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Abstract

We present an explicit description of the isomorphism between two models of finite factor representations
of the infinite symmetric group: the tableau model in the space of functions on Young bitableaux and the
dynamical model in the space of functions on pairs of Bernoulli sequences. The main tool used is the
Fourier transform on the symmetric groups. We also start the investigation of the so-called tensor model
of two-row representations of the symmetric groups, which plays an intermediate role between the tableau
and dynamical models, and show its relations to both these models.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we study several models of irreducible unitary representations and finite factor
representations of the infinite symmetric group S∞. The general GNS construction gives the
tautological model of unitary representations, which is thus not very suitable for a detailed study.
But if the group algebra of the group under consideration has an additional structure, e.g., that of
a cross product, as in the case of a locally finite group, then the representation space can also be
given a more specific form. Thus, in the case of the infinite symmetric group S∞, considering
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the Gelfand–Tsetlin algebra and its spectrum, the space of infinite Young tableaux, leads to the
so-called “tableau model,” see below.

However, for transformation groups, it is most interesting to consider substitutional models
of representations, in which the representation space is a space of (vector) functions on a G-
space and the group acts by transformations of this G-space. For the finite factor representations
of S∞, such a model was found in [7]; we call it the “dynamical” model. Its construction is
based on the so-called trajectory (or groupoid) realization of dynamical systems. The most un-
expected feature of this construction is that for nondegenerate values of the Thoma parameters,
the representation turns out to be “purely substitutional,” i.e., the algebra generated by the group
representation operators only (without the diagonal subalgebra) gives an irreducible representa-
tion of the groupoid algebra. The reason is that the group action is nonfree; see Section 7 for a
discussion of nonfree group actions.

The main result of this paper is an explicit description of the isomorphism between the
tableau and dynamical models; its construction uses the Fourier theory for the symmetric groups
(see [10]). Each of the models under consideration has its own maximal commutative subalge-
bra, and the relation between them is quite complicated. The intertwining operator acting from
the tableau model to the dynamical one does preserve the subspaces of n-cylinder functions (i.e.,
can be defined on finite approximations), while the conjugate operator acting in the opposite
direction does not.

Substitutional models of representations of the finite symmetric groups are not sufficiently
studied and, apparently, hide untapped opportunities. In this paper, we also consider the so-
called “tensor” model of two-row representations of the symmetric groups, which was suggested
by the second author and investigated in [3]. In a sense, it plays the role of a “bridge” between
the tableau and dynamical models of factor representations of S∞ and yields an interpretation
of another two representations arising in these models—the “diagonal” representation in the
dynamical model and the “concomitant” representation in the tableau model. A more detailed
study of the tensor model will be presented elsewhere.

The paper is organized as follows. In Section 2, we recall necessary facts and introduce nota-
tion related to the representation theory of the finite and infinite symmetric groups. In Sections 3
and 4, we describe the tableau and dynamical models of finite factor representations of S∞,
respectively. Section 5 contains the main result of the paper, an explicit description of the iso-
morphism between the tableau and dynamical models. In Section 6, we describe the tensor model
of two-row representations and its relations to the tableau and dynamical models. Finally, Sec-
tion 7 contains a discussion of nonfree group actions, which is closely related to the dynamical
model.

2. Necessary background and notation

In this section, we recall necessary facts and introduce notation related to the representation
theory of the symmetric groups. For the basic notions of the representation theory of the finite
symmetric groups, see, e.g., [1,2]. Necessary facts from the representation theory of the infinite
symmetric group can be found, e.g., in [9]. The Fourier theory for the finite and infinite symmetric
groups is described in [10].

2.1. Finite symmetric groups

We denote by Sn the symmetric group of degree n and by C[Sn] the group algebra of Sn.
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The irreducible representations of the symmetric group Sn are indexed by the set Yn of Young
diagrams with n cells. Let πλ be the irreducible unitary representation of Sn corresponding to a
diagram λ ∈ Yn, and let χλ and dimλ be the character and the dimension of πλ, respectively.

The branching of the irreducible representations of the symmetric groups is described by the
Young graph Y. The vertex set of the graded graph Y is

⋃
n Yn, and two vertices μ ∈ Yn−1 and

λ ∈ Yn are joined by an edge if and only if μ ⊂ λ. By definition, the zero level Y0 consists of the
empty diagram ∅.

