Lere-Serre spectral sequence Euler class of oriented spherical fibration

Sn −→ E
π−→ B has a canonical representation using transgression differential in Serre

spectral sequence of the fibration.
The second page of Serre spectral sequence looks following

Ep,q
2 = Hp(B;Hq(Sn)) =

{
Hp(B;Z) if q = n or q = 0

0 otherwise

Particulary E0,n
2 = Hn(B;Z), Ep,0

2 = Hp(B;Z). The nonzero elements are concen-
trated on two lines q = 0, n, Therefore all pages of the sequence are the same up
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to page n+ 1 where stays nontrivial transgression differentials Hn(B) = Ep,n
n+1

dn+1−−−→
Ep+n+1,0
n+1 = Hp+n+1(B). Particularly, we got transgression differential H0(B)

dn+1−−−→
Hn+1(B). We can put e(p) = dn+1(1), and this is the Euler class. By multiplicative
property of Serre spectral sequance all other transgerssion differentials are cup prod-
ucts with ∗∪ e(π). They form Gysin homomorphisms in Gysin exact sequence of the
bundle π.

... −→ Hp(E)
π∗−→ Hp−n(B)

∗∪e(π)−−−−→ Hp+1(B)
π∗
−→ Hp+1(B) −→ ...

where π∗ is integration by fiber homomorphism.

7. Berikashvili predifferential N.A. Berikashvili ([Ber76], see [Kad76], [Roh74])
developed local disassembly of Serre spectral sequence, producing constructive pre-
sentation of transgression differentials using local “predifferentials” out of cellular
structure on the bundle. Applied for our situation this gives exactly all possible local
formulas for Euler cocycles on NSn in the terms of canonical local system. We will
formulate the output of the machinery in the simplest possible form.

Let us introduce notations. Simplices of dimension k in NSn are all k-chains of
abstract subdivisions

NkSn = {A0
f0−→ A1

f1−→ ...
fk−1−−→ Ak}

Simplicial face maps we denote as follows

∂i(A0
f0−→ ...

fk−1−−→ Ak) =


A1

f1−→ ...
fk−1−−→ Ak if i = 0

A0
f0−→ ...

fk−2−−→ Ak−1 if i = k

A0...
fi−2−−→ Ai−1

fifi−1−−−→ Ai+1
fi+1−−→ ...Ak if i 6= 0, k

Predifferential t = (t0, ..., tn) on Sn is a sequence of functions on N0S
n...NnSn ,

satisfying two conditions.
To every k-simplex xk in NkSn,

xk = (A0
f0−→ ...

fk−1−−→ Ak)

it asignes k-chain tk(xk) ∈ Ck(Ak) such holds condition (A):

dtk(xk) =
k−1∑
i=0

(−1)itk−1(∂ixk) + (−1)kεk−1tk−1(∂kxk) (1)

7



where εi is ε(fi).

Denote by ck−1(xk, tk−1) ∈ Ck−1(Ak) the chain in left part of (1). It is obvoiusly
a cycle. The conition (A) (1) is a recursive skeletal definition of predifferential

dtk(xk) = ck−1(xk, tk−1) (2)

On 1-simplices we have equations

c0(x1, t0) = t0(A1)− ε0t0(A0) ∈ C0(A1)

dt1(x1) = c0(x1, t0)

I.e. c0 is 1 - cycle. ε0 is a quasi-isomorphism,N1S
n is connected, therefore t0(A1), t0(A0)

should represent the same 0-homology class of Sn which is number α ∈ R =
H0(Sn;R) = Hn(Sn;R) and t0(A) ∈ C0(A) is a 0 - chain having α as the sum of its
coordinates. Simultaniously, assigning the same number α to all A is a 0-cocycle in
C0(NSn) representing α ∈ R = H0(NSn;Hn(Sn;R)).

We require (B): α(t) = 1.

Having predifferential t we can assign a n-cycle cn+1(xn+1, t) ∈ Cn(An+1) to ev-
ery n + 1-simplex in NSn. The cycle cn+1(xn+1, t) is proportional to fundamental
cycle cn+1 = e(xn, t)[An+1] ∈ Hn(An+1). The correspondence xn+1 7→ e(xn+1, t) is a
real cocycle on NSn.

The predifferential t determines local formula e(t) = e(∗, t) for the Euler class.
All the local formulas for Euler class come from a predifferential since one can choose
chains tn up to arbitary constants, shifting cocycle on arbitrary coboundary.

8. Procedure of construction a predifferential So, to build an Euler co-
cycle onNSn one should first choose for any ball complex A a 0-chain t0(A) ∈ C0(A)
representing 1, i.e having 1 as sum of its coordinates – a “probability measure” on
vertices on A. In the case of integer coefficients this is just choosing a vertex. Then

for any simplex x1 = (A0
f−→ A1) the chain c0(x1, t0) is a boundary and one can can

choose t1(t0) in coordinate affine subspace of C1(A1) – shifted kernel of differential
d1. We know that 1, ..., n − 1 homology of all the complexes C(A) are zero and ci
are cycles. Therefore they are boundaries. So we are choosing ti in affine subspace –
shifted kernel of di in Ci(Ai). Finally we arrive to Euler cochain defined as liner func-
ton on big affine space of all these freedoms. Making integer choices we will obtain
integer local formulas. Over a field of characteristic 0 one can make average of a set
of choices, etc. The problem of local formula is therefore how to make this choices.
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9. Fixing choices by Hodge strong homology retractions Over ratio-
nals Q we can fix all the choices canonically in predifferentials by combinatorial
Hodge theory. It will produce a rational formula for Euler cocycle which is invariant
under combinatorial symmetries of the chain of subdivisions. We will write down this
formula. For abstract oriented ball complex A on sphere Sn Let ∆i(A), i = 0, ..., n−1
the i-th combinatorial Laplace operator of the augmented complex C∗(A) −→ Q. Let

Ri(A) = Ci(A)
d∗∆−1

i−−−−→ Ci+1(A), i = 0, ..., n− 1

– Hodge theory strong retraction on homology operator, where d∗ is metric adjoint
codifferential. For every n simplex

xn = (A0
f0−→ ...

fn−1−−→ An)

in NSn we have n-chain in Cn(An):

Tn(xn) = (−1)nRn−1
n εn−1R

n−2
n−1...ε1R

0
1((1∗)1 − ε0(1∗)0)

where Ri−1
i is operator Ri−1(Ai), (1∗)i – harmonic unit 0-chain on Ai , assigbing to

every vertex the number 1/#(Ai)0.
Then the expression for rational combinatorial Hodge Euler cocycle on Nn+1S

n

is following. To a n+ 1 simplex xn+1 it assignes rational number

e(xn+1) = [
n+1∑
i=0

(−1)iTn(∂ixn+1) + (−1)n+1εnTn(∂n+1xn+1), 1∗] (3)

where [– ,1*] is paring of n-cycle and harmonic unit n-cocycle 1∗ in Cn(An+1).
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