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Abstract. We consider realization spaces of a family of oriented matroids of rank three 
as point configurations in the affine plane. The fundamental problem arises as to which way 
these realization spaces partition their embedding space. The Universal Partition Theorem 
roughly states that such a partition can be as complicated as any partition of R n into ele- 
mentary semialgebraic sets induced by an arbitrary finite set of polynomials in Z[X]. We 
present the first proof of the Universal Partition Theorem. In particular, it includes the first 
complete proof of the so-called Universality Theorem. 

1. Introduction 

We study the question of  which way realization spaces of  oriented matroids partition 
their embedding space, the n-dimensional  Euclidean space IR n. We compare  the latter 
partitions with partitions of  IR n into elementary semialgebraic sets defined by a finite 
family of polynomials  with entire coefficients. For  any partit ion defined by such a family 
of  polynomials  we construct a family of  oriented matroids inducing the same partition (up 
to a product with a smooth manifold  N).  This is (roughly) the assertion of  the Universal 
Partition Theorem. 

This result----even a stronger o n e - - h a s  been stated earl ier  by Mn~v [5]. At  the end 
of  this section we compare the earl ier  statement and the present one. Before this, we 
summarize what is known about the proof. Simultaneously, we point out the contribution 
made here and give an outline of  how it works. 

At  the present t ime a p roof  o f  the Universal Partition Theorem does not seem to be 
available. However, there is a sketch of  a proof  for the Universality Theorem which 
is implied by the Universal Partition Theorem. The latter theorem is due to MnSv and 
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compares one element from each of the above partitions. It states that for any (specific) 
elementary semialgebraic set defined over Z a diffeomorphic realization space of an 
oriented matroid (up to a product with a smooth manifold N) exists. (Here we use the 
restriction of a smooth embedding to the set under consideration.) Weemphasize that 
the Universal Partition Theorem is stronger than the Universality Theorem in the sense 
that it even shows the complexity of fitting together the realization spaces. 

Generally speaking, Mn~v's approach works as follows (see [4] and also [6]). First, 
complicated polynomials can be obtained from Z[X] by means of elementary operations 
(such as addition and multiplication). This yields a finite cascade of such operations 
starting with - 1, X1, X2 . . . . .  Xn which generates the polynomials inducing our semi- 
algebraic partition of IR'. Second, arithmetical operations can be realized geometrically 
as point configurations in R2. This can be done by means of the so-called yon Staudt 
constructions [7]. This implies the geometrical computation of our polynomials. The 
latter computation works roughly as follows. We use a vector in R n as the input x. 
The latter corresponds to a point pi (x i) of our configuration. The cascade of elementary 
geometrical computation carded out generates a configuration. The locus of all such con- 
figurations for input x from a specific elementary semialgebraic set is the corresponding 
realization space. The main problem is to keep the underlying oriented matroid fixed as 
x varies within the given set. 

In Mn~v's sketch the points b e N play the role of (control) parameters. Assume 
that N is embedded into Rk, then, for any point from our elementary semialgebraic set, 
the values 0 < bl < b2 < --- < bk are chosen appropriately. However, finally, the 
following two questions are not answered satisfactorily in the argumentation performed 
in [4]: 

(1) Is it true that the same oriented matroid .M can be realized whenever bi+l/bi is 
large enough? 

(2) Assume that (1) is answered affirmatively; how can the product structure of the 
realization space be proved? Are the spaces of"good choices" for bl . . . . .  bk (re- 
alizing .A4) diffeomorphic for all input points from our elementary semialgebraic 
set? 

The key idea in our proof is the introduction of supporting points for our computations 
generating the so-called cornputationframe. Given the computation frame, the input x 
defines the whole geometrical computation in a unique way. The admissible frames 
are given by means of the underlying oriented matroid. The main point is that such a 
computation frame can be chosen in a regular way. This gives rise to the concept of a 
regular computation frame. If we use a regular computation frame, then we are able to 
control the relative position of all points of  our configuration with respect to any line 
connecting two of them. More precisely, the oriented matroid of a computation using the 
input x can be computed from the oriented matroid of the frame used and the sign-code 
of the elementary semialgebraic set containing x. The concept of a regular computation 
frame is the main tool in our proof of the Universal Partition Theorem. 

The idea of a geometrical computation of polynomial systems has been developed 
independently from MnEv by Bokowski and Sturmfels [2]. However, they do not control 
the underlying (oriented) matroid. This yields a weaker theorem, replacing "diffeomor- 
phic" by "birationally isomorphic." We emphasize that the original statements of the 
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Universal Partition Theorem and the Universality Theorem [4], [5] go beyond the scope 
of the results proven here in the following main points; however, recall that at present 
no (complete) proof of these results is available: 

(1) N could be of trivial topology. 
(2) Open semialgebraic sets correspond to uniform oriented matroids. 

Assertion (1) provides a complete picture of possible homotopy types for realization 
spaces of oriented matroids, whereas our theorem gives an estimation of the smallest 
complexity that can be obtained. For more discussion see Section 7. Assertion (2) could 
also be achieved in our setting for the Universality Theorem. To this end we would have 
to generate a constructible oriented matroid, which would complicate our construction 
a little. 

The paper is organized as follows. In Section 2 we briefly introduce the concepts of 
an oriented matroid and its realization space. Then we formulate the Universal Partition 
Theorem. Elements from projective geometry which are necessary to understand our 
geometrical models for arithmetical operations are summarized in Section 3. In Section 4 
we realize geometrically the cascade of elementary operations generating our defining 
functions. We also define the computation frame. Section 5 contains a proof of the 
Universal Partition Theorem for regular computation frames. In Section 6 we finally 
prove the existence of a regular computation frame, thus completing the proof of the 
Universal Partition Theorem. 

2. The Universal Partition Theorem 

In this section we introduce the concept of an oriented matroid over a basic set X = 
{1 . . . . .  k} by means of signed circuits [1]. There are different models for oriented ma- 
troids, each inducing a concept of a realization space. For our purposes it is convenient 
to consider realizations as point configurations (in R2). At the end of this section we 
formulate the Universal Partition Theorem. 

Notation (used 
2 x 

(X +, X-) 
< 

sup 

in Definition 1). 

Power set of X. 
2x\{01. 
For X 6 2 x x 2 x put X = (X +, X - )  and define - X  := (X- ,  X+). 
For X~, X2 6 2 x x 2 x we define: 
x,  <_ c and X? c x ; .  
F o r y  C 2 x x 2 x let supY := (Ur~y Y+, UY~y Y-).  

Definition 1. Let C be a subset of 2, x x 2, x such that the following axioms are satisfied: 

�9 X E C =~ - X  e C (Symmetry). 
�9 XI ,  X2 E C, X1 _~< X2 ~ X1 = X2 (Minimality). 
�9 Xi, X2 E C, X2 ~ - X I ,  x E X~" tq X~- =:~ 3X3 E C: X3 < sup{X1, X2}, and 

x ~ X~- t2 X~- (Exchange of the basis). 
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Then .M := (A', C) is called an orientation matroid (over basic set X') and the elements 
of C are called signed circuits. The length of a signed circuit X �9 C is defined as ISl := 
Ix  + u X-I .  The numbers IA41 := IA'I and rank(A4) := min{l.A41, maxx~c IX[ - 1} are 
referred to as the cardinality and the rank of.A4, respectively. 

Remark 2. Consider the k-tuple P = (Pl . . . . .  Pk) ofpoin ts inR2.PutX := {1 . . . . .  k}. 
Then X �9 2, x x 2, x is called a signed circuit if it is minimal with the property that the 
convex hulls conv{Pili �9 X +} and conv{Pjlj �9 X-}  have a nonempty intersection. 
A moment of reflection shows that the set C(P) of signed circuits defines an oriented 
matroid structure, .A4 (P),  on ,.Y. 

