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Abstract. The purpose of this paper is to show that the quantum inverse scattering method for the
so-called q-boson model has a nice interpretation in terms of the algebra of symmetric functions. In
particular, in the case of the phase model (corresponding to q = 0) the creation operator coincides
(modulo a scalar factor) with the operator of multiplication by the generating function of complete
homogeneous symmetric functions, and the wave functions are expressed via the Schur functions
sλ(x). The general case of the q-boson model is related in a similar way to the Hall–Littlewood
symmetric functions Pλ(x; q2).
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1. Introduction

The q-boson model (e.g., see [2] and [4]) describes a strongly correlated exactly solvable one-
dimensional boson system on a finite one-dimensional lattice. This system is of importance in
several branches of modern physics such as solid state physics and quantum nonlinear optics. The
corresponding q-boson (or q-oscillator) algebra [8] is closely related to the quantum algebra slq(2)
[7]. The special case q = 0 of the q-boson model, which is especially easy to investigate, is called
the phase model ([3], [4], [1]).

The aim of this paper is to show that the quantum inverse scattering method [6] for the q-boson
model has a nice and useful interpretation in terms of the algebra of symmetric functions [9]. The
starting point for our approach was the paper [1] by Bogoliubov, who showed that the phase model
is closely related to the enumeration of plane partitions.

Starting from the simpler case of the phase model, we construct a realization of this model in
the algebra Λ of symmetric functions as follows: to each basis Fock vector ψn0,...,nM with occupation
numbers n0, . . . , nM , we assign the Schur function sλ(x) corresponding to the Young diagram λ
with nj rows of length j (for details, see Sec. 2.2). It turns out that under this realization the
creation operator B(u) of the quantum inverse scattering method coincides (up to a scalar factor)
with the operator of multiplication by the (truncated) generating function HM (u2) =

∑M
k=0 u2khk

of the complete homogeneous symmetric functions hk (in what follows, for simplicity we denote
the operator of multiplication by a function by the same symbol as the function itself), and the
annihilation operator C(u) is essentially the adjoint operator H⊥

M (u−2) with respect to the standard
inner product in Λ. This allows us, in particular, to apply the machinery of symmetric functions
and readily obtain the expansion of the wave function in the basis Fock vectors; the coefficients
of this expansion are given by Schur functions. Furthermore, we can easily find the limit of the
regularized creation and annihilation operators as M → ∞.

On the other hand, we can use this interrelation between the phase model and symmetric
functions in the opposite direction: for example, using the commutation relations for B(u) and
C(u) given by the quantum inverse scattering method (i.e., the corresponding R-matrix), we can
obtain commutation relations for HM (u) and H⊥

M (u) in the subspace ΛM of Λ spanned by the Schur
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functions whose diagrams have at most M columns. (They are more involved than the commutation
relation for the operator of multiplication by the full generating function H(u) =

∑∞
k=0 ukhk and

its adjoint H⊥(u) in the entire algebra Λ.)
We also establish a relation between the operators arising in the quantum inverse scattering

method for the phase model and the vertex operator formalism used by Okounkov and Reshetikhin
[10] for computing the correlation functions of three-dimensional Young diagrams (plane partitions).
It turns out that the vertex operators in [10] are the same operators H(u) and H⊥(u), i.e., the
M → ∞ limits of the regularized creation and annihilation operators of the phase model. However,
if we wish to study three-dimensional Young diagrams contained in a box, then the approach in [10]
fails, while the method of [1], based on the quantum inverse scattering method for the phase model,
allows one to compute the partition and correlation functions for three-dimensional diagrams in a
box, since, as was noted above, it allows one to obtain commutation relations for the “truncated”
operators.

A similar scheme can be implemented for the general q-boson model. In this case, one should
use a generalization of the Schur functions, namely, the Hall–Littlewood functions Pλ(x; q2) (which
coincide with sλ(x) for q = 0). In particular, the wave functions of the q-boson model are expressed
in terms of the Hall–Littlewood functions, and the creation operator coincides (up to a scalar factor)
with the operator of multiplication by the generating function QM (u2) =

∑M
k=0 u2kqk (see Sec. 3.1).

