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1 Introduction

The problem of decomposing representations of symmetric and other classical groups in spaces
of tensors into irreducibles has a long history and is of great importance for applications.
Nevertheless, to the authors’ opinion, this topic, being entirely classical, is not sufficiently
addressed in textbooks, both old and new (see, e.g., [7, 14, 4, 2]).

Our approach is as follows: extending the classical Schur–Weyl duality between the actions
of the general linear group GL(n,C) and the symmetric group Sk in the space (Cn)⊗k, we
consider the relationship between representations of two symmetric groups, Sk itself and the
Weyl subgroup Sn in GL(n,C). This leads us to the introduction of the so-called decomposition
tensor of tensor representations.

In more detail, we study the “Schur–Weyl” representation of the group Sk in the space
H = (Cn)⊗k together with the commuting representation of the group Sn ⊂ GL(n,C). Then
the space H can be decomposed into (Sn ⊗Sk)-invariant subspaces in two different ways. The
first decomposition, indexed by Young diagrams ν ⊢ k, is into the subspaces Hν of tensors of
different symmetry types (signatures), e.g., symmetric or skew-symmetric. The second one,
indexed by Young diagrams µ ⊢ k, is into the subspaces Hµ of tensors with the same multi-
plicities of the multisets of indices. Thus we can consider the representations ρµ,ν of Sn in the
intersections Hµ,ν of these subspaces, and the main result of the paper, Theorem 1, gives a
formula for this representation.

Considering the multiplicities aη
µ,ν , η ⊢ n, µ, ν ⊢ k, of irreducible representations πη of Sn

in this representation, it is easy to see that they are nonzero only for diagrams with at most k
cells in all rows except the first one. Moreover, denoting by (n − |λ|, λ) the diagram with n

cells obtained from λ ⊢ l ≤ k by adding a row of length n − |λ|, the multiplicities a(n−|λ|,λ)
µν

does not depend on n for sufficiently large n (and fixed k). These stable values of coefficients
determine what we have called the decomposition tensor of tensor representations.1 It is upper
triangular: ρµ,ν is nonzero if and only if ν Dµ in the sense of the natural (dominance) ordering
on partitions.

The actual computation of the components of the decomposition tensor, i.e., the multiplic-
ities aη

µ,ν , is a difficult problem which hardly has a good (closed-form) answer, since it involves
the computation of plethysm coefficients, which is well known to be a very hard problem. How-
ever, it is of interest to analyze the decomposition tensor and the representations ρµ,ν for small
dimensions, and we do this for k ≤ 4.

The stability property mentioned above suggests to study the similar problem for tensor
representations of the infinite symmetric group S∞. The answer (Theorem 2) is also similar
to that in the finite case, but, as often happens, the infinite case is simpler than the finite
one, since the involved induced representations become irreducible. In fact, by the well-known
Lieberman theorem, these are exactly the representations of S∞ extendable to representations
of the complete symmetric group S

∞. We consider in more detail the case µ = (1k) of purely
off-diagonal tensors, which includes all these representations.

Finally, in the last section we give an interpretation of our results in terms of symmetric
functions. Namely, we present an identity for symmetric functions that corresponds to the de-
composition of the representation of Sn in the Schur–Weyl space (Cn)⊗k into the sum ⊕µ,ν⊢kρµ,ν

of representations in the subspaces Hµ,ν .

1The authors have not been able to find this object in the literature, though it is very natural and even

indispensable for the representation theory of symmetric groups. We also emphasize that the decomposition

tensor under consideration is not the structure tensor of any algebra.
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2 The decomposition tensor

For n, k ∈ N, consider the Schur–Weyl space

H = (Cn)⊗k,

and denote its natural basis by ei1...ik = ei1⊗ . . .⊗eik , where {ei}i=1,...,n is the basis of Cn. Given
a partition λ of a positive integer, we denote by πλ the corresponding irreducible representation
of a symmetric group. For convenience, we denote by Idi = π(i) the identical representation
of Si.

In H we have commuting actions of Sn and Sk. Namely, Sn acts as a subgroup of GL(n,C):

g(ei1 ⊗ . . .⊗ eik) = eg(i1) ⊗ . . .⊗ eg(ik), g ∈ Sn,

and Sk acts by permutations of factors:

σ(ei1 ⊗ . . .⊗ eik) = eiσ(1)
⊗ . . .⊗ eiσ(k)

, σ ∈ Sk.

