
Journal of Mathematical Sciences, Vol. 121, No. 3, 2004

THE MARKOV–KREIN CORRESPONDENCE IN SEVERAL DIMENSIONS

S. V. Kerov and N. V. Tsilevich UDC 519.21

Given a probability distribution τ on a space X, let M = Mτ denote the random probability measure on X known
as Dirichlet random measure with parameter distribution τ . We prove the formula

〈
1

1 − z1F1(M) − . . . − zmFm(M)

〉
= exp

∫
ln

1

1 − z1f1(x) − . . . − zmfm(x)
τ(dx),

where Fk(M) =
∫

X
fk(x)M(dx), the angle brackets denote the average in M , and f1, . . . , fm are the coordinates

of a map f : X → R
m. The formula describes implicitly the joint distribution of the random variables Fk(M),

k = 1, . . . , m. Assuming that the joint moments pk1,... ,km =
∫

fk1
1 (x) . . . fkm

m (x)dτ(x) are all finite, we restate the
above formula as an explicit description of the joint moments of the variables F1, . . . , Fm in terms of pk1,... ,km . In
the case of a finite space, |X| = N + 1, the problem is to describe the image µ of a Dirichlet distribution

Mτ0−1
0 Mτ1−1

1 . . . M
τN −1
N

Γ(τ0)Γ(τ1) . . . Γ(τN )
dM1 . . . dMN ; M0, . . . , MN ≥ 0, M0 + . . . + MN = 1

on the N -dimensional simplex ∆N under a linear map f : ∆N → R
m. An explicit formula for the density of µ was

already known in the case of m = 1; here we find it in the case of m = N − 1. Bibliography: 15 titles.

1. Introduction.
In this paper, we study the images of classical Dirichlet measures under linear or affine transformations. By

a Dirichlet measure we mean a probability distribution on an N -dimensional simplex ∆N determined by the
density

µ(dM)
dM1 . . . dMN

=
Γ(τ0 + . . . + τN )
Γ(τ0) . . .Γ(τN )

Mτ0−1
0 . . .MτN−1

N . (1.1)

Here M0, . . . , MN ≥ 0, M0 + . . . + MN = 1, are the barycentric coordinates in ∆N , and τ0, . . . , τN > 0,
τ0 + . . . + τN = 1, are arbitrary parameters.

Every measure µ in R
N+1 is uniquely determined by its additive Cauchy–Stieltjes transform

Rµ(z0, . . . , zN ) =
∫

µ(dx)
1 − z0x0 − . . .− zNxN

, (1.2)

which is correctly defined at least for all z = (z0, . . . , zN) ∈ iRN+1. One can check that

Rµ(z0, . . . , zN) =
N∏

j=0

(1 − zj)−τj (1.3)

in the case of the Dirichlet measure (1.1).
We define the multiplicative version of the Cauchy–Stieltjes transform of a probability measure τ as

Qτ(z0, . . . , zN) = exp
∫

ln
1

1 − z0x0 − . . .− zNxN
τ(dx). (1.4)

For instance, consider a free discrete probability distribution τ in R
N+1 determined by some positive weights

τ0, . . . , τN at the basis vectors e0, . . . , eN ∈ RN+1. Then

Qµ(z0, . . . , zN) =
N∏

j=0

(1 − zj)−τj . (1.5)
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We say that a measure µ in Rn is the Markov–Krein transform of a distribution τ in Rn if∫
µ(dx)

1 − z1x1 − . . .− znxn
= exp

∫
ln

1
1 − z1x1 − . . .− znxn

τ(dx) (1.6)

for all z = (z1, . . . , zn) ∈ iRn. Comparing (1.3) and (1.5), we conclude that the Markov–Krein transform of a
free measure τ is the corresponding Dirichlet measure (1.1).

The central observation of this paper is that the formula (1.6) behaves nicely upon affine transformations.
Given an affine map f : Rn → Rm, we denote by µf , τf the f-images of a pair of probability distributions µ, τ in
Rn. It is straightforward that if µ is the Markov–Krein transform of τ , then µf is the Markov–Krein transform
of τf .

We derive from this observation that for every probability distribution τ in Rn with property∫
Rn

ln(1 + ‖x‖)τ(dx) < ∞ (1.7)

there exists a unique probability distribution µ in Rn that satisfies the basic identity (1.6).
In the case of dimension n = 1, this fact was established in [1], along with the explicit formula for the density:

µ(da)
da

=
sin τ{(a,∞)}π

π
exp

∫
ln

1
|a − u| τ(du). (1.8)

We provide here two simple direct proofs of this formula. We also find another particular case where the density
of the measure µ in (1.6) can be written explicitly. Namely, we observe that there is an expression for this
density in terms of the Lauricella hypergeometric functions if µ is a projection of some Dirichlet measure with
one-dimensional kernel.

Assuming that the joint moments

pk1, ... ,km =
∫

f1(x)k1 . . . fm(x)km τ(dx)

of a number of linear functionals f1, . . . , fm with respect to a measure τ in Rn are all finite, we derive that the
joint moments

hk1, ... ,km =
∫

f1(x)k1 . . . fm(x)km µ(dx)

of the measure µ in (1.6) are also finite and can be obtained as averages over symmetric groups:

hn1, ... ,nm =
1
n!

∑
w∈Sn

∏
c∈C(w)

pk1(c), ... ,km(c). (1.9)

Here C(w) is the set of cycles of a permutation w. The set B of n objects where the group Sn acts is partitioned
into the subsets B1, . . . , Bm of cardinalities n1, . . . , nm, and ki(c) = |c

⋂
Bi| is the number of elements of Bi in

a cycle c.
The paper is organized as follows. We start in Sec. 2 by recalling known facts about the Markov–Krein

transform on the real line. In Sec. 3 we define the additive and multiplicative Markov–Krein transforms in
several dimensions, and prove the basic covariance property (Proposition 3.10). In Sec. 4 we check that the
basic identity (1.6) holds for the classical Dirichlet density and the free measure in a finite-dimensional space.
In Secs. 5 and 6 we show that the density of a linear image of a Dirichlet distribution can be written explicitly
in two particular cases when the dimension of the image or of the kernel of the linear map is one. The basic
notion we need here is that of the Lauricella hypergeometric functions. In Sec. 7 we prove the formula relating
the moments of the distribution τ and the moments of its Markov–Krein transform µ. In Sec. 8 we study
the joint distributions of a finite number of linear functionals with respect to a Dirichlet random measure
with continuous parametric measure τ . In Sec. 9 we generalize the Markov–Krein correspondence to infinite-
dimensional topological linear spaces. In the final Sec. 10 we consider exchangeable random sequences associated
with random Dirichlet measures, and generalize the Markov–Krein transform to the case of two-parameter
Pitman’s partition structures.
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In conclusion, let us mention an interesting open problem. As is well known (cf. [6]), the measure µ in the
basic identity (1.6) on the real line, n = 1, can very well be positive even if the parametric measure τ is a signed
measure. In fact, the proper condition on τ which ensures the posibility of µ is the interlacing property

τ{x : x > a} > 0, τ{x : x < a} > 0 for any a ∈ R.