Let .A43 (k) denote the set of rank-three oriented matroids with cardinality k. For 
.A4 �9 .A43(k) the set 7~(.A4) := {P �9 (R2)kI.A4(P) = .A4} is called the realization 
space of.A4. Thus, the space 7~(.A4) is the locus of all point configurations in R 2 with the 
underlying oriented matroid .A//. Note that the union of the realization spaces belonging 
to .A43 (k) forms an open and dense subset of (R2) k. 

The following theorem says that there are families of rank-three oriented matroids 
such that although their realization spaces fit together forming a smooth manifold (as 
theft union), this fitting can be almost arbitrarily bad. 

Theorem (Universal Partition Theorem). Let f l  . . . . .  f m � 9  Z[XI . . . . .  X,]. For any 
sign-vector tr �9 { -  1,0, l },n let 

M~ := {x �9 R"l sign f,.(x) = tri} 

denote the corresponding elementary semialgebraic set. Then there is an injective map- 
ping ~p assigning to any sign-vector a �9 {-1 ,  0, 1}" a rank-three oriented matroid 
.A4o �9 .A//a(k) (with fixed k), and there are a smooth manifold N # 0 and a smooth 
embedding ~0: R n x N "--* (IR2) k such that the following relation ( , )  holds for all 
sign-vectors: 

7"~(.A,4~) = tp(Mo • N). ( . )  

Here, sign y is defined as - 1, 0, and 1 for negative, zero, and positive values o f y  �9 R, 
respectively. 

Remark  3. In fact, any (elementary) semialgebraic set M~, coincides with the corre- 
sponding realization space "R.(.M,,) up to the product with the smooth manifold N and 
application of the smooth embedding ~o into the common embedding space (•2)k of 
rank-three oriented matroids with cardinality k. 

3. Elements of Projective Geometry 

In this section we summarize the background material from projective geometry that is 
needed in our construction. The assertions contained in this section (except I .emma 10) 
could also have been taken or easily derived from textbooks on projective geometry, 
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such as [7]. We present this short introduction for two reasons. First, we have to explain 
our specific geometrical models for arithmetical operations, which differ from ones 
presented in the textbooks. The use of these models is motivated by the requirement to 
have a constant oriented matroid for all the input data the models are used for. Second, 
we obtain a completely self-contained presentation. 

Let G(3, 1) denote the Grassmann manifold of one-dimensional linear subspaces of 
the Euclidean space ]R 3. The manifold I? 2 = G(3, 1) is also called the projective plane. 
Let (-, -) denote the corresponding inner product. There is a natural way of defining 
a chart of G(3, 1) by means of an affine subspace Ao := {x e IR3l(x, v) = 1} with 
nonvanishing v e R3: 

~ov: Uv --* Au = 1R 2, where Uv := {L E G(3, I)[L ,s v}, 

~o~: L ~-> x / (x ,  v), where L = Rx. 

Here, L _1_ v abbreviates orthogonality. 
Now, a plane P in •3 (a two-dimensional linear subspace) can be identified with the 

set of its one-dimensional subspaces Lp := {L ~ G(3, 1)IL C P}. The set Lp is called 
a projective line. In fact, the image of Lp under ~oo (with v ,s P) is a line, namely the 
intersection Ao N P. For each chart ~0v there is precisely one projective line L ~  which 
has more than one point outside Uv. This line corresponds to the plane in IR 3 which is 
orthogonal to v, i.e., it does not even meet Uo. It is called the line at infinity with respect 
to chart ~%. Including the line at infinity we see that the projective lines are in one-to-one 
correspondence with their images under a (fixed) chart. 

Two different projective lines have excactly one common point. In particular, any 
projective line intersecting Uo has exactly one (projective) point in common with L ~ .  
Moreover, the intersection point of  two different projective lines meeting Uo lies in L ~  
if and only if they appear parallel in chart ~ov. We deduce that a family of lines is parallel 
(in chart ~%) if and only if they have a common intersection point with L ~ .  Moreover, 
for any projective line L there is a chart with L = L~ .  

For the definition of geometrical computations we use scales on projective lines. They 
are defined in the following way. Let L C G(3, 1) be a projective line and assume three 
distinct points on it, say OL, 1L, and ooL. We choose a chart ~0~ with ocL e L~ ,  i.e., 
v _1_ oct ,  Let lp: ~0(L) ---> R denote the affine isomorphism defined by ~p: ~0o(0L) ~ 0 
and ~0~(1L) v-* 1._Then o9 := lp o ~ov extended by ocL ~-* or is called aprojective scale 
co: L ---> R. Here 1R stands for the one-point compactification of ~.  Until now, we do not 
know whether or not a projective scale also depends on the particular choice of v. The 
projective scales defined for multiples of  v obviously coincide. We say that such charts 
form a family. For different families of charts ~%,, ~0o2 (v i _k ocL) we can choose special 
values for vl and v2 such that Ao~ f3 PL = Au2 rq PL, where PL denotes the plane in 
IR 3 defining L. This implies ~oo, (L) = qgo 2 (L), i.e., 09 is uniquely defined by the choice 
of OL, 1L, and eeL. Note that projective scales are defined for lines in the affine plane, 
too. This is possible since the affine plane can be considered as a chart of the projective 
plane. 

Next, we consider projective isomorphisms and their influence on projective scales. 
Any linear isomorphism I~ 3 ~ IR 3 induces a diffeomorphism G(3, 1) --+ G(3, 1). The 
latter diffeomorphism is called a projective isomorphism. Chosing charts compatible 
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Ll 
(a) (b) (c) 

Yig, 1 

with a linear isomorphism, we have the following assertion concerning the associated 
projective isomorphism. 

L e m m a  4 (Connection Lemma). Let  ~ be a projective isomorphism on IP 2 and let 
L1 C IP 2 be a line equipped with a projective scale 091. Then L2 := r  is a projective 
line and o92 := 092 o ap - l  defines a projective scale on L2. 

There are "special" projective isomorphisms with a nice geometrical interpretation 
of their action on a given projective line. They make the Connection Lemma an essential 
tool of our matroid construction below. Given a projective line L, we call a projective 
isomorphism ~ special (for L) if L contains a fixed point of r The following concept 
characterizes the action of a special isomorphism on the associated line. 

Definition5. LetL1,  L2 C p2 be different projective lines. Thenamapping~0:L1 
L2 is called a perspective if a point Q r L1 U L2 exists such that x, ~o(x), Q are collinear 
for all x e Ll,  i.e., they lie on one projective line. The point Q is called the center of 
perspective. 

Figure 1 illustrates a perspective in charts. In Fig. l(a) we have used a chart ~0~ in 
the general position. Let P denote the intersection point of  Li and L2. The special case 
v _1_ Q, v ,~ P is sketched in Fig. l(b), and the situation v _L Q, v _1_ P is shown in 
Fig. l(c). 

L e m m a 6 .  Let L1, L z U p2 be different projective lines. Then a mapping ~o : L t ~ L2 
is a perspective i f  and only i f  it extends to a projective isomorphism which is special 

fo r  L1. 

Proof. (=~) By assumption there is a chart q% with v _1_ Q and v _1_ P (see Fig. l(c)), 
where {P} = L1 fq L2. In this chart ~0 obviously extends to a shifting Ao ~ A~. 
Chosing an appropriate orthogonal coordinate system of the Euclidean space, we have 
Av = IR 2 • {1}. Then we can write the above shifting as (x, 1) ~ (x, 1) + w with 
w ~ 1~2 x {0}. This shifting can be extended to a linear isomorphism of ~3 in the 
following way: (x, y) ~ (x, y)  + y w  = (x, 0) + y((0, 1) + w). 