On the one hand, we have the natural Schur–Weyl “symmetry type” decomposition into
(Sn ⊗ Sk)-invariant subspaces

H =
∑

ν⊢k

HSW
ν , (1)

where HSW
ν is the isotypic component of the irreducible representation ̺ν of GL(n,C) with sig-

nature ν. Denoting by ξν the representation of Sn obtained by restricting ̺ν to Sn ⊂ GL(n,C),
we have that the representation of Sn in HSW

ν is isomorphic to dim ν · ξν . A (not quite explicit)
formula for the characteristics of ξν is given in [10] (see also [11, Ex. 7.74]).

On the other hand, we have the “type of tensors” decomposition into (Sn ⊗ Sk)-invariant
subspaces

H =
∑

µ⊢k

Hmult
µ , (2)

where Hmult
µ is the subspace spanned by all ei1...ik such that the multiset of indices {i1, . . . , in}

is of type µ = (1m12m2 . . .), i. e., has mj elements of multiplicity j for j = 1, 2, . . .. It is not
difficult to see that the representation of Sn in Hmult

µ is isomorphic to

k!
∏

i(i!)
mimi!

· IndSn

Sl×Sn−l
(Regl × Idn−l), (3)

where l =
∑

mi = l(µ) is the length of µ and Regl is the regular representation of Sl.
Thus we also have the “double” decomposition into (Sn ⊗ Sk)-invariant subspaces

H =
∑

µ,ν⊢k

Hµ,ν , (4)

where Hµ,ν = Hmult
µ ∩ HSW

ν . Denote by ρµ,ν = ρn
µ,ν the representation of Sn in Hµ,ν = Hn

µ,ν .
A natural question is to find this representation.

Remark 1. We can restate the classical Schur–Weyl duality as follows: if we start with the
commuting actions of Sn and Sk in H = (Cn)⊗k and want to maximize the first factor pre-
serving the commutation property, what we get is the action of GL(n,C) × Sk in H. If we
maximize the second factor instead, we get the action of Sn × Part(k), where Part(k) is the
partition algebra (see, for example, [8]). Thus we can regard the action under consideration
also as a restriction of the action of Sn × Part(k).
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Let µ = (1m12m2 . . .) ⊢ k, i. e.,
∑

imi = k, and denote by l =
∑

mi the length (total number
of nonzero parts) of µ. We introduce the following representations labeled by collections of
partitions Λ = (λ1, λ2, . . .), where λ1 ⊢ m1, λ2 ⊢ m2, . . .:

RΛ = IndSl

Sm1×Sm2×...(πλ1 × πλ2 × . . .)

and
QΛ = IndSk

Sm1×S2m2×...×Simi
×...(πλ1 [Id1] × πλ2 [Id2] × . . .× πλi

[Idi] × . . .),

where
πλi

[Idi] = Ind
Simi

Si≀Smi
(Idi ≀πλi

)

is the representation of Simi
induced from the representation Idi ≀πλi

of the wreath product
Si ≀ Smi

⊂ Simi
.

Given ν ⊢ k, denote

Π(µ, ν) = dim ν
∑

λ1⊢m1,λ2⊢m2,...

〈πν , QΛ〉RΛ, (5)

where 〈πν , QΛ〉 is the multiplicity of the irreducible representation πν in QΛ. Thus Π(µ, ν) is a
representation of Sl. Now the representation ρµ,ν , which corresponds to type of tensors µ and
symmetry type ν, is essentially a representation induced from Π(µ, ν).

Theorem 1. Given µ, ν ⊢ k, the representation ρµ,ν of Sn in the space Hµ,ν of tensors of
type µ and symmetry ν is given by the formula

ρµ,ν = IndSn

Sl×Sn−l
(Π(µ, ν) × Idn−l), (6)

where l is the length of µ.

Proof. For simplicity, first assume that µ = (pq), so k = pq, l = q, and in (5) we have Λ = λ ⊢ q,
RΛ = πλ, QΛ = πλ[Idp].

Fix the natural embedding (Sp)
q →֒ Sk. The normalizer of (Sp)

q in Sk is exactly the
wreath product Sp ≀ Sq. Observe that an element of Sp ≀ Sq can be identified with a tuple
(g1, . . . , gq, σ), where g1, . . . , gq ∈ Sp, σ ∈ Sq.

Now consider the space

K = {f : Sk → C[Sq] : ∀g = (g1, . . . , gq, σ) ∈ Sp ≀ Sq, f(gh) = Regright
q (σ)f(h)},

where Regright
q is the right regular representation of Sq in C[Sq]. Thus K is the space of the

representation
Πright = IndSk

Sp≀Sq
(Idp ≀Regright

q ).