It would be interesting to find a similar property of a measure τ that implies the positivity of the distribution µ
from (1.6) in several dimensions. An obvious necessary condition is

τ{x : f(x) < a} > 0 for every f : R
n → R and a ∈ R. (1.10)

We show by Example 6.5 that this condition is not sufficient1.

2. The one-dimensional Markov–Krein transform.
The familiar Cauchy–Stieltjes transform Rµ of a distribution µ on the real line R is defined by the integral

Rµ(z) =
∫

µ(dx)
1 − zx

. (2.1)

If Im z �= 0, then the integral converges for all probability measures µ. Given a measure τ on R such that∫
ln(1 + |x|)τ(dx) < ∞ (we call such a measure admissible), a multiplicative analog of the Cauchy–Stieltjes

transform can be naturally defined as the function

Qτ (z) = exp
∫

ln
1

1 − zx
τ(dx). (2.2)

It is well known that every function Qτ , where τ is an admissible probability distribution, also admits a rep-
resentation (2.1) as an additive Cauchy–Stieltjes transform of a measure µ. Recall that the measure µ can be
restored from its function Rµ by the Perron-Stieltjes inversion formula

µ([a, b]) = − 1
π

lim
v→+0

∫ b

a

Im R̃µ(u + iv), (2.3)

where R̃µ(z) = Rµ(1/z)/z =
∫

µ(du)/(z−u). Therefore, an admissible probability measure τ uniquely determines
the probability distribution µ via the identity∫

µ(dx)
1 − zx

= exp
∫

ln
1

1 − zx
τ(dx). (2.4)

(2.5) Example. One can check that if τ(dx) = 1
π

dx√
4−x2 is the arcsine distribution, and µ(dx) = 1

2π

√
4 − x2 is

the semicircle law, then (2.4) holds for all z /∈ [−2, 2].
The formula (2.4) was studied, in particular, by A. A. Markov [11], and by M. G. Krein and his school (see [8])

in connection with the so-called Markov moment problem. We shall say that µ is the Markov–Krein transform
of the measure τ . See [6] for a survey of various applications of the Markov–Krein transform.

If the measure µ has finite moments

pn =
∫

xnτ(dx), n = 1, 2, . . . ,

then its Markov–Krein transform µ also has finite moments

hn =
∫

xnµ(dx), n = 1, 2, . . . ,

and the identity

hn =
1
n!

∑
w∈Sn

p
r1(w)
1 p

r2(w)
2 . . . (2.6)

holds, where rk(w) is the number of cycles of length k in a permutation w ∈ Sn (see [6]).

1In fact, the situation with multidimensional interlacing property is much more complicated than in the one-dimensional case,
as one can see from two examples presented in the M. Sc. thesis [9] made under the supervision of S. V. Kerov after the preprint

version of this paper had appeared. One of these examples shows that, unlike the one-dimensional case, there exists a probability
measure µ in R2 that is not the Markov–Krein transform of any measure τ . The second one is the first nontrivial example of a

nonpositive measure τ in R3 whose Markov–Krein transform µ is a probability measure.
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3. Additive and multiplicative Cauchy–Stieltjes integrals in several dimensions.
Let z, x be two (column) vectors in Rm, and denote by zT = (z1, . . . , zm), xT = (x1, . . . , xm) the corresponding

row vectors. We write AT = (aji) for the transpose of a matrix A = (aij). In particular, zT x = z1x1+. . .+zmxm.
(3.1) Definition. The function

Rµ(z) =
∫

Rm

µ(dx)
1 − zT x

, z ∈ C
m, (3.2)

will be referred to as the additive Cauchy–Stieltjes transform of a probability distribution µ in Rm. Note that
the function is correctly defined for all vectors z = iy, y ∈ Rm.

The function Rµ may be considered as a moment generating function of the measure µ. In fact, if the joint
moments

hn1, ... ,nm =
∫

Rm

xn1
1 . . . xnm

m µ(dx) (3.3)

of the measure µ are all finite, then Rµ(z) expands into a formal series

Rµ(z) =
∑

n1, ... ,nm≥0

n!hn1, ... ,nm

zn1
1

n1!
. . .

znm
m

nm!
. (3.4)

We call a probability distribution τ in Rm admissible if∫
Rm

ln(1 + ‖x‖)τ(dx) < ∞,

where ‖x‖ =
√

x2
1 + . . . + x2

m. We define the multiplicative Cauchy–Stieltjes transform of an admissible proba-
bility measure τ in Rm as a natural generalization of the integral (2.2):

Qτ(z) = exp
∫

ln
1

1 − zT x
τ(dx), z ∈ C

m. (3.5)

The function is correctly defined for all vectors z = iy, y ∈ Rm.
(3.6) Example. Assume that the measure τ is discrete, with some weights τj at the vectors x(j), j = 1, 2, . . . , N .
Then

Qτ(z) =
∏
j

(
1 − zT x(j)

)−τj

. (3.7)

(3.8) Definition. We say that a measure µ in Rm is the Markov–Krein transform of an admissible probability
distribution τ if the additive Cauchy–Stieltjes transform of µ coincides with the multiplicative Cauchy–Stieltjes
transform of τ , ∫

µ(dx)
1 − zT x

= exp
∫

ln
1

1 − zT x
τ(dx), (3.9)

for all z ∈ iRm.
Both additive and multiplicative Cauchy–Stieltjes transforms behave nicely upon affine changes of variables.