2. The Phase Model and Schur Functions

2.1. The phase model. Consider the algebra generated by three operators φ, φ† , and N with
the commutation relations

[N, φ] = −φ, [N, φ†] = φ†, [φ, φ†] = π, (1)

where π is the vacuum projection. This algebra can be realized in the one-dimensional (i.e., having
one-dimensional n-particle subspaces) Fock space, where the operators φ, φ† , and N act as the
phase operators and the number of particles operator, respectively:

φ†|n〉 = |n + 1〉, φ|n〉 = |n − 1〉, φ|0〉 = 0, N |n〉 = n|n〉,
where |n〉 is the (normalized) n-particle Fock vector (in particular, |0〉 is the vacuum vector). Thus
φ is an isometry (one-sided shift), and we have

φφ† = 1, φ†φ = 1 − π,

where π|0〉 = |0〉, π|n〉 = 0 for n � 1.
Now fix a positive integer M (the number of sites) and consider the tensor product F =

F0 ⊗ F1 ⊗ · · · ⊗ FM of M + 1 copies Fi , i = 0, . . . , M , of the one-dimensional Fock space.
Denote by φi, φ

†
i , and Ni the operators that act as φ, φ† , and N , respectively, in the ith space and

identically in the other spaces Fj ; for example,

φi = I1 ⊗ · · · ⊗ Ii−1 ⊗ φ ⊗ Ii+1 ⊗ · · · ⊗ IM ,

where Ij is the identity operator in Fj . Thus the operators commute if they pertain to distinct
sites and satisfy the commutation relations (1) if they pertain to the same site.

The Hamiltonian of the phase model has the form

H = −1
2

M∑

n=0

(φ†
nφn+1 + φnφ†

n+1 − 2Nn)

with the periodic boundary conditions, M + 1 ≡ 1.
Following the quantum inverse scattering method [6], consider the L-matrix

Ln(u) =
(

u−1I φ†
n

φn uI

)

, n = 0, 1, . . . , M,
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where u is a scalar parameter and I is the identity operator in F . For every n = 0, 1, . . . , M , the
matrix Ln satisfies the bilinear equation

R(u, v)(Ln(u) ⊗ Ln(v)) = (Ln(v) ⊗ Ln(u))R(u, v) (2)

with the 4 × 4 R-matrix

R(u, v) =

⎛

⎜
⎜
⎝

f(v, u) 0 0 0
0 g(v, u) 1 0
0 0 g(v, u) 0
0 0 0 f(v, u)

⎞

⎟
⎟
⎠ , (3)

where

f(v, u) =
u2

u2 − v2
, g(v, u) =

uv

u2 − v2
. (4)

The monodromy matrix is defined as

T (u) = LM (u)LM−1(u) · · ·L0(u) (matrix product).

It satisfies the bilinear equation with the same R-matrix (3), (4):

R(u, v)(T (u) ⊗ T (v)) = (T (v) ⊗ T (u))R(u, v). (5)

Let

T (u) =
(

A(u) B(u)
C(u) D(u)

)

.

The matrix entries A(u), B(u), C(u), D(u) of the monodromy matrix T (u) act in the space F .
Denoting by N̂ = N0 + · · · + Nm the operator of the total number of particles, we have

N̂B(u) = B(u)(N̂ + 1), N̂C(u) = C(u)(N̂ − 1),

so that B(u) is a creation operator and C(u) is an annihilation operator. The operators A(u) and
C(u) do not change the number of particles.

Denote by |0〉j the vacuum vector in Fj and by |0〉 =
⊗M

j=0 |0〉j the total vacuum vector in F .
Consider N -particle state vectors of the form

|ΨN (u1, . . . , uN )〉 =
N∏

j=1

B(uj)|0〉.

(According to the algebraic Bethe Ansatz (see [6]), the eigenfunctions of the Hamiltonian are
precisely of this form.) We are interested in calculating the expansion of these vectors in the basis
N -particle vectors

ψn0,...,nM =
M⊗

j=0

|nj〉j , n0 + · · · + nM = N, (6)

where |nj〉j = (φ†)n|0〉j is the nj -particle vector in the jth Fock space Fj ; the numbers nk are
called the occupation numbers of the vector (6).