On the other hand, there is also a representation Πleft of Sq in K, given by the formula

Πleft(τ)f(h) = Regleft
q (τ)f(h), τ ∈ Sq,

where Regleft
q is the left regular representation of Sq in C[Sq], and it is not difficult to see that

the representation of Sn in H
(2)
µ is isomorphic to

Π(2)
µ = IndSn

Sq×Sn−q
(Πleft × Idn−q).
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Now we have the decomposition

C[Sq] =
⊕

λ⊢q

H left
λ ⊗Hright

λ =
⊕

λ⊢q

Kλ, (7)

where H left
λ and Hright

λ are the spaces of the irreducible representation πλ for the left and
right regular representations of Sq, respectively, and Kλ = H left

λ ⊗ Hright
λ . It follows that

K =
∑

λ⊢q Kλ, where the subspaces Kλ of K consisting of the functions with values in Kλ are
(Πleft ⊗ Πright)-invariant, and

(Πleft ⊗ Πright)|Kλ
= πλ ⊗ πλ[Idp] = Rλ ⊗Qλ.

By the Schur–Weyl duality, H =
∑

ν⊢k H
SW
ν =

∑

ν⊢k(̺ν × πν). It follows that if QΛ =
∑

ν⊢k dνπν , then the contribution to ρµ,ν coming from Kλ is equal to

dim πν · dνRλ = dim ν · 〈πν , Qλ〉Rλ,

and (6) follows.
It is easy to see that the desired result for an arbitrary partition µ ⊢ k can be obtained by

similar arguments with obvious modifications.

Proposition 1 (upper triangularity). The representation ρµ,ν is nonzero if and only if ν D µ
in the sense of the natural (dominance) ordering on partitions.

Proof. Consider the decomposition C[Sk] =
∑

ν⊢k Kν of the semisimple algebra C[Sk] into the
direct sum of simple ideals analogous to (7). Then the subspaces HSW

ν in (1) can be written as
HSW

ν = H ·Kν , and in the same way

Hµ,ν = Hmult
µ ·Kν . (8)

We use the following well-known description of Kν in terms of Young symmetrizers cT (see [3,
Chap. 7, Ex. 9 and 18]):

Kν =
∑

T∈ν

cT C[Sn] =
∑

T∈ν

C[Sn]cT , (9)

where the sum is over all standard tableaux of shape ν.
Now we will describe the subspace Hmult

µ , for any µ, as a space of tabloids. For any tableau T ,
we denote the corresponding tabloid by {T}, and the row and column stabilizers by R(T )
and C(T ). It is easy to see that Hmult

µ is isomorphic as a Sn-module to the space spanned by
the pairs ({T}, f) where {T} is a tabloid of shape µ (we take one representative for each class
of tabloids that differ only by a permutation of rows) and f is a function from {1, 2, . . . , n} to
itself such that f(v) = f(w) if and only if there exists σ ∈ R(T ) such that v = σw.

By (8) and (9), we must check when Hµ,ν = Hmult
µ ·

∑

T∈ν cT C[Sn] = 0. We will show that if
the condition νDµ is not satisfied, then ({T ′}, f)·cT = 0 for any basis element ({T ′}, f) ∈ Hmult

µ .
First, it obviously suffices to prove that {T ′} · cT = 0 for any {T ′} of shape µ. Second, we recall
that cT = bT · aT , where aT =

∑

σ∈R(T ) σ and bT =
∑

σ∈C(T ) sgn(σ)σ. Now, by the definition of
the dominance order, there exist two numbers that lie in the same row of T ′ and in the same
column of T , whence {T ′} · bT = 0.

Vice versa, if ν D µ, then there exist tabloids {T ′} such that {T ′} · bT 6= 0 (for example, we
can consider the “natural filling” in which the rows are filled successively from left to right and
from top to bottom).
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Given η ⊢ n, denote by aη
µν = 〈πη, ρµ,ν〉 the multiplicity of the irreducible representation πη

of Sn in ρµ,ν , so that

ρµ,ν =
∑

η⊢n

aη
µνπη. (10)

Also, denote by η̃ the diagram obtained from η by removing the first row. Conversely, given
a diagram λ = (λ1, λ2, . . .) and n ≥ |λ| + λ1, denote by (n − |λ|, λ) = (n − |λ|, λ1, λ2, . . .) the
diagram with n cells obtained from λ by adding a row of length n− |λ|.

Corollary 1 (stability). It follows from (6) that aη
µν = 0 unless |η̃| ≤ l = l(µ). Moreover,

for every diagram λ with at most l cells, the coefficient a
(n−|λ|,λ)
µν does not depend on n for

sufficiently large n.

Definition 1. Given µ, ν ⊢ k and λ ⊢ l with 0 ≤ l ≤ k, denote by T λ
µν the stable value of

a
(n−|λ|,λ)
µν for sufficiently large n. We call T λ

µν the decomposition tensor of tensor representations.