(3.10) Proposition. Consider an affine transformation f(x) = a + Ax, where A is a k × n real matrix, and
a ∈ Rk is a column vector. Let µf be the image in Rk of a probability measure µ in Rn. Then

Rµf (z) =
1

1 − zT a
Rµ

( AT z

1 − zT a

)
. (3.11)

Proof. By definition,

Rµf (z) =
∫

µf(dy)
1 − zT y

=
∫

µ(dx)
1 − zT (a + Ax)

=
1

1 − zT a

∫
µ(dx)

1 − AT zx
1−zT a

=
1

1 − zT a
Rµ

( AT z

1 − zT a

)
. �

Quite analogously, one can prove a similar proposition for the multiplicative Cauchy–Stieltjes transform.
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(3.12) Proposition. Let τf be the image of a probability measure τ under an affine transformation f(x) =
a + Ax. Then

Qτf (z) =
1

1 − zT a
Qτ

( AT z

1 − zT a

)
. (3.13)

(3.14) Corollary. Let µf and τf be the images under an affine map f(x) = a+Ax of some probability measures
µ and τ . If µ is the Markov–Krein transform of the measure τ , then∫

µf (dy)
1 − zT y

= exp
∫

ln
1

1 − zT y
τf (dy), z ∈ iRk,

so that µf is the Markov–Krein transform of the measure τf .

4. The Dirichlet measures in Rm.
Let ∆N be an N -dimensional simplex with barycentric coordinates M0, M1, . . . , MN ≥ 0, M0 + M1 + . . . +

MN = 1. The formula

µ(dM) =
Γ(τ0 + τ1 + . . . + τN )
Γ(τ0)Γ(τ1) . . .Γ(τN )

Mτ0−1
0 Mτ1−1

1 . . .MτN−1
N dM1 . . . dMN (4.1)

determines a measure µ on ∆N referred to as a Dirichlet distribution with parameters τ0, τ1, . . . , τN . The fact
that µ is indeed a probability distribution follows easily from the well-known Dirichlet integral

Γ(τ1 + . . . + τN )
Γ(τ1) . . .Γ(τN)

∫
· · ·

∫
∆N

ϕ(x1 + . . . + xN)xτ1−1
1 . . . xτN−1

N dx1 . . . dxN =

=
∫ 1

0

ϕ(s) sτ1+...+τN −1 ds.

(4.2)

One can also derive from the Dirichlet integral (4.2) the joint moments hn0,n1, ... ,nN of the Dirichlet distribution
µ:

hn0,n1, ... ,nN =
1
n!

(τ0)n0 (τ1)n1 . . . (τN )nN , (4.3)

where n = n0 + n1 + . . . + nN and (a)m = a(a + 1) . . . (a + m − 1) is the Pochhammer symbol.

(4.4) Proposition. Assume that τ0 + τ1 + . . . + τN = 1. Then the additive Cauchy–Stieltjes transform of the
Dirichlet distribution (4.1) is∫

· · ·
∫

∆N

µ(dx)
1 − z0x0 − z1x1 − . . .− zNxN

=
N∏

j=0

1
(1 − zj)τj

. (4.5)

Proof. We shall employ the Lauricella function defined by the series (cf. [3, (2.1.4)])

F
(N)
D (a, b1, . . . , bN ; c; z1, . . . , zN ) =

=
∑

m1, ... ,mN≥0

(a)m1+...+mN (b1)m1 . . . (bN )mN

(c)m1+...+mN

zm1
1

m1!
. . .

zmN
N

mN !
.

(4.6)

This function admits the following Euler type integral representation (see [3, (2.3.5)]):

Γ(b0)Γ(b1) . . .Γ(bN )
Γ(b0 + b1 + . . . + bN )

F
(N)
D (a, b1, . . . , bN ; b0 + b1 + . . . + bN ; z1, . . . , zN)

=
∫

· · ·
∫

∆N

xb1−1
1 . . . xbN−1

N (1 − x1 − . . .− xN)b0−1

(1 − z1x1 − . . .− zNxN)a
dx1 . . . dxN .

(4.7)

Now put a = 1 and bj = τj in (4.7), so that c = τ0 + τ1 + . . .+ τN = 1. Since a = c, it follows directly from (4.6)
that the series simplifies to ∫

· · ·
∫

∆N

µ(dx)
1 − z1x1 − . . .− zNxN

=
N∏

j=1

1
(1 − zj)τj

.

Formula (4.5) follows from this by a substitution x0 = 1 − x1 − . . .− xN (see Sec. 5 for more details). �
Comparing (4.5) with Example 3.6, we arrive at the following statement.
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(4.8) Corollary. Assume that µ is the Dirichlet measure with parameters τ0, . . . , τN such that τ0+τ1+. . .+τN =
1. Then µ is the Markov–Krein transform of the free discrete measure τ , i.e., the measure with weight τj at the
jth basis vector, j = 0, 1, . . . , N .

(4.9) Remark. Let µ be the Dirichlet measure corresponding to a discrete distribution τ as in Corollary 4.8.
Consider a linear map f(x) = Ax induced by a map f : Bn → Bk of the standard linear basis Bn in Rn onto
the basis Bk in Rk, and let µf , τf be the images of the distributions µ, τ under this map. Then the measure µf

coincides with the Dirichlet distribution corresponding to the parameter measure τf . This property is well known
and allows one to extend the construction of the Dirichlet measure to the most general probability distributions
τ . We return to this general definition in Sec. 8.

5. Rank 1 projections of Dirichlet measures.
Let µf be the image of the Dirichlet measure µ with positive parameters τ0, . . . , τn, τ0 + . . . + τn = 1, under

a linear map yi =
∑n

j=0 aijxj , i = 1, . . . , k. It follows from Corollary 3.14 that

Rµf (z1, . . . , zk) =
n∏

j=0

(
1 −

k∑
i=1

aijzi

)−τj

. (5.1)

In this section we present an explicit formula for a linear image of a Dirichlet measure in a particular case when
the image of the linear transformation is of dimension 1. In the next Sec. 6 we shall study linear projections
with one-dimensional kernel.

Consider a Dirichlet measure (4.1) on a simplex ∆N , and let µf be its image under a linear functional
f(x0, . . . , xN) = a0x0 + . . . + aNxN that takes the value ak at a vertex ek of the simplex. We enumerate the
vertices in the increasing order of the values of f , a0 < a1 < . . . < aN .

