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D I S T R I B U T I O N  OF T H E  M E A N  V A L U E  F O R  C E R T A I N  B : A N D O M  
M E A S U R E S  

N. V. Ts i levich  UDC 519.217, 517.986 

Let r be a probability measure on [0,1]. We consider a generalization of the classic Dirichlet process - the 
random probability measure F = ~ P~Sx~, where X = {Xi } is a sequence of independent random variables with 
the common distribution r and P = {P~} is independent of X and has the two-parameter Poisson-Dirichlet 
distribution PD(c~, ~) on the unit simplex. The main result is the formula connecting the distribution I~ of the 
random mean value f xdF(x)  with the parameter measure r. Bibliography: 12 titles. 

1. I n t r o d u c t i o n .  Let r be an arbitrary probability distribution on [0, 1]. We consider a random discrete 
probability measure 

F = ~ P,6x,, (1.i) 
i = I  

where X = (El, Xz,... ) is a sequence of independent random variables with common distribution r~ and 
P = (Pi,Pg.,...) E ~ = {Y = (Y'i,E~,..-) : ~ >~ 0,~']~ ~< I}  is a random sequence of masses that 
is independent of X and has distribution GEM(l). This distribution is generated by the simplest stick-- 
breakin9 process, namely, we choose a number Pi tmiforrnly distributed in [0, 1], then we choose a number P~ 
uniformly distributed in the ('remaining" part of the interval, i.e., in [0, 1 - Pi], and so on; Pn is urliformly 
distributed in [0, 1 - Pi -... - Pn-1]. Thus,  

Pn = Wn(1  - Wi) . . .  (I -- Wn-i) ,  (1.2) 

where W1, W2,.. .  is a sequence of independent  random variables uniformly distributed in [0, 1]. 
The described measure is called a random Dirichlet measure with parameter  measure r .  We denote it 

by D(~). It is also convenient to represent this random measure in the form 

F = (1 .3)  
i = 1  

where/51 ~>/52 >~ . . .  is the  permutat ion of (Pi) in nonincreasing order. 
We consider the mean value f x d F ( x )  of a random measure F E ~(v) ,  and denote by/~ the distribution 

of this functional. As was shown in [2], the  original measure T and the resulting measure/~ are related by 
the following remarkable identity: 

f dl~(u) = e x p f l n  1 dr(u) ,  z e C \ ~ .  (1.4) 
Z --~ Z--U 

Now let a, 8 be two real parameters. We consider a generalized model where the positions Xi ,  X2, . .  �9 are 
to be chosen as above, and the  magnitudes Pi ,  P2, �9 �9 �9 are to be constructed by a nonstationary stick-breaking 
process (a residual allocation model): in representation (1.2), V~ has a beta  distribution B(1 - a,  0 + j a )  
with density 

r (1  + o + (j - i )~)  _ t ) o - l + ~ ,  [0, 1]. (1.5) 
Kf- t 
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We denote the obtained random measure by 79(r, ~, 8) and call it a generalized Dirichlet measure. The 
range of admissible parameters is 

{ ( c ~ , O ) : O < ~ c ~ < l , 0 > - ~ }  U { (~ , - rn~ ) ,  c ~ < 0 , m E N } .  

Let/~ be the distribution of the mean value f xdF(x)  with F ~ :D(v, a, 0). In this paper, we prove a 
formula generalizing (1.4). If a, 0 ~ 0, it takes the form 

(f z - u) -~  = (z - u)ad'c(u) , e 

The author is grateful to S. V. Kerov for bringing this problem to her attention and for necessary 
references and numerous fruitful discussions. 

2. T h e  c lass ical  D i r i c h l e t  p roces s .  The Dirichlet process (corresponding to the parameter  ~ = 0) 
was introduced by Ferguson ([3]). He used the following axiomatic definition. First, let 8 be a positive 
discrete measure with masses ~ l , . . .  , fin at points z~, . . .  , zn. The set of all discrete probability measures 
concentrated on {z~,. . .  , zn} may be identified with the simplex An = {x = (x~,. .. , xn)  : x~ >/O, ~ xi = 
1}. the Dirichlet distribution D( f l l , . . .  , ~3n) on An has density 

r(z  + . . .  
r(81)...r(Sn) " "  

