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R1(2)=Jzl(.)dr, 

a 

We usually replace them with one stabilizer of the form a-g,n,+p&,, where the coefficient 
fl, is chosen arbitrarily (O<p,Cl, fit-=l-p,). The method of solving multicriterial problems 
indicated in the previous paragraph enables us to consider, instead of (6), problem (1) with 

l-22 (2) = j (dz/liq dz. 
0 

several criteria, for example (D,-p(A(z), u), Q)r-P,(z), %-CL(z). 
Secondly, in scme problems the choice of the distance p in the space u contains great 

arbitrariness. For example, such will be the case when there is a set of equations connecting 
various physical quantities (different sizes, different scales, and different errors). Of 
course, we can always "lay responsibility" on the coefficients q in the expression 

p(U* U’)= [~Cj(Uj-U~)2]*"r 

j-1 

but in reality nothing is known of these c,. Therefore instead of the single-criteria1 
problem (4) it is more reasonable to consider problems with several criteria, for example 

(Dp=IA (z),-u,l +min, l<jGm. 

It is easy to see that if a quasisolution 2-z. exists, such that p(A(r’), IZ)=O, then 
it is not quite so terrible to choose unsuccessful q: the problem will be badly considered, 
but the solution will finally be obtained. However, in real problems Usually 

~nnp(A (r), u)>O. 

An unfortunate choice of q can greatly damage the calculated "best" solution. 

and 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

In conclusion the author. thanks the participants in the seminar on ill-posed problems 
its leader V. Ya. Arsenin for useful discussions of the problems raised here. 
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AN ASYMPTOTIC ESTIMATE OF THE AVERAGE NUMPER OF STEPS 
OF THE PARAMETRIC SIMPLEX METHOP* 

A.M. VRRSHIK and P.V. SPORYSHEV 

The estimate, announced in /l/, of the average number of steps of the 
parametric version of the simplex method for solving linear programming 
problems with respect to some natural class of statistics in the space 
of the problems is solved. If the number of variables in the problem 
equals n, and the number of limitations of the equality type equals k, 
then for the avarage number of steps r(s,k) the following estimate holds: 

r(n. k)<k+ (xln .)k'*+ O((hl n$!'-1)" ), n-00. 

The Grassman approach to similar problems , which is important in iteself, 
is described. 

l Zh.vychisl.~fdt.mat.Fiz.,26,6,813-826.1986. 
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1. Introduction. 
The problem of what is rate of convergence of the basic method of solving linear 

programming problems - the simplex method and its versions - emerged as far back as the 

first papers on this problem (see /2, 3/j. At the same time it was understood that from one 

aspect the method is practical, but amongst all the problems of given dimensions there exist 
those for which the simplex method reduces to complete inspection of the possible basis plans. 

Appropriate examples were later constructed (see, in particular, /4/l. Obviously, that is 
the case with any modification of the simplex method. However, computation specialists 
understood that these phenomena are not characteristic and in standard problems the simplex 

method works well. Time was necessary, and exact terms were obtained for the correct 
formulation of the problems and the justification of this thesis. In recent years several 
papers have appeared, simultaneously and independently, in which similar (but not matching) 
practical results are presented. For a more detailed analysis and historical remarks see 
Sect. 6. 

The main result of this paper is based on the representation of linear programming 
problems like Grassman's manifold, which is interesting in itself, and on the concepts of 

integral geometry. This method ("the Grassman approach") was proposed by A.M. Vershik and 
consists of the following. Consider a set of all k-dimensional subspaces of an n-dimensional 
space, i.e. Grassman's manifold; then we can connect the linear programming problem to each 
of them, and the dual problem (see Sect. 2, Eq.tZ.5)) to its orthogonal addition. The space 
of the problems was changed into a Grassman manifold; there is an isolated invariant measure 
in it, and the number of steps of the simplex method is a functional in it. Using the methods 
of integral geometry, we can estimate the asymptotic behaviour of the average number of steps 
Such is the general scheme. However, it is required to obtain in advance the exact geometrical 
meaning of the number of steps. This is a complex problem: there is still no simple description 
of a set of these permissible plans which occur intheusual simplex-method procedure for the 

specified initial plan. It is convenient to use the so-called parametric simplex method 
(Sect. 3), not the canonical (or dual) simplex method. It enables us to describe the 
permissible plans considered in the method as optimal for some values of the parameter in a 
single-parametric family of problems. It is interesting that if we use the Kantorovich- 
Rubinshtein geoemtrical interpretation of linear programming problems, the number of steps is 

the number - of special form - of the bounds of some subsidiary polyhedral set (Sect. 5). 
A similar problem is considered in convex integral geometry. But the functional remains 
cumbersome in this form also; a simplification is obtained if, instead of parametrically 
optimal plans, we enumerate the parametrically dual permissible plans. This sets an upper 
estimate to the number of steps, and the asymptotic behaviour of the new functional is 
expressed in terms of the asymptotic behaviour of a comparatively simple integral (see Sect.41, 
which gives the final result. 