(5.2) Proposition ([1]). The distribution µf of the functional f with respect to the Dirichlet measure µ has
density

µf(da)
da

=
sinπ(τk + . . . + τN )

π

N∏
j=0

|a − aj |−τj , a ∈ (ak−1, ak), (5.3)

for every k = 1, . . . , N .

First proof. By (5.1), the Cauchy–Stieltjes transform of the measure µf is

Rµf (z) =
N∏

j=0

1
(1 − ajz)τj

.

Using the Perron-Stieltjes inversion formula (2.3), one can easily check that (5.3) provides the density of µf in
the interval a ∈ (ak−1, ak). �

For the sake of clarity, we shall also compute density (5.3) by direct integration.

Second proof. Remark that the intersection of a simplex with a hyperplane is always linearly isomorphic to a
prism, i.e., a direct product of two simplices. In fact, let ∆′ = ∆k−1 and ∆′′ = ∆N−k be the faces of the simplex
∆N that are generated by the vertices e0, . . . , ek−1 (where the value f(ei) = ai of the form f is smaller than a)
and by the vertices ek, . . . , eN (where f(ei) = ai ≥ a). Every point v ∈ ∆N can be uniquely represented as a
barycenter

v =
s

s + t
v′ +

t

s + t
v′′, s, t ≥ 0, (5.4)

where v′ ∈ ∆′ and v′′ ∈ ∆′′. Since ak−1 < a < ak, the function f assumes the value f(v) = a at exactly one
point of every interval (5.4). For this point v one can set

t =
k−1∑
i=0

(a − ai)v′i = a − f(v′); s =
N∑

i=k

(ai − a)v′′i = f(v′′) − a.

Note that v′ = (v′0, . . . , v′k−1) and v′′ = (v′′k , . . . , v′′N ) are barycentric coordinates in the simplices ∆′ and ∆′′.
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Consider a substitution

vi =
s

s + t
v′i, i = 0, 1, . . . , k − 1, vi =

t

s + t
v′′i , i = k, . . . , N,

so that we replace the initial coordinates v1, . . . , vN with the new ones v′1, . . . , v′k−1, a, and v′′k+1, . . . , v′′N . One
can easily check that the Jacobian of this substitution is

J =
sk−1 tN−k

(s + t)N
.

It follows that the integral over the subset {v ∈ ∆N : ak−1 < f(v) < ak} with respect to the Dirichlet measure
µ can be written, using new variables, as

Γ(τ ′ + τ ′′)
Γ(τ ′)Γ(τ ′′)

∫ ak

ak−1

∫
∆′

∫
∆′′

sτ′−1 tτ
′′−1

(s + t)τ′+τ′′−1
µ′(dv′)µ′′(dv′′) da, (5.5)

where τ ′ = τ0 + . . . + τk−1 and τ ′′ = τk + . . . + τN . We write µ′ for the Dirichlet measure with parameters
τ0, . . . , τk−1 on the simplex ∆′, and µ′′ for the Dirichlet measure with parameters τk, . . . , τN on the simplex
∆′′.

Since τ ′ + τ ′′ = 1, we have Γ(τ ′)Γ(τ ′′) = π/ sinπτ ′, and the density of the measure µf factors as

µf(da)
da

=
sinπτ ′

π

∫
∆′

tτ
′′−1 µ′(dv′)

∫
∆′′

sτ′−1 µ′′(dv′′).

Using the Lauricella integral (4.7), we obtain∫
∆′

tτ
′′−1µ′(dv′) = (a−a0)τ′′−1F

(k−1)
D

(
1−τ ′′, τ1, . . . , τk−1; τ ′;

a1 − a0

a − a0
, . . . ,

ak−1 − a0

a − a0

)

=
k−1∏
i=0

1
(a − ai)τi

,

since the parameters 1 − τ ′′ = τ ′ coincide. In a similar way,

∫
∆′′

sτ′−1 µ′′(dv′′) =
N∏

i=k

1
(ai − a)τi

,

and formula (5.3) follows. �
6. The images of Dirichlet measures under linear projections with one-dimensional kernel.

Now we consider linear maps f : ∆n+1 → Rn with kernel of dimension one. We show that the image µf of a
Dirichlet measure µ on the simplex ∆n+1 has density p which is a piecewise Lauricella function.

Denote by ak ∈ Rn the image ak = f(ek) of the kth vertex ek of the simplex ∆n+1, k = 0, 1, . . . , n + 1. Let
ak = (a1k, . . . , ank) be the coordinates of the vector ak. It will be convenient to use the notation

(b0, b1, . . . , bn) =

∣∣∣∣∣∣∣
1 1 . . . 1

b10 b11 . . . b1n

. . . . . . . . . . . .
bn0 bn1 . . . bnn

∣∣∣∣∣∣∣
for the oriented volume of a simplex in Rn with vertices b0, b1, . . . , bn (more precicely, the Lebesgue volume
multiplied by n!). Let S be the Lebesgue volume of the set δ = f(∆n+1). Since a generic point x ∈ δ belongs to
exactly two simplices with vertices ak, one can write

S =
1

2n!

n+1∑
j=0

|(a0, . . . , âj, . . . , an+1)|.
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Let us call a diagonal the convex hull of a subset of any n−1 points in the set {a0, . . . , an+1}. The diagonals
split the image δ into several cells. We shall show that on each cell the density p(x) = Sµf (dx)/dx of µf (with
respect to the normalized Lebesgue measure) is a continuous Lauricella function.

There is no loss of generality in the assumption that the point x ∈ δ belongs to the cell identified as the
intersection of the simplices δ′ = {a0, . . . , an−1, an} and δ′′ = {a0, . . . , an−1, an+1}. Let

x =
n−1∑
k=0

αk ak + αn an, x =
n−1∑
k=0

βk ak + βn an+1 (6.1)

be the barycentric decompositions of the vector x in the simplices δ′, δ′′ correspondingly.