Denote by T (λ) the set (consisting of dimλ elements) of Young tableaux of shape λ ∈ Yn,
or, which is the same, the set of paths in the Young graph from the empty diagram ∅ to λ. Let
{ht , t ∈ T (λ)} be the Gelfand–Tsetlin basis in the space Vλ of the representation πλ, and denote
by EndVλ the algebra of matrices in the space Vλ. Let Tn = ⋃

λ∈Yn
T (λ) be the set of Young

tableaux with n cells.
Denote by Bn = {(s, t): s, t ∈ Tn are of the same shape} the set of bitableaux of size n (i.e.,

the set of pairs of paths of length n in the Young graph ending at the same vertex).
The (matrix form of the) Fourier transform on the symmetric group Sn associates with a

function f ∈ C[Sn] a matrix-valued function f̂ on Yn, where f̂ (λ) ∈ EndVλ is given by the
formula

f̂ (λ) =
∑

w∈Sn

f (w)πλ(w).

Considering the matrix elements with respect to the Gelfand–Tsetlin basis, we obtain the tableau
form of the Fourier transform: f �→ f̂ ∈ C(Bn), where

f̂ (s, t) =
∑

w∈Sn

f (w)
(
πλ(w)hs,ht

)
, (s, t) ∈ Bn.

The inversion formula for the Fourier transform reads as

f (w) =
∑
λ∈Yn

dimλ

n! tr
(
f̂ (λ)π∗

λ (w)
)
, w ∈ Sn (1)

(here ∗ stands for the matrix conjugation). Under the Fourier transform, convolution of functions
on Sn goes to matrix multiplication: (̂f ∗ g)(λ) = f̂ (λ)ĝ(λ).

2.2. Infinite symmetric group

Now let S∞ = ⋃∞
n=1 Sn = lim−→ Sn be the infinite symmetric group with the fixed structure of

an inductive limit of finite groups, and let C[S∞] be the group algebra of S∞.
Denote by T = lim←− Tn the space of infinite Young tableaux (the projective limit of Tn with re-

spect to the natural projections forgetting the tail of a path). With the topology of coordinatewise
convergence T is a totally disconnected metrizable compact space. The tail equivalence relation
∼ on T is defined as follows: for paths s = (s1, s2, . . .) and t = (t1, t2, . . .), we have s ∼ t if and
only if sk = tk for sufficiently large k. The n-equivalence relation ∼n on T is defined in a similar
way: s ∼n t if and only if sk = tk for k � n. Denote by [t]n ∈ Tn the initial segment of length n

of a tableau t ∈ T .
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Consider the space B = {(s, t): s, t ∈ T , s ∼ t} of infinite bitableaux with the inductive limit
topology B = lim−→Bn, where Bn = {(s, t): s, t ∈ T , s ∼n t}. Thus B is a separable totally dis-
connected locally compact space, and its diagonal B0 = {(t, t), t ∈ T } is homeomorphic to T .
Note that the space of bitableaux can be regarded as the principal groupoid generated by the tail
equivalence relation on T (see [5]). The unit space of this groupoid can be identified with the
diagonal B0 ∼ T , and for an arbitrary tableau t ∈ T , its preimage Gt = r−1(t) under the range
map r is the countable set of bitableaux Gt = {(t, ·) ∈ B} with the first component equal to t .
Denote by λt the counting measure on Gt .

The Fourier transform establishes a canonical isomorphism between the group algebra C[S∞]
of the infinite symmetric group and the ∗-algebra C(B) of locally constant finitary functions on
the space of bitableaux B with the multiplication

fg(s, t) =
∑
r∼t

f (s, r)g(r, t) (2)

and involution

f ∗(s, t) = f (t, s).

This is just the realization of C[S∞] as the cross product constructed from the commutative
algebra of functions on the space of tableaux T (Gelfand–Tsetlin algebra) and the tail equivalence
relation [6,8,9]. Here the cross product, as a C∗-algebra, is the groupoid C∗-algebra generated
by the space of all Young tableaux and the tail equivalence relation. We can also choose one
transformation (the so-called Young-adic shift) that together with the Gelfand–Tsetlin algebra
generates the whole cross product.