An outline of this proof is presented in /l/; it is somewhat improved below and a 
different parametric method is used. At almost the same time as /l/ Smale's estimate /5/ 
appeared. Although it makes wider assumptions regarding the statistics, the method itself, 
as shown in /6/, is coarser and cannot give the same powers of In n as is presented in this 
paper (see Sect. 6). In /7/ the estimate is better, but for another parametric method (the 
parameter enters polynomially and not linearly). The problem of estimating the number of 
steps of the canonical simplex method remains unsolved. At the same time, the order-estimate 
is obviously nearly accurate for the given parametric method in this paper. 

2. Universal formulations of dual problems. The Grassman space of the 
problems. 

We shall begin from the usual formulation of dual linear programming problems in canonical 
form: 

max (Cc, ~)Iz&?~, AxGb, x30), (2.la) 

min {(b, p> IpsR*, A’pZc, ~30). (2.lb) 

Here A is a kXm matrix, beR”,cdP, t is the sign of transposition, (,> is the scalar 

product in R” and P, and the inequalities are understood in the sense of coordinate 
ordering. Henceforth m and k are fixed; n=m+k. 

We shall write problems (2.1) in another way which is more convenient for later. Consider 
the space R”+’ with the fixed basis e',...,e"+', numbered 0, 1,. . . , hi; we shall insert RL 
and R” into R”+* as coordinate subspaces withthe numbers 1,2,..., k and k+l,. . . ,n 
respectively. Using (A, b,c) from (2.1) we shall construct the (k+l)X(n+2) -matrix D: 

1 o... 0 -CT 0 
-- 

D=D[{O, 1, . . . . k), {O, 1, . . . . II +I,]= ’ I:‘.’ 

00.::1 

d 

I 

b , 

and shall consider the linear l>rogremming problems in R"+': 

mas {x~IxER”+‘; Dx-0; x&O, i-l, 2,. . ., n; ~~+,-=-i}, 

min (y.+,lg=D%; z=Rh+‘; y,>O, i-l, 2,. . . , n; yd). 

(2.2) 

(2.3r) 

(2.3b) 
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It is obvious that (2.3) and (2.1) are identical. However, the formulation of (2.3) is 
entirely symmetric: both the direct and dual problems are formulated in the same space, and 
the limitations in both problems are of the equality type. 

We shall consider the matrix D as the matrix of the operator from R*+* into RL+', 
denoted by the same letter D, and Dt as the matrix of the conjugate operator D' from RL+' 

into R”+’ (since the basis if fixed, Rv is identified with the conjugate space). 
We shall reformulate (2.3), denoting the kernel of the operator F by Ker F, and the 

following form by ImF: 

max {rO(zmKer D; z+O, i--l,Z,...,n; z~+I=-~}, (2.4a) 

min(y.+,ly=ImD'; y,*O. ipI, 2, . . ..n. go-1). (2/&b) 

We can now dispense with the special form (2.2) of the matrix D and consider it to be 
entirely arbitrary. Henceforth, it will only be necessary that the determinant of the 
submatrix D-D[(O,l, . . ..k}. (0,1,..., k)] should be non-vanishing. In this case, multiplying 
D from the left by 6-l will give the form (2.2). We shall call the set a of all the 
(k-M)X(n+Q-matrices D with a non-zero minor of the form shown the matrix space of linear 
programming problems. This space of the problems is only formally distinct from the space of 
the triple(A, b, c),which is usually considered. The advantages of form (2.4) will be seen 
later, but now we take the following step in the direction of an invariant formulation. We 
shall denote it by En-E-=ImD’, E”=KerD; and the other is the subspace in Rw+‘, whilst 
E’-EoL=EL , where the sign I is an orthogonal addition with respect to the natural scalar 
product in R"C' . We can now rewrite (2.3) thus, denoting the cone (z~P+*Ir,>O, i--i, 2,..., 
n)-Q: 

(2.5,) 

(2.5b) 

Here we can assume E is an entirely arbitrary (k+l)-dimensional subspace in R"+' . Both 
problems now have an identical form and are symmetric with respect to the conversion from'E 
to EL with the replacement 5-C--yn+r, z"+1*-_y*. We can say that (2.5) is a limitation on 
the subspaces E,EL, respectively, of the trivial universal problems 

max(z,~z+, z.+,--1) (-=), min(~+,lzeQ z~=l) (--m). 