(6.2) Proposition. Assuming that x ∈ δ′
⋂

δ′′, the density p(x) of µf with respect to the normalized Lebesgue
measure on δ can be written in the form

p(x) =
Γ(τ0 + . . . + τn+1)

Γ(τ0) . . .Γ(τn−1)Γ(τn + τn+1)
ατ0−1

0 . . .α
τn−1−1
n−1 ατn−1

n βτn+1
n

S

S′×

×F
(n)
D

(
τn+1, τ0, . . . , τn−1; τn + τn+1; 1−

β0

α0
, . . . , 1− βn−1

αn−1

)
,

(6.3)

where S′ = (a0, . . . , an) is the volume of the simplex δ′, and F
(n)
D denotes the Lauricella function (4.6).

Proof. A generic barycenter representation of the vector x can be obtained as a convex combination of decom-
positions (6.1) with coefficients 1 − u > 0, u > 0 correspondingly. Note that

αk =
(a0, . . . , x, . . . , an−1, an)
(a0, . . . , ak, . . . , an−1, an)

, βk =
(a0, . . . , x, . . . , an−1, an+1)
(a0, . . . , ak, . . . , an−1, an+1)

for k < n, and S′αn = (a0, . . . , an−1, x) = S′′βn, where S′′ = (a0, . . . , an−1, an+1). Another useful fact is
that S′∂αn/∂xj = S′′∂βn/∂xj for all j = 1, . . . , n. Using simple linear algebra, one can check that the Jacobi
determinant of the substitution

M1 = (1 − u)α1 + u β1,

. . .

Mn−1 = (1 − u)αn−1 + u βn−1,

Mn = (1 − u)αn,

Mn+1 = u βn,

is actually

J =
βn

S′ =
αn

S′′ =
(a0, . . . , an−1, x)

(a0, . . . , an−1, an)(a0, . . . , an−1, an+1)
,

and does not depend on u. Therefore,

p(x) =
Γ(τ0 + . . . + τn+1)
Γ(τ0) . . .Γ(τn+1)

ατn−1
n βτn+1−1

n JS

∫ 1

0

uτn+1−1(1 − u)τn−1
n−1∏
j=0

(
(1 − u)αj + u βj

)τj−1

du,

and formula (6.3) follows directly from the Lauricella integral (4.7). �
(6.4) Corollary. Let ε denote the distance of x ∈ δ from a generic point of a diagonal δ0. Then

p(x) = O(ετi+τj−1), ε → 0,

where ai and aj are the only two vertices of δ not contained in the diagonal δ0.

(6.5) Example. Consider a measure τ in R2 with equal weights ε > 0 at the points a0 = (−1/2,
√

3/2),
a1 = (−1/2,−

√
3/2), a2 = (1, 0), and with weight 1−3ε at the point a3 = (0, 0). If ε ≤ 1/3, then all the weights

are nonnegative. Note that condition (1.10) is satisfied in a wider range 0 < ε ≤ 1/2. We shall show that density
(6.3) is only positive when 0 < ε ≤ 1/3, so that condition (1.10) does not imply the positivity of the density p.
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The barycentric coordinates of a point a = (x, 0), −1/2 < x < 0 in the triangle a0, a1, a2 are

α0 =
1 − x

3
, α1 =

1 − x

3
, α2 =

1 + 2x

3
;

the corresponding coordinates of a in the triangle a0, a1, a3 are

β0 = −x, β1 = −x, β2 = 1 + 2x.

Therefore, z = 1 − β0/α0 = 1 − β1/α1 = (1 + 2x)/(1 − x) increases from 0 to 1, as far as x increases from
x = −1/2 to x = 0.

It follows from the formula
n∑

k=0

(ε)k

k!
(ε)n−k

(n − k)!
=

(2ε)n

n!

that

F
(2)
D (1 − 3ε, ε, ε; 1 − 2ε; z, z) =

∞∑
n=0

(1 − 3ε)n (2ε)n

(1 − 2ε)n n!
zn = 2F1(1 − 3ε, 2ε; 1− 2ε; z).

Density (6.3), up to a positive factor C, takes the form

C p(x) = (1 − 2ε) 2F1(1 − 3ε, 2ε; 1− 2ε; z) =

= (1 − 2ε) + (1 − 3ε)
∞∑

n=1

(2 − 3ε)(n−1)

(2 − 2ε)(n−1)

(2ε)n

n!
zn,

where z = (1 + 2x)/(1 − x). Since the right-hand side is negative in some interval 0 < z0(ε) < z < 1 for every
1/3 < ε < 1/2, it follows that the density p is only positive for 0 < ε ≤ 1/3.

7. The moment formula.
Let V = {e0, e1, . . . , eN} be the set of vertices of a simplex ∆N , and τ a probability distribution on the set V

with weights τ0, τ1, . . . , τN at the corresponding vertices. We denote by M a random point of the simplex ∆N ,
subject to the Dirichlet distribution (4.1) with parameter measure τ . The angle brackets will always denote the
average in M with respect to this Dirichlet distribution µ.

Consider an affine map f : ∆N → Rm, and denote its values on the vertex set V as f(v) =
(
f1(v), . . . , fm(v)

)
,

v ∈ V . The value of f at the point M ∈ ∆N with barycentric coordinates (M0, M1, . . . , MN) can then be written
in the form f(M) = (X1(M), . . . , Xm(M)), where

Xi(M) =
N∑

j=0

fi(ej)Mj , i = 1, . . . , m. (7.1)

Let τf and µf be the f-images in Rm of the measures τ and µ in the space RN . We use the following notation
for the joint moments of the measures τf , µf :

pk1, ... ,km =
N∑

j=0

fk1
1 (ej) . . . fkm

m (ej) τj , (7.2)

hn1, ... ,nm =
〈
Xn1

1 . . .Xnm
m

〉
=

∫
· · ·

∫
∆N

Xn1
1 (M) . . .Xnm

m (M) µ(dM). (7.3)

In this section we compute the moments hn1, ... ,nm of the distribution µf in terms of the moments pk1, ... ,km

of the distribution τf . In order to make the formula look more combinatorial, we start with some notation.
Let B =

⋃m
i=1 Bi be a disjoint union of m subsets Bi of cardinalities |Bi| = ni, and denote by n = n1+. . .+nm

the total number of elements in B. If b ∈ Bi, we write i(b) = i, and say that i(b) is the shape of b.
A map j : B → {0, 1, . . . , N} will be referred to as a coloring of the set B, and we denote by M(B) the set

of all such colorings.
Let S(B) be the set of permutations of the set B. Given a coloring j ∈ M(B), we say that a permutation

w ∈ S(B) is color-respecting if b and w(b) have the same color for all b ∈ B. Let S(B, j) denote the set of
permutations of B respecting the coloring j. Note that all elements in a cycle c of a color-respecting permutation
w ∈ S(B, j) have the same color which we denote by j(c).
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(7.4) Proposition. Define the moments of the distributions τf and µf by formulas (7.2), (7.3) and let n =
n1 + . . . + nm. Then

hn1, ... ,nm =
1
n!