A measure M on T is called central if the measure M({t : [t]n = s}) of a cylinder set depends
only on the shape of the tableau s ∈ Tn. The Fourier transform on the infinite symmetric group
(see [10]) determines, in particular, a correspondence χ ↔ M between the characters of the
infinite symmetric group and the central probability measures on T ; it is given by the formula

χn =
∑
λ∈Yn

Mn(λ)
χλ

dimλ
, (3)

where χn = χ |Sn
is the restriction of a character χ to Sn, and Mn(λ) = M({t : [t]n ∈ λ}) is the

cylinder distribution on Yn of the measure M .
It is well known (see, e.g., [9]) that the finite factor representations of the infinite symmetric

group S∞ are indexed by two nonincreasing sequences of nonnegative real numbers (Thoma
parameters) α = {αi, i = 1,2, . . .} and β = {βi, i = 1,2, . . .}, where

α1 � α2 � · · · � 0, β1 � β2 � · · · � 0,
∑

αi +
∑

βi � 1.

Denote the representation corresponding to a pair (α,β) by πα,β and its character by φα,β .
There are different models of finite factor representations of the infinite symmetric group.

The most important of them are the “tableau model” obtained by the GNS construction and the
“dynamical model” suggested in [7].
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3. Tableau model of the factor representations

The standard GNS construction yields the so-called tableau model of finite factor representa-
tions of the infinite symmetric group S∞.

Let Mα,β be the central measure on T corresponding to the character φα,β according to (3),
and let {Mα,β

n } be the family of cylinder distributions of the measure Mα,β . Then

∑
λ∈Yn

Mα,β
n (λ)

χλ(σ )

dimλ
= φα,β(σ ), σ ∈ Sn.

Consider the measure M̃α,β on the groupoid B induced by the measure Mα,β on its diagonal T :

M̃α,β =
∫
T

λt dMα,β(t).

Denote by Hα,β = L2(B, M̃α,β) the space of square integrable functions on B with respect to
this measure. Thus f ∈ Hα,β if and only if∫

T

∑
s∼t

∣∣f (t, s)
∣∣2

dMα,β(t) < ∞,

and the scalar product in Hα,β is given by

(f, g) =
∫
T

∑
s∼t

f (t, s)g(t, s) dMα,β(t).

If f and g are n-cylinder functions, i.e., are supported by the set Bn of pairs of n-equivalent
paths and depend only on the initial n-segments of paths (so that they can essentially be regarded
as functions on Bn), then

(f, g) =
∑
λ∈Yn

M
α,β
n (λ)

dimλ
tr
(
f̂ (λ)ĝ∗(λ)

)
.

The representation U ≈ πα,β of S∞ in Hα,β is defined by the following formula. Given
g ∈ Sn, let δ̂g be the Fourier transform of the δ-function at g given by the formula

δ̂g(s, t) =
{

(πλ(g)h[s]n , h[t]n) if s ∼n t, [s]n, [t]n ∈ λ,

0 otherwise.

Then

Ugf = δ̂gf, g ∈ S∞,

where the multiplication is understood in the sense (2). For n-cylinder functions f , we have

(Ugf )(λ) = πλ(g)f (λ), g ∈ Sn, λ ∈ Yn.
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The characteristic function of the diagonal

Ψ (s, t) =
{

1 if s = t,

0 otherwise

is a cyclic vector for this representation, and the character φα,β is the corresponding spherical
function:

(UgΨ,Ψ ) = φα,β(g).

4. Dynamical model of the factor representations

The dynamical model of finite factor representations of the infinite symmetric group was
suggested in [7]; see also [9] and a modification in [4].

Let us consider the simplest case where
∑

αi = 1 and βi = 0, i = 1,2, . . . . Then the se-
quence α can be regarded as a measure on the set N of positive integers.

Consider the space of sequences X = ∏∞
k=1 N with the product measure mα = ∏∞

k=1 α. The
infinite symmetric group S∞ acts on X by substitutions of coordinates, and this action preserves
the measure mα . Define an equivalence relation ∼ on X as follows: x ∼ y if there exists σ ∈ S∞
such that y = σx. Let X̃ = {(x, y): x, y ∈ X , x ∼ y} be the principal groupoid with diagonal X
constructed from this equivalence relation. Consider the measure m̃α on the groupoid X̃ induced
by the measure mα on the diagonal X , and set Kα = L2(X , m̃α). Thus

Kα =
{
h : X̃ → C: ‖h‖2 =

∫
X

∑
y∼x

∣∣h(x, y)
∣∣2

dmα(x) < ∞
}
,

and the scalar product in Kα is given by

(h1, h2) =
∫
X

∑
y∼x

h1(x, y)h2(x, y) dmα(x).