We recall that the set of all q-dimensional subspaces of the p-dimensional space is 
called a Grassman manifold and is denoted by G(lJ.g). We shall call problems (2.5) a Grassman 
formulation of dual linear programming problems. Now, already, the parameter of the problem 
is the subspace E, i.e. the element G(n+2, k+l) (or EL, i.e. the element C(n+2, m+l)). 
We shall call Grassman's manifold the Grassman space of linear programming problems, bearing 
in mind the correspondence of the subspaces and linear programming problems in the form (2.5). 
When changing from the matrix to the Grassman space of the problems we identify all the 
matrices D with one and the same kernel (or form D'). This identification is not essential, 
since any two matrices D with a common kernel are distinguished by a non-singular transformation 
in the form. However, when examining these or other methods and the properties of linear 
programming problems, it is necessary to verify the correctness with respect to this 
identification. This is done in Sect. 3 for the parametric method. We emphasize the 
importance of the formulation (2.5) for the general theory of linear prograsmning problems. 
A similar approach, in which the problem (e.g., linear programming) or geometric object (e.g. 
a polyhedron) are considered as the limitation (or projection, see Sect. 5) of the universal 
problem or geometric object, is called the Grassman approach. It is useful in problems of 
linear algebra, convex analysis, etc. (camp. /a/). 

We shall turn to the statistics in the space of the problems. Usually some or other 
statistics in the space of the set (A, b, c)(see (2.1) are considered. We can transpose it to 
the matrix D (see (2.2)) or directly introduce it in 9, bearing in mind the formulations 
(2.3) and (2.41. When changing to a Grassman space of the problems we can specify the 
statistics directly in G(n+2,k-H). At the same time there is some isolated measure in 

(VP, q) which will be used later. We recall its description. 
In Grassman's manifold G(p,q) the orthogonal group O(p) operates transitively, and at 

the same time we can represent G(p,q) as a homogeneous space of the group O(P) * It is well 
known that a unique O(p)-invariant normalized measure exists in G(p,q), which we will call a 
Grassman measure and denote it by p,,,. The uniqueness follows from the uniqueness of Haar's 
measure in O(p). The expression for the measure F,,~ (true, with another normalization) 
can be obtained, for example, in /9/. For us the following simple proposition is important: 

Proposition 1. Suppose C+J is the mapping of the space of the qXp -matrices of rank g 
in Grassman's manifold G(P, d: 

q(D) -=Im D’. 

Then every probability measureinthe matrix space, which is invariant with respect to right- 
multiplication by any orthogonal p-order matrix, converts into a Grassman measure for the 
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The proof of the proposition clearly follows from the uniqueness of 
invariant measure. 

the orthogonally- 

Corollary 1. Every probability measure in the space of matrices 6, for which the 
rows are statistically independent and the distribution of each of them is orthogonally 
invariant, becomes - under the influence of cp - a Grassman measure. 

In this connectionthemain result of this paper (see Sect. 4) holds for any such 
measure in matrix space. 

3. Geometry of the parametric nethod. 
To estimate the number of steps of any iterative process we first need to describe this 

number in an obvious way as a function of the data of the problem and of the initial approxi- 
mation. Unfortunately, there is still no simple description of this function for the 
canonical simplex method. ~11 the existing theoretical estimates are described in the so- 
called parametric simplex methods. Their advantage is that the basic plans which can be 
found during the iterations permit of a simple description: they are optimal for some 
subsidiary problem with a parameter. Here Lemke's parametric method - also called "Danzig's 
self-dual algorithm" /3/ (for details see (/lo/) - is used. Another, less convenient, 
parametric method was used in /l/. 

We shall introduce the parameter t=R+ into problem (2.la): 

max (Cc-tqn, t>lzd”, AsGb+tq,., s>Q, (3.1) 

where q--(1,. . . , i)‘dP, q,-(1,. . . , l)‘d#“. Lemke's method consists of a sequential review of the 
optimal plans in problem (3.1) for t, changing from +=to 0. When t-0 we obtain problem 
(2.la): if t is fairly large, then the optimal plan is z-0 and we can take it as the initial 
plan. The process of converting, using the optimal plans in (3.1). from one t to a similar 
one is analogous to the simplex structure (see /lo/). 
in (2.la) when 

Finally we either obtaintheoptimal plan 

plan. 
t-0, or we establish its unimportance if for some t>O there is no optimal 

below). 
Naturally, we can introduce the parameter in a more complex way (see /7/) and Sect. 6 
The most common method in some sense must be universal deformation for problems (2.1). 