2.2. Realization of the phase model in the algebra of symmetric functions. Necessary
background on symmetric functions can be found in [9].

To a basis vector (6) with occupation numbers n0, . . . , nM , we assign the Young diagram λ =
1n12n2 · · · with nj rows of length j , j = 1, . . . , M , and the corresponding Schur function∗ sλ :

M⊗

j=0

|nj〉j ←→ sλ, λ = 1n12n2 · · · . (7)

∗Recall that the Schur functions form a basis in the algebra Λ of symmetric functions.
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Remark. Bearing in mind this correspondence on the one hand and the standard realization
of the Fock space in the algebra of symmetric functions (e.g., see [5, Ch. 14]) on the other hand, it
is natural to refer to the jth Fock space Fj as the space of particles of energy j .

Note that the correspondence (7) does not take into account the number n0 of zero energy
particles. Thus (7) defines a realization of the positive energy subspace F̂ = F1 ⊗ · · · ⊗ FM in
the algebra Λ of symmetric functions, or, more precisely, in its subspace ΛM spanned by the Schur
functions sλ whose diagrams have at most M columns (i.e., have rows of length at most M ). In
view of the Jacobi–Trudi identity [9, I.3.4], one can determine this subspace by choosing∗∗ the
arguments of the symmetric functions so that

hM+1 = hM+2 = · · · = 0. (8)

(For details, see the proof of Proposition 2.)
On the other hand, if we know the total number N of particles, then we can recover the number

of zero energy particles in the basis vector corresponding to sλ as n0 = N − l(λ), where l(λ) is the
number of rows in the diagram λ. Consider the decomposition F = F 0 ⊕ F 1 ⊕ · · · ⊕ FN ⊕ · · ·
of the space F into N -particle subspaces FN , and let ΛN

M be the space of symmetric functions
corresponding to FN . Note that the space ΛN

M is spanned by the Schur functions sλ whose diagrams
λ lie in the M ×N box, i.e., have at most N rows and at most M columns. Thus the entire space
F can be realized as the direct sum Λ0

M ⊕ Λ1
M ⊕ · · · ⊕ ΛN

M ⊕ · · · .
Since B(u) is a creation operator, i.e., increases the number of particles by one, it sends ΛN

M to
ΛN+1

M . Thus it suffices to study its action on the space F̂ ≡ ΛM , i.e., the operator B(u) := PB(u)P ,
where P is the projection from F onto F̂ (“forgetting the zero energy space”).

Proposition 1. Let B(u) = u−MB̃(u). The operator B̃(u) acts in ΛM as the operator of
multiplication by HM (u2), where HM (t) =

∑M
k=0 tkhk is the (truncated) generating function of the

complete homogeneous symmetric functions hk .
Proof. One can readily see that the operator B̃ has the form B̃ =

∑M
k=0 u2kBk . Thus it

suffices to prove that Bk is the operator of multiplication by the kth complete symmetric function
hk . Set φ−1

j = φj , φ0
j = 1, and φ1

j = φ†
j . Since

B(u) =
2∑

jM ,...,j1=1

(LM (u))1jM (LM−1(u))jM jM−1 · · · (L0(u))j12,

we have
Bk =

∑

εM ,...,ε0

φεM
M · · ·φε1

1 =
∑

εM ,...,ε0

BεM ,...,ε0 ,

where the sum is over all sequences εj ∈ {−1, 0, 1}, j = 0, . . . , M , satisfying the following conditions:
(a) let εl be the highest nonzero element; i.e., εM = · · · = εl+1 = 0 and εl 
= 0; then εl = 1;
(b) ε0 
= −1; (c) adjacent elements do not have the same sign; i.e., εj+1εj 
= 1 for every j ;
(d)

∑M
j=1 jεj = k. Obviously, BεM ,...,ε0 takes a basis vector (6) to a basis vector.