It follows from (5) that T λ
µν is an integer multiple of dim ν, so it is convenient to write the

decomposition tensor T λ
µν as the symbol

Tµν =
1

dim ν

∑

|λ|≤k

T λ
µν · λ. (11)

Having Tµν , we can recover the corresponding stable form for the decomposition of ρµ,ν as

ρµ,ν =
∑

|λ|≤k

T λ
µν · π(n−|λ|,λ).

3 Examples

We start with two obvious examples, just to illustrate our formulas.

Example 1 (diagonal tensors). Let µ = (k) (i. e., we consider “diagonal” tensors of the form
∑

αieii...i). Then mk = 1, mi = 0 for i 6= k, l = 1, Q(1) = π(k), R(1) = π(1), and we have

Π(µ, ν) = dim ν〈πν , π(k)〉π(1) =

{

π(1), ν = (k),

0, otherwise,

so that (using Pieri’s formula)

ρ(k),(k) = IndSn

S1×Sn−1
(π(1) × Idn−1) = π(n) + π(n−1,1),

and ρ(k),ν = 0 for ν 6= (k). Thus T(k),(k) = ∅ + (1).

Example 2 (purely off-diagonal tensors). Let µ = (1k) (i. e., we consider tensors of the
form

∑

αi1...ikei1...ik where the sum is over pairwise distinct i1, . . . , ik). Then m1 = k, mi = 0
for i 6= 1, l = k, Qλ = Rλ = πλ for λ ⊢ k, and we have

Π((1k), ν) = dim ν
∑

λ1⊢k

〈πν , πλ〉πλ = dim ν · πν ,
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so that
ρ(1k),ν = dim ν · IndSn

Sk×Sn−k
(πν × Idn−k).

Again using Pieri’s formula, we get

ρ(1k),ν = π(n−|ν|,ν) +
∑

ν/λ is a horizontal strip, λ6=ν

π(n−|λ|,λ). (12)

The sum (12) has the “highest” term π(n−|ν|,ν) (as we will see in Sec. 4, it is the only term that
survives as n→ ∞), all other terms being of the form π(n−|λ|,λ) with λ strictly contained in ν.

Example 3 (tensors of valence k = 2). From Examples 1, 2, we have (omitting the zero
values and using (12))

ρ(2),(2) = π(n) + π(n−1,1),

ρ(12),(2) = IndSn

S2×Sn−2
(Id2 × Idn−2) = π(n) + π(n−1,1) + π(n−2,2),

ρ(12),(12) = IndSn

S2×Sn−2
(π(12) × Idn−2) = π(n−1,1) + π(n−2,12).

For clarity, we describe the corresponding invariant subspaces (see [9], and also [12], for
details in the symmetric case for any k). In this case, Hmult

(12) = H(12),(2) ⊕ H(12),(12) is the
standard decomposition of the space of zero-diagonal matrices M = {(aij)} into symmetric
and skew-symmetric parts: H(12),(2) = Msym, H(12),(12) = Mskew. Then it is easy to see that
Msym = Msym

0 ⊕Msym
1 ⊕Msym

2 , where

Msym
0 = {cE, c ∈ C}, where E = (1 − δij),

Msym
1 = {(aij) : aij = αi + αj for (αj) ∈ C

n,
∑

αj = 0},

Msym
2 = {(aij) : aij = aji,

∑

j

aij = 0 for every i}

are the invariant subspaces corresponding to the irreducible representations π(n), π(n−1,1), and
π(n−2,2), respectively.

Similarly, we have Mskew = Mskew
(1) ⊕Mskew

(12) , where

Mskew
(1) = {(aij) : aij = αi − αj for (αj) ∈ R

n,
∑

αj = 0},

Mskew
(12) = {(aij) : aji = −aij ,

∑

j

aij = 0 for every i}

are the invariant subspaces corresponding to the irreducible representations π(n−1,1) and π(n−2,12),
respectively.

Example 4 (tensors of valence k = 3). Once again, from Examples 1, 2, we obtain

ρ(3),(3) = π(n) + π(n−1,1),

ρ(13),ν = dim ν · IndSn

S3×Sn−3
(πν × Idn−3), ν ⊢ 3.