The introduction of the parameter t makes the matrix D from (2.2)-(2.4) linearly 
dependent on t: 

D(t) = D + DR (t), R(t)=~o~I+l 

(if D has the form (2.2), then D-Id). A one-parametric family of problems is obtained, 
which is written in a form similar to (2.4): 

max {z,,jzEKer D(t); sr>O, i--l,2, . . ..n. h+l'-l)~ (3.2a) 

min {Y.+,lY=Im D(t)‘; @O, t-4 2, . . . , n; YP'~). (3.2b) 

We shall introduce the notationN-(1,2,...,n), X-{I,&..., k), M-N\K,a-{JdI Ill-k, 19%). 
Below we present the definitions necessary to work with the parametric method. The 

definitions are given for problem (2.3a). Their reformulations for problems (2-l), (2.4), 
(2.5) are obvious, there fore if necessary the concepts introduced will also be used as it 
applies to them. 

We shall call the set JEW a basis set for problem (2.3) if the limitation KsrD(-El) 

O{r~P+'Is,-0, fss(1,2,...,n+l)\J}-(0). This definition is equivalent to the usual one. 
The basis set is called permissible (or doubly permissible) if the vector t=R"+' exists, 

(correspondingly, YeR"+*), satisfying the limitations of problem (2.3a), whilst ~(-0 for 
ieN\ (correspondingly, satisfying the limitations of (2.3b), whilst Y,-0 for j=J). 

The basis set, which is simultaneously permissible and doubly permissible, is called optimal). 
The basis set for problem (2.3a) is called parametrically permissible (correspondingly, 

parametrically doubly permissible and parametrically optimal (in /l/ - fully permissible)), if 
t>O exists, for which it is permissible for problem (3.2a) (correspondingly, double per- 
missible and optimal). We can also give similar definitions for other parametric methods. 

Lerake'smethod for the initial problem (2.3a) consists of a sequential inspection with 
respect to t of the parametrically optimal sets. These sets, being basis sets, are generally 
neither permissible nor doubly permissible (a drawback ofthemethod). The set K is parametrically 
optimal (for large t), and we shall take it as the initial set; the optimal set is parametrically 
optimal when t-0. 

Not every parametrically optimal set is necessarily encountered in some step of Lemke's 
method; this will happen in the case of degeneracies. However we have the following 

Proposition 2. For an open and everywhere dense set in the space of the given problems 
(2.3a) the parametric optimality of the set is equivalent to its appearance in some step of 
Lemke's method. 

Proof. It is sufficient to note that for an open and everywhere dense set in the space 
of the given problems (2.3a) the parametric family of problems (3.2a) is such that the 
optimal plan is unique in all the range of variation of the parameter t, with the exception 
of a finite number of points, and at these points there are precisely two optimal basis 
plans: one for small values of t and one for large values of t. 



corollarg 2. For almost all problems (2.3a) with respect to Lebesgue’s measure in the 
matrix space B the number of steps in Lemke's method is the same as the n*er of para- 
metrically optimal sets. 

We shall now explicitly describe parametrically permissible and parametrically doubly 
permissible sets. 

Proposition 3. Suppose l=d is the basis set. The set J is permissible in (3.2a) 
when and only when 

K~~D~(z~R"+*(z~-O, i=M\I; r,---t, ieK\J; h;So, idm; ~,a--t, i=Knfi, I,+,---i)z0. (3.3) 

The set J is doubly permissible in (3.2a) when and only when 

Im Dn (pR”+*ly,=O, i=KnJ; yi a-t, icWl1; y,>O, iEK\J; y&-t, idf\J; y,4}+0. (3.4) 

The simultaneous satisfaction Of conditions (3.3) and (3.4) for one and the same t,O 
is equivalent to parametric optimality. 

The proof amounts to a verification of the definition applied to problem (3.2a). 

Corollary 3. Whether the property of the set is parametrically permissible or para- 
metrically doubly permissible depends only on the kernel D. Therefore, these properties are 
Correct with respect to the conversion to the Grassman formulation of problem (2.5). 