In terms of Schur functions, we have φ†
jsµ = sλ , where the diagram λ is obtained from µ by

inserting a row of length j , and φjsµ = sλ , where λ is obtained from µ by removing a row of length
j (with φjsµ = 0 if µ does not contain a row of length j). Denote by ν ′

i the length of the ith column
of a diagram ν and by ni(ν) the number of rows of length i in ν . Then ν ′

i − ν ′
i+1 = ni(ν). Now let

BεM ,...,ε0sµ = sλ and set θ′i = λ′
i −µ′

i . Then ni(λ) = ni(µ) + εi , so that θ′i = θ′i+1 + ni(λ)−ni(µ) =
θ′i+1 + εi , whence

θ′M = εM , θ′M−1 = εM + εM−1, . . . , θ′1 = εM + · · · + ε1.

∗∗This can be done, since, as is well known, the complete symmetric functions hk are algebraically independent
in Λ.
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Now it follows from (a) that θ′M = · · · = θ′l+1 = 0 and θ′l = 1. Further, in view of (c), we have
θ′i ∈ {0, 1}, which means that λ ⊃ µ and the skew diagram λ \ µ contains at most one cell in each
column, i.e., is a horizontal strip. Moreover,

∑
θ′i = k, so that λ \ µ contains k cells. Denoting by

Hk the set of horizontal k-strips, we obtain

Bksµ =
∑

λ: λ\µ∈Hk

sλ,

whence, in view of the Pieri formula [9, I.5.16], Bksµ = hksµ .

Remark. The truncated generating function HM (t) =
∑M

k=0 tkhk can also be viewed as the
image of the full generating function H(t) =

∑∞
k=0 tkhk under the specialization (8), HM (t) =

H(t)|hM+1=hM+2=···=0 .

Corollary 1. The M → ∞ limit of the regularized creation operator B̃(u) = uMB(u) on the
positive energy subspace F̂ is just the operator of multiplication by H(u2) in the entire algebra Λ
of symmetric functions.

Using the interpretation of B(u) obtained in Proposition 1, we can readily find the desired
expansion of the N -particle vector in basis vectors.

Proposition 2. The expansion of the N -particle vector in basis vectors is given by the formula

|ΨN (u1, . . . , uN )〉 =
∑

λ

sλ(u2
1, . . . , u

2
N )

M⊗

j=0

|nj〉j ,

where the sum is over Young diagrams λ with at most N rows and at most M columns.
Proof. By the formula for the generating function of complete symmetric functions [9, I.2.5],

H(u2) =
∏

i

1
1 − u2xi

.

Note that ΨN (u1, . . . , uN ) ∈ FN and identify FN with ΛN
M as described above. Observing that

the vacuum vector corresponds to the unit function s∅ ≡ 1 and using Proposition 1, we obtain

|ΨN (u1, . . . , uN )〉 =
N∏

j=1

B(uj)|0〉 = (u1 · · ·uM )−M
N∏

j=1

B̃(uj)|0〉 = (u1 · · ·uM )−M
∏

j

∏

i

1
1 − u2

jxi
.

The well-known Cauchy identity [9, I.4.3] yields

|ΨN (u1, . . . , uN )〉 = (u1 . . . uM )−M
∑

λ

sλ(u2
1, . . . , u

2
N )sλ(x),

which gives the desired formula in view of (7). The restrictions on λ are obtained as follows. First,
a Schur function vanishes if the number of nonzero arguments is less than the number of its rows.
Thus sλ(u2

1, . . . , u
2
N ) = 0 if l(λ) > N . On the other hand, by the Jacobi–Trudi identity [9, I.3.4],

sλ = det(hλi−i+j)n
i,j=1 , where n � l(λ). Thus we see that the first row of this determinant, and

hence sλ , vanishes for λ1 > M under the specialization (8).
Lemma 1. The matrix entries of the monodromy matrix T (u) are related by the formulas

B(u) = uA(u)φ†
0, C(u) = u−1φ0A

†(u−1), D(u) = φ0A
†(u−1)φ†

0.