Again we use (12) to rewrite the last formula in the form

ρ(13),(3) = π(n) + π(n−1,1) + π(n−2,2) + π(n−3,3),

ρ(13),(21) = 2

(

π(n−1,1) + π(n−2,2) + π(n−2,12) + π(n−3,2,1)

)

,

ρ(13),(13) = π(n−2,12) + π(n−3,13).
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Now let µ = (21). Then m1 = m2 = 1, mi = 0 for i 6= 1, 2, Q(1),(1) = IndS3
S2×S1

(Id2 × Id1),
R(1),(1) = IndS2

S1×S1
(Id1 × Id1), and we have

Π((21), ν) = dim ν · 〈πν , π(3) + π(21)〉Reg2,

so that

ρ(21),ν =











IndSn

S2×Sn−2
(Reg2 × Idn−2), ν = (3),

2 · IndSn

S2×Sn−2
(Reg2 × Idn−2), ν = (21),

0, ν = (13).

Thus we can summarize the information on the decomposition tensor T λ
µν for k = 3 in the

following Table 1.

Table 1: Tµν for k = 3.

µ\ν (3) (21) (13)
(3) ∅ + (1)
(21) ∅ + 2 · (1) + (2) + (12) ∅ + 2 · (1) + (2) + (12)
(13) ∅ + (1) + (2) + (3) (1) + (2) + (12) + (2, 1) (12) + (13)

In this case, the structure of the invariant subspaces is also easy to describe. Namely,
Hmult

(13) = H(13),(3)⊕H(13),(2,1)⊕H(13),(13) is the decomposition of the space of tensors T = {(aijk)}
with pairwise distinct indices into the symmetric part H(13),(3) = T sym, skew-symmetric part
H(13),(13) = T skew, and the “symmetry (2, 1)” part H(13),(2,1) = T (2,1) of the form

T (2,1) = {(aijk) : (aijk) ∈ T , aijk + ajki + akij = 0 for any i, j, k}.

As in the previous example, T sym = T sym
0 ⊕ T sym

1 ⊕ T sym
2 ⊕ T sym

3 , where

T sym
0 = {(aijk) : aijk = α for α ∈ C},

T sym
1 = {(aijk) : aijk = αi + αj + αk for (αj) ∈ C

n,
∑

αj = 0},

T sym
2 = {(aijk) : aijk = αij + αjk + αki, (αij) ∈ Msym

0 },

T sym
3 = {(aijk) : (aijk) ∈ T (3),

∑

k

aijk = 0 for any i, j},

the invariant subspace T sym
i corresponding to the irreducible representation π(n−i,i), 0 ≤ i ≤ 3.

In the skew-symmetric case, we have T skew = T skew
(12) ⊕ T skew

(13) , where

T skew
(12) = {(aijk) : aijk = αij + αjk + αki for (αij) ∈ Mskew

0 },

T skew
(13) = {(aijk) : (aijk) ∈ T skew,

∑

k

aijk = 0 for any i, j}

are the invariant subspaces corresponding to the irreducible representations π(n−2,12) and π(n−3,13),
respectively.

The structure of the invariant subspaces for T (2,1) is slightly more complicated; it will be
more natural to use the decompositions (8) and (9) and to describe the subspaces corresponding
to particular Young symmetrizers. We have

T (2,1) = T (2,1)cT ⊕ T (2,1)cT ′,
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where T, T ′ are the two standart tableau of shape (2, 1), so that

cT = (e+ (12)) · (e− (13)), cT ′ = (e+ (13)) · (e− (12)).

The description of the subspaces is quite similar for T (2,1)cT and T (2,1)cT ′ , so we give it
for T (2,1)cT :

T (2,1)cT = T
(2,1)

(1) ⊕ T
(2,1)

(2) ⊕ T
(2,1)

(12) ⊕ T
(2,1)

(2,1) ,

where

T
(2,1)

(1) = {(aijk) : aijk = αi − αk for (αj) ∈ C
n,
∑

αj = 0},

T
(2,1)

(2) = {(aijk) : aijk = αij − αjk, (αij) ∈ Msym
0 },

T
(2,1)

(12) = {(aijk) : aijk = αij + αjk − 2αki, (αij) ∈ Mskew
0 },

T
(2,1)

(2,1) =

{

(aijk) : (aijk) ∈ M(2,1)cT ,
∑

k

aijk =
∑

k

aikj = 0 for any i, j

}

,

each subspace T
(2,1)

λ corresponding to the irreducible representation π(n−|λ|,λ). In particular,
we have a nice description for the invariant subspace corresponding to the primary compo-
nent 2π(n−3,2,1):

{

(aijk) : (aijk) ∈ T (2,1),
∑

k

aijk =
∑

k

aikj = 0 for any i, j

}

,

but for other primary subspaces, the description is more complicated.
As to the subspaces H(2,1),ν , it is easy to check that the subspace of Hmult

(2,1) with any fixed
order of indices (say, spanned by the basis vectors of the form ei ⊗ ei ⊗ ej with different i, j)
is naturally isomorphic to Hmult

(12) (for example, in the above case, an isomorphism is given by
∑

i6=j aijei⊗ej 7→
∑

i6=j aijei⊗ei⊗ej). Thus we can easily deduce the structure of the subspaces
ofH(2,1),ν corresponding to irreducible representations from that forHmult

(12) (see Example 3), both
in the symmetric and skew-symmetric cases.