with respect to Lebesgue measure d x l . . ,  dzn-~. A random measure F = ~-~n__~ P~z,, where P = (P~, ..., Pn) 
E An has a Dirichlet distributdon D(81 , . . .  , 8n), is called a Dirichlet process with paramete r  8. Given an 
arbitrary finite positive measure 8 on [0, 1], a random measure F is said to be a Dirichlet process with 
parameter 8 if, for any finite partition [0, 1] = A1 U. . .  UAn, the vector (F(A1), . . .  , F ( A n ) )  has a Dirichlet 
distribution with parameters (8(A1) , . . .  , ~(An)). (See also [8, Chap. 9].) Ferguson showed that  a random 
Dirichlet measure can be represented in the form (1.3) for the described construction with parameters 
(u, 0, ~), where 0 is the total  mass of 8 and u = ~/0. In this case, the stick-breaking process is stationary, 
namely, all W~ have the same distribution with density 0(1 - x) ~ The measure generated by this 
process on the simplex ~ is called a GEM distribution with parameter  ~9, and the distribution of the ordered 
permutation (/5i) on the simplex of monotone sequences is the famous Poisson-Dirichlet distribution PD(O). 

It is convenient to deal with random measures in terms of their  samples. A sample from a random 
distribution is a sequence of random variables obtained by the following two-stage procedure. First, we 
choose a realization of random measure, and then we construct a sequence of independent variables obeying 
the distribution chosen at the first step. Such sequences share a special property of exchangeability. By 
definition, a sequence is exchangeable if its joint distributions are invariant under all finite permutations of 
its elements. In accordance with the classical de Finetti theorem, every exchangeable sequence is a sample 
from some random measure, and this measure is uniquely determined by the sequence. 

The following method of constructing a sample from :D(~), called the Blackwell-MacQueen urn scheme, 
is suggested in [1]. 

(1) X~ has distribution I1#'~11; 

(2) given X I , . . .  , Xn, the conditional distribution of Xn+l is ~ with ~n = ~ + ~-~.in__~ ~X,. 

We denote by II~ll the total mass of 8. 
There exists a version of this urn scheme called the Chinese restaurant construction (see [2]). The 

following description corresponds to sampling from a Dirichlet process with parameters ~ = Ou, ~ = 11811. 
Assume that  we have infinitely many circular tables, and each table can seat infinitely many  persons. We 
associate with these tables random labels x~, x2, . . ,  which are taken independently from distribution ~. 
The first guest sits at the first table. The n th  person sits at the first empty table with probability a ~-~-~, o r  

sits to the immediate right of t h e / t h  already seated person with probability n-~ (i = 1 , . . .  , n). Let Xi be 
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the label of the table where the i th guest sits. We obtain a sequence of random variables X1, X2, . . . .  This 
sequence is a sample from T)(~). 

We note that we can regard the numbers of persons sitting at the same table at the  n th  step of this 
procedure as a cycle of some permutation ~r E Sn. Thus, we have obtained measures M~ on symmetric 
groups Sn, and 

8c(=) 
= e(e + 1 ) . . .  (e + - 1)'  (2.1) 

where c(~r) is the number of cycles of ~r E S~. These measures are called Ewens measures with parameter 
8 > 0. They are of great importance in combinatorics and in many applications. We note that M~ is the 
Haar measure on S~. 

3. The generalized D[ r lch te t  process. S. V. Kerov ([5]) and J. Pitman ([11]) proposed independently 
a generalization of constructions leading to Dirichlet measures. In terms of representation (1.4), this 
generahzation means that  we consider random measures 

F = ~ . ,  ~,6x,  + (1 - Z / 5 0 T '  (3.1) 

where {Xi} is a sequence of independent random variables with distribution % and the vector /5 = 
(/hz,/52,... ) has an arbitrary distribution on the simplex 

J. Pitman introduced corresponding urn schemes. Now we describe a generalized Chinese restaurant 
model due to S. V. Kerov ([5]). As above, one parameter  of this model is a probability distribution ~'. But 
now there is a second parameter  that  is a family of measures M n on symmetric  groups S ,  satisfying the, 
following two conditions. The first condition is the invariance of M '~ under ironer automorphisms (i.e., the 
mass of a permutation depends only on the lengths of i t s  cycles). The second condition is a coherence in 
the following sense. For every permutation ~r E Sn, 

M"0r )  = ~ M~+z(a),  (3.2) 
~y'~ ~ - f f  

where the sum is taken over all permutations ~r ~ S,+x such that  ~r is obtained from a by removing the 
element n + 1 from its cycle. As in the original model, we associate with the  tables random labels x~ taken 
independently with the distribution r .  A generalized rule for guests takes the following form. The first 
person sits at the first table. Let the first n persons form a permutat ion ~rn ~ Sn. Vv-hen the (n + 1)th 
guest takes his place, we obtain a permutation ~rn+~ ~ Sn+~ such that  ~ ~r,~+~ = ~rn. We assnrae that  the 
probability of such a permutat ion equals Mn+~(r~+~)/M~(~r~). Let X~ be the label of the table where 
the ith person sits. The conditions imposed on {M ~} guarantee the exchangeability of the  sequence {X~}. 
Therefore, it determines some random measure F .  We denote it by ~ ( r ,  {M n }). 