The representation V ≈ πα = πα,0 of the infinite symmetric group S∞ in the space Kα is
given by the formula

(Vgh)(x, y) = h
(
g−1x, y

)
. (4)

Let Φ ∈Kα be the characteristic function of the diagonal:

Φ(x,y) =
{

1 if x = y,

0 otherwise.

We will regard the representation V in the cyclic hull of the vector Φ (it coincides with the whole
space Kα if the sequence α consists of pairwise distinct elements). We have

(VgΦ,Φ) = φα(g) = mα

({x ∈X : gx = x}) =
∏
k�2

(∑
i

αk
i

)rk(g)

,

where rk(g) is the number of cycles of length k in a permutation g ∈ S∞.
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5. Isomorphism between the tableau model and the dynamical model

Denote by Hα
n the subspace in Hα = Hα,0 that consists of n-cylinder functions.

Theorem 1. An isomorphism of the tableau model and the dynamical model of the factor repre-
sentation πα = πα,0 is given by the following intertwining operator. Let f ∈ Hα = L2(B,Mα).
Denote by fn the projection of f to Hα

n . Then

Tf = lim
n→∞Tfn, (Tfn)(x, y) =

∑
σ∈Sn,
x=σy

f̂ −1
n (σ ), (x, y) ∈ X̃ , (5)

where f̂ −1
n is the inverse Fourier transform, given by formula (1), of the n-cylinder function fn.

The conjugate operator S = T ∗ can be described as follows. Let g ∈Kα . Consider the func-
tion G on S∞ given by the formula

G(w) =
∫
X

g(wx,x) dmα(x), w ∈ S∞, (6)

and denote by Gn its restriction to Sn. Then

Sg = lim
n→∞Sng,

where

(Sng)(λ) = 1

φ̂α
n (λ)

Ĝn(λ) = dim2 λ

n!Mα
n (λ)

Ĝn(λ);

here φα
n is the restriction of the character φα to Sn.

Remark 1. Note that the operator T sends cylinder functions on B (i.e., functions depending on
the initial n-segments of paths) to cylinder functions on X̃ (i.e., functions depending on the first
n coordinates of sequences), while the conjugate operator S does not satisfy this property.

Remark 2. The theorem can be generalized to the case of an arbitrary finite factor representation
(when β is not necessarily zero).

Proof. Using the Fourier transform, we obtain a realization of the tableau model on Sn in the
group algebra C[Sn] with the scalar product

(a, b) =
∑

u,v∈Sn

a(u)b(v)φα

(
v−1u

)
, a, b ∈ C[Sn],

and the natural group action:

(Uga)(w) = a
(
g−1w

)
.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

N.V. Tsilevich, A.M. Vershik / Advances in Applied Mathematics 37 (2006) 526–540 533

The cyclic vector corresponding to Ψ is the δ-function at the identity element δe .
Consider a δ-function δg ∈ C[Sn], g ∈ Sn. Obviously, δg = Ugδe. Since T Ψ = Φ , we have

T (UgΨ ) = VgΦ , so that δg goes to the function

(T δg)(x, y) = (VgΦ)(x, y) = Φ
(
g−1x, y

) =
{

1 if x = gy,

0 otherwise.

By linearity, for f ∈ Hα
n ,

(Tf )(x, y) =
∑

w∈Sn

f̂ −1(w)Φ
(
w−1x, y

) =
∑

w∈Sn,
x=wy

f̂ −1(w),

as required.
In order to prove the formula for the conjugate operator, consider functions f ∈ Hα

n and
g ∈Kα and the scalar product

(Tf,g) =
∫
X

(Tf )(x, y)
∑
y∼x

g(x, y) dmα(x) =
∫
X

∑
σ∈Sn
x=σy

f̂ −1(σ )
∑
y∼x

g(x, y) dmα(x)

=
∑

σ∈Sn

f̂ −1(σ )

∫
X

g(σx, x) dmα(x) =
∑

σ∈Sn

f̂ −1(σ )Gn(σ ).

Applying the inversion formula (1) for the Fourier transform, we obtain

(Tf,g) =
∑

σ∈Sn

∑
λ∈Yn

dimλ

n! tr
(
f (λ)T ∗

λ (σ )
)
Gn(σ)

=
∑
λ∈Yn

dimλ

n! tr

(
f (λ)

∑
σ∈Sn

Gn(σ )T ∗
λ (σ )

)
=

∑
λ∈Yn

dimλ

n! tr
(
f (λ)Ĝ∗

n(λ)
)
.