Example 5 (tensors of valence k = 4). As in the previous examples, we have

ρ(4),(4) = π(n) + π(n−1,1),

ρ(14),ν = dim ν · IndSn

S4×Sn−4
(πν × Idn−4), ν ⊢ 4,

ρ(31),ν =











IndSn

S2×Sn−2
(Reg2 × Idn−2), ν = (4),

3 · IndSn

S2×Sn−2
(Reg2 × Idn−2), ν = (31),

otherwise.

For µ = (22), we have m2 = 2, mi = 0 for i 6= 2, l = 2 and

Π((22), ν) = dim ν ·
∑

λ⊢2

〈πν , πλ[Id2]〉 · πλ.

It is well known (see, e.g., [6, Ex. I.8.6]) that

π(r)[Id2] =
∑

τ⊢2r, τ is even

πτ
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and
π(1r)[Id2] =

∑

π′
τ

where the sum is over the partitions τ with Frobenius coordinates (α1−1, . . . , αp−1|α1, . . . , αp)
with α1 > . . . > αp > 0 and α1 + . . . + αp = r. Thus we have π(2)[Id2] = π(4) + π(22) and
π(12)[Id2] = π(31), so that we obtain

Π((22), ν) =



















π(2), ν = (4),

2π(2), ν = (22),

3π(12), ν = (31),

0, otherwise,

and the corresponding formulas for ρ(22),ν follow.
Finally, if µ = (212), then m1 = 2, m2 = 1, mi = 0 for i 6= 1, 2, l = 3; for λ ⊢ 2, we have

Rλ,(1) = IndS4
S2×S2

(πλ × Id2) and Qλ,(1) = IndS4
S2×S2

(πλ[Id2] × Id2) and we have, using known
formulas,

Π((212), ν) =































π(3) + π(21), ν = (4),

3(π(3) + 2π(21) + π(13)), ν = (31),

2(π(3) + π(21)), ν = (22),

3(π(21) + π(13)), ν = (212),

0, ν = (14),

and the corresponding formulas for ρ(212),ν follow.
Now we can summarize the information on the decomposition tensor T λ

µν for k = 4 in the
following Table 2.

Table 2: Tµν for k = 4.

µ\ν (4) (31) (22) (212) (14)
(4) ∅ + (1)
(31) ∅ + 2 · (1) + (2) + (12) ∅ + 2 · (1) + (2) + (12)
(22) ∅ + (1) + (2) (1) + (12) ∅ + (1) + (2)
(212) ∅ + 2 · (1) + 2 · (2) ∅ + 3 · (1) + 3 · (2) + 3 · (12) ∅ + 2 · (1) + 2 · (2) (1) + (2) + 2 · (12)

+(12) + (3) + (21) +(3) + 2 · (21) + (13) +(12) + (3) + (21) +(21) + (13)
(14) ∅ + (1) + (2) (1) + (2) + (12) (2) + (21) + (22) (12) + (21) (13) + (14)

+(3) + (4) +(3) + (21) + (31) +(13) + (212)

4 The infinite case

Now, in the spirit of asymptotic representation theory, it is natural to consider n = ∞. Namely,
in this case we have

H = (ℓ2)
⊗k,

with the kth tensor power of the unitary action of the infinite symmetric group S∞ (the
inductive limit of the groups Sn with the natural embeddings, i.e., the group of all finitely
supported permutations of N) in ℓ2.

It is easy to see that in this case we can reproduce the arguments and notation from Sec. 2
with obvious modifications. In particular, we have decomposition (1), in which we now should
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regard HSW
ν as the isotypic component of the irreducible representation πν of Sk, and decom-

position (2) defined in the same way as in Sec. 2. Thus we obtain decomposition (4) and denote
by ρ∞µ,ν the representation of S∞ in Hµ,ν , which corresponds to type of tensors µ and symmetry
type ν. It turns out that the structure of ρ∞µ,ν is the same as in the finite case (see Theorem 1),
namely, it is essentially a representation induced from the same representation Π(µ, ν) from (5).

Theorem 2. Given µ, ν ⊢ k,

ρ∞µ,ν = IndS∞

Sl×S∞[l](Π(µ, ν) × Id),

where l = l(µ) is the length of µ, the representation Π(µ, ν) of Sl is given by (5), and S∞[l] is
the subgroup in S∞ consisting of the permutations that fix the elements 1, . . . , l.