The relation of urn schemes and Chinese restaurant  models with representations (3.1) is provided by 
Kinsman's theory of random partitions (see [6, 7]). 

Let # be the distribution of the mean value f xdF(x )  with F ~ :D0- , {Mn}). A formula from [5] relates 
the moments of # and ~-. 

T h e o r e m  ([5], Theorem 4.2.2). Let h,~ = f und#(u) and pn = f undv(u) be the momenf.s of # and v. Then 

h,~ = ~ M~(~r) HP~"Or)' n = 1 ,2 , . . .  , (3.3) 
~es.  i~>~ 

where r i (~r) i,s ~he n~mber of cycles of length j in permutation ~r. 

As was shown in [10, 12], we may naturally include Poisson-Dirichlet meas~xes PD(e) in a two-pa- 
rameter family PD(a, ~) of distributions generated by the residual allocation models described above in 
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Sec. 1. Namely, let (W~} be independent random variables on [0, 1] such that W~ has a beta  distribution 
i - -1  B(1 - a ,0  + in). We denote P~ = Wil-Ij=l(1 - Wj). Then PD(a,O) is the distribution of {/5~}, where 

/51 ~> /5~ ~> . . .  is the permutation of {Pi} in nonincreasing order. The range of admissible parameters is 
(1.6). 

Let ~ be an arbitrary probability measure on [0, 1], and let ~, 0 be admissible parameters.  We consider a 
~ random measure F = ~'~i=~ jSxj, where X is a sequence of independent variables with common distribution 

r,  and the vector/5 is independent of X and has distribution PD(~,  8). We call this measure  a generalized 
Dirichlet measure 79(% c~, 8). 

The corresponding family of distributions on symmetric groups Mna,o is given by the  formula 

M : ' ~ ( ~ ) = ( 0 + ~ ) ( 0 + ~ ) ' " ( 0 + ( ~ - 1 ) ~ ) [ 8  + u ~ (' [~ --'?]~-1 ~ ~ 
\ ( j -  1)~ ] ' j~>l 

(3.4) 

where k = c(r) is the total number of cycles of 7r, rj is the number of cycles of length j ,  and [x]m = 
x(x + 1). . .  (x + m - 1) is the Pochhammer symbol. 

Thus, we have the following rule for sampling from :D(% c~, 8). We choose a sequence {xi} of independent 
variables with distribution v. The first element X1 equals xl .  If we have already constructed n elements 
X1,. . .  ,Xn, and nj of them equal xj (j  = 1 , . . .  ,k), then the conditional distribution of X~+I, given 
X1 , . . .  , X,~, is 

~ n ~ - ~ _  O+kc~ 5 
~ -~_~bz~ + ~  ~+~. (3.5) 
j = l  

The following schemes correspond to limiting values of parameters. 
1. If a = 1,/9 > -1 ,  then M~, e is a 5-measure at the identity permutation; therefore, Xi = xi are inde- 

pendent variables with distribdtion % i.e., :D(% 1, 8) coincide with ~- almost everywhere (in representation 
(3.1), all/5, = 0 a.e.). 

2. If 0 = - a ,  0 < a < 1, then M~n,_a is concentrated on permutations with exact ly one cycle. Thus, for 

all i, Xi = xl ,  i.e., :D(% c~, -c , )  is 5x, where x obeys T (/51 = 1 a.e.). The same random measure corresponds 
to the case 0 --* ~o, a ~> 0. 

e 3. If m = - ~  ~ N is fixed, a --* -oo,  0 -~ oo, then 

1 m(m - 1) . . .  (m - ~ + ~) (z.~) 
M'2_,,r = i.ii~>l((i _ 1)!)", m '~ 

Thus, in (3.5), the conditional distribution of Xn+l, given X1 , . . .  , Xn, takes the form 

k 

j--1 
(3.7) 

In this case, in (3.1), we have/3i = l /m,  i <~ m, i.e., 

F = ~x ,  = ,~x,.  (3 .8)  
i = 1  

4. The distribution o f  the  mean value for ~D(% a, 8). 

Theorem. Let ~" be a probability measure on [0, 1], and let (~, 8) be admissible parameters. If # is the 
distribution of the mean value f xdF(x) of a random measure F E Z)(~', ~, 0), then # and "r are related by 
the formula 

(1) ff ,-,,o # o, 

f o f o ( (~ - ~1- d . (~ l )  o = ( (~ _ u) d~-(~))~, ~ s C \ ~; (4.~) 
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(2) i18=o, 

(3) i] a = O, 

e~p / ~ ( z -  u)~d~(~) = / ( =  - u)"d~(~), 

/(:-~)-~d~(u) = exp / ~(z - u)-~d~(~), 

z E C \ R ;  (4.2) 

z E C \ R. (4.3) 

In our proof, we use the  following s ta tement .  