We shall give a direct geometrical Interpretation of parametrically doubly permissible 
sets. Note that we can give a similar condition for parametrically permissible sets. Sowever, 
the interpretation Of the simultaneous completion of these conditions (i.e. of the parametric 
optimality) is rather cumbersome due to the connecting parameter t. It is convenient to 
introduce the following notation. We shall compare the following subspace in R"+' to each set 
of indices Ic(O, i,..., n) such that MnM0: 

L(l)=(z~R~+*\zl=O, iE(0, I,..., k)fW S--Z* 4 MfW. 
In the subspace L(f) we shall fix an orthonormalized basis, consisting of the unit vectors 
Of the standard basis e', i={O, I,.... n+l)\l, and of the vector 

i(Z (-) M)= r-v* 
F 

e' where r==lrf-)Mt- 
cew 

We shall denote the vector coordinates a&(I) in this basis by ~~,fe{O,l,...,n+l)\~ and I 
respectively. We shall introduce a cone into L(Z): 

C(Z)=-(ae&(Z)(z,=-0, fe(O, I,..., k)\J; G’r-“K iezM\I; X0). 

From Proposition 3 we obtain 

Proposition 4. Suppose led. Then for almost all problems (2.3a) with respect to 
Lebesgue's measure in the matrix space b the following statements are equivalent: 

a) the set J is a parametrically doubly permissible set i 
b) ImZNIC(J)Z0. 
this, the parametric double permissibility of set .7 is equivalent to the non-emptiness 

of the intersection of the subspace ImD and the cone C(I). FromProposition 4wedirectlyobtain 

coroll~y 4. Suppose J&8. Then for almost all E-G@+% k+i) (using the Grassman measure) 
the following statements are equivalent: 

a) the set J is a parametrically doubly permissible set in problem (2.5a); 
b) EnC(J)+0. 
We shall sum up the results of this paragraph in the following theorem. We shall denote 

the number of steps in Lemke's method for problem (2.3a), or, which amO~t6 to the Sm in 
problems (2.4) or (2.5) (in the first two cases E-ImD’), by J(E). 

Theorem 1. For almost all &mG(n+2, k+l) (using the Grassman measure) 

6(E)Cl(JcralEnC(J)z0)l. 

Proof. The number of steps for almost all E is the number of steps of the parametrically 
optimal sets (Corollary 2). But every such set is a parametrically doubly permissible set 
by definition. Applying Corollary 4, we obtain the necessary result for problem (2.5). 
But, using Corollary 3, the number of steps in problems (2.3) and (2.4) is the same as in 
(2.5). 

4. A fundamental theorem. 
We shall obtain the asymptotic behaviour of an average number - using an orthoinvariant 

(Grassman) measure in Grassman's manifold - of parametrically doubly permissible sets which, 
using Theorem 1, will provide 'an estimate of the number of steps of Lemke's method. We shall 
denote the number of parametrically permissible sets, distinct fraa K, for E in problem (2.5a) 

by r,(E). The integration with respect to the Grassman measure is denoted by 

s . ..dB. 81 (n, k) = s 
r~ (E)dE. 

Oh 0) owt-a. w-11 

Theorem 2. For fixed k and as n-coo we have 
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81 (n, k) = 2 
fk + *)“* (n In n)k/l + O((ln n)+lq, 

Proof. Suppose JeM We shall introduce into R"+' the subspace 

Ln(I)-{z~R"+'~P,-O, M} 

and the cone 

C"(l)=-(z~L~(J)~z,~O, fE(O, i,...,n)\J}. 

Suppose x is a function of the set: x(a)-1 if a#0 and x(0)=0 - We shall present 

a convenient formula for the functions s,. 

Lermnal. For akuost all subspaces EEC(n+2, k+l) with respect to the measure P_+~.~+, 
the following relation holds: 

*I 6% =J&a x (E f-l C(J)) = -$ J&a (*,#, I?, n),J x tE f-l C V U (1))) + x (E fl C-(J)))* 

Proof. The first equation in Lemma 1 is directly obtained from Corollary 4. We shall 

fix the set 1~1 and show that for almost all E 

whence the validity of the.second equation in Lemma 1 will also follow. For almost all E 

(using the Grassman measure) 

dim(EllL(I))-dimE+dimL(I)-(n+2)=2. 

Consequently, the cone EflC(I) is two-dimensional. It is obvious that it has almost exactly 
two one-dimensional bounds, which are intersections of E with the bounds of the leading 
dimension of the cone C(J). The cones C(IU{j)), j={O, 1,..., n}\l and the cone C'(l) are the 
bounds of the leading dimension of the cone C(I). Thus, Sg.(4.1) is proved. 

Using Leunna 1, 

(4.2) 

where 

P(I)= s 
x(Enc(zw, IcN,...,n), w-v+ 0. 

oow-% k+l) 

p”(J)= s x (E i-l P(J)) dE, JE33. 
GoI+% k+l) 

We shall fix the set of indices 1-a and the index j"{O, I,..., n)\J. Suppose I-JU (j). 