(r (We do not use this part in this paper. However, the proof is added for com- 
pleteness.) Let r be induced by the linear isomorphism A: IR 3 ~ tR 3. Choose a point 
x ~ It, different from the origin, where lp denotes the line in ~3 corresponding to the 
intersection point P. By assumption, we can replace A by a scalar multiple (if necessary) 
such that A(x )  = x. Let ll denote a line through x in PL, which does not meet the origin. 
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(Here PL, denotes the plane in R 3 inducing the projective line L i .) Put 12 :~- A(l l ) .  Ob- 
viously we have PL, = aft(O, li) where af t  stands for the affine hull. Since x e Ii tq/2, 
the affine space aff(l l ,  12) is a plane. This plane cannot contain the origin; otherwise it 
would coincide with both PL,, which are different by assumption. Hence, aff( l l ,  12) = Av 
for some v. In chart ~ov we have li = tpv(Zi) and the projective isomorphism 10 coincides 
on It with A: It ~ 12. AIA~ is an affine linear mapping sending x ~-* x. Consequently, 
the lines connecting y ~ ~ov(L1) = 11 with ~ov o ~ o ~o~-l(y) = A(y )  ~ 12 are either par- 
allel or intersect in one point. Therefore, the corresponding projective lines do intersect 
in some point Q. [] 

Lemmas 6 and 4 together imply the following corollary. 

Corollary 7. Let ~o: L1 --~ L2 be a perspective between projective lines in p2 Then 
(1)1 is a projective scale on L1 i f  and only i f  o91 o ~o -1 is a projective scale on L2. 

The following lemma states that projective scales on arbitrary projective lines can be 
transferred into each other by means of projective isomorphisms. (We are still able to 
choose the action in the second dimension arbitrarily.) 

L e m m a  8. Let L1 ~ L1 and L2 5~ L2 be projective lines such that 0 i E L i  N Li. Let 
0i, 1i, ooi denote distinct points on Li. Then a projective isomorphism ~ exists such that 
~:  01 ~ 02, 11 ~ 12, O01 ~ o~2, a n d L l  ~ L2. 

Proof  We choose a chart ~0v with v _L (X)i,i = 1, 2.InAvwefindanaff ineisomorphism 
B sending 01 ~ 02, 11 ~ 12, and L,1 ---* L2. In appropriate coordinates o f R  3 (compare 
the proof of Lemma 6) we have Ao = IR 2 x {1} and the affine linear isomorphism is 
given by (x, 1) w, (B(x) ,  1). This extends to an affine linear isomorphism of ~3 by 
setting (x, y) ~-, (B(x)  + (y - 1)B(0), y). Since the origin is a fixed point, the latter is 
a linear isomorphism. [] 

It is convenient to define (realizable) rank-three oriented matroids by means of point 
configurations in the affine plane. In this way we introduce below geometrical models 
for arithmetical operations. 

Lemma  9. Assume a point configuration P = (0, 1, x, z, or y, - 1 ,  F1, F2, F3, 
C1, C2) with an underlying oriented matroid as shown in Fig. 2, see Remark 2. Let o9 
denote the projective scale on L with o9(0) = 0, co(l) = 1, and o9(or = o0. (This kind 
o f  scale is referred to as the standard projective scale on L.) Then oJ (z) = o9 (x) - o9 (y) 
holds. 

Proof  We consider ~2 as a (specific) chart of IP 2 and regard the same configuration 
in another chart. For the new chart we choose the line through or F1, F2 as the line 
at infinity. Then lines meeting on aft(or F1) will appear parallel and o9 is an affine 
isomorphism L ~ ~. (The latter is true since He affine isomorphism is one possible 
candidate for a projective scale, and the projective scale with fixed entries 0, 1, oo 
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F2 

C 

.0 1 .r z c o  y 

Fig. 2. Operation +. 

21 L 

is unique.) Figure 3 shows the configuration in the new chart. This makes the proof 
obvious. [] 

Note that the points - 1 and F3 do not influence the position of the output point z of  
our configuration. The latter are examples for additional "frame points" which enable 
us to control the "variable l ines" The same transformation as performed in the proof of 
Lemma 9 (see Fig. 5, below) yields o)(z) = - w ( x )  (for the standard projective scale 
on L). The following lemma implies a constant oriented matroid of operation - for all 
entries from (2, oo). 

L e m m a  10. Consider a configuration which has the following properties in common 
with that shown in Fig. 4: the collinearities which are marked by lines are present and 
the points on these lines appear in the described order. Assume that oo (x ) > 2. Then the 
underlying oriented matroid is well-determined. In particular, there are the following 
signed circuits: ({x, C1}, {F3, C2}) and ({z, F4}, {F3, 6"2}). 

Proof. The only two questions not being trivial are the following: 

(1) Are F3 and C2 on the same side of aft(x,  C1)? 
(2) Are F3 and C2 on the same side of aft(z, F4)? 

If  we keep all points which are marked with the symbol �9 fixed, then for large values 
of w (x) the asserted signed circuits are present. Let w (x) $ 2 by means of a homotopy. 

F2 F1 F2 F1 

Y -1  0 :r oo 

Fig.  3 
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F2 

C2 
C~ 

0 ;r cx~ : --  1 

Fig. 4. Operation - .  

We are done if we can exclude collinearity of  x, C1, F3 and z, F4, C2 on the whole 
homotopy. To this end we use a chart o f P  2 with line aff(oo,  F1) at infinity, as was done 
in the proof  of  Lemma 9. Then o0 is an affine isomorphism. The resulting configuration 
is shown in Fig. 5. For clearness of  argumentation we mark  the points - 2  and 2. The 
lines 11 (x) = aft(x ,  C1) and 12(x) = aft(z ,  C2) tend in a parallel and strictly monotonic 
manner to a line through F3 and F4, respectively. This completes the proof. [] 

L e m m a  11. Assume a point configuration with an underlying oriented matroid as 
shown in Fig. 6. Let oo denote the standard projective scale on L. Then it holds that 
w(z)  = w ( x ) / w ( y ) .  

Proof. We first introduce a projective scale & on/~, given by ~(0)  = 0, &(F3) = 1, and 
if) (F1) = oo. The point F2 induces a perspective between co and &. In view of  Corollary 7 
it remains to prove that ff~(C3) = ffo(C1)/oo(y). As in the proof  of  Lemma  9, we use a 
new chart of the projective plane to make the assertion obvious. The new chart is chosen 
such that the line aff(oo, Fz) is at infinity. The resulting image of  the essential points 
and lines is shown in Fig. 7. [] 

:: - 2  -1  0 1 2 x "- l~(x) 11(x) 

Fig. 5 
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0 Y l x z 

Fig. 6. Operator x. 

L 

- ]  

4. Computations Using Frames 

Until now our geometrical model of addition (z = x - y) requires one input entry 
from (1, or and one from ( - o o ,  - 1 ) .  We have chosen this kind of geometrical model 
since it guarantees a fixed underlying oriented matroid for all entries it is defined for. 
This property is the basis for the existence of the mapping ~p in the Universal Partition 
Theorem. However, the oriented matroid changes in limit situations. For example, in the 
case y ----- - 1  the oriented matroid of  the operation + is different from that for input 
entries y ~ ( - o r  - 1 ) .  Hence, in order to compute arbitrary polynomials, we need an 
extension of our "catalogue" of elementary computations (by limit situations). 

Then we subdivide the points of  the configuration into so-called frame points and 
variable points. Finally, in this section, we fix a computation strategy for f l  . . . . .  fm.  
We use a system of storage lines and elementary geometrical computations (such as + 
and x) ,  one for each of the intermediate results. We introduce so-called transmissions to 
guarantee that the input and output entries of an elementary computation coincide with 
the entries on the corresponding storage lines. Here we apply the Connection Lemma. 
The system of frames obtained for storage, elementary computation, and transmission 
builds up our computation frame. 

