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DISTRIBUTION OF THE MEAN VALUE FOR CERTAIN RANDOM
MEASURES

N. V. Tsilevich UDC 519.217, 517.986

Let T be a probability measure on [0,1]. We consider a generalization of the classic Dirichlet process - the
random probability measure F = Z P;éx,, where X = {Xi} is a sequence of independent random variables with
the common distribution T and P = {P,} is independent of X and has the two-parameter Poisson—Dirichlet
distribution PD(a,6) on the unit simplez. The main result is the formula connecting the distribution u of the
random mean value f zdF(x) with the pararneter measure T. Bibliography: 12 titles.

1. Introduction. Let 7 be an arbitrary probability distribution on [0,1]. We consider a random discrete
probability measure

[+ o] .
F = ZPi‘SXu (11)

i=1

where X = (X3, X2,...) is a sequence of independent random variables with common distribution 7, and
P=(P,P,...) T ={Y = (\,Y2,...) : i 2 0,2 Yi < 1} is a random sequence of masses that
is independent of X and has distribution GEM(1). This distribution is generated by the simplest stick--
breaking process, namely, we choose a number P; uniformly distributed in [0, 1], then we choose a number P,
uniformly distributed in the “remaining” part of the interval, i.e., in (0,1 — Py}, and so on; P, is uniformly
distributed in [0,1 — Py — ... — P,_1]. Thus,

Po=Wan(l=Wi)...(1— Wa_y), (1.2)

where Wi, Wa, ... is a sequence of independent random variables uniformly distributed in {0, 1].
The described measure is called a random Dirichlet measure with parameter measure 7. We denote it
by D(7). 1t is also convenient to represent this random measure in the form

i=1

where P, > P; > ... is the permutation of (P;) in nonincreasing order.

We consider the mean value [ zdF(z) of a random measure F' € D(7), and denote by p the distribution
of this functional. As was shown in [2], the original measure 7 and the resulting measure p are related by
the following remarkable identity:

dL(“)_:expfm ! 4r(w), zeC\R (1.4)

zZ—U zZ—U

Now let o, § be two real parameters. We consider a generalized model where the positions X3, Xo,... are
to be chosen as above, and the magnitudes Py, P;, ... areto be constructed by a nonstationary stick-breaking
process (a residual allocation model): in representation (1.2), W has a beta distribution B (1-a,b+ja)
with density

Tl+6+ (G —1a)
T'(1—-a)'(6 + jo)

t~*(1 -t)?" e te(0,1). (1.5)
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We denote the obtained random measure by D(7,@,0) and call it a generalized Dirichlet measure. The
range of admissible parameters is

{(e,0):0<a<1,6>-a} |J {(e,-ma), a<0,meN}. (1.6)

Let u be the distribution of the mean value [zdF(z) with F € D(7,q,6). In this paper, we prove a
formula generalizing (1.4). If ¢, 8 # 0, it takes the form

< / (2 - u)'ad,u(u)) T ( / (z - u)"‘dT(u)) Lec \R. L)

The author is grateful to S. V. Kerov for bringing this problem to her attention and for necessary
references and numerous fruitful discussions.

2. The classical Dirichlet process. The Dirichlet process (corresponding to the parameter o = 0)
was introduced by Ferguson ([3]). He used the following axiomatic definition. First, let 8 be a positive
discrete measure with masses 81,...,0n at points zi,...,2,. The set of all discrete probability measures
concentrated on {zj, ... ,z,} may be identified with the simplex A, = {z = (z1,... ,Zn) : 2; 2 0,Y . z; =
1}. the Dirichlet distribution D(8y,... ,,) on A, has density