∑
w∈Sn

∏
c∈C(w)

pk1(c), ... ,km(c), (7.5)

where C(w) is the set of cycles of a permutation w, and ki(c) = |c
⋂

Bi| is the number of elements of shape i in
a cycle c.

(7.6) Example. If m = 2, then the formulas for the first few joint moments are the following:

h10 = p10, h01 = p01,

2 h20 = p2
10 + p20, 2 h11 = p10p01 + p11, 2 h02 = p2

01 + p02.

The moments of order 3 have the form

6 h30 = p3
10 + 3p10p20 + 2p30,

6 h21 = p2
10p01 + p01p20 + 2p10p11 + 2p21,

6 h12 = p10p
2
01 + p10p02 + 2p01p11 + 2p12,

6 h03 = p3
01 + 3p01p02 + 2p03.

Proof. Using (7.2), one can record the right-hand side of the moment formula (7.5) as

1
n!

∑
j∈M(B)

∑
w∈S(B,j)

∏
c∈C(w)

f
k1(c)
1 (ej(c)) . . . fkm(c)

m (ej(c)) τj(c). (7.7)

In order to compute the left-hand side of (7.5), first note that

Xni
i =

∑
j∈M(Bi)

∏
b∈Bi

fi(ej(b))Mj(b),

hence
hn1, ... ,nm =

∑
j∈M(B)

∏
b∈B

fi(b)(ej(b))
〈
Mk0

0 Mk1
1 . . .MkN

N

〉
, (7.8)

where kj = |{b ∈ B : j(b) = j}| is the number of elements of color j.
Now recall the moment formula (4.3) and note that the Pochhammer symbol can be written in the form

(t)k =
∑

w∈Sk

tc(w),

where c(w) is the number of cycles in a permutation w. Therefore,〈
Mk0

0 Mk1
1 . . .MkN

N

〉
=

∑
(w0,w1, ... ,wN )

τ
c(w0)
0 τ

c(w1)
1 . . . τ

c(wN)
N ,

where (w0, w1, . . . , wN) runs over a subgroup Sk0 ×Sk1 × . . .×SkN in Sn. Hence one can present (7.8) in the
form identical with (7.7), and the proposition follows. �
(7.9) Corollary. In the case of a single functional, m = 1, (7.5) reduces to the familiar moment formula (2.6).

In fact, the moment formula (7.5) is equivalent to the basic identity (3.9).
Assume for simplicity that a measure τ in Rm is finitely supported. Then its Markov–Krein transform µ is

also finitely supported, and both distributions µ and τ have finite moments

pn1, ... ,nm =
∫ m∏

i=1

xni
i τ(dx), hn1, ... ,nm =

∫ m∏
i=1

xni
i µ(dx) (7.10)

of all orders.
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(7.11) Proposition. If a measure τ is finitely supported, then the moment formula (7.5) is equivalent to the
basic identity (3.9).

Proof. Let us expand the functions Rµ(z) and lnQτ (z) into power series in the variables z1, . . . , zm,

lnQτ (z1, . . . , zm) =
∑

n1+...+nm≥1

(n1 + . . . + nm − 1)!
n1! . . .nm!

pn1,... ,nmzn1
1 . . . znm

m ,

Rµ(z1, . . . , zm) =1+
∑

n1+...+nm≥1

n!
n1! . . .nm!

hn1,... ,nmzn1
1 . . . znm

m .

(7.11)

We use the following combinatorial lemma, which is a generalization of the well-known result for one variable
([10, Example I.2.11]).

(7.13) Lemma. Consider the formal power series

A(x1, . . . , xm) =
∑

n1+...+nm≥1

an1,... ,nm

n1! . . .nm!
xn1

1 . . . xnm
m ,

B(x) = 1 +
∞∑

n=1

bn

n!
xn

and the composition H(x1, . . . , xm) = B(A(x1, . . . , xm)). Expand H into a power series,

H(x1, . . . , xm) = 1 +
∑

n1+...+nm≥1

Hn1,... ,nm

n1! . . .nm!
xn1

1 . . . xnm
m .

Then the coefficients Hn1,... ,nm take the form

Hn1,... ,nm =
∑

w∈Sn

bk

∏
c∈C(w)

ak1(c), ... ,km(c)

(k1(c) + . . . + km(c) − 1)!
,

where k = k(w) is the number of cycles of a permutation w ∈ Sn.

Set A(z1, . . . , zm) = lnQτ(z), B(x) = ex. Then we have Qτ (z) = B(A(z1, . . . , zm)). By Lemma (4.11),

Qτ (z) = 1 +
∑

n1+...+nm≥1

zn1
1 . . . znm

m

n1! . . .nm!

∑
w∈Sn1+...+nm

∏
c∈C(w)

pk1(c), ... ,km(c). (7.14)

By definition of the Markov–Krein correspondence, Rµ(z) = Qτ(z). The comparison of the coefficients for Rµ(z)
in (7.12) with those in (7.14) concludes the proof of the proposition. �
8. Dirichlet measures with continuous parametric distributions.

Consider an arbitrary finite space X = {s0, . . ., sN}. We identify the set of all probability distributions on X
with the standard simplex ∆N : a point M ∈ ∆N with barycentric coordinates (M0, . . ., MN) corresponds to the
measure with weights M0, . . ., MN at the points s0, . . ., sN . We use the same notation M for this distribution.
Let τ be a probability measure on X with weights τ0, . . ., τN at the points s0, . . ., sN . Consider the Dirichlet
distribution on the simplex ∆N with parameters τ0, . . ., τN . Then a random point M ∈ ∆N determines a random
probability distribution

∑N
i=0 Miδsi on the space X. This distribution is said to be the Dirichlet measure on X

with the parameter measure τ . By Remark 4.9, this random measure is characterized by the following condition.
If X = A0∪. . .∪Ak is a partition of X, then the random vector (M(A0), . . ., M(Ak)) has the Dirichlet distribution
on ∆k with parameters τ(A0), . . ., τ(Ak) (in Remark 4.9, consider the map f : Bn → Bk that sends a basis vector
ei ∈ Bn to e′j ∈ Bk if vi ∈ Aj). We take this property as a definition of Dirichlet measure for general probability
distributions τ .
(8.1) Definition ([5]). Let X be an arbitrary measurable space, and τ be a probability measure on X. A
random probability distribution M on X is called the Dirichlet random measure if, for each finite measurable
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partition X = A0 ∪ . . .∪AN , the vector (M(A0), . . ., M(AN)) has the Dirichlet distribution (4.1) on the simplex
∆N with parameters τ(A0), . . ., τ(AN).

