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A. M. Vershlk suggested identifying the space of problems of linear programming 

with the corresponding Grassman manifold. On this manifold there is defined a 

probability measure, and the measures of sets of problems with finite and infinite 

extrema and the mean number of admissible bases in the problems are calculated. 

0. Introduction 

In the study of various analytic characteristics of problems of linear algebra, in par- 

ticular, problems of linear programming, one can use methods of integral geometry. For this 

it is necessary to parametrize the set of corresponding problems (for example, problems of 

linear progrnm~ing) and to study the geometric properties of the space of problems. Such a 

space can be constructed in various ways. A. M. Vershik suggested identifying the space of 

problems with a Grassman manifold ([2]). The corresponding construction is carried out in 

Sec. I. The convenience of using Grassman manifolds for constructing spaces of problems is 

that on it there exists a unique normalized measure which is invariant with respect to the 

natural action of the orthogonal group (cf. [3]), and one can speak of the probability that 

a problem has a specific property as the measure of the corresponding set of problems. In 

the simplest cases the answer can be obtained not only for the invariant measure, but also 

for a wider class of measures. In this paper we shall calculate the probability that an 

extremum in a linear programming problem is finite and the average number of admissible 

bases. The result is based on the Steiner-Schl~fli formula [8] on the number of parts into 

which hyperplanes in general position partition the space. It has already been used to 

study characteristics of random cones in [4, 5]. One can find other definitions of the space 

of problems of linear programming in [6, 7]. 

i. Construction of the Space of Problems 

In what follows we shall denote by the symbol ~(~,K) (n~K~ 0) the Grassman manifold 

of K -dimensional subspaces of ~ . For each subspace E the dimension and orthogonal 

complement are denoted respectively by ~ E  and ~• �9 If A---~{~;} is a real matrix 

~ , and by of size ~x K , then we denote by ~ the vector ~= (~, ~ .... , ) in ~ 

4 ~ , a~) in ~K The set of integers {K,K+~, ~ we denote the vector ~(~, ~,... 

�9 ..,~} is denoted by K: ~ A possibly empty subset ~ of 4:~ will be called a set 

of indices from ~: ~ and we shall denote by I~I the number of elements of ~ , and by 

# the collection ~: ~ 6 . Writing a problem in the form ~[~(x~J ~(~)} means that 

one must find the supremum of the function ~ on vectors for which condition ~ holds. 
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Such a vector is said to be admissible. 

K a mapping ~ with values in ~(W,~). It associates with each matrix 

subspace of ~w which is the linear span of the vectors ~..., ~.% 

Let ~,~,~ be nonnegative integers, where W~, ~, ~+K~ . 

the linear programming problem: 

where 

We define on matrices of size ~ K (W~K) of rank 

A: {~1 the 

We consider 

~=(~1,~$,...,~$) is a vector in ~*~ , a is a real matrix of size (~.~), 

of rank Kel �9 

Let E-~-~u~(A) Then the condition on admissible vectors in (i) ~a~-@ is 

equivalent with ~ being orthogonal to all vectors generating E , that is m ~GE ~ . 

Using this, we get the following problem: 

�9 0, : }. (2) 

We note that although to each subspace E of G(~+~,K*I) there corresponds a whole class 

of matrices, whose column-vectors generate E , the conditions on an admissible vector in 

(i) for the arbitrary matrix m , such that ~6(~)=~ , and in (2) are equivalent. 

Hence in studying the characteristics of problems of linear programming connected with the 

structure of the set of admissible vectors, it is natural to take as the space of problems 

the manifold ~+~,K+I) , at each point E of which the problem (2) is considered. The 

connection between the spaces of problems defined in this way and those defined matrically 

is discussed in Sec. 5. 

2. Formulation of the Theorem 

Definition. Let h be an ~ -dimensional linear space, ~-{ ~1,~, .... ~ be a 

basis in ~ , E be a ~-dimensional subspace (~ ~ ~ 0) �9 We shall say that ~ is 

a subspace in general position in 5 with respect to the basis ~ , if for any collection 

of indices ~ from ~ : ~ such that f~l-----K, EN~Ix%=0, %e~ } = ~ , where ~,~,...,~ 

are the coordinates of the vector ~ in the basis ~ . 

In the space R ~ we fix the standard basis ~-----{ ~, ~, .... 8~} , where ~ denotes 

the vector whose ~ -th coordinate is equal to i, and the rest are zero. We shall say that 

is a subspace in general position in ~ or simply a subspace in general position, when 

it is clear which ~ is involved, if E is a subspace in general position in ~ with 

respect to the basis % Properties of subspaces in general position will be considered 

in Sec. 3. 