The proof is by easy induction on M .
In particular, setting A (u) = PA(u)P , C (u) = PC(u)P , and D(u) = PD(u)P , we have

A (u) = u−1B(u), C (u) = B†(u−1), D(u) = uB†(u−1).
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It follows, for example, that in the realization of the phase model in the algebra of symmetric
functions the annihilation operator has the representation

C (u) = uM C̃ (u), C̃ (u) = B̃†(u−1) = H⊥
M (u−2) =

M∑

n=0

u−2nh⊥,M
n ,

where h⊥,M
n is the adjoint of the operator of multiplication by hn in the space ΛM with the standard

inner product (with respect to which the Schur functions form an orthonormal basis). Note that
h⊥,M

n substantially depends on M . In the M → ∞ limit, we have

C̃ (u) = H⊥(u−2) =
∞∑

n=0

u−2nh⊥
n , (9)

where h⊥
n is the adjoint of the operator of multiplication by hn in the entire space Λ (cf. [9, Ex.

I.5.3, Ex. I.5.29]).
2.3. Vertex operators and enumeration of plane partitions.
Lemma 2. In the M → ∞ limit, the operator B̃(u) has the vertex operator representation

B̃(u) = exp
( ∞∑

k=1

u2k

k
α−k

)

, (10)

where α−k , k = 1, 2, . . . , are the free boson operators.
Proof. By the well-known formula [9, I.2.10],

d

dt
lnH(t) = P (t),

where P (t) =
∑∞

k=1 tk−1pk is the generating function of the Newton power sums pk . Thus

H(t) = exp
( ∫

P (t)
)

= exp
( ∞∑

k=1

tk

k
pk

)

.

On the other hand, it is well known that in the realization of the Fock space as the algebra of
symmetric functions, the free boson operator α−k corresponds to the multiplication by pk , and so
(10) follows by Proposition 1.

Note that the vertex operator on the right-hand side in (10) is exactly the operator used by
Okounkov and Reshetikhin [10] in connection with the computation of the correlation functions for
plane partitions. Namely, in the notation of [10],

B̃0(q
j
2 ) = Γ+(φj), where φj(z) = φ3D[j](z) =

1
1 − qjz

.

In particular, in the symmetric function realization of the Fock space, the vertex operator associated
with the Schur process describing plane partitions is just the operator of multiplication by the
generating function of complete symmetric functions,

Γ+(φ3D[j]) = H(qj).

In view of (9), the M → ∞ limit of the regularized annihilation operators C̃ (v) = v−MC (v)
has the vertex operator representation

exp
( ∞∑

k=1

v−2k

k
αk

)

.

2.4. Commutation relations for the “truncated” operators. Using the commutation
relations for vertex operators (e.g., see [5, (14.10.12)] or [10, (11)]), one can readily obtain the
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well-known commutation relation [9, Ex. I.5.29, (2)] for the operators H and H⊥ in the entire
algebra Λ of symmetric functions:

H⊥(u)H(v) =
1

1 − uv
H(v)H⊥(u). (11)

However, the vertex representation (10) and the commutation relation (11) are no longer valid
in the subspace ΛM generated by the Schur functions whose diagrams have at most M columns.
Nevertheless, we can obtain the commutation relation for HM (v) =

∑M
k=0 vkhk and H⊥

M (v) in ΛM

using the machinery of the quantum inverse scattering method [6] and the above interpretation
of the phase model in terms of symmetric functions. Namely, the bilinear equation (5) implies, in
particular, that

D(u)B(v) =
u2

u2 − v2
B(v)D(u) − uv

u2 − v2
B(u)D(v).

Using Proposition 1 and Lemma 1, we obtain

H⊥
M (u)HM (v) =

1
1 − uv

[HM (v)H⊥
M (u) − (uv)M+1HM (u−1)H⊥

M (v−1)]. (12)

We see that in the formal M → ∞ limit with |uv| < 1, relation (12) is reduced to (11).
Expanding both sides of (12) into power series in u, v and matching the coefficients of like

powers of u, v, we obtain the following commutation relations in ΛM :

h⊥,M
m hn =

min{m,n}∑

i=0

hn−ih
⊥,M
m−i −

min{m,n}−1∑

i=0

hM+1−m+ih
⊥,M
M+1−n+i.