In the following we regard limit situations of the geometrical operations +,  - ,  x.  Al- 
though the limit situations exhibit a different oriented matroid, the assertions concerning 
arithmetical operations remain valid. 

( '2 

o y 1 

Fig. 7 
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Fig. 8. 

F~ 

Operation - 1 (limit situation of -).  

L 
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With a standard projective scale on L in Fig. 8 it holds that w ( - 1 )  = - 1 .  In Fig. 9 
wehave  o9(O = o~(x) + 1, and in Fig. 10 we have 09(2) = 2. Figure 11 has the limit 
situation of Fig. 6 for C1 ---> F3, hence w(z) = 1/og(x) holds. 

Now we have defined the (geometrical) operations +,  x ,  - ,  - 1 ,  1", 2 , / .  It is clear 
that the oriented matroid belonging to the latter configurations does not depend on 
the particular choice of the input og(x), w(y)  in the corresponding interval (2, oo) or 
( - o ~ , - 1 ) .  In all these configurations we have marked so-called frame points with 
the symbol . ;  the points marked with the symbol o are referred to as variable points. 
The essence of this distinction is the following. Having chosen fixed frame points of  
an elementary computation (with corresponding submatroid) then, for any choice of  
admissible input points x, y, the other variable points are uniquely determined. Moreover, 
they depend smoothly on the frame points as well as on the input w(x),  w(y) .  In case 
of operation +,  for instance, the variable points can be "constructed" by means of 
intersections of lines in the following order: Cl, C2, z. 

Now we can start to consider the polynomials appearing in our theorem. In general 
we are not able to use a whole line for storage of  the input variables xi, since this can 

0 

F2 

1 x -~ ob --1 

Fig. 9. Operation 1" (limit situation of +). 
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Ct  
F 3 ~  

F2 

-~ or ---1 

Fig. 10. Operation 2 (limit situation of + and 1"). 

H. Giinzel 

yield different oriented matroids for points x from the same elementary semialgebraic 
set. Therefore, we use an equivalent reformation of this theorem: 

Proposi t ion  12. For a proof of  the Universal Partition Theorem it suffices to show the 
theorem which arises if  we replace Ii n in its formulation by the interval (2, 0o) n. 

Proof. Let 3~ be as in the assumption of  the Universal Partition Theorem. We apply the 
new theorem to the polynomails in u, v given by fi  (u - v). Then there are an injective 
mapping a#: { - 1 ,  0, 1} --+ .A43(k), ~ :  o" ~ .A~o, a smooth manifold N2, and a smooth 
embedding ~02 : (2, 0o) 2~ x N2 ~ (IR2) k such that ~(.A// .)  = ~o2(2~/. x N2), where 

3;/~ :=  {(u, v) �9 (2, oo) n x (2, oo)" I sign f i (u  -- v) = cYi}. 

It suffices to show the existence o f a  diffeomorphism 91: (2, 00) 2~ ---> R" x (0, 00) n such 
that ~01 (h;/.) = Mo • (0, 00)0). Then the assertion of  the Universal Partition Theorem 
is established by setting N : =  (0, 00) n x N2 and ~0 :=  ~02 o (~oi -1 x IdN2), where IdN2 
denotes the identical mapping on N2. 

0 z 1 x oc, 

Fig. 11. Operation / (limit situation of x). 

L 

- 1  



The Universal Partition Theorem for Oriented Matroids 133 

and 

The diffeomorphism ~01 can be constructed as the composition of the following two 
diffeomorphisms tpl = ~02 o ~o~: 

(2, oo)" x (2, oo) ~ ~ llt ~ := {(x, y) �9 R n x RnlYi > Ixil}, 

( u , v ) ~  ( u - v , u + v - 4 )  

[I~ z~ ~ R ~ x (0, oo) n, 
~~ | ( x , y )  ~ (x, y ( y -  x)). 

The mapping (~o2) - l  sends {xi} x (0, oo) onto {xi} • {zi �9 Rlzi > Ixi I}, thus it leaves the 
design variable x of our semialgebraic sets unchanged. In virtue of (~o~) -1, the design 
variable x appears implicitly (as u - v) in the definition of 37/~ [] 

We prove the new theorem (with R n replaced by (2, oo)n). In the following we find out 
in which order the elementary computations can be used to compute f l  . . . . .  fm ~ Z[X]. 
For this purpose we need some notation (to be used only in Definition 13, below): 

NIX]* := N[X]\{0} (nonvanishing polynomials with nonnegative coefficients), 

NIX],  := N[X]\{0, 1}, 

N[X]~ I :---- { l / f  I f  ~ N[X],}, 

Q ( x ) .  := N[x]* u ( -N[x]*)  u N[x]~ -1 c Q(x) .  

Definition 13. Let ~ = {gl, g2 . . . . .  g~} denote a finite sequence in Q(X) ,  with pair- 
wise different members. Assume that E = {1, X1 . . . . .  Xm} is a subsequence and - 1 ,  
2 are elements of ~. An element gi is called a predecessor of gj if i < j holds. The 
sequence ~ is called complete if for any g �9 ~ \ C  a subsequence T'(g) of predecessors 
and an (arithmetical) operation 7r(g) e {+, - ,  x , / }  exist such that the following hold: 

zr(g) = q- =~ 7 9 ( g ) = { f , h } ,  f ~ N [ X ] * ,  h � 9  g =  f - h ,  and 
f = l = ~ h = - l ,  

7r(g) = - ~ P ( g ) = { f } ,  f~ l~ l [X]* ,  and g = - f ,  

zr(g) = • =:~ 7 9 ( g ) = { f , h } ,  f E N [ X ] , ,  h EN[X]~ l ,  and g = f / h ,  

7r(g) = / =~ 79(g) = {f}, f ~ I~[X],, and g = 1/f.  

We say that a finite sequence ~" C Q(X) ,  is completed by ~ if ~ is complete and .7 r is 
a subsequence of ~. 

L e m m a  14. Any finite sequence ~ C N[X]*\s  with pairwise different members can 
be completed. 

Proof. Obviously, ~ is subsequence of a sequence 7-/ = {1, h i  . . . . .  h#} C N[X]* 
(including E U {2}) with pairwise different members, such that any element of ~ \ s  is 
the sum or product of predecessors. By definition, { 1, hi,  - h i ,  h~ -1 . . . . .  hg, - h ~ ,  h~ 1 } 
is a complete sequence containing .7". [] 
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Consider the polynomials ]'1 . . . . .  fm E Z[X] used in our theorem. There are f/+, f i -  fi 
N[X]* \E  such that f i  = fi  + - f i - .  From now on we foe the family 

: =  t / ,+ .  f ;  . . . . .  f.+,f;j 

and a sequence G = {g~ . . . . .  g~} completing it. Also assume that 79(g) and rr(g) are 
fixed for g ~ 0 \ C .  

Recall that I~l = a .  Put fl :=  ct + (a - m - 1). Let ~: {1 . . . . .  fl} --+ ~ ~ ( ~ \ s  
~: i ~-~ gi abi ject ion suchthat  ~: {1 . . . . .  or} ~ ~. (Here, ~ denotes the disjoint union.) 
Definitions 15 and 16 are followed by an interpretation of  their meaning.  

Definit ion 15. A configuration of  distinct points in R2 is called a basic frame for ~ if 
it consists of  the following subconfigurations: 

(1) (12, 1/, e~ i) with 1 i E (12, ~ i )  for i = 1 . . . . .  ft. Here (12, ~ i )  denotes the open 
line segment. (The line L i :=  aft(12, ~ i )  is called a storage line for i = 1 . . . . .  a ;  
for i > a it will be extended to an (elementary) computation frame.) 

i J ) 1 / E (Oii.jl, oo)), 1] E c~{) and (2) (O[i.j}, lj., O~j,  (O{i.j}, l i ,  ~ i "  Qli.j}) with .1 
{Qt;.Jl} = aff(l~, 1{) N aff(oo~, oo[) for all pairs (i, j )  satisfying one of  the 
following conditions: 

�9 i E {ce + 1 . . . . .  fl} and j E {1 . . . . .  or} with gj E P(g i )  (transmissions for 
input). 