We shall evaluate the integrals P(l) and P(J). Note that the function x(EflC(1)) depends 
only on the straight line EOL(l) (and not on the subspace E itself). Using Chzhen's 
formula (see /9, p.207/), we have 

where RP(L) is a projective space associated with the subspace L, i.e. the space of the 
straight lines in L (for L-R* the standard notation is RP,), and the integration is carried 
out over the corresponding orthoinvariant measure. In a similar way, 

R’ , 

Later we will use the following lemma. 

Lemma 2. Suppose C is an open convex cone in R J, C#R', p is any probability measure in 
which is invariant with respect to the effect of the orthogonal group, whilst p((O))- 

0. Then 

s x(enc)de=2p(o 
BPP 

where the integration is carried out over the orthoinvariant normalized measure k. 

Proof. This lemma is an obvious corollary of the orthoinvariance of the measures P and pp. 
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We shall use Lemma 2 to calculate Pm. We shall take as the measure p the Gaussian 
measure in L(Z), i.e. the measure with the density 

g(2)= [(2x)-"*]m+zexp 
[-~(,E,,.l.~+r,,~zi~+3a)11 

where z~(i~{O, i,..., n+l}\Z), E are the coordinates of the vector z in the orthonormalized base 
fixed in L(1) (see the end of Sect.3). Then 

P(Z)=2 5 s(z)de, 
cm 

(4.3) 

where the integration is carried out over Lebesgue's measure in L(I). 
Suppose 

P,=2[(2n)-‘g]m+‘~exp (-g+lx, 
where ltrcm+i, B-{zER~+*\z,<O; z,>O, i-2,. . . ,r+l; z~>Ic’%, f==~42 ,..,, mfl} . 
definition of the cone c(I) and from Eq.(4.3) we have the following lemma. 

From the 

Lmma 3. The relation P(Z)-P,, where r==lInMj, is valid. 
For P(J) the calculations are carried out in a similar way. From Lemma 2 with a 

Gaussian measure as the measure p and from the equation 

(2x)-t'* 3 e-e/l& 3 r/s (4.4) 
0 

we have 

Lenmad. We have the formula 
We shall fix r, such that 

P v. Integrating with respect to 
will obtain 

po(Z)-2-=. 
l~rcikfl, and shall calculate the asymptotic behaviour of 
all the variables, besides x1, and using Eq.(4.4), we 

0 

P , = 2-“1(2q-‘/s s e-*'/a [Cl (r-‘/*)7+‘&, 
-0D 

where 

Lenma5. For fixed r>i and as n-a, for the integral 

Z (r, n) = (2n)-‘11 
s 

c-“/* [@ (r-‘&)I” dl 
-.m 

the following asymptotic equation holds: 

Remark 1. The 
lated for a similar 
different way. 

Proof. Making 

Z(r, n)~i”(r-i)In-‘(41cInn)“-“‘~[i+O(lnn)-’)]. 

asymptotic behaviour of the integral I@. a) has already been 
reason in /ll, Sect.S/. but the calculations were carried out in 

the change of variable r=r-"*t , we obtain 

This integral is a Laplace integral. The function D(u) is less than 1 and @(o)+l as 

(4.5) 

calcu- 
a 

u-c--. We shall make a change of variable, such that we imbed in 0 the maximum point 
of the function raised to the n-th power. Assuming a-i-@(u), we have 

I (r, n) = r’h f e+-l)W~ (1 _ u)“du, 
i 

where u-v(u) is a function determined from the equation 
u-+0. 

;r2, p.119/) 
The asymptotic expansion for the function of the 

(4.6) 

u--l-CD(u). Note that u(u)+--00 
errors as ~-c--m gives (see 

u I 1 - @ (0) = (2n)-‘/* g [I + 0 0-v. 

Putting this equation into algorithmic form, we obtain 
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lnu=- $-In+-) - In [(2+] + In [I + O(u-*)I, 

whence follow the expressions for v' and u and we shall substitute them into (4.6). We 
have 

I (r, n) = r'/* (4n)+1)/* 
s 
ur-l(- In .)('-1)/~(1 - zc)"[i + O(P)]du. 

" 

Making the change of variable t==-ln(i--u) and noting that U=l-e-'-t+O(t'),t+O, we 
obtain 

-111 % 
I(r, n)= r'/r (4fi)(r-1)/Z 

s 
t'-I(- Inf)(r-l)')e-'(nbn x [I + o(f*)] [I + O(z+)] dt. 

0 

To clarify the asymptotic behaviour of the last integral we will use Watson's lexna for the 
logarithmic singularity. 