Examples. For M = 1, we obtain the relation h⊥,1
1 h1 = 1 in Λ1 . Indeed, Λ1 is generated by

Schur functions with one-column diagrams, so that the operators h1 and h⊥,1
1 correspond to adding

and removing one cell, respectively, i.e., are one-sided shifts.
For M = 2, we obtain

h⊥,2
1 h1 = h1h

⊥,2
1 + 1 − h2h

⊥,2
2 , h⊥,2

1 h2 = h1, h⊥,2
2 h1 = h⊥,2

1 , h⊥,2
2 h2 = 1.

3. The q-Boson Model and Hall–Littlewood Functions

3.1. The q-Boson model. The phase model considered in the previous section is a special
case of the so-called q-boson model ([2], [4]).

Let q be a nonnegative parameter. Consider the q-boson algebra generated by three operators
B , B† , and N with the commutation relations

[N, B] = −B, [N, B†] = B†, [B, B†] = q2N .

We set

[n] =
1 − q2n

1 − q2
, [n]! =

n∏

j=1

[j].

The standard realization of the q-boson algebra in the Fock space F has the form

B†|n〉 = [n + 1]1/2|n + 1〉, B|n〉 = [n]1/2|n − 1〉, B|0〉 = 0, N |n〉 = n|n〉.
However, it will be more convenient to use another realization, namely,

B†|n〉 = [n + 1]|n + 1〉, B|n〉 = |n − 1〉, B|0〉 = 0, N |n〉 = n|n〉. (13)

For the operators B and B† to be the adjoints of each other, we should normalize the Fock vectors
so that

〈n|n〉2 =
1

[n]!
. (14)
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Yet another realization of the q-boson model in the Fock space is given by the formula

B†|n〉 = |n + 1〉, B|n〉 = [n]|n − 1〉, B|0〉 = 0, N |n〉 = n|n〉 (15)

with the normalization
〈n|n〉2 = [n]!. (16)

One can readily see that the phase model is the special case of the q-boson model corresponding
to q = 0. As q → 1, the operators B and B† turn into the canonical free boson operators b and
b† , respectively, satisfying the commutation relation [b, b†] = 1.

Now we apply the same scheme as we have used for the phase model in Sec. 2: fix the number of
sites M , consider the tensor product F = F0 ⊗F1 ⊗ · · · ⊗FM of M + 1 copies Fi , i = 0, . . . , M ,
of the one-dimensional Fock space, and denote by Bi , B†

i , and Ni the operators that act as B , B† ,
and N , respectively, in the ith space and identically in the other spaces Fj . It will be convenient to
use the realization (13) of the q-boson algebra for i = 1, . . . , M and the realization (15) for i = 0.

Note that in view of (14) and (16) the squared norms of the basis N -particle vectors (6) are
equal to

‖ψn0,...,nM ‖2 =
[n0]

∏M
j=1[nj ]!

. (17)

The Hamiltonian of the q-boson model has the form

H = −1
2

M∑

n=0

(B†
nBn+1 + BnB†

n+1 − 2Nn)

with the periodic boundary conditions, M + 1 ≡ 1.
The L-matrix for the q-boson model is given by

L0(u) =
(

u−1I B†
0

(1 − q2)B0 uI

)

, Ln(u) =
(

u−1I (1 − q2)B†
n

Bn uI

)

, n = 1, . . . , M. (18)

This L-matrix satisfies the bilinear equation (2) with the R-matrix

R(u, v) =

⎛

⎜
⎜
⎝

f(v, u) 0 0 0
0 g(v, u) q−1 0
0 q g(v, u) 0
0 0 0 f(v, u)

⎞

⎟
⎟
⎠ , (19)

where

f(v, u) =
q−1u2 − qv2

u2 − v2
, g(v, u) =

uv

u2 − v2
(q−1 − q). (20)

Note that the R-matrix (3), (4) of the phase model is obtained from the R-matrix of the q-boson
model as the renormalized q → 0 limit,

Rphase = lim
q→0

qRq-boson.