�9 i E {a + 1 . . . . .  fl} and j E {1 . . . . .  or} with gi = gJ (transmissions for 
output). 

�9 i, j E {1 . . . . .  a} with gi e { - 1 , 2 }  and gJ E {Xi . . . . .  Xn} (establishing 
w ( - 1 )  = - 1  and w(2) = 2). 

�9 i , j  E {1 . . . . .  ~} with gi = f +  a n d g /  = f ~  for some k E {1 . . . . .  m} 
comparison of the final results). 

(3) (Qj)  with {Qj} = aft(12, O~cji) n aft(1 i, l j)  n aff(oo i, ooj) for all (i, j )  and 
i ,__ i and L[ are called transmission lines, where Lj ( j ,  i) from (2). (The lines Lj .-- 

aff(Oli,) 1, o~}), etc.) 

Definition 16. Let a basic frame for ~ be given. Assume that the storage lines L i arid 
the transmission lines L~ contain additional points: 

�9 - 1  i with ~ i  E (1 i, - 1  i) and m i ( - 1  i) = - 1  for all L i. 
i with i ( l ~ , - - 1 ~ )  a n d  i i i �9 . w)( - - l j )  = --1 for all Lj. �9 - - l j  ~ ) j  E 

�9 2 i ~ L' with o) '(2')  = 2 for all i E {1 . . . . .  a} with gi E { X 1  . . . . .  Xn}.  

�9 2} E L} with w}(2}) = 2 for all i, j E {1 . . . . .  c~} with {gi ,gj}  = {2, Xk} for 
some k. 

Assume in addition that for i E {~ + 1 . . . . .  /~} the subconfiguration (12, 1 i , oo i) extends 
to a computation frame for the following geometrical operation: 

- 1  if rr(gi) = - -  and 79(gi) = {1}, 
- if  :rr(gi) = - and "P(gi) ~k {1}, 
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2 if ~r(gi) = + and "P(gl) = { 1 , - 1 } ,  
1" if  7 r ( g i ) = - I -  and 7 ) ( g i ) = { f , - 1 }  f o r some  f # l ,  

+ if  z r ( g i ) = +  and " P ( g i ) = { f , h }  with h # - l ,  
/ if  J r ( g i ) = / ,  

x if  7r(gi) = x .  

Then the extended configuration is called a ~-computat ion frame. 

Now we consider the ~-computat ion frame. We first discuss the basic frame. The 
basic frame involves lines L i being equipped with standard projective scales. For the 
pairs (i, j )  as explained in (2), we have so-called transmissions between L i and Z j .  A 
transmission is a chain 

i L] ~ L j L i ~ Lj --~ 

of  perspectives using the center of  perspectives Q~., Oli. j} ,  and Q{. The transmission 
works as follows. Given a point p i  E L i , the first perspective defines the point Pj E L} 

with the same w-entry. The next step defines P / ,  and finally we have P J  E L j with 
o)J ( e j )  = o)i ( e i ) ,  see also Fig. 12. 

The point -- li with i < ot and gi = 1 is defined in a twofold way. First, it is defined in 
Definition I by 09 ( - 1  i) = - 1  and, second, by means of  the computation - 1 .  However,  
both definitions coincide. The analogue is true for 2 i with i < ot and gi = 2. By virtue of  
the Connection Lemma the assumptions concerning entries on standard projective scales 
03' i and o9~ can be replaced by equivalent assumptions using collinearities with center of  

perspectives Q} and Qli,j}.  

How Can a ~-Computation Frame Be "Used"? 

Our construction starts with a computation frame F and an input vector x E (2, oo)". For 
i < t~ with gi = Xk  (k E {1 . . . . .  n}) we choose pi  E L i such that o)i(P i) = Xk(x)  --~ 
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xk. That means that p i  represents the value of the input variable Xk on its storage line t i .  
The position of the storage points pi  with gi r {X1 . . . . .  Xn } is defined inductively. This 
is done such that the relation o)i(P i) = gi(x)  is satisfied: Assume that we have already 
derived PJ for all j < i. Then the point pi  is defined in the following way. First we use 
the transmissions belonging to the pairs (i, j ) ,  with j > ot and gj ~ ~(gi ) ,  to carry over 
the input of the operation ~r (gi) from the storage lines to the corresponding computation 
frame. Then the frame for the elementary computation is filled in with variable points in 
the well-defined way yielding an output point. Finally, the w-entry of the latter is carried 
over to the storage line L i . 

The procedure of filling in the computation frame is completed by the use of trans- 
missions belonging to (f/+, f / - )  to compare the final results. Here Pj and Pi j are defined 

such that wj ( P j  ) = w i ( pi ) and w{ ( P/  ) = w j (P J). In contrast to the transmissions used 
above, the values w i (pi )  and w j (P J) do not need to coincide. The latter transmissions 
are in fact used to compare the function values fi+(x) and f i - (x) ,  see Fig. 13. 

The procedure described for "filling in" the computation frame gives rise to the 
mapping ~o: (2, o~)" x N ~ (R2) ~ used in our (new) theorem. Here N stands for a 
smooth manifold of computation frame. Let X = {1 . . . . .  k} denote the index set for 
the points of a F-computation frame such that the indices 1 . . . . .  l, correspond to the 
frame points, the indices l + 1 . . . . .  l + n to the storage points belonging to the input 
variables XI . . . . .  X,, and the remaining indices appear in the (well-defined) order of 
the construction of the associated points by the filling-in procedure. Given x c (2, o~)" 
and a frame F ~ N C IR t, let ~o1: (2, ~ ) "  x N ~ (]R2) l be defined as the projection 
mapping onto N. Given ~0i: (2, oo) ~ x N ~ (]1~2)i for some index i ~ {l . . . . .  k - 1}, we 
put ~Oi+l(X, F) := (~oi(x, F), pi+l ) ,  where pi+l is defined by the filling-in procedure 
from its predecessors. By induction this implies that ~o := ~ok is a smooth mapping. Since 
~ot+~ is an embedding, ~o is too. 

Mapping ~o is referred to as the "'filling in" mapping. It remains to analyze the under- 
lying oriented matroid. 
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5. The Regular Computation Frame 

In Section 4 we have seen how a ~-computat ion frame F forinput x E (2, or generates 
a ~-computat ion ~0(x, F) .  However,  the underlying oriented matroid A4 o ~o(x, F)  
.A43(k) was left unclear. In this section we restrict our attention to the subspace N of  
those ~-computat ion frames which realize a certain oriented matroid A t'. The oriented 
matroid ~ to be defined (in Section 6) will be such that: 

(1) M o ~0(x, F)  only depends on sign f ( x ) .  
(2) The latter dependence is injective. 
(3) ~o(M~ • N)  coincides with the realization space of  the corresponding oriented 

matroid 7~(Mo) (recall relation ( , )  in our theorem). 

Assuming the existence of  such N ~ ~, the assertion of  our theorem follows im- 
mediately: ~p is well-defined by (1), its injectivity is implied by (2), and (3) yields the 
fundamental relation ( .) .  

The easiest part to prove is (2). Whatever N is, there is a transmission between the 
storage lines corresponding to f/+ and f,.-, i = 1 . . . . .  m. (Figure 13, above, shows such 
a transmission.) It is obvious that the oriented matroid of  this subconfiguration must  be 
different for inputs from different elementary semialgebraic sets. 

In this section we present a sufficient condition for (1) and (3). Therefore we introduce 
the concept of a regular computation frame. 