Proof. It is easy to see that for fixed k ∈ N and µ, ν ⊢ k, the representations ρn
µ,ν of Sn in Hn

µ,ν

form an inductive chain and ρ∞µ,ν = limn→∞ ρn
µ,ν . Now the claim follows from Theorem 1 and

the properties of induced representations.

Let
Π(µ, ν) =

⊕

λ⊢l

dλ
µ,ν · πλ (13)

be the decomposition of Π(µ, ν) into irreducible representations of Sl. Then

ρ∞µ,ν =
⊕

λ⊢l

dλ
µ,ν · IndS∞

Sl×S∞[l](πλ × Id) =
⊕

λ⊢l

dλ
µ,ν · π

∞
λ ,

where, in contrast to the case of finite n, the representation

π∞
λ = IndS∞

Sl×S∞[l](πλ × Id)

of S∞ is irreducible (see [1], and also [13]). Thus in the infinite case the decomposition tensor
is much simpler than in the finite case:

T∞,λ
µν = dλ

µ,ν . (14)

While in the case of finite n, to obtain the coefficients T η
µν of the decomposition tensor, one

should rewrite (6) as

ρµ,ν = IndSn

Sl×Sn−l

(

(

⊕

λ⊢l

dλ
µ,ν · πλ

)

× Idn−l

)

=
⊕

λ⊢l

dλ
µ,ν · IndSn

Sl×Sn−l

(

πλ × Idn−l

)

,

and then use the Pieri rule to decompose the induced representations on the right-hand side
into irreducible representations.

For tensors of type µ = (1k), in the infinite case we can give the following complete descrip-
tion. We consider the subspace T off

k = Hmult
(1k) of purely off-diagonal tensors of valence k, and

we have the following decomposition of the corresponding representation Poff
k into irreducible

components for the action of S∞ × Sk:

Poff
k =

∑

ν⊢k

π∞
ν ⊗ πν . (15)

Denote the corresponding irreducible subspaces by T ν , so that T off
k =

⊕

ν⊢k T
ν . Thus the

algebra generated by the operators of ρ∞(1k),ν is always a type I factor and

ρ∞(1k),ν = dim ν · π∞
ν .
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Remark 2. We see from (15) that on T off
k we have an analog of the Schur–Weyl duality: the

actions of S∞ and Sk commute and generate the commutants of each other. In particular, the
commutant of the primary component dim ν · ρ∞ν coincides with the simple ideal Kν (see the
beginning of the proof of Proposition 1). In other words, we can characterize the subspaces T ν

as follows:
T ν = {T ∈ T off

k : T · (1 − Pν) = 0},

where Pν ∈ C[Sk] is the orthogonal projection onto Kν .

Example 6. Let us consider the first nontrivial case, tensors of valence 3. For k = 3, we have

Poff
3

∣

∣

S∞

= π∞
(3) + 2π∞

(2,1) + π∞
(13),

T off
3 = T sym ⊕ T (2,1) ⊕ T skew.

The subspaces of symmetric tensors T (3) = T sym and skew-symmetric tensors T (13) = T skew are
irreducible, and the “symmetry (2, 1)” part T (2,1), which has the form

T (2,1) = {(aijk) : (aijk) ∈ T off
3 , aijk + ajki + akij = 0 for any i, j, k},

corresponds to the primary component 2π∞
(2,1) with the commutant equal to K(2,1).

Comparing this with the case of finite n, we see that in the infinite case the “highest”
subspaces T sym

(3) , T (2,1)
(2,1) , and T skew

(13) are dense in T sym, T (2,1), and T skew, respectively.

Remark 3. The action in H of the infinite symmetric group S∞ can be extended to an action
of the complete symmetric group S

∞, which is the group of all permutations of N. Here the
corresponding representation ρ̄µ,ν is given by

ρ̄µ,ν =
⊕

λ⊢l

dλ
µ,ν · π̄

∞
λ ,

where dλ
µ,ν are from (13) and

π̄∞
λ = IndS∞

Sl×S∞[l](πλ × Id)

(with S
∞[l] being the subgroup in S

∞ consisting of the permutations that fix the elements
1, . . . , l) are irreducible representations of S

∞ by the well-known Lieberman theorem [5].

5 Symmetric functions formulation

Denote by χµ,ν the character of ρµ,ν , and let ψµ,ν = chχµ,ν be its image under the characteristic
map. Since induction from Young subgroups correspond to multiplication of Schur functions
and induction from wreath products correspond to plethysm, we obtain the following.

Corollary 2. In the above notation,

ψµ,ν = dim ν
∑

λ1⊢m1,λ2⊢m2,...