Lemma 6 (see /13, p.46/). Suppose r,I=R, p>O, the function j(r) is continuously 
differentiable for small xp0 andis continuous for O<x<a<m. Then as h-c- the following 
asymptotic equation holds: 

n 

s ~-l~Inx~~e-~j(x)dx=~h-~(Inh)V'(~)j(0)[l +O((lnh)-I)]. 
0 

Using this lemma, we will obtain a statement of Lemma 5. Using Lemmas 3, 4, 5 and 
Eqs. (4.2), (4.5), we will obtain a statement of Theorem 2. From Theorem 2 we obtain directly 

Theorem 3. The average number of s(n, k) steps in Lemke's method for problem (2.5a) 
using the orthoinvariant measure F~+~,,+, in the manifold G(n+2, k+l)for fixed k and as 
n-m has the asymptotic estimate 

s(n, k)<'/,(k+i)"(n lnn)k'2+O((ln r~)(~-')'*). (4.7) 

Prom Theorem 2 and Proposition 1 we can obtain 

Theorem 4. Suppose in the space of the (k+i)X(n+2)-matrices of rank k-l-1 the 
probability measure p is specified, which is invariant with respect to right-multiplication 
to any orthogonal n+2 -order matrix. Then the average number of s(n, k) steps in Lemke's 
method for problem (2.3a) using the measure p in the above matrix space for fixed k and as 
n-m has the asymptotic estimate (4.7) 

Ramark 2. The problem solved in this paragraph has several interesting reformulations, 
of which we will present two: 

1) the probability reformulation: if El,..., E. are independent random (0, 1) -Gaussian 
quantities, what kind of sequence b. need there be, such that 

. 

answer: fl.-c(ln PI)‘,,. 

2) from spherical geometry: for what kind of sequence m does the spherical size of 
the cone, drawn to the vectors zi-et-7.1, !-(i...., 1) - C, are basis vectors in R", I-*& a..., I, 
- have a non-vanishing limit as R-C-; answer: I.-c(rPlnn)-5. 

Both answers follows from the theorems obtained above. 

5. A dual geometrical interpretation. 
The most fruitful geometrical interpretation of the linear programming problem was 

introduced by L.V. Kantorovich and considered in detail by G. Sh. Rubinshtein in /14/; it is 
implemented inthe space of the "right-hand sides" and reduces the linear programming problem 
to the problem of the least point of intersection of a half-line and convex cone. Its 
advantage lies in the possibility of simultaneously interpreting direct and dual problems. 
In the usual form and in the notation of problem (2.la) and (2.2) it looks as follows: 

n 

x,df=dn+l -AS,xi>O, i=i,2,...,n 

where d' is the form of the basis vector c' for the mapping D: R"+'+R"+'. If we introduce 
the cone C-Con(d', i-1, 2,...,n)cR"+‘ and the straight linen-(-~dO+d"+'lL~R)CRL+', then problem 
(5.1) consists of obtaining the least point (with a minimum zero coordinate) of the 
intersection nnc. 

We shall write in the spirit of the Grassman interpretation. For this we shall consider 
the universal cone Q-Con(c', f-l. 2,...,n)cR"+' and the straight line L-{-~~~+~“+‘~A~R)~R”+‘. 
Then the trivial universal problem consists of obtaining the least point (with a minimum 
zero coordinate) of the intersection LflQ (-0). Consider D: R"+'-c~+'mR"+*/KerD. 
Suppose, as in Sect. 2, E=Im D’, El-Ker D. Identifying R”+‘/EA with E using D', we can 
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assume that the cone C*D’DQ and the straight line lT%D’DL lie in E; then we obtain the 
problem 

max (h~D’DQ~D’De’4+‘-hD’Deo). (5.ia) 

Since the conditions of problem (S.la) depend only on the kernel of the operator D-D, the 
following equivalent problem arises: 

max (hlPQmPe"+'-hPeU), (5.2a) 

where P is an orthoprojector to E. It is now natural to supplement this same problem for the 
subspace EL with the replacement (as in Sect. 2) of eO,en+' by -_en+l, -_e": 

min {~lP~Q3,-P,e"-~~,e"+'f, (5.26) 

where PA is an orthoprojector on El. 
When transfering from (5.1) to (5.2a) we again identify the problems in which the matrices 

have identical kernels, and obtain a new method of transforming Grassman's manifold into the 
space of thellinear programming problems, for which (5.2a) and (5.2b) are completely identical 
within the replacement of E by EL and e', en*' by -en+', -_eO. Unlike (2.5), problems 
(5.2) are projections (and not sections) in E or EL of the universal trivial problem. 

we shall present, without details, a new interpretation of the parametric dual permissi- 
bility of the set JEW (see Sect. 3). At the same time one more universal set is needed, 
due to the fact that the set K, which is initial, is fixed. 