We first consider a ~-computat ion frame. For proof  of  existence see Section 6. This 
frame decomposes into subframes in a natural way: 

For a storage line L i w e  have the subframe consisting of  (0 i, 1 i , OO i , - - 1 i ) .  

For an elementary computation rr(gi) there is (0 i, 1 i, ~x~ i , - 1  i , El/, E i , F~', (F~)). 
' 

For a transmission we have ( 0 i . j ,  lj, ~j,  
The center of  perspective forms such a subframe. 

For the latter subframes we define so-called clusters as the convex hull of  the points 
involved. For a storage line L (this t ime we forget about indices) we define a cluster 
s :=  [0, -- 1 ] =conv{O, -- 1 }. 

The frames for the elementary computations belonging to the operations + ,  1", 2, x ,  
and / coincide (see Fig. 14). For these frames we define the following clusters: /2 :=  
[0, - 1] and ~ :=  conv{F], F2, F3}. The following set plays a crucial role in the analysis 
of the underlying oriented matroid of  a computation. It is called the forbidden region of  
the corresponding operation. The forbidden region is defined by setting aff(s  ~ :=  
UP, ~c.~e~ aft(P1, Pz). It is illustrated in Fig. 14. A moment  of reflection shows that for 
each of the above computations any line connecting two configuration points, not both 
belonging to E, meets both E and .7 r, i.e., it is contained in the forbidden region. Later we 
will see that control of  the forbidden regions can be used to control the oriented matroid 
of  a G-computation. It is an important feature of  aft(E, ;7.) that it does not contain any 
line parallel to L (this fact establishes our control of  the forbidden regions). 



138 

-1 

: : ,x 

Fig. 14 

H. Gtinzel 

The computation frames for the operations - and - 1  coincide too. Moreover, the 
subframe consisting of all points except F4 is just the frame for +,  etc. Here we have the 
clusters E := [0, - 1 ]  and j r  :=  cony{F1, F:, F3, F4}. 

In the following we prove that the forbidden region for - and - 1 ,  aft(E, Jr), co- 
incides with the forbidden region defined for the other operations, i.e., aft(L, ~ = 
aft(E, cony{F1, t;2, F3}). To this end we have to show that the point P(~.) :-- )~F + 
(1 - ~ )P  belongs to aft(E, cony{F1, F2, F3}) for all choices of F �9 conv(F2, F3, F4), 
P e E, and X ~ R. For ~. e [0, 1] this follows from F4 �9 aft(E, conv{Fl, F2, F3}). For 

r [0, 1] let L2 be a line separating s from conv{F1, F2, F3}, i.e., the above sets lie in 
the different open half-spaces generated by L2. We now regard our affine configuration 
as the image of a projective configuration under a chart, say ~ov,. We take a new chart ~0~ 
such that L2 appears as the line at infinity. In the image of the new chart )~ ~ [0, 1] the 
point P(k) lies in the open line segment (F, P)  (recall that P(L) was defined explicitly 
in chart ~0~1). Moreover, in the new chart we also have F4 �9 aft(E, conv{Fl, F2, F3}). 
This again implies P(L) ~ aft(E, cony{F1, F2, F3}) and we are done. In addition, we 
see that the forbidden region also contains all connecting lines except L. 

For a transmission we define the following clusters: Cti,j ] := {01i,j]}, Cj := [l j ,  --1~.], 

and ~.J :----- [1/, - 1{]. Here we have to control the following forbidden region aff(ej, el),  
as sketched in Fig. 15. For ease of formulation we also introduce so-called superclusters 
,.q as follows. For a storage line let ,.q := E. For an elementary computation put ,_q := 
conv(s .T'). For a transmission let S : =  conv(C. t i , j } ,  e j ,  el). The center of perspectives 
{Qj} and {Qti,jl} form clusters and superclusters. 

Note that all clusters and superclusters are convex hulls of frame points! This is 
intrinsically used in the proof of Proposition 18, below. 

Definition 17. A G-computation frame is called regular if the following conditions are 
satisfied: 

�9 The clusters are pairwise disjoint. 
�9 For i = 1 . . . . .  ~ the supercluster ~.~i is the only one meeting L i . 



The Universal Partition Theorem for Oriented Matroids 139 

=: 
::.:IV" j'\ !Ii'" -. 

Fig. 15 

�9 For any pair of different clusters (Ca, Cb) not contained in supercluster Sc there 
is a cluster Cc C Sc such that aft(Ca, Cb) (q Sc -~- aft(Ca, Cb) f') Cc. If the latter 
intersection is nonempty, then two of the clusters are line segments and the other 
one is the corresponding center of perspective. 

By virtue of Proposition 18 it suffices to show the existence of a regular computation 
frame F in order to prove our theorem. 

Proposition 18. Let F denote a regular ~-computation frame and put A f  := M (  F). 
Then N := 7"r f) is a smooth manifold and the "filling in" mapping ~o satisfies relations 
(1)-(3). 

Proof. 

Step 1 (N is a smooth manifold). By definition it is a property of the underlying ori- 
ented matroid whether or not a configuration is a ~-computation frame. A moment of 
reflection shows that the set 7r r) is open in the locus of (all) ~-computation frames. 
In order to obtain a ~-computation frame, the points 0 i, oo i, F~, 0{i,j l, and o~j can be 
chosen in general position (with respect to collinearity). Their choice uniquely defines 
the center of perspectives of form Qj. Then, for i = 1 . . . . .  t ,  the point 1 i can be chosen 
in general position on the open line segment (0 i , or For each i this determines the 

i for those j for which the point Qj exists. Now the pair ( l j ,  1 j )  is fixed position of lj 
_ J  

and the center of perspective Q{i,j} is well-defined. Finally, the choice of F6 in general 
position under the restriction F~ ~ (F~', or i) defines the position of the remaining points 
of a ~-computation frame. Locally, all points can be chosen in smooth dependence on 
the data that have been fixed previously and appropriate real parameters. Consequently, 
the realization space TZ(A/') of a regular computation frame constitutes a smooth mani- 
fold. 

Step 2 (we show the relation (1)). In order to organize control of the oriented matroid 
of a ~-computation we consider (small) parts of it which are already controlled by 
its definition. They are called units and defined in the following way. The subframes 
defined above for the storage lines (elementary computations) are called storage units 
(computation units). For each connection (between some L i and L J) we define three 

i U {Oj}, L j U L{ O {Q/}, units of perspective, consisting of the points from L i U Lj 
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i t3 L~ t3 {Q(i,j�91 respectively. Independently from the choice o f x  �9 (2, oo) n, the and Lj 
value g(x) lies in either (2, ~ )  or ( - o o ,  - 1 )  for arbitrary g ~ ~\{1, - 1 ,  2}. Hence, 
the oriented matroid of a filled-in unit (compare the definition of ~o) only depends on 
sign f,.(x), i = 1 . . . . .  m. Note that the units "cover" the whole frame, however, they 
do not decompose it, in contrast to the subframe above. Generally speaking, the units 
represent the "tasks" of the parts of our computation frame. 

Note that a ~-computation using a regular computation frame never exhibits a signed 
circuit of length 1 or 2. (Length 1 is already excluded by definition of an oriented ma- 
troid. Length 2 cannot appear since all points of such a computation are distinct.) In 
order to control the underlying oriented matroid of a ~-computation we introduce the 
so-called k-test, where k �9 {3, 4}. A k-test is a subconfiguration of cardinality k of the 
~-computation which is not contained in one unit, and which does not exhibit a signed 
circuit of length smaller than k. For assertion (1) it suffices to show that the oriented 
matroid of a 3-test and of a 4-test only depends on Af and sign f (x) .  