〈sν , sλ1[h1]sλ2 [h2] . . .〉sλ1sλ2 . . . · hn−l, (16)

where sλ are Schur functions, hµ are complete symmetric functions, and f [g] denotes the
plethysm of symmetric functions.
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Corollary 3. For µ = (1m12m2 . . .) ⊢ k, we have

∑

λ1⊢m1,λ2⊢m2,...

〈hk
1, sλ1 [h1]sλ2 [h2] . . .〉sλ1sλ2 . . . =

k!
∏

i(i!)
mimi!

h
∑

mi

1 . (17)

Proof. Take the sum of (16) over ν ⊢ k and use (3).

Now let us denote by Ξn,k the characteristics of the action of Sn in the whole space (Cn)⊗k

and consider the generating function

F =

∞
∑

n=0

∞
∑

k=0

1

k!
Ξn,k. (18)

On the one hand, using decomposition (2) and formula (3), we have

F =

∞
∑

n=0

∞
∑

k=0

1

k!

∑

µ=(1m12m2 ...)⊢k

k!
∏

i(i!)
mimi!

· h
∑

mi

1 hn−
∑

mi

=

(

∞
∑

n=0

hn

)

∑

m1,m2,...≥0

1
∏

i(i!)
mimi!

· h
∑

mi

1 = h ·
∞
∏

i=1

∞
∑

mi=0

(hmi

1 /i!)

mi!

= h ·
∞
∏

i=1

eh1/i! = h · eh1(e−1),

where we have denoted h = h0 + h1 + h2 + . . ..
On the other hand, by the Schur–Weyl duality we have

Ξn,k =
∑

λ⊢k

dimλ · ch ξ
(n)
λ ,

where ξ(n)
λ is the representation of Sn obtained by restricting to Sn ⊂ GL(n,C) of the irre-

ducible representation of GL(n,C) with signature λ. By a formula proved in [10] (see also [11,
Ex. 7.74]), we have

ch ξ
(n)
λ =

∑

ν⊢n

〈sλ, sν [h]〉sν , whence Ξn,k =
∑

ν⊢n

〈hk
1, sν[h]〉sν .

Thus

F =

∞
∑

n=0

∞
∑

k=0

1

k!

∑

ν⊢n

〈hk
1, sν [h]〉sν =

∑

ν

〈eh1 , sν[h]〉sν ,

where the last sum ranges over all partitions ν of nonnegative integers. So, the two decompo-
sitions (1) and (2) of the space (Cn)⊗k into invariant subspaces of Sn ⊗ Sk correspond to the
following identity for symmetric functions:

h · eh1(e−1) =
∑

ν

〈eh1, sν [h]〉sν . (19)
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Now let us use the Cauchy identity to write the right-hand side of (19) as

〈

eh1(y),
∑

ν

sν [h](y)sν(x)

〉

=

〈

eh1(y), exp

( ∞
∑

n=1

pn(x)pn[h](y)

n

)〉

.

By the properties of plethysm, we have pn[h] = h[pn] =
∑

hj[pn] =
∑

pn[hj ], where pn[h0] = 1,
so that the exponential factor in the right-hand side equals

exp

( ∞
∑

j=0

∞
∑

n=1

pn(x)pn[hj ](y)

n

)

=
∞
∏

j=0

exp

( ∞
∑

n=1

pn(x)pn[hj ](y)

n

)

= h(x) ·
∞
∏

j=1

∑

λj

sλj
(x)sλj

[hj](y) = h(x) ·
∑

λ1,λ2,...

∞
∏

j=1

sλj
[hj ](y)

∞
∏

j=0

sλj
(x).

Thus we have

F = h ·
∑

λ1,λ2,...

〈

eh1,

∞
∏

j=1

sλj
[hj ]

〉 ∞
∏

j=1

sλj
.

Since

eh1 =

∞
∑

k=0

hk
1

k!
=

∞
∑

k=0

1

k!

∑

ν⊢k

dim ν · sν ,

we see, keeping in mind (18), that

Ξn,k =
∑

ν⊢k

dim ν ·
∑

λ1,λ2,...:
∑

j|λj |=k

〈

sν ,
∞
∏

j=1

sλj
[hj]

〉 ∞
∏

j=1

sλj
· hn−

∑

|λj |

=
∑

ν⊢k

∑

µ=(jmj )⊢k

∑

λ1⊢m1,λ2⊢m2,...

dim ν ·

〈

sν ,
∞
∏

j=1

sλj
[hj]

〉 ∞
∏

j=1

sλj
· hn−

∑

|λj |,

and, comparing with (16), we see that this is exactly the decomposition corresponding to (4).
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