Definition. Suppose there is a given a measure ~ on the Borel sets of the manifold 

@(~,K) We shall say that ~ is invariant with respect to change of signs of coordin- 

ates if for any transformation of the manifold ~ , corresponding to the change of coordin- 

ate vectors in ~ from {~I to { ~  , where ~=• , and any measurable set 

Let ~, ~,~ be nonnegative integers, where ~ ,  ~) K, ~+K)~ At each point 

E of the manifold ~(~+~,~§ we consider the problem (2). We denote by ~ the function 

%Another notation is ~ A. 
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and I~1=~+1 
c o l l e c t i o n  

hold: 

on ~(S*~, K+~) with values in the extended real line, equal at each point to the supremum 

of the problem (2), considered at it. 

Definition. Let ~ be a collection of indices from ~:(~,I) where (m.I):(~+I)= 

, E be a (~. ~) -dimensional subspace of ~§ . We shall call the 

an admissible basis of (2), considered in E , if the following conditions 

E'n{~ I~,=0, ,i,e~u {'~+~,],} ~ -  e, 

The naturality of this definition will be discussed in Sec. 4. 

(3) 

(4) 

We denote by ~a~ the function on ~(~e~,K.I) equal at each point to the number of 

admissible bases of (2) corresponding to this point. 

THEOREM i. Suppose there is given on the Borel sets of the manifold G(~*~, K+I) a 

probability measure P such that on a set of full measure one can find a subspace in general 

position, and invariant with respect to change of signs of coordinates. Then 

3. Properties of Subspaces in General Position 

To prove the theorem we need several properties of subspaces in general position, but 

before formulating them it is convenient to introduce some notation. 

Let ~ and ~ be two disjoint collections of indices from 1:w. 

We denote by g(~) the set of numbers ~(~)=~Is177 ~e~} , which we shall call 

a collection of signs in what follows. By ~(~,~), ~(~,6(~),~) , ~(~) we denote the cone 

in ~ ~+(~,~)= {~Im~>O, ~6~; ~=0, ~E~ }, ~(~,g(~),~)={~l~>O,~e~; ~=0, ~e~} and 

the subspace in ~w ~)={~ I~=0, ~e~ } In each subspace ~) there is a fixed 

basis consisting of vectors of the standard basis �9 which belong to this subspace. We 

shall speak of subspaces in general position in ~(~) , having this basis in mind. % 

is the set function such that ~(s = 0 if C is empty, and ~<c) =I otherwise. 

Definition. Let ~ be a ~ -dimensional linear space (K~) A family of hyperplanes 

E1,E~ ..... E~ in ~ is called a family of hyperplanes in general position, if the inter- 

section of each K of these hyperplanes is equal to zero. 

Now we can formulate the basic properties of subspaces in general position. 

Property i. Let ~ be a subspace of ~ . Then the following assertions are equiv- 

alent: 

i. E is a K -dimensional subspace in general position in ~, 

�9 The symbol M~ is for the expectation with respect to the measure P . 
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2. El is an ~%-K) -dimensional subspace in general position in ~, 

3. for any collection of indices ~ from ~: ~ such that ~%1=~ and ~ 0  , 

the subspace ~ ~ ~(~) is a (K-~) -dimensional subspace in general position in ~(~) , 

and if K - ~  , then the family of subspaces E~(~)~ ~({~) for ~ is a family 

of hyperplanes in general position in En~(~), 

4. ~,~44~E= K and for any two disjoint collections of indices ~ and ~ from 4"w 

such that I~I ~ ~ , and any collection of signs &(~) , the following assertions are 

equivalent : 

a) E n { = ~ l ~ , ~ , O ,  i , = ~ ; ~ = O , ~ , e t , | = / = O ,  

b) En 

Proof. Equivalence of 1 and 2. Let 1 hold, and fix an arbitrary collection of indices 

from ~:~, I~J==~ It follows from the definition of general position that 

EnR'~(:~) ~--- ~ , s o  

Using this equation, we have ~ (E~n R~Ci)) = ~+~ E". 4~ R~T)- ~$~(E'.W"cD)= 

(W-~)+K--~=0. ~Em=~-K and ~ is an arbitrary collection of indices from 

~" W with ~-~ elements, so F x is an (W-K)-dimensional subspace in general posi- 

tion in ~m. Using the equation ~E'#= E , we get the converse. 