It turns out that a 3-test never exhibits a signed circuit. This can be seen as follows. 
By definition there is no 3-test contained in one single cluster. If a 3-test would meet 
precisely two clusters, then that one of them containing two points must be some ,~'. 

i !) The other (The other clusters are only one-dimensional: distinguish between L i and Lj 
cluster is s since/~i is met by any line connecting two configuration points from b r / a n d  
there is no other cluster met by aff(~, i, .~.i) (by regularity). Hence, the 3-test is contained 
in one unit, which was excluded by its definition. Consequently, any 3-test has points 
from pairwise different clusters. If it would exhibit a circuit, then it was contained in a 
perspective unit (by regularity), a contradiction. 

Now, let be P = (P1,/)2,/)3,/)4) be a 4-test and let C1 . . . . .  C4 be the corresponding 
clusters. Since there is no circuit of length 1, 2, 3, the set of signed circuits C(P) consists 
of precisely one signed circuit (of length 4) and its negative. If for all "permutations" 
{a, b, c, d} = {1, 2, 3, 4} it is clear whether or not aff(Po, Pb) separates Pc and Pd, then 
C(P) is well-determined. In fact, there is a permutation such that aff(P~, Pb) separates 
Pc and Pal, i.e., Pc and lad lie on different sides of aff(P~, Pb). If P~ and Pb are sepa- 
rated by aff(Pc, lad), then {Pa, Pb}{Pc, lad} is a signed circuit (identify the configuration 
points with elements of the basic set of the underlying oriented matroid). If otherwise 
aff(Pa, Pc) separates Pb and Pd, then we have {P~}{Pb, Pc, lad} and in the remaining 
case {Pb}{Pa, Pc, Pa}. 

In summary, we have to prove that it only depends on Af and sign f ( x )  whether or 
not aft(P1, P2) separates P3 and P4. 

By definition of a 4-test the points PI . . . . .  /)4 do not belong to the same supercluster. 
i then a f t ( P 1 ,  P2) cannot intersect Ca or C4. If aft(P1, P2) is one of the lines L i or L j ,  

(If C3 would be intersected, then C3 tq L i (or L~) is nonempty, hence C3 C Li (or L~.), 
by regularity. This would imply that P1,/)2, P3 are collinear which was exluded in the 
definition of a 4-test.) Now, it is clear from that oriented matroid.A/" of the frame whether 
C3 and C4 are in the same or in different open half-spaces generated by L i (Lj). Hence, 
in that case the oriented matroid .Af decides whether or not L i (or L~.) separates P3 �9 C3 
andP4 eC4. 

i I n  In the following we assume that a f f ( P 1 ,  P2) is different from the lines L i and Lj. 
the case C1 = C2, cluster C1 must be a two-dimensional one, i.e., some .~ .  This implies 
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that aft(P1, P2) Iq s # O. In this case put C1 := C1 = y i  and rife := s In the case 
171 # 172 put ffl := C1 and C2 := C2. 

By regularity of the q-computation frame it only depends on the choice of P/( in  the 
basic set of the underlying oriented matroid, not on the geometrical position !) which of 
the following cases occurs. 

Case 1: aff(Ci, Ce) N (Ca U Ca) = I~. Then C(P) is well-determined by.A/. 

Case 2: aff(Cl, C2) meets exactly one of  Ca and C4, say Ca. Then Pl, P2, ,~ belong 
to the same unit. It is well-determined by the choice of P1, P2 (in the basic set of 
the underlying oriented matroid) whether or not the point 0 (or oo) of the supercluster 
corresponding to C1 is on aft(P1, ,~ The line a f f (P1 ,  P2) cannot contain both of them 
since it differs from L i , L~.. Choose one of the points 0, ~x~ not lying on aft(P1, P2) as the 
orientation point. The oriented matroid of the unit is well-defined by .N" and sign f ( x ) .  
Hence, it is clear whether or not the orientation point and P3 are on the same side of 
aft(P1, P2). We deduce that it suffices to decide whether or not aft(P1, P2) separates 
C4 and the orientation point. Since aft(C1, C2) does not meet C4, these are frame points 
/51, /52 from C1 and C2, respectively, such that the orientation point is separated from 
C4 by aft(P1, P2) if and only if it is separated by aft(~51,/52). The latter is decided 
by .N'. 

Case 3: aft(C1, C2) meets both Ca and C4. Then all points belong to the same unit, which 
is not possible by definition of a 4-test. 

Step 3 (proof of  relation (3)). Let tr e {-1,  0, 1} m. By relation (1), the matroid M~, is 
well-defined and we have 9 (M,  x N) C 7"r We show that the latter sets coincide. 
To this end assume a configuration with underlying matroid .M~. Then the subcon- 
figuration corresponding to the frame is from Tr Consequently, this is a (regular) 
~-c0mputation frame. (A regular computation frame is defined by properties of the under- 
lying oriented matroid.) The points pX, must be in (2 x' , o~ x'), by the oriented matroid 
.Mo. Moreover, the oriented matroid implies that our configuration is a filled-in ~- 
computation frame, thus a q-computation, with input x = (o7 1 ( pXl ) . . . . .  ogX. ( pX, ) ). 
All such computations are in the image of ~o. [] 

6. The Existence of a Regular Computation Frame 

In this section we construct a regular computation frame. In view of Section 5 this 
completes the proof of the Universal Partition Theorem. We first construct a family 
of basic frames. By definition, the basic frame is the part of the computation frame 
which is responsible for the storage and transportation of the (intermediate) results. It 
is obtained from the computation frame by deleting the clusters 7 ,  which realize the 
elementary computations, and the points - 1  i, -1~, 2 i, 2~. Our family of basic frames is 
such that all lines L i and all points 0 i, O{i,j], a; ,  and a{i , j]  are constant. Moreover, the 
line segments [0 i, ~ i ]  C L i "converge" to the points 0 i and [Oli, j}, 00~] C L~ to 0ti,j}. 
(It is not trivial that this can be done with a fixed center of perspectives.) In a second 
step we attach the frames used for elementary computations in order to complete the 
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computat ion frame. This can be done in such a way that the superclusters S i "converge" 
to 0 i and the forbidden regions to given Iines L i. This implies the existence of  values for 
the parameter  corresponding to a regular computation frame. 

Proposition 19. A regular ~-computation frame exists. 

Proof. We start our construction with the points 0 i, 0ti , j  } (with i = 1 . . . . .  # ,  and j as 
in Definition 15(2)) such that no triple of  these points is collinear. Next, we choose lines 
L i and Lji such that 0 i e L i (0|i,j] e Lj)  is the only one of  the latter points met  by L i 

�9 i with the same index i and L),  respectively. This can be done such that the lines L i , Lj 
are parallel, and different lines L i are not parallel. 

The existence of  continuous one-parametric families of  points A i ( t  i)  6 L i and 
A~ (tj) 6 L) with t i, tj �9 (0, 1) such that IIAi (t i) - 0'11 = t i and IIA) (tj ) - Oti,jl ]l = t], 
where II �9 II denotes the Euclidean norm on IR 2, is also clear, Later, the points Ai(t  ') 
will be used to define the points oo i and 1 i (for different value of  the parameter  t i ) .  

Analogously, we define the points oo~. and lj. 
We treat IR 2 as a chart of  E 2. Hence, for all values of  parameters  t i and tj there 

is precisely one point Qj(ti,. t]! on the projective line connecting 0 i and 0{i.j 1 which 
is collinear with the pair a ' (g ) ,  Aj(t]). The position of  Q~ (on the projective line 
corresponding to aff(O i, 0{i , j}))  depends continuously and strictly monotonical ly on the 

i ratio t i : t]. This is obvious since L; and Lj are parallel lines. The only point Q)~ 
which depends on the parameter  tj is Qj. Hence, there are ratios of  the parameters  
t i : t]l : . . "  : t/r, i = 1 . . . . .  #,  such that there are no other collinearities between the 

i points {0 i, 0~i,j I, Q j } i , j  o t h e r  than those of  the form {0 i, Oii.j~, Q~}. We fix such ratios. 
Now, the P~ame te r  tj is already given by t i . In order to emphasize this relation we write 
a~. (t') for A~ (t~). 