Comparing with the formula

(Tf,g) = (f,Sg) =
∑
λ∈Yn

Mα
n (λ)

dimλ
tr
(
f (λ)(Sg)∗(λ)

)

yields the desired result. �
Example. Let g = Φ be the characteristic function of the diagonal. Then

G(w) =
∫
X

Φ(wx,x)dmα(x) = mα

({x ∈X : wx = x}) = φα(w),

so that Ĝn(λ) = ∑
μ∈Yn

Mα
n (μ)

dimμ
χ̂μ(λ) = Mα

n (λ)

dimλ
n!

dimλ
Eλ, whence

(Sg)(λ) = dim2 λ

n!Mα
n (λ)

Ĝn(λ) = Eλ,
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i.e., Sg = Ψ .

Corollary 1. A function g ∈Kα is the image of a central function if and only if

g(x, y) = g(wx,wy) for all w ∈ S∞.

6. The tensor model of two-row representations and the concomitant representation

In this section, we describe the so-called tensor model of irreducible representations of the
symmetric groups corresponding to two-row diagrams, which was suggested by the second au-
thor and investigated in [3]. In particular, using this model, one can construct the so-called
concomitant representation, an irreducible representation of S∞ associated in a natural way
with its factor representation.

6.1. Finite case

For 0 � k � n, denote by Fn,k the set of k-element subsets of the set {1, . . . , n}. Given I =
{i1, . . . , ik} ∈ Fn,k , let xI = xi1 · · ·xik .

Let An,k = {∑I∈Fn,k
cI xI } be the vector space of square-free forms of degree k in n variables.

This space can also be identified with the space of symmetric tensors of rank k with zero diagonal
components over the n-dimensional space (a function f = ∑

I∈Fn,k
cI xI is identified with the

tensor {Tj1,...,jk
}nj1,...,jk=1, where Tj1,...,jk

= c{j1,...,jk} if the indices j1, . . . , jk are pairwise distinct
and Tj1,...,jk

= 0 otherwise). In what follows, we will use this identification without explicitly
mentioning.

For f = ∑
I∈Fn,k

cI xI ∈ An,k , let ‖f ‖2 = ∑
I∈Fn,k

|cI |2.

Let A0
n,k be the subspace of An,k determined by the “zero conditions” of the form “the sum

along each one-dimensional direction vanishes”:

A0
n,k =

{∑
cI xI ∈ An,k

∣∣∣ ∑
j /∈I ′

cI ′∪j = 0 for every I ′ ∈ Fn,k−1

}
.

There is a natural action of the symmetric group Sn on the space An,k by substitutions of
indices: given σ ∈ Sn,

σ ·
∑

I∈Fn,k

cI xI =
∑

I∈Fn,k

cI xσI , where σ {i1, . . . , ik} = {
σ(i1), . . . , σ (ik)

}
,

or, in tensor form, σ {Tj1,...,jk
} = {T ′

j1,...,jk
}, where T ′

j1,...,jk
= Tσ−1(j1),...,σ

−1(jk)
. It is easy to see

that the subspace A0
n,k is invariant under this action. Note that the spaces A0

n,k and A0
n,n−k , as

well as the corresponding representations of Sn, are obviously equivalent.

Theorem 2. [3] (1) Let k � n/2. The representation of the symmetric group Sn in the space A0
n,k

(and in the space A0
n,n−k) is equivalent to the irreducible representation πn−k,k corresponding

to the two-row diagram λn,k = (n − k, k) with rows of lengths n − k and k.
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(2) The representation of the symmetric group Sn in the space An,k is equivalent to the di-
rect sum of πn−l,l over all l = 0,1, . . . , k. In particular, the representation of Sn in An,[n/2] is
equivalent to the multiplicity-free direct sum

[n/2]⊕
k=0

πn−k,k

of all two-row representations.

These realizations of representations of Sn in spaces of tensors (or, equivalently, square-free
forms) will be called tensor realizations.

Remark. Thus the representation of Sn in the space An,[n/2] of all symmetric tensors of rank
[n/2] with zero diagonal components over the n-dimensional space is the two-row model rep-
resentation in the sense of Gelfand: it contains each representation corresponding to a two-row
diagram exactly once.

Denote by Hn,k the subspace in An,[n/2] corresponding to the representation πn−k,k . Thus

An,[n/2] =
[n/2]⊕
k=0

Hn,k, (7)

and Hn,k is isomorphic to A0
n,k .