L e m m a  ([9], Example 1.2.11). Let 

oo f , t "  ~ 
:(t) = ~ n! ~(t) = ~ ~..t" (4.4/ 

' n !  
~=i n=l 

be formal power series. Consider the composition H(t) = f(g(~)) and its expansion in a power series 
H(t) - ~'~.,r162 Hntn/(n!). Then the coefficients Hn take the form 

H. = y]S~s., .(~),  (4.5) 
k ~ l  

where Bn,k is a polynomial o.f the coefficients of g. This polynomial is given by the formula 

n~ 
s,,,,, = ~ 1~,>~, r,~(~!)", 1-[ gT, (4.e) 

~ i~>i 

where the sum is taken over all partitions ~ o] n that have exactly k summands, and r~ is the number 
of summands of )~ equal to j .  

For our purposes, it is more convenient to use a version of (4.6) i~ which the sum is taken over elements 
of a symmetr ic  group S , .  Since for an arbi trary par t i t ion ~ of n, the number  of permutat ions of cycle 
structure s equals 

n! 
Z A  --" Hi)l ri!ir'' (4.7) 

we can represent (4.5) in the  form 

gi / ri 
H.  = ~ S~ 1] (~_ 1)~ ' (4.s) 

~rES~ i~>l 

where k is the total number  of cycles of ~r, and  rj is the  number  of cycles of length j .  

Proof of the theorem. Let  h~ = f undl~(U), p ,  = f u~d~'(u) be the moments  of/z and r .  According to  (3.3), 

h, = :~ Ui,(:)  l-I P? = 5] (8 + ~)... (8 § (k - i)~) ({~. _-._~b~)~ ~ o  ~ ~ .  f ~ u  �9 1-i ~, ( j _  1)! l ip;" .  (4.9) 

Let a,  8 ~ 0. Then (4.9) takes the form 

I~l~ {~ l~ j ) "  
h. = ~ [el. ~ \ ( j -  i)! 

~r~S. j />l  

(4.~o) 
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We denote A = [~]~, gj = -[ -a] jp j ,  Hn = [8]nh,~ (k , j , n  >~ 1). Then (4.10) takes the form 

(4.11) 

We see that this formula coincides with (4.8). Thus, for f (z )  
: ~ = I T . ,  , we have H(z)  oo ~ z  ~ 

g ( z ) : f ( g ( z ) ) .  

o o  ]_~zk k! ' = E~=I  ~ -  ' g(Z) = E F = I ~ z ~  and 

(4.12) 

It remains to compute the-functions f ,  g, and H.  One can easily check that 

f(z) =(i  - z)-~ - I ;  

~(~) : _  S I-;,.l~ :_ S 171__~/~(o) 
k = l  k = l  

= 1 - f (1  - zu)~'d'r(u); 

H(z) = / (1  - z~)-ea,(~) - 1. 

(4.13) 

Substituting these expressions in (4.12), and replacing z by 1 ; ,  we obtain (4.1). 
In the case 0 = 0, we have 

(~- 1), II [-.h~) ~ 
hn = E c~(n-11! \ ( j - i ) !  " 

~rES,, 

(4.14) 

Thus, (4.11) holds with H,~ = a(n - 1)!hn, fk  = (k - 1)!, gj = - [ -a] jp j .  The corresponding functions are 
H(z)  = - f ln(1 - uz)O'd#(u), f (z)  = ln(1 - z), g(z) = 1 - f(1 - zu)':d~'(u). Substituting these expressions 
in (4.12), we obtain (4.2). 

The relation with a = 0 is given in [5]. To make the pictttre complete, we present the corresponding 
formulae. In  this case, 

1 
~ = ~ ~ 1-[(~)~; (4.15) 

~-ES,, 

thus, Hn --[0]nhn, fk = 1, gi = @ j ( j -  1)!, i.e., H(z)  = 5 ~ ,  f (z)  = e z, g(z) = f l n  (~_-(~) d'r(u), and 
(4.3) follows. 