Suppose T==Con{ez,i==O,l, . . . . k)+co(O,e’,kM} (the sum of the cone and the simplex), S(J)== 
Con {Go, i&}, T(J)==Con {e', i&M)+co (e', i=MfU}, 

~(t)=[-he”+en+~+t~ei~i~R], 
1=1 

H(t)-Aff {T(J), --te'}(Con {,} is a conical, co(.) is a convex, and Aff(.} is an affine envelope 
of the sets of vectors in brackets). 

Proposition 5. The base set 1~9 is parametrically optimal in problem (2.3al and 
others when and only when t,O exists, such that the following conditions hold: 

a) PS(I)flPII(t)#0 (parametric direct permissibility): 
b) the hyperplane PH(t) in E is supporting to PT (parametric dual permissiblity). 

Corollary 5. The basis set leg is a parametrically doubly permissible set when and 
only when PT(I) is a (k-l) -dimensional bound of the polyhedral set PT. 

Corollary 6. The number of steps in Lemke's method does not exceed the number of 
bounds of codimension 2 of the polyhedral set PT for almost all EeG(n+2,k+l). 

Thus, a new interpretation of the functional s,(E) from Sects. 3.4 is the number of bounds 
of codimension 2 of some polyhedral set in E. Changing E, we obtain radom polyhedral sets and 
arrive at the following problem which is well-known in random convex geometry /8/: 

to obtain the average number of bounds of a random polyhedral set. 
Thereby our fundamental result (Theorem 2) solves this problem for some statistics, and 

also the methods of constructing the set presented above (the projection of 2' into the random 
subspace E). This result agrees with the facts obtained in /9/. 

6. Comments. 
The Grassman approach to solving the problems of linear programming and convex qeometry 

was suggested by A.M. Vershik in /8, 15, 16/. It should be expected that in the convex geometry 
problem we can use it to solve the old problem of the standard properties of convex polyhedra 
of large dimensions. Note the similarity of the Grassman approach to the ideas of Gayley's 
diagrams 1171. There are four models: the section or projection of a standard object with a 
subspace and its orthogonal addition. These are problems (2.5) and (5.2). The idea of 
including the parametric method inthe problem of estimating the number Of steps of the simplex 
method was independently suggested in /6/, and also in /18, 19 and 5/. As a result it turned 
out that the methods and results of our paper and of /5/ differ: in /5/ a rougher method of 
estimation was used, which was, however, suitable for a wider class of statistics. tn addition, 
Lemke's parametric method was considered in /5/, while a simpler parametric method was 
considered in /l/. In this paper, unlike /l/, an accurate constant is given in the estimate, 
and the order of entry of Inn is one and the same (k/2). As shown in /6/, using the method 
in /5/ it is impossible to obtain our estimate, and we can very slightly improve the estimate 
from /5/ using the method of the author ((Inn)"" instead of (hrn)L"+')"). The Grassman 
approach in /5/ is not used (see also the review in /20/l. 

It should be noted that /ll/ and other papers examined the problem of the average number 
of bounds of the leading dimension in a random polyhedron regardless of linear programming. 
The results of /ll/ also reduce to near estimates. 

After /5, 18, 19/ several interesting papers were published. One of them /l/ contains 
an estimate of the number of steps which is quadratic with respect to min(m,k). At the same 
time a more powerful parametric method is used - polynomial perturbation, similar to versa1 
deformation in singularity theory and to Charns' method of controlling degeneration in linear 
programming problems. 
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In conclusion we mention that in /21 and 22/ the authors approach the linear programming 
problem from a quite different angle: they generally give an infinite polynomial algorithm 
for solving the linear programming problem. But the problem of the relation between these 
methods and simplex methods has not yet been solved in anyone's favour. To clarify this a 
purposeful calculational experiment is needed. 
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ESTIMATES OF THE RATE C'F CONVERGENCE OF DIFFERENCE SCHEMES FOR 
VARIATIONAL ELLIPTIC SECOND-ORDER INEQUALITIES 

IN AN ARBITRARY DOMAIN* 

S.A. VOITSEKHOVSKII, I.N. GAVRILYUK and V.S. SAZHBNYUK 

Second-order variational elliptic inequalities in an arbitrary domain 
with a constraint inside the domain or at the boundary with respect to 
the penalty and fictitious domains method are approximated using non- 
linear boundary value problems in a rectangle. Difference schemes 
are constructed for these problems and the rates of convergence of 
difference solutions to solutions of the variational inequalities are 
established. 
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