T'(B+...+ ﬂn)xﬁl-—l
T(B)...T(B) *

Bn—1
.o.zhe

with respect to Lebesgue measure dz; ... dzn—-1. A random measure F = . | P.§,,, where P = (P, ..., P,)
€ A, has a Dirichlet distribution D(f,... ,8n), is called a Dirichlet process with parameter 5. Given an
arbitrary finite positive measure 8 on (0,1}, a random measure F is said to be a Dirichlet process with
parameter [ if, for any finite partition [0,1] = A1 U...U Ay, the vector (F(A;),... ,F(A,)) has a Dirichlet
distribution with parameters (8(A1),...,8(4n)). (See also [8, Chap. 9].) Ferguson showed that a random
Dirichlet measure can be represented in the form (1.3) for the described construction with parameters
(v,0,8), where 6 is the total mass of 3 and v = /0. In this case, the stick-breaking process is stationary,
namely, all W; have the same distribution with density (1 — z)®~!. The measure generated by this
process on the simplex X is called a GEM distribution with parameter 8, and the distribution of the ordered
permutation (F;) on the simplex of monotone sequences is the famous Poisson-Dirichlet distribution PD(8).

It is convenient to deal with random measures in terms of their samples. A sample from a random
distribution is a sequence of random variables obtained by the following two-stage procedure. First, we
choose a realization of random measure, and then we construct a sequence of independent variables obeying
the distribution chosen at the first step. Such sequences share a special property of ezchangeability. By
definition, a sequence is exchangeable if its joint distributions are invariant under all finite permutations of
its elements. In accordance with the classical de Finetti theorem, every exchangeable sequence is a sample
from some random measure, and this measure is uniquely determined by the sequence.

The following method of constructing a sample from D(f), called the Blackwell-MacQueen urn scheme,
is suggested in [1].

(1) Xi has distribution Tl%IT;
(2) given Xi,... ,Xpn, the conditional distribution of Xpn1 is T[g—:[[ with B = 8+ > 1, Ox,.

We denote by ||8]| the total mass of 5.

There exists a version of this urn scheme called the Chinese restaurant construction (see [2]). The
following description corresponds to sampling from a Dirichlet process with parameters 3 = 6v, § = ||3].
Assume that we have infinitely many circular tables, and each table can seat infinitely many persons. We
associate with these tables random labels z1,T2,... which are taken independently from distribution v.
The first guest sits at the first table. The nth person sits at the first empty table with probability -1%;, or
sits to the immediate right of the ith already seated person with probability #5 (i=1,...,n). Let X; be
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the label of the table where the ith guest sits. We obtain a sequence of random variables X3, X3,.... This
sequence is a sample from D(f3).

We note that we can regard the numbers of persons sitting at the same table at the nth step of this
procedure as a cycle of some permutation # € S,. Thus, we have obtained measures M} on symmetric
groups Sy, and

ge(=)

Mim =g+ @sno1) @D
where ¢(r) is the number of cycles of 7 € S,. These measures are called Ewens measures with parameter
@ > 0. They are of great importance in combinatorics and in many applications. We note that M is the
Haar measure on S,,.

3. The generalized Dirichlet process. S. V. Kerov ([5]) and J. Pitman ([11]) proposed independently
a generalization of constructions leading to Dirichlet measures. In terms of representation (1.4), this
generalization means that we consider random measures

F=3 PBidx,+(1-Y P, (3.1)

where {Xi} is a sequence of independent random variables with distribution 7, and the vector P =
(Py, Ps,...) has an arbitrary distribution on the simplex

S={Y="Y...): 122 >...20, > Yi<i}

J. Pitman introduced corresponding urn schemes. Now we describe a generalized Chinese restaurant
model due to S. V. Kerov ([5]). As above, one parameter of this model is a probability distribution 7. But
now there is a second parameter that is a family of measures M™ on symmetric groups Sy, satisfying the
following two conditions. The first condition is the invariance of M™ under inner automorphisms (i.e., the
mass of a permutation depends only on the lengths of its cycles). The second condition is a coherence in
the following sense. For every permutation m € Sy,