Remark (4.9) guarantees the consistency of these conditions, and it was proved by Ferguson [5] that such a
random measure does exist.

Let M be the random Dirichlet measure on X with parameter measure τ . Denote by µ the distribution of this
random measure. Consider a measurable function f : X → Rm. We call the map f admissible for a probability
distribution τ if ∫

X

ln(1 + ‖f(x)‖)τ(dx) < ∞. (8.2)

(8.3) Theorem. The random mean value
∫

f(x)M(dx) exists a.e. if and only if the function f is admissible for
τ . Provided that this condition is satisfied,∫

µ(dM)
1 − zT

(∫
f(x)M(dx)

) = exp
∫

ln
1

1 − zT f(x)
τ(dx), z ∈ iRm. (8.4)

Proof. The first part of the theorem follows from [4].
Let f be a “simple” function that takes a finite number of values a0, . . . , an ∈ Rm on some sets A0, . . . , An.

Then the right-hand side of (8.4) equals
n∏

j=0

(1 − zT aj)−τ(Aj). (8.5)

The left-hand side of (8.4) takes the form

∫
µ(dM)

1 − zT a1M(A0) − . . .− zT anM(An)
. (8.6)

By definition of µ, the vector (M(A0), . . . , M(An)) has the Dirichlet distribution with parameters τ(A0), . . . ,
τ(AN ), thus (8.6) is just the additive Cauchy–Stieltjes transform of the Dirichlet distribution with parameters
τ(A0), . . . , τ(An), which is equal to (8.5) by Proposition 4.4.

Now let f be an arbitrary admissible function. We can approximate it by a sequence of simple functions
f1, f2, . . . such that fn → f and ‖fn‖ ≤ ‖f‖ a.e. Then

∫
µ(dM)

1 − zT
(∫

fn(x)M(dx)
) = exp

∫
ln

1
1 − zT fn(x)

τ(dx). (8.7)

The right-hand side of this equality tends to the right-hand side of (8.4), since∣∣∣∣ln 1
1 − zT fn(x)

∣∣∣∣ ≤ C ln(1 + ‖f(x)‖), ‖f(x)‖ → ∞,

where C does not depend on x and n. By the first part of the theorem, ‖
∫

f(x)M(dx)‖ < ∞ for almost all
measures M with respect to the distribution µ. Then, by the Dominated Convergence Theorem,

∫
fn(x)M(dx) →∫

f(x)M(dx) a.e. Since the function 1/(1 − zT x) is bounded, the left-hand side of (8.7) tends to the left-hand
side of (8.4), and the theorem follows.

(8.8) Corollary. Let f1, . . . , fm be admissible functions for τ , and consider the map f : X → Rm, where
f(x) = (f1(x), . . . , fm(x)). Denote by τf the f-image of τ and by µf the distribution of the mean value∫

f(x)M(dx) in Rm. Then µf is the Markov–Krein transform of τf .

In the case of X = R and f(x) = x, this follows from the results of [1] (cf. a combinatorial proof in [2]).

9. Generalized Dirichlet measures in linear spaces.
Let V be a real topological vector space, and L be a space of real linear functionals on V . We assume that

the elements of L separate the points of V .
For the sake of simplicity, we shall assume in this section that all measures under consideration have compact

support.
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Given a probability measure µ in V , we define its additive Cauchy–Stieltjes transform as a functional

Rµ(F ) =
∫

µ(dv)
1 − F (v)

, F ∈ iL. (9.1)

Note that the Cauchy–Stieltjes transform uniquely determines the corresponding measure. Indeed, for each
F ∈ L and z ∈ iR, we have

Rµ(zF ) =
∫

µ(dv)
1 − zF (v)

=
∫

µF (dx)
1 − zx

= RµF (z),

where µF is the image of µ under the map F : V → R. Thus we know the Cauchy–Stieltjes transforms of all
one-dimensional projections of the measure µ. These projections can be restored by (2.3), and they uniquely
determine the original distribution µ since they determine the Fourier transform 〈eiF 〉 =

∫
exp(iF (v))µ(dv) of

µ.
We define the multiplicative Cauchy–Stieltjes transform of a probability measure τ in V as a functional

Qτ (F ) = exp
∫

ln
1

1 − F (v)
τ(dv), F ∈ iL. (9.2)

(9.3) Definition. We say that a measure µ in V is the Markov–Krein transform of a probability distribution τ
if the additive Cauchy–Stieltjes transform of µ coincides with the multiplicative Cauchy–Stieltjes transform of
τ : ∫

µ(dv)
1 − F (v)

= exp
∫

ln
1

1 − F (v)
τ(dv), F ∈ iL. (9.4)

The function Rµ(F ) uniquely determines the measure µ. Therefore, for each τ there is at most one distribution
µ satisfying the basic identity (9.4).

One can easily generalize the proof of Corollary 3.14 to check that the Markov–Krein transform in a linear
space is covariant under affine transformations.

(9.5) Proposition. Let µg and τg be the images under an affine map g(v) = a+Av of some probability measures
µ and τ . If µ is the Markov–Krein transform of τ , then µg is the Markov–Krein transform of the measure τg.

(9.6) Example. If V = Rm, and L = V ∗ is the space of real linear forms on Rm, we obtain the definition (3.8)
of the Markov–Krein correspondence in Rm.
(9.7) Example. Let V = M(X) be the space of finite Borel measures on a topological space X, and L be the
space of bounded measurable real functions on X, where

F (v) =
∫

X

f(x)v(dx).