On the other hand, the two-row model representation can be realized in the space of all two-
row tableaux with the standard action of Sn. So the problem is to establish an isomorphism
between these two realizations.

The difficulty is that the embeddings An,[n/2] �→ An+1,[n+1/2] determined by the structure
of tableaux, i.e., by the branching of irreducible representations of the symmetric groups, are
nontrivial. For example (see the general formula below), the embedding of the space A0

n,1, which
can be interpreted as the space {(b1, . . . , bn) | ∑

bi = 0} of n-vectors summing to zero, to the
space A0

n+1,2 = {(ai,j )
n+1
i,j=1 | ai,j = aj,i , ai,i = 0,

∑
i ai,j = ∑

j ai,j = 0} of symmetric (n+1)×
(n+ 1) matrices satisfying the appropriate zero conditions is given by the following formula: for
i < j ,

ai,j = aj,i =
{

bi + bj if j � n;
−(n − 2)bi if j = n + 1.

The choice of a central two-row Thoma measure determines the corresponding norms in the
spaces An,k . Namely, given p ∈ (0, 1

2 ], consider the sequence α = (1 − p,p,0,0, . . .). Let Mα

be the corresponding central Thoma measure on the space T of infinite Young tableaux (see
Section 3). Note that Mα is supported by two-row tableaux. Let us introduce a Hilbert norm
‖ · ‖α,n in An,[n/2] as follows. Given f ∈ An,[n/2], consider the decomposition of f according
to (7): f = ∑

fk , where fk ∈ Hn,k , and let

‖f ‖2
α,n =

[n/2]∑
k=0

Mα
n (λn,k)

dimλn,k

‖fk‖2,
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where Mα
n is the cylinder distribution of the measure Mα on Yn. We will call ‖ · ‖α,n the α-norm

in An,[n/2]. Note that the action of Sn in An,[n/2] is unitary with respect to this norm.
Now let us turn to the infinite case. We will consider two different inductive limits of tensor

representations determined by different embeddings and leading to the so-called diagonal (Fock)
and concomitant representations of S∞.

6.2. Diagonal representation

The first inductive limit gives a tensor realization of the diagonal representation of S∞
in the dynamical model. Namely, let mα be the Bernoulli measure on the space X (which
in this case is the space {0,1}N of 0–1 sequences) corresponding to the Thoma parameter α

(see Section 4). Recall that there is a one-to-one correspondence between finite factor repre-
sentations of S∞ and spherical representations of the Gelfand pair (S∞ × S∞,diagS∞).
The representation of S∞ × S∞ corresponding to πα in the dynamical model is given by
the formula (V(g1,g2)h)(x, y) = h(g−1

1 x,g−1
2 y) (cf. (4)). The subspace of functions supported

by the diagonal is obviously invariant with respect to the action of the diagonal subgroup
diagS∞ = {(g, g) | g ∈ S∞} (isomorphic to S∞) of S∞ × S∞. The obtained representation
of S∞ in L2(X ,mα) is called the diagonal representation. Of course, it is just the natural action
of S∞ by substitutions: σf (x) = f (σ−1x). Note that this representation can be extended to a
representation of the group S∞ of all permutations of N.

Now consider the space An = ⊕n
k=0 An,k of all square-free forms in n variables. Obviously, it

can be identified with the space of functions on the set {0,1}n of finite 0–1 sequences (since each
form from An is uniquely determined by its restriction to the unit cube). Since the space An,k

can be regarded as a subspace of An+1,k , we can consider the identity embedding An �→ An+1.
It agrees with the natural embedding of the space of functions on n-sequences to the space of
functions on (n + 1)-sequences and commutes with the action of the group Sn. Now consider
the Bernoulli measure mα,n = ∏n

k=1 α on {0,1}n and denote by | · |α,n the image in An of the
corresponding L2 norm under the above identification (it is easy to write an explicit formula for
this norm, but we do not need it). We obtain the following proposition.

Proposition 1. The inductive limit A of the Hilbert spaces (An, | · |α,n) with respect to the identity
embeddings is isometric to the space L2(X ,mα), and the corresponding inductive limit τα of
tensor representations is equivalent to the diagonal representation of S∞ in L2(X ,mα).