M m) =Y M™(0), (3.2)

o'=n

where the sum is taken over all permutations ¢ € Sp41 such that « is obtained from o by removing the
element n + 1 from its cycle. As in the original model, we associate with the tables random labels z; taken
independently with the distribution 7. A generalized rule for guests takes the following form. The first
person sits at the first table. Let the first n persons form a permutation 7, € S,. When the (n + 1)th
guest takes his place, we obtain a permutation mn41 € Sn41 such that =, , = m,. We assume that the
probability of such a permutation equals M™+(m,4+1)/M™(m,). Let X; be the label of the table where
the ith person sits. The conditions imposed on {M™} guarantee the exchangeability of the sequence {X;}.
Therefore, it determines some random measure F. We denote it by D(r, {M™}).

The relation of urn schemes and Chinese restaurant models with representations (3.1) is provided by
Kingman’s theory of random partitions (see [6, 7).

Let 4 be the distribution of the mean value [ zdF(z) with F € D(r,{M™}). A formula from [5] relates
the moments of y and 7.

Theorem ([5], Theorem 4.2.2). Let hy = [u™du(u) and p, = [u™dr(u) be the moments of u and 7. Then

b= M@ [[p7™, n=12..., (3.3)
wESn izl

where () is the number of cycles of length j in permutation m.

As was shown in [10, 12], we may naturally include Poisson-Dirichlet measures PD(f) in a two-pa-
rameter family PD(q,8) of distributions generated by the residual allocation models described above in
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Sec. 1. Namely, let {W;} be independent random variables on [0, 1] such that W; has a beta distribution
B(1 - a,8 +ic). We denote P, = W; H;;ll(l — W;). Then PD(a,6) is the distribution of {P;}, where
B> B, > ... is the permutation of {F;} in nonincreasing order. The range of admissible parameters is
1.6).
( L)et T be an arbitrary probability measure on {0, 1], and let a, 8 be admissible parameters. We consider a
random measure F' = z:; 15_7'6 X, where X is a sequence of independent variables with common distribution
r, and the vector P is independent of X and has distribution PD(a, §). We call this measure a generalized
Dirichlet measure D(7, a, §).
The corresponding family of distributions on symmetric groups M a6 1s given by the formula

n _(0+a)(0+20)...(04+(k=1)a) [1-qf 5
Mz o(m) = T+ s 7 (Lnehar)”,

(3.4)
izl

where k = ¢() is the total number of cycles of m, r; is the number of cycles of length j, and [z, =
z(z +1)...(z + m ~ 1) is the Pochhammer symbol.

Thus, we have the following rule for sampling from D(7, ,, §). We choose a sequence {z;} of independent
variables with distribution 7. The first element X; equals z;. If we have already constructed n elements
Xi1,...,Xn, and n; of them equal z; (j = 1,...,k), then the conditional distribution of X,.;, given
‘X]_,... ,Xn,, is

k
n;—a 0+ ka
6 + n 6:83‘ + 9 + n 6:l:k+1' (3.5)

The following schemes correspond to limiting values of parameters.

l.Ia=1,60> -1 then My is a 6-measure at the identity permutation; therefore, X; = z; are inde-
pendent variables with distribution 7, i.e., D(7,1,6) coincide with T almost everywhere (in representation
(3.1), all P, =0 a.e.).

2.If0=-0,0<a<1,then M7 _, is concentrated on permutations with exactly one cycle. Thus, for
all4, X; = 21, i.e.,, D(7, @, —a) is 6, where z obeys 7 (P, = 1 a.e.). The same random measure corresponds
to the case 8 — oo, o > 0.

3. Ifm=—§ € N is fixed, @ = —00, § — o0, then

_ 1 mm-1)...(m-k+1)
M?.oo,moo - Hi;l((i _ 1)')7" mn . (36)

Thus, in (3.5), the conditional distribution of X,41, given Xi,... ,X,, takes the form

-k
Z —8z, + ———azm. (3.7)

]—1

In this case, in (3.1), we have B; = 1/m, i < m, i.e,,

F= Z—-Jx‘ = —Z(ﬁ(, (3.8)

i=1
4. The distribution of the mean value for D(r,q,0).