If we identify each point x ∈ X with the δ-measure δx ∈ V , then each probability measure τ on X can be
considered as a distribution in V . Thus the basic identity (9.4) takes the form∫

µ(dM)
1 − z

∫
X f(x)M(dx)

= exp
∫

ln
1

1 − zf(x)
τ(dx), z ∈ iR.

Since this identity coincides with (8.7), the Markov–Krein transform of τ is just the distribution of the Dirichlet
random measure with parameter τ .

We use this example to prove the existence of the Markov–Krein transform of a probability measure in a
general linear space.

(9.8) Proposition. For each probability measure τ with compact support in V there exists its Markov–Krein
transform µ.

Proof. Consider the Dirichlet measure M in V with parameter measure τ . By Theorem 8.3, its distribution µ̃
satisfies the identity ∫

M(V )

µ̃(dM)
1 − F (M)

= exp
∫

V

ln
1

1 − F (v)
τ(dv), F ∈ iL. (9.9)
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We consider the projection from M(V ) onto V that sends a measure M to its mean value vM =
∫

vM(dv).
Denote by µ the image of the distribution µ̃ under this projection. Then for each linear functional F , the
distribution of F (M) =

∫
F (v)M(dv) = F (vM) with respect to µ̃ coincides with the distribution of F (v) with

respect to µ, thus ∫
M(V )

µ̃(dM)
1 − F (M)

=
∫

V

µ(dv)
1− F (v)

,

and the proposition follows from (9.9).

10. Random measures and exchangeable sequences.
According to the de Finetti celebrated result, there is a natural correspondence between random measures M

on a space X and exchangeable sequences (Z1, Z2, . . . , Zn, . . . ) of X -valued random variables. In the case of a
Dirichlet random measure, there is a simple special construction for the corresponding exchangeable sequence,
the Chinese restaurant process (see [2]). Consider a random sequence of permutations w1, w2, . . . , wn ∈ Sn con-
structed according to the following rule. Start with the identity permutation w1. If we have already constructed
w1, . . .wn, then wn+1 ∈ Sn+1 is obtained from wn by inserting n + 1 in a cycle of wn to the immediate right
of some element i = 1, . . .n, or by adding a new cycle consisting of the only element n + 1. Each of these
options has equal probabilities 1/(n + 1). One can easily see that the distribution of wn in this construction
is the Haar measure on Sn, i.e., each permutation w ∈ Sn has probability 1/n!. Note that the sequence {wn}
defines a partition of the set N into “infinite cycles” C1, C2, . . . , namely, n ∈ Ci if n lies in the ith cycle of πn.
Associate with each cycle a random label taken independently from the distribution τ . Let Xn be the label of
the cycle containing n ∈ N. Then the sequence X is exchangeable and corresponds to the Dirichlet measure with
parameter distribution τ .

As it was shown in [6, 13], the constructions leading to random Dirichlet measures admit natural generaliza-
tions. We now describe a generalized Chinese restaurant model ([6]).

The parameters of this model consist of a probability measure τ and a family {νn} of coherent central measures
on the symmetric groups Sn. This means that the weight νn(w) of a permutation w ∈ Sn depends only on the
cycle structure of w, and for each w ∈ Sn,

νn(w) =
∑

σ:σ′=w

νn+1(σ),

where σ′ denotes the permutation obtained from σ by removing the element n + 1 from its cycle. We choose a
random sequence of permutations {wn} and the associated random sequence {Xn} as follows. Start with the
identity permutation w1 ∈ S1. If we have already constructed w1, . . .wn, then choose wn+1 = σ ∈ Sn+1 such
that σ′ = wn with probability νn+1(σ)/νn(wn). As before, we associate with each (possibly infinite) cycle in
N an independent random label with distribution τ and we set Xn to be the label of the cycle containing n.
The conditions imposed on the family {νn} guarantee the correctness of this procedure and the exchangeability
of the sequence {Xn}. Hence this sequence defines some random measure which we call a generalized Dirichlet
measure and denote by D({νn}, τ).

One can easily generalize Proposition 7.4 to obtain the following result (cf. [6], 4.2.2.).

(10.1) Proposition. Let τ be a finitely supported probability measure in Rm, and let M be a generalized
random Dirichlet measure D({νn}, τ). Denote by µ the distribution of the mean value

∫
xM(dx). Then the

moments (7.10) of measures µ and τ are related by the identity

hn1, ... ,nm =
∑

w∈Sn

νn(w)
∏

c∈C(w)

pk1(c), ... ,km(c), (10.2)

where C(w) is the set of cycles of a permutation w, and ki(c) is the number of elements of shape i in a cycle c
(see Sec. 7 for the definition of “shape”).

(10.3) Example. Consider the Ewens distributions on symmetric groups,

Mθ
n(w) =

θk(w)

(θ)n
, θ > 0, w ∈ Sn, n = 1, 2, . . . , (10.4)
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and their two-parameter generalizations, the Pitman distributions ([12], [14])

Mα,θ
n (w) =

(θ + α)(θ + 2α) . . .(θ + (k − 1)α)
(θ + 1)n−1

∏
j≥1

(
(1 − α)j−1

(j − 1)!

)rj

, (10.5)

where k = k(w) is the total number of cycles of w, rj is the number of cycles of length j, and (x)m = x(x +
1) . . . (x + m − 1) is the Pochhammer symbol. The range of admissible parameters in (10.5) is

{(α, θ) : 0 ≤ α < 1, θ > −α}
⋃

{(α,−mα), α < 0, m ∈ N}.

Let τ be a probability distribution in Rm. Consider the generalized Dirichlet measure M with parameters
{Mα,θ

n }, τ and denote by µ the distribution of the random mean value
∫

xM(dx) in R
m.

As a direct generalization of the main result in [15], one can show that the measures µ and τ satisfy one of
the following identities generalizing the Markov–Krein correspondence (3.9):

∫
(1 − zT x)−θµ(dx) = exp

∫
ln(1 − zT x)−θτ(dx) if α = 0 (10.6)

in the case of Ewens distributions, and

(∫
(1 − zT x)−θµ(dx)

)− 1
θ

=
(∫

(1 − zT x)ατ(dx)
) 1

α

if α, θ �= 0,

exp
∫

ln(1 − zT x)αµ(dx) =
∫

(1 − zT x)ατ(dx) if θ = 0, α �= 0.

(10.7)
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