Remark. For all α = (1 − p,p,0, . . .), p ∈ (0,1/2], the diagonal representations are equivalent,
namely, each of them is the (multiplicity-free) direct sum of irreducible representations of S∞
over all infinite two-row Young diagrams with finite second row (each such representation is the
inductive limit of the irreducible representations of Sn corresponding to diagrams with fixed
second row and growing first row).

For α = 1/2, the space A is isometric to the canonical fermion Fock space, and the decomposi-
tion of τα into irreducible representations of S∞ coincides with the multi-particle decomposition
of the fermion Fock space.

6.3. Concomitant representation

Recall (see Section 2.2) that the group algebra of S∞ is the cross product (or groupoid al-
gebra) constructed from the commutative algebra of functions on the space of tableaux T and
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the tail equivalence relation. According to the general theory, given a finite measure M on T

invariant with respect to the equivalence relation, we can construct a type II1 factor representa-
tion (von Neumann representation) of the groupoid algebra and also an irreducible representation
(Koopman representation), acting in the space L2(T ,M), of the same algebra. In our case, the
von Neumann representation is just the tableau model considered in Section 3. Now we are going
to consider the corresponding Koopman representation.

Definition 1. Let M be a central measure on the space T of infinite Young tableaux. The Koop-
man1 representation in the space L2(T ,M) of complex-valued functions on the space of tableaux
is called the concomitant representation of the infinite symmetric group S∞ associated with the
measure M .

An explicit description of the concomitant representation of S∞ is as follows. Observe that if
a function f ∈ C(Bn) does not depend on the second component, then the function Ugf = δ̂gf

also satisfies this property. Thus the subspace of such functions (which can be identified with
the space of functions on Tn) is invariant under U , so that we obtain a unitary representation Ũg

of Sn in the space L2(Tn,Mn), where Mn is the cylinder distribution of the measure M on Tn.
Moreover, these representations form an inductive family with respect to the natural embeddings
L2(Tn,Mn) �→ L2(Tn+1,Mn+1). The concomitant representation is just the inductive limit of
these representations.

Now we will show that the concomitant representation associated with a central measure con-
centrated on two-row tableaux can be constructed as an inductive limit of tensor representations.

Consider another embedding in :An,[n/2] → An+1,[n+1/2], which is determined by the branch-
ing of irreducible representations of the symmetric groups, i.e., by the structure of the Young
graph (more exactly, by its restriction to the set of two-row diagrams). Since the space An,[n/2]
is decomposed into the direct sum (7) of subspaces Hn,k isomorphic to A0

n,k , it suffices to define

in on each A0
n,k , k = 0,1, . . . , [n/2]. Denote the corresponding operator on A0

n,k by in,k .
According to the fact that in the two-row part of the Young graph, the diagram λn,k is joined

with the diagrams λn+1,k and (provided that k + 1 � n+1
2 ) λn+1,k+1, the operator in,k is the sum

in,k = ξn,k + ηn,k, (8)

where ξn,k embeds A0
n,k into A0

n+1,k and ηn,k embeds A0
n,k into A0

n+1,k+1.
As to ξn,k , it is just the identity embedding mentioned above. Obviously, ‖ξn,kf ‖ = ‖f ‖.
The nontrivial part is the embedding ηn,k , which is given by the following formula: for f =∑
I∈Fn,k

cI xI ∈ A0
n,k , let

η̃n,kf =
n∑

i=1

xi

∑
I∈Fn,k,I ��i

cI xI − (n − 2k)xn+1f =
∑

J∈Fn+1,k+1

cJ xJ , (9)

1 The Koopman representation of a dynamical system (X,μ,G) is the representation T in the space L2(X,μ) where
Tgf (x) = f (g−1(x)) for g ∈ G and Tφf = φf for φ ∈ L∞(X,μ). In this case, the equivalence relation is the orbit
partition. We use the term “Koopman representation” for the case of a groupoid algebra.
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where

cJ =
{∑

I∈Fn,k,I⊂J cI if J �� n + 1;
−(n − 2k)cJ\{n+1} if J � n + 1.

Lemma 1. Formula (9) defines an embedding from A0
n,k into A0

n+1,k+1, and ‖η̃n,kf ‖2 =
c(n, k)‖f ‖2, where c(n, k) = (n − 2k)(n − 2k + 1).

Now let ηn,k = 1√
c(n,k)

η̃n,k . Recall that in is the operator on An,[n/2] whose restrictions to

the subspaces Hn,k isomorphic to A0
n,k are given by (8). The following proposition follows from

construction and Lemma 1 by simple calculations.