Theorem. Let T be a probability measure on [0,1], and let (o, 8) be admissible parameters. If p is the
distribution of the mean value f zdF(z) of a random measure F € D(7,a,8), then u and 7 are related by
the formula

(1) fa, 8 #0,
( / (2 — u)~du(w))~F = ( / (z—wdr(w)}, zeC\K; (1)

3619



(2) f0=0,

exp/ln(z —u)%du(u) = /(z —u)%dr(u), z€C\R; (4.2)
() fa=0,

/(z —u)"dp(u) = exp/ln(z —u)%dr(u), zeC\R. (4.3)

In our proof, we use the following statement.

Lemma ([9], Example 1.2.11). Let

HOEDY I’;L—t,t gty=>" %ﬁ (4.4)
n=1 n=1

be formal power series. Consider the composition H(t) = f(g(t)) and its expansion in & power series
H(t) = Y oo, Hat®/(n!). Then the coefficients Hy, take the form

= kaBn,k(g)) (45)
k=1

where By, k 15 a polynomial of the coefficients of g. This polynomial is given by the formula

Bk Z L. >11~z|(z|)1‘, ITa2, (4.6)

izl

where the sum is taken over all partitions A of n that have ezactly k summands, and 7 is the number
of summands of A equal to j.

For our purposes, it is more convenient to use a version of (4.6) in which the sum is taken over elements
of a symmetric group S,. Since for an arbitrary partition A of n, the number of permutations of cycle
structure A equals

n!

ZN =
9T
Hizlr,!z i

(4.7)

we can represent (4.5) in the form
TES, i2l

where k is the total number of cycles of 7, and r; is the number of cycles of length j.

Proof of the theorem. Let h, = [u™dp(u), pn = [ u™d7(u) be the moments of y and 7. According to (3.3),

n - 6+a)...(0+ (k-1 1—ali-1\" 7.
hn=ZMa,e(7r)HPj = Z( a)[gi”n_(l )a)'H(L(J—-;a—]f-)ﬁ> 7. (49

wESn j21 wESn

Let c,0 # 0. Then (4.9) takes the form

8 [—adips \ T4
me 3 () (410
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We denote fx = [%]k, g; = —|—a];pj, Hpn = [flnhn (k,j,n 2 1). Then (4.10) takes the form

=2 ka( ))rj- (4.11)

TESh

We see that this formula coincides with (4.8). Thus, for f(z) = Yoo, 2%, g(z) = 1o, &2, and
H(z) =3 5o, Hezk, we have
H(z) = f(g(2))- (4.12)

It remains to compute the-functions f, g, and H. One can easily check that

flz)=(1- z>-% -5

[oo}
9(z) = Z s pez’ = —Z[ ol k/ukdr(u)

k=1 (4.13)

=1- /(1 — zu)%dr(u);

H(z)= /(1 — zu) " Ydu(u) - 1.
Substituting these expressions in (4.12), and replacing z by 1, we obtain (4.1).
In the case 8 = 0, we have

_ (k- 1)! —[=al;p; )"

By = ,é\_"'s‘ DT 11 o) (4.14)

Thus, (4.11) holds with H, = a(n — 1)lh,, fx = (k— 1)}, g; = —[—0a];p;. The corresponding functions are
H(z) = — [In(1 —uz)*dp(u), f(2) = In(1 —2), g(2) =1 - [(1 — zu)*dr(u). Substituting these expressions
in (4.12), we obtain (4.2).

The relation with o = 0 is given in [5]. To make the picture complete, we present the corresponding

formulae. In this case,
1 .
hn= ) [—GEH(GPJ')T’; (4.15)
7E€ESn

thus, Hn = [Blahn, fc = 1, g5 = 0p;(j = D)L, ie., H(2) = [ sy, f(2) = €%, 9(2) = [ In g5pdr (), and
(4.3) follows.