Denote by

T (u) = LM (u) · · ·L0(u) =
(

A(u) B(u)
C(u) D(u)

)

the monodromy matrix of the q-boson model. It satisfies the bilinear equation (5) with the R-matrix
(19), (20).

3.2. The Hall–Littlewood functions. In this section, we give a brief account of basic facts
related to the Hall–Littlewood symmetric functions; for details, see [9, Ch. III].

The Hall–Littlewood symmetric functions with parameter t � 0, indexed by Young diagrams λ,
can be defined, for example, as follows. First, for a finite number n � l(λ) of variables x1, . . . , xn ,
set

Pλ(x1, . . . , xn; t) =
1

vλ(t)

∑

w∈Sn

w

(

xλ1
1 · · ·xλn

n

∏

i<j

xi − txj

xi − xj

)

,
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where Sn is the symmetric group of degree n acting by permutations of variables and

vλ(t) =
∏

i�0

vni(λ)(t), vn(t) =
n∏

i=1

1 − ti

1 − t
.

Then observe that for each diagram λ with l(λ) � n we have Pλ(x1, . . . , xn; t) = Pλ(x1, . . . , xn, 0; t),
so that we can define a symmetric function Pλ(x; t) of infinitely many variables with coefficients
in Z[t] as the inductive limit of Pλ(x1, . . . , xn; t) with respect to the projections sending the last
variable to 0. The functions Pλ(x; t) form a Z[t]-basis of the algebra Λ[t] of symmetric functions with
coefficients in Z[t]. They interpolate between the Schur functions sλ and the monomial symmetric
functions mλ ,

Pλ(x; 0) = sλ(x), Pλ(x; 1) = mλ(x). (21)

It is convenient to introduce another family of symmetric functions Qλ(x; t) that are scalar
multiples of Pλ(x; t). Namely, we set

Qλ(x; t) = bλ(t)Pλ(x; t),

where
bλ(t) =

∏

i�1

φni(λ)(t), φn(t) = (1 − t)(1 − t2) · · · (1 − tn).

For q = 0, we have Qλ(x; 0) = Pλ(x; 0) = sλ(x).
Now set

qr(x; t) = Q(r)(x; t) = (1 − t)P(r)(x; t), r � 1, q0(x, t) = 1.

The generating function for qr is equal to

Q(u) =
∞∑

r=0

qr(x; t)ur =
∏

i

1 − xitu

1 − xiu
=

H(u)
H(tu)

, (22)

where H(u) is the generating function of complete symmetric functions. In particular,

qr(x, 0) = hr(x), (23)

qr(x; 1) = 0 for r � 1. (24)

Let
qλ(x; t) =

∏

i�0

qλi(x; t). (25)

The symmetric functions qλ(x; t) form a Q[t]-basis of Λ[t].
For t 
= 1, we introduce an inner product in Λ[t] by requiring that the bases {qλ} and {mλ}

be dual to each other:
〈qλ(x; t), mµ(x)〉 = δλµ.

Then the bases {Pλ} and {Qλ} are also dual,

〈Pλ(x; t), Qµ(x; t)〉 = δλµ,

so that the squared norm of the Hall–Littlewood function Pλ(x; t) is equal to

〈Pλ(x; t), Pλ(x; t)〉 =
1

bλ(t)
. (26)

Note that for t = 0 this inner product is reduced to the standard inner product in Λ (with
respect to which the Schur functions form an orthonormal basis).

The generalization of the Cauchy identity to the case of Hall–Littlewood functions reads
∏

i,j

1 − txiyj

1 − xiyj
=

∑

λ

Pλ(x; t)Qλ(y; t) =
∑

λ

bλ(t)Pλ(x; t)Pλ(y; t). (27)
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There is also a generalization of the Pieri formula. Namely,

Pµqr =
∑

λ:λ\µ∈Hk

φλ\µ(t)Pλ (28)

with
φλ\µ(t) =

∏

i∈I

(1 − tni(λ)), (29)

where θ = λ \ µ and I = {i : θ′i = 1, θ′i+1 = 0}. (Recall that θ′i is the length of the ith column of
the skew diagram θ, which in the case of a horizontal strip can be equal to 0 or 1.)