Proposition 2. The operator in determines an embedding from An,[n/2] into An+1,[n+1/2] which
commutes with the action of the group Sn and preserves the α-norms: ‖inf ‖α,n+1 = ‖f ‖α,n.

Denote by Aα the inductive limit of the Hilbert spaces (An,[n/2],‖ · ‖α) with respect to in and
by ρα the corresponding limit unitary representation of S∞ in Aα .

Theorem 3. The inductive limit ρα of the tensor representations of Sn in the Hilbert spaces
(An,[n/2],‖ · ‖α,n) with respect to the embeddings in is unitarily equivalent to the concomitant
representation associated with the two-row central Thoma measure Mα .

Proof. Follows from definitions and constructions by routine calculations using the representa-
tion theory of the symmetric groups. �

The concomitant representation associated with an ergodic central measure is irreducible.
By definition, it agrees with the groupoid structure of the group algebra of S∞. Our goal is to
describe it in “dynamical terms,” i.e., to obtain for it an analog of the dynamical model for the
tableau representation. Since the space An,[n/2] can be identified with a subspace of functions on
the space {0,1}n of finite 0–1 sequences (see the description of the first inductive limit above),
Theorem 3 allows one to obtain a realization of the concomitant representation in terms of the
Bernoulli scheme. However, the embeddings in are rather complicated, so that the identification
of the limit space with some kind of “pseudo-functions” on the Bernoulli scheme is nontrivial.
We will consider this problem elsewhere.

7. Appendix: on nonfree group actions

A specific feature of the dynamical model of the factor representations of S∞ is that it es-
sentially exploits the “nonfree character” of the action of S∞ on X , owing to which the cross
product construction degenerates and the factor generated by the commutative algebra of func-
tions on X and the group action operators coincides with the algebra generated only by the group
action operators (provided that the measure mα is not degenerate, i.e., the sequence α consists of
pairwise distinct elements).

Apparently, the factors corresponding to nonfree actions are not sufficiently studied. Such
actions have the following useful metric invariant, which vanishes in the case of free actions.
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Definition 2. Assume that a countable group G acts on a measure space (X, ν) by measure-
preserving transformations. Consider the mapping x �→ Gx that associates with a point x ∈ X its
stabilizer regarded as an element of the space Gr(G) of all subgroups of the group G (with the
ordinary Borel structure). Let ν̄ be the image of the measure ν under this mapping. We call it the
degree of nonfreedom of the action of G.

The following proposition is obvious.

Proposition 3. The degree of nonfreedom is a metric invariant of the action. In other words, if two
actions of a countable group G are isomorphic, then the corresponding degrees of nonfreedom
coincide.

Example. For an action of the group Z on (X,μ), the degree of nonfreedom is a measure on
the set of subgroups of Z, and the measure of the subgroup nZ is equal to the μ-measure of the
periodic orbits of pure period n. Thus if the action is periodic, then the degree of nonfreedom is
its complete invariant.

In our case, this invariant allows us to distinguish the metric types of the actions of the infinite
symmetric group S∞ on the space X with Bernoulli measures. For simplicity, consider the case
of two states, i.e., consider measures α = (p,1−p) and α′ = (p′,1−p′) with two nonzero com-
ponents and the corresponding Bernoulli measures mα and mα′ (we use the notation introduced
in Section 4).

Proposition 4. The actions of the infinite symmetric group S∞ on the space X with Bernoulli
measures mα and mα′ are metrically isomorphic only if the (unordered) pairs α = (p,1 − p)

and α′ = (p′,1 − p′) coincide.

Proof. If α �= α′, then the corresponding degrees of nonfreedom on the space of subgroups of
S∞ are distinct. Indeed, consider the set of subgroups of the group S∞ in which there exists an
element that sends the first coordinate to the second one:

{
H ∈ Gr(S∞): ∃h ∈ H : h(1) = 2

}
.

Obviously, the degree of nonfreedom of this set for the action of S∞ on (X ,mα) equals
mα({x: x1 = x2}) = p2 + (1 − p)2. But these values do not coincide for α �= α′. �

In this case, the coincidence of the degrees of nonfreedom is also a sufficient condition for
the metric isomorphism: if the (unordered) pairs (p,1 − p) and (p′,1 − p′) coincide, then there
is an isomorphism, which is given either by the identity transformation (if p = p′), or by the
permutation of states (if p = 1 − p′).
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