Equivalence of 1 and 3. 1 follows from 3 since it suffices to take the empty set as ~ . 

Conversely, let 1 hold. We fix an arbitrary collection of indices 6 from ~: m, J~=~, 

K~t'14,~,O. It suffices to show that ~ ( ~ ( ~ )  ~ K - I ~  , and the rest of assertion 3 

is an obvious consequence of the definition of general position, 

4 ~ ( E  n~,~% )) = ~ E. ~ ~,~) - ~,~(E-4~.~))~ ~ - ' , ~ .  

Let I,-----EO~W(~J ; if ~L>K-~ , then for any collection of indices ~ from 4:~ 

such that ~ and ~ are disjoint and J~ U ~1= K , we have 

From this we get that ~(L+~(~)) ~ W . , which is impossible. 

Consequently, ~ ( E N ~"(~)) = k - ~. 

Equivalence of 1 and 4. We shall show that 4 follows from 3. Let 3 hold; we fix two 

disjoint collections of indices ~ and ~ from I:~ such that I~I~I , and a collection 

of signs E(~) It is obvious that a) follows from b). We shall prove the converse. We 

prove this by induction on the dimension of the space ~. It is clear that for W----I 

the assertion is true. Suppose the assertion is true for spaces of dimension less than ~ ; 

we shall prove it for dimension ~ . By hypothesis there exists a vector ~ such that 

~6EN{~Is ~6~; ~--0, ~e~J and ~'~0 �9 If ~ > 0 for all ~e~ , then the 

assertion is true. If not, then one can find an index $6 6 such that ~6~N~(~U[~}) �9 
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so there exists a vector ~ in En~r such that s If 6~4`> 0 for all 

~e6 % {$}, then the line segment joining ~ and ~ intersects the cone ~.~(~,s 

and hence, EN~.~(~,~(~),~) =f= ~ . It remains to show that one can choose the vector 

so that this condition holds. If l~-~- ~ , then there is such a vector already; if 

not, the possibility of finding it follows from the application of the inductive hypothesis 

to the (~-4)-dimensional space ~({$}) and the subspace EnR~(~) of it. 

We shall show that i follows from 4. Let 4 hold; we fix an arbitrary collection of 

indices ~ from ~:~, I~l = K �9 If ~nR~L~) =4= ~ , then we consider a system of 
. 

vectors in F ~,~r for ~e~ such that ~6~N~(~), ~6 E N ]~$({%~,~{~}) for 

s �9 By hypothesis such vectors exist, but they are linearly independent, so ~E~ 

K.I �9 We have obtained a contradiction with the fact that ~ E =  ~. Thus, ~N~C~)-----~. 

Property 2. Let ~ be a K-dimensional subspace in general position in ~(~ K ~ I) ; 

we fix two disjoint collections of indices ~ and ~ from I: 11, , where l~I=~,J~I~-~, 

~>~I, ~< K . Then 

~-m - t  

where the summation is over all distinct collections of signs Z(6) . 

Remark. To prove this property we shall use the Steiner--Schl~fli formula which says 

that a family of %(t~ ,~1)  hyperplanes in general position in a K-dimensional linear 

space (~I) partitions the space into ~ -~ (~1) open parts. It is easy to get the 
o 

proof of this formula by induction on the dimension of the space, and besides, it is in 

[4, 8]. 

Proof. Let h = En~(~) By property i, I. is a (K-~) -dimensional space and 

the family of subspaces LN~({~}) for ~0 is a family of hyperplanes in general posi- 

tion in I. Consequently, these hyperplanes divide I, into ~ "-~-~ (P~I) open parts. 

It is obvious that each of these parts is the intersection of E with one of the cones 

~+~(~,s , and E does not intersect the rest of the cones. 

4. Proof of the Theorem 

LEMMA i. Suppose there is given a normalized measure ~ on the Borel sets of the 

manifold ~(~,K)(~I) , such that on a set of full measure one can find a subspace in 

general position, and invariant with respect to change of signs of coordinates. We fix 

two disjoint collections of indices S and "I; from ~:~ , where I~=P, I~I=~, 

~, m< K . Then for any fixed collection of signs %~(~) 

~-.~-I j' 
C~(%~) i, =0 

Proof. It is obvious that the integrand is measurable, so the integration is possible. 

Using the fact that on a set of full measure one can find a subspace in general position, and 

property 2, we have 
~-~-1 

~r(~,~) ec~) 4,=o 
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where the summation is taken over all distinct collections of signs ~(~) �9 We consider 

~? cones ~(~,E~),~) , all of them obtained from ~(~,~ by changes of signs of 

coordinates, and a measure invariant with respect to such changes. Consequently, the 

measures of subspaces intersecting these cones are equal�9 We get the answer from this and 

(5). 