R e m a r k s .  1. At first glance, it is not clear tha t  the right side of (4.1) tends to the right-hand side of (4.3) 
as a --* 0. However, this fact is easy to check, since 

: [ l n / a  (1 - ~ ) ~  d~-(u) = lh l / c~  (1 + a l n  ( 1 -  ~ ) +  o(c~:~)) d~'(u) 

: + / 

2. For g ~ i n g  vNues of p ~ e g e r s ,  ~ge f o ~ a  ~ e s  ~he foBow~g fore .  

(1) g ~ = 1, 0 > - 1 ,  ghe~ (4.I) imp~es 

(f(~_~)-oa.(~))-~ = f(~-~)a,(~)= z - ~ .  (4.~) 

T h e ,  ~ is a 8 - m e ~ e  at po~g p~. T ~  fact is in accord wigh o ~  o b s e ~ t i o n  ~hat ~ ( r ,  1, 0) equNs 
T a . e .  
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(2) If 0 = -c~, 0 < c~ < 1, formula (4.1) turns into identity, hence, /~ = r .  Indeed, in this case, 
/9(r, a,  - r , )  is 6x, where x has distribution r, and the distribution of the mean value of this random 
measure coincides with r.  

0 (3) If m -- - ~  ~ N, c~ - .  -o~,  0 --* oo, we may use (3.6) and an argument similar to the proof of the 
theorem to obtain the relation 

(/ f eumZd#(u) = eUZd'r(u , (4.17) 

i.e., in terms of characteristic functions, f ,(t)  = f~(t/m) rn. This fact is in accord with (3.8), since 
m X this formula shows that, in this case, /~ is the distribution of the normalized sum ~ Y~i=~ i of 

independent random variables with distribution r .  

3. The  symmetry of (4.1) with respect to the change (r, a ,  0) ~ (/~,-0,-c~) shows that (4.9) remains 
valid if we substitute hi *-* Pi, a --* - 0 ,  0 --* -c~. Thus, we have the following "inversion formula" for 
restoring the moments of r ,  given the moments of/~: 

p,~= ~_~(_l)k-~(a+O). . . (c~+(k-1)O)  ([ l+O]i-~)  "~ -Fi IIq-'. 

4. Our  proof is based on the fact that  Ewens-Pi tman measures M2, o can be represented in the form 

ak Mn(~r) = "~'~ " H c~'. 
i>~ l 

(4.18) 

Distributions of this form were considered in [4], where they were generated by the so-called Kolchin model 
This model  can be described as follows. Let ~ = {;q} and a = {r be two probabili ty distributions on the 
set of natural  numbers. We pick a random number K distr ibuted according to • Then we consider a random 
K-vec tor  (St, . . .  , SK) consisting of independent integer random variables with common distribution ~r. 
This vector defines a random partition A = (1R '2R2. . . )  of N = St + . . .  + SK (Rj  = # { i  : Si = j}) .  
For a fixed n ~ N, we consider the conditional distribution of A, given N = n, and we denote it by Pn. 
The obta ined measure on the set of partitions of n corresponds, in a natural way, to some measure on the 
symmetric  group Sn which is invariant under inner automorphisms. Namely, Mn(9) = Pn()O/za , where 
the part i t ion ~ describes the cycle structure of g fi Sn, and za is the number (4.7) of permutations of cycle 
s t ructure  A. One can easily check that  

k! k. (4.10) M (g) = n!C  
i>~ l 

Now the proof of the theorem shows that  we may reformulate its statement in terms of the Kolchin model. 
Namely, 

f ~olv(uz)dl~(u) = ~og ( J  ~os(uz)dr(u)) , (4.20) 

where ~o/r and ~s  are the generatiaig functions of the distributions ~ and or, and qog(u) = ~oK(~oS(u)) is the 
generating function of the sum N = $1 + . . .  + SK. It should be  mentioned that  for fixed values of c~ and 
0, the Ewens-Pi tman measure M~, 0 can be obtained in the Kolchln model with different parameters ~r and 
a (see [4]), bu t  the substi tut ion of the corresponding generating functions in (4.20) yields formulae which 
can be  reduced to (4.1)-(4.3) by trivial transformations. We should also note tha t ,  as was shown in [4], 
among all the distributions that  can be  obtained by the Kolchln model, only the Ewens-P i tman  measures 
and their limiting variants satisfy the coherence condition (3.2). 

Suppor ted  by the Russian Foundation for Basic Research, grant 96-01-00676. 

Translated by N. V. Tsilevich. 
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