Remarks. 1. At first glance, it is not clear that the right side of (4.1) tends to the right-hand side of (4.3)
as a — 0. However, this fact is easy to check, since

—i—ln/(l—g)adf(u)=zlv-ln/ 1+a1n(1-3)+o(a2)) dr(u)
=i—ln(1+a/ln 1——)d7’(u + o(a? ) /111 1—— dr(u).

2. For limiting values of parameters, the formula takes the following form.
(1) a=1, § > —1, then (4.1) implies

( / (z — w)~Pdpu(u))~ = f (z = w)dr(u) = z - pr. (4.16)

Thus, 4 is a 5-measure at point p;. This fact is in accord with our observation that D(7, 1,6) equals
T a.e.
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(2) If § = -a, 0 < a < 1, formula (4.1) turns into identity, hence, 4 = 7. Indeed, in this case,
D(r, o, —0) is §,, where z has distribution 7, and the distribution of the mean value of this random
measure coincides with 7.

3) Ims= —-% €N, a — ~o0, § — 0o, we may use (3.6) and an argument similar to the proof of the
theorem to obtain the relation

/e“mzdp.(u) = (/ e“zdr(u)>m, (4.17)

i.e., in terms of characteristic functions, f.(t) = fr(t/m)™. This fact is in accord with (3.8), since
this formula shows that, in this case, u is the distribution of the normalized sum % S,z of
independent random variables with distribution 7.

3. The symmetry of (4.1) with respect to the change (7,a,0) « (4, -0, —a) shows that (4.9) remains
valid if we substitute h; — p;, a — —0, § — —o. Thus, we have the following “inversion formula” for
restoring the moments of 7, given the moments of p:

_ 0 k-1)8 1+6 T r
Pn = Z(_l)k 1(0!+ )[1_—(a]+( )) H< t"_]],?yl) Hh’jJ'

TESy

4. Our proof is based on the fact that Ewens-Pitman measures My ; can be represented in the form

M ‘“‘ e (4.18)

n izl

Distributions of this form were considered in [4], where they were generated by the so-called Kolchin model.
This model can be described as follows. Let » = {55} and ¢ = {03} be two probability distributions on the
set of natural numbers. We pick a random number K distributed according to »~. Then we consider a random
K-vector (S1,...,Sk) consisting of independent integer random variables with common distribution ¢.
This vector defines a random partition A = (11272 . ) of N = Sy +... + Sk (R; = #{i : S; = j}).
For a fixed n € N, we consider the conditional distribution of A, given N = n, and we denote it by P,.
The obtained measure on the set of partitions of n corresponds, in a natural way, to some measure on the
symmetric group S, which is invariant under inner automorphisms. Namely, M™(g) = P,(\)/z\, where
the partition ) describes the cycle structure of g € Sy, and 2 is the number (4.7) of permutations of cycle
structure A. One can easily check that

M™(g) = % TG (4.19)

izl

Now the proof of the theorem shows that we may reformulate its statement in terms of the Kolchin model.
Namely,

[enturidute) = o ( [ estunierts)). (4.20)

where ¢x and ¢g are the generating functions of the distributions s and o, and @n(u) = px(ps(u)) is the
generating function of the sum N = S; + ...+ Sk. It should be mentioned that for fixed values of o and
8, the Ewens-Pitman measure M7 , can be obtamed in the Kolchin model with different parameters » and
o (see [4]), but the substitution of the corresponding generating functions in (4.20) yields formulae which
can be reduced to (4.1)~(4.3) by trivial transformations. We should also note that, as was shown in [4],

among all the distributions that can be obtained by the Kolchin model, only the Ewens~Pitman measures
and their limiting variants satisfy the coherence condition (3.2).
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