LEMMA 2. Let A={s be a real matrix of size w ~ ~ of rank 

the subspace E----~{(A) , let ~ be a collection of indices from 

Then the k vectors g~ for ~e ~ are linearly independent in ~ 

E~n ~ = 0. 

Proof. This assertion is an obvious consequence of the fact that the homogeneous 

system of linear equations 

K(W~.K~t) , let 

I : . , ,  I~I = 

, if and only if 

.~ ~,gO~--~- 0 for ~6~:~ 

has only the zero solution if and only if 

E'n R ~  = ~. 

Proof of the Theorem. We fix an arbitrary (1(-,-I)-dimensional subspace E in ~*~ 

and a real matrix A of size (~.~),(k.4) of rank K.~ , such that ~(A)=E. We 

consider the problems (i) and (2) and we shall show that the definition of an admissible 

basis in (2) is natural in the sense that each admissible basis of (i) is an admissible 

basis in (2) and conversely. In fact, the concept of admissible basis in (i) is well known. 

A collection of indices ~ from 't: (~,§ such that (~+I):(~*I~r ~ and ]~I= k§ is 

called an admissible basis in (i), if the vectors ~% for %~ are linearly independent 

in ~K and the corresponding basis solution is admissible. The first of these conditions 

is equivalent with (3) by Lemma 2, and the second coincides with (4). If E is a subspace 

in general position, then by Property 1 condition (3) always holds, and condition (4) is 

equivalent with the following: 

The value of the function va~ at ~ is greater than -m if and only if there exists an 

admissible vector in (2), that is, if ~n{~l~%~.0, s =#= ~ , which for sub- 

spaces in general position by Property 1 is equivalent with the condition: 

E~- " "~ ~ ~ r . (7) 

It is known (cf. [i]), that the supremum in (i) is equal to .~ if and only if there exists 

a vector ~ such that ~A----- ~, ~0 for %~1"~,~.~---0,~m0 , and there is an 

admissible vector in the problem. We reformulate these conditions for (2). The existence 

of a vector ~ with the properties needed is equivalent with the condition: ~zfl {~I~%~ 0, 

~ I: ~; ~,~= 0 ; x~ >0 }=~ r �9 

If ~ is a subspace in general position, then by Property i, this condition is equiva- 

lent with the following: 

E~n ~.~~' ~,I : m u { ~ . 1 } ,  { .~+~|)  = ~ (8) 
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Again by Property i for subspaces in general position it follows that if (8) holds then (7) 

holds, and hence W~(~) =+~ if and only if (8) holds. Now we can proceed to the cal- 

culation of the probabilities of interest to us. We note that passage to orthogonal comple- 

ments of subspaces carries the measure from the Borel sets of the manifold ~(~*~,K+~) to 

the Borel sets of ~r(~,,+~,,',l,-~+~) in the standard way (the measure of a set is equal to the 

measure of its preimage), the measure ~ obtained is invariant with respect to changes of 

signs of coordinates, and on a set of full measure one can find a subspace in general posi- 

tion. We calculate the expectation of ~ . Since on a set of full measure one can find 

a subspace in general position, one can use (6) and Lemma i. We have 

G { ~,~-~,,I',.- I(-.-I ) ~ 

-- K-t- tH, --I~ 

where the summation is over all distinct collections of indices ~ from I:(B.I) such that 

(~+I) : (~tl) c ~ and I~I = k+~ . Analogously, using (7), (8), and Lemma i, we get 

= ( ? )  , 

p{-|  = 

Remark. 

measure invariance with respect to changes of signs of the coordinates only for coordinates 

with indices from the collection ~:~U~t~}U{~§ 

i~ is evident from the proof of the theorem that it suffices to require of the 

of the form l~={14~I'I,~O:(H,-1);}GO:(K-t.I.; 
5. 

and 

Basic Example 

We shall consider real matrices ( .K~I,  ~ t )  

0}. 
We denote by M(%,K) the space of such matrices with the natural topology. 