We are still free to choose the ratio t ] : . - -  : t ~. It is clear that for a fixed ratio 
t i : t j all possible lines aff(A~.(ti), A/( tJ))  are parallel. (They are well-defined, since 

i and L /  by construction.) The projective lines 01i.j } is the only common point of  Lj 
corresponding to aff(A~ (ti), A/ ( t  J)) intersect, say in Q{i,j} ( t i / t  j) on the line at infinity. 
It is obvious that the position of  Q{i,j}  on  the line at infinity depends strictly monotonical ly 
and continuously on  l i / i j .  Therefore, there is a ratio t 1 : - - .  : t ~ for which all small 
p o i n t s  Q li,j} ( ti  / t j )  are different (the corresponding lines are not parallel) and for small 
values of  the parameter  t j there is only one collinearity of  Qli , j}  with points from 
{0 i, 0ti,j}, Q~, Ai(ti),  A~.(ti)}i,j, namely A~.(ti), A/( tJ) ,  Qli.jl. (We assume small values 
o f  t 1 in order to control the points A i and Aj.) We fix one of  these ratios and put t :=  t 1 . 
(From now on we write Ai(t) and Aj(t).)  

We can choose another chart of  l? 2 such that all points defined so far are in II~ 2. Note 
that the collinearity of  the points Qti, j} does not fit in our concept  of  a regular computation 
frame. Nevertheless, we proceed with an extension of  the given configuration to a ~- 
computation frame (being as regular as possible). The collinearities of  the points Qti,j) 
are perturbed at the very end. 

Our one-parametric family of  configurations, constructed above, defines a two-para- 
metric family of  basic frames in the following way: oo i (too) : =  A i ( too),  oo~ (too) "-~ 
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A~(t~), and l i ( t l )  :=  Ai(tl), l j ( t l )  :---- Aj(t,), where 0 < tl < t~  << 1. We use the fact 
that t ~ is sufficiently close to 0 in order to guarantee that 0 i, 1 i, and ~ i  appear (on L i) 
in the right order, etc. 

In the next step we attach the frames for the elementary operations + ,  - ,  etc. Consider 
the configuration in IR 2 shown in Fig. 16. The latter configuration can be extended to any 
geometrical model for an elementary operation. The corresponding computation frame 
(with 09(-1)  ----- - 1 )  is well-determined by the given points, hence the clusters s and 
~" are. It  is referred to as the standard frame for the elementary computation. Using a 
parameter ~ ~ (0, 1] we obtain a parametric family of  elementary computation frames as 
the image of the standard frame under the linear mapping (xl, x2) ~ (~2Xl, ~x2). The 
frame for parameter ~ = 1 coincides with the original one. Obviously, all points of  the 
parametrized frame converge to 0. The line L(~) = L is constant. Since the forbidden 
region aff(s .Tr(~)) does not contain any line parallel to L (see Section 5), it follows 
that 

lim aff(s .Tr(~)) = {L}. 
~--,0 

Here the set lim~--,o aft(C1 (~), C2(~)) is defined for parametric families of  disjoint sets 
C1(~), C2(~) C ~2 as the set of  those lines I for which there are sequences ~i ._+ 0 and 
c],ci2 with c] e C1(~ i) ci2 ~ C2(~ i) such that 1 = l i m i ~  aff(c],cig). The latter is 
said to hold i f / con ta ins  an accumulation of aff(c~, c~) and the linear spaces ~(c~ - c~) 
converge in the Grassmannian G(2,  1) to the space parallel to I. 

For i = ot + 1 . . . . .  fl let ~0i: I~ 2 ---> It~ 2 denote a projective isomorphism with 
~oi: 0 ~-~ 0 i, 1 ~ 1 i ( 1 ) , ~  ~ oo i (1 ) , andL  ~ Li, where the  arguments are taken from 
our standard frame. The existence of go i follows from L e m m a  8. For the time being we 
fix the ratio t I : l ~  = 2 : 3 and put t = t~ .  (Then the points 1 / (t), etc., are well-defined.) 
Since (Ai) -1 : L i ~ ~ has been constructed as an affine isomorphism (in the old chart) 
it is a projective scale o n  L i. This implies ooi(t) = ~oi(t, 0)  and l i ( t )  = ~oi(2t/3, 0). 
For small values of  the parameter t, the oriented matroid of  the standard elementary 
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computation frame coincides with the oriented matroid of the image. (For this we use 
an image that is close to 0i.) It follows the fundamental relation 

lim a f t (E l ( t ) ,  .T/(t)) = {Li}. 
t---* 0 

We also see that S i collapses to the point 0/. 
Now we put t~  := t and tl := t - t2/3.  For t E (0, 1) we have tl : t~  > 2 : 3. It 

follows that both E i (t) and T (t) are contained in the corresponding sets for the previous 
choice of parameters too(t) and t~ (t). Hence, the convergence results remain true. For 
the new family, however, limt--.0(too - t l ) / t ~  = 0 holds. This implies that 

l im aff(O~, 0 / )  = {aff(Oli j l ,  Qli.j})}. t--*O 

Altogether, the ~-computation frame obtained satisfies, for small values of t, all the 
conditions of a regular one except the "unwished" collinearity of the points { Qli,j] }ioj. 

Now we start from such an "almost regular" ~-computation frame as constructed 
so far. We perform a perturbation which leaves all points unchanged except those ones 

i and J depending on the position of 1 i in (0 / , ~x~i). In particular, the points Oii.y 1, ooj,  oo i 
are not changed. The position of Qli.j} on af f (ooj ,  oo{) depends strictly monotonically 
on the position of 1~ e (01i.j I , ooj). In fact, the set of positions of {lj}~.j for which there 
is no collinearity between points from { Qli,jl }i,j is open and dense. The position of each 

i lj can easily be perturbed by a shifting of 1 i E (0/, <x~ i) with fixed 0 i, oo',  and Qj. The 
~-computation frame can obviously be rebuilt such that the perturbation of any single 
point is arbitrarily small. This results in a regular ~-computation frame. [] 

7. Concluding Remarks 

In our proof we emphasized that a regular computation frame can be taken as a com- 
putation frame in general position. This yielded an easy argument to prove that the 
corresponding realization space N = R(A/') is a smooth manifold. However, in this 
framework it is hard to analyze the topology of N and to give an efficient computation 
of ~p: trv-+ .A4~. If ip could be computed in polynomial time, then the problem of 
"stretchability" was proven to be at least as hard as the Existential Theory of the Reals 
(ETR). The latter asks whether a given algebraic variety is empty or not. The problem 
of stretchability is the question of realizability of an oriented matroid. It was proven by 
Shor [6] that stretchability is NP-hard. 

Now it seems that we can introduce a constructive concept of a regular computation 
frame which supports the computation of ~.  The new concept also implies that N can 
be taken in the form { 1, - 1} x R t, where { 1, - 1} stands for the choice of  an orientation. 
Recall that this nice structure of N has also been claimed by MnEv [5]. In addition, 
for any sign-vector tr the corresponding matroid .A4, can be computed in polynomial 
time in dependence on the maximal degree of the polynomials fi  and the accumulated 
binary storage size required for their coefficients. Moreover, we can use one single 
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(polynomial-time) algorithm for all input data {fl . . . . .  fro} C Z[X] andtr ~ { -  1, 0, 1} m 
for computation of 

({fl ..... fro}, ~r) ~ .,/t41o f' ..... A,}. 

However, at present, all the details have not been worked out. 
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