3.3. Realization of the q-boson model in the algebra of symmetric functions. We
follow the same scheme as was used for the phase model in Sec. 2.2.

To each basis vector (6), we assign the Hall–Littlewood function Pλ(x; q2) with diagram deter-
mined by the occupation numbers,

M⊗

j=0

|nj〉j ↔ Pλ(x; q2), λ = 1n12n2 · · · .

Note that in view of (17) and (26) this correspondence is not an isometry.
Set B(u) = PB(u)P , where P is the projection onto the positive energy subspace. Denote by

ΛM [q2] the subspace in Λ[q2] spanned by the Hall–Littlewood functions Pλ(x; q2) with diagrams
having at most M columns.

Proposition 3. Let B(u) = u−MB̃(u). The operator B̃(u) acts in ΛM [q2] as the operator of
multiplication by QM (u2), where QM (t) =

∑M
k=0 tkqk(x; q2).

Proof. Arguing as in the proof of Proposition 1, we see that

Bk(u)Pµ(x; q2) =
∑

λ: λ\µ∈Hk

c(µ, λ)Pλ(x; q2)

but the coefficient c(µ, λ) is no longer equal to 1. However, we can readily compute it. Indeed, the
coefficient arises from applying the creation operators B†

j with j � 1. Namely, if BεM ,...,ε0sµ = sλ ,
then c(µ, λ) is the product of the factors (1 − q2)[ni(µ) + 1] = 1 − q2(ni(µ)+1) over all i � 1 such
that εi = 1. But the latter condition is equivalent to ni(λ) = ni(µ) + 1, or θ′i = 1 and θ′i+1 = 0;
i.e., the product is over all i belonging to the set I in the notation of (29). Thus

c(µ, λ) =
∏

i∈I

(1 − q2ni(λ)) = φλ\µ(q2),

and the proposition follows by the Pieri type formula (28) for the Hall–Littlewood functions.
Remark. Just as in the case of complete symmetric functions, we can treat the truncated

generating function QM (t) as the full generating function Q(t) under an appropriate specialization,

QM (t) = Q(t)|qM+1=qM+2=···=0. (30)

Corollary 2. There is a well-defined M → ∞ limit of the operator B̃(u). In the realization
of the q-boson model in the algebra of symmetric functions, it is the operator of multiplication by
Q(u2) = H(u2)

H(q2u2)
.

Proposition 4. Let |ΨN (u1, . . . , uN )〉 =
∏N

j=1 B(uj)|0〉. Then

|ΨN (u1, . . . , uN )〉 =
∑

λ

Qλ(u2
1, . . . , u

2
N ; q2)

M⊗

j=0

|nj〉j ,

where the sum is over all Young diagrams λ with at most N rows and at most M columns.
Proof. The proof is similar to that of Proposition 2 and uses Proposition 3, formula (22) for the

generating function of qk(x; t), and the Cauchy type identity (27) for the Hall–Littlewood functions.
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The restriction on the diagrams λ is a consequence of the following facts: (a) Pλ(x; t) = 0 if the
number of nonzero variables xi is less than l(λ) (this readily follows from the definition of the
Hall–Littlewood functions), and (b) the transition matrix from the basis {Qλ} to the basis {qλ} is
strictly lower triangular [9, III.2.16], so that the specialization (30) implies, in view of (25), that
Qλ = 0 unless λ1 � M .

Remark. For q = 0, the results of this section reproduce those of Sec. 2.2 in view of (21) and
(23).

For q = 1, the L-matrix (18) degenerates into a lower triangular matrix for n = 1, . . . , M and
an upper triangular matrix for n = 0, so that B(u) = u−MB†

0 , whence B̃(u) = 1, in accordance
with (24).

The author is grateful to N. M. Bogoliubov for introducing into the quantum inverse scattering
method and q-boson model and to A. M. Vershik for numerous useful discussions.
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