We fix nonnegative integers ~ , ~ , p  such that w~ltl,~p, ~k>p,'~,l, tK~ 
we consider a linear programming problem of general form: 

(9a) 

for ~G1:p , (9b) 

for ~e (p+{):Kj (9c) 

~el : (~-p) , (9d) 

on vectors of ~-P 

~-p 

find the sup~mum of the func~on &= =~ 5s ~ �9 

satisfying the conditions 

e~-p 

~ 0 for 
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where 

(1) .  

alent with the original one: find the supremum of the function ~§ on vectors from 

~*~ , satisfying the conditions 

~-? ~-p , �9 

= = o, �9 - o 
'i,=1 

for }e1: p, 

�9 ,~,~0 for ~-1:<m-p)U(~-p,f): n ,  ~=I. 
This problem now has the form (i) up to the indexing of the coordinates. 

We reindex the coordinates so that the coordinates with indices W%-p+1,..., W-p re- 

spectively have indices ~*I,..., 11, , and the coordinates with indices w-p+1~... ~ 11, , 

respectively, have indices ~-p~1,..., w~ , while the indexing of the remaining coordinates 

is unchanged. We denote the matrix of the problem obtained by M~(~) Thus, we have the 

problem equivalent with the original one: 

~p[ ~,~,~ l ~.M~(w,}=~; =~o, ~,.l:m;~,,.,~=,t}. (lO) 

There exist different definitions of admissible bases in (9). 

We consider one of them (cf. [i]). 

from 1:(~-p) 

~-----{W{} is a matrix from U (W-p*1, ~, t) �9 We reduce this problem to the form 

For this we introduce new variables X~_p,4,... , ~,~ and we consider a problem equiv- 

Definition. By an admissible basic pair in (9) we mean two collections of indices 

and ~ from I: K , such that one has: 

~=f : (~-p) ,  ~'c~:p, I~1---- I'1;I, 

966 

the system of equations 

~=0 for ~ has a unique solution ~ , and ~ is an admissible vector. 

It is easy to see that the admissible pairs in (9) are in one-to-one correspondence with 

admissible bases in (10). The correspondence associates with the pair 5,~ the collection 

of indices 

{ ~ - ~ . 1 1 ~ }  u(~nl:(m-pn u(m,+t):~u[~tt} . 

of the space M(~-P+4, K+{) we consider the problem (9). We de- Suppose at each point 

note by Va~& the function on M(~-p.i, K+I) with values in the extended real line, 

which is equal at each point to the supremum of the problem considered at it. 

We denote by ~&~5 the function MO~-p4~k+1) , which is equal at each point to 

the number of admissible basic pairs of the problem considered at it. 

Definition. Suppose there is given a measure j~ on the Borel set of the space 

M(w*~K+~) (W~0, K~0) We shall say that jw is invariant with respect to changes 

of signs of coordinates by columns, if for any transformation of the space ~6 ' corre- 

sponding to the change of columns of matrices from {~} to {%~&} , where ~-• 
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~=(W~'W~, .... ~L) for ~-----0,1,..., K , and any measurable set r , ~(r . 

Analogously one defines invariance with respect to changes of signs of coordinates by rows. 

COROLLARY. Suppose given a probability measure P on Borel sets of the space 

(~-p+1, k+ I) , which is invariant with respect to change of signs of coordinates by 

columns and rows, and the measure of the set of matrices ~ , such that each K+ I rows of 

the matrix ~(~) are linearly independent, is equal to one. Then 

~=0 

p{ 

Proof. Let M ~ be the set of matrices ~ in M(~-ptl, ~*I) such that each K. I 

rows of the matrix ~(~) are linearly independent. M ~ is open and has full measure. 

Hence it suffices to consider the problems on the set M ~ For any matrix WE M0 the 

subspace of ~+~ E~-~B~(~(~)) is a subspace in general position by Lemma 2 and Property 

i. The number of admissible basic pairs in (9) coincides with the number of admissible bases 

in (2), and the values of the suprema of these problems are equal. In the standard way, we 

carry the measure from the Borel sets of M0 to the Borel sets of ~(~+~, ~+I) It is 

M ~ easy to see that the invariance of the measure on with respect to change of signs of 

coordinates by columns and rows guarantees the invariance of the measure obtained on 

~(~+~,K+I) with respect to change of signs of coordinates in ~*~ Applying the 

theorem we get the answer. 

Remark. It suffices to require the invariance of the measure on ~W-~,I,K+I) with 

respect to change of signs of coordinates only by rows with indices from the collection 

0:(m-p) and by columns with indices from the collection 0: p , so that for problems 

with p=0, ~4-----~ , just invariance with respect to change of signs of coordinates by rows 

suffices, and for problems with p=K, ~=~ , by columns. 

The author gives profound thanks to A. M. Vershik for posing the problem and constant 

interest in and help with the work. 
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