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We formulate the main facts on the representations
of the infinite symmetric group induced from the iden-
tity representations of Young subgroups. In particular,
we describe when these representations are irreducible
or factor representations, and give examples of comput-
ing their spectral measures.

INTRODUCTION
In the classical representation theory of symmetric

groups, the representations induced from Young sub-
groups (i.e., subgroups that leave some partition fixed)
play an important role (see [5]). The decompositions of
these representations into irreducible components con-
tain, in a canonical way, all irreducible representations
of the group, and this gives the traditional method for
establishing a connection between Young diagrams and
irreducible representations (Young–Frobenius corre-
spondence). At present, there is an alternative approach
to establishing this correspondence, which is based on
the diagonalization of the group algebra and its repre-
sentations with respect to the Gelfand–Tsetlin subalge-
bra [5, 3]. Nevertheless, the analysis of induced repre-
sentations for finite and infinite symmetric groups is an
important problem. Here, we present a brief list of
properties of the representations of the infinite symmet-
ric group induced from infinite Young subgroups. As
was repeatedly observed, many properties of the infi-
nite symmetric group are simpler and more natural
compared with analogous properties of finite symmet-
ric groups, but, of course, there are also new effects that
are absent in the finite case.

We should mention another important fact. The rep-
resentation theory of infinite discrete noncommutative
groups (more exactly, nonvirtually commutative
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groups), i.e., groups that are not of type I, is considered
unreasonable (“wild”), so that neither classification nor
uniform models of representations can be obtained. The
infinite symmetric group 

 

�

 

�

 

 is just one of the main
nontrivial examples of nontype I groups. However, as
regards this group, this point of view is completely
unjustified; in fact, the structure of this group allows
one to reduce its “wildness” to a standard model in the
theory of dynamical systems, whereupon the study of
its representations becomes quite a reasonable prob-
lem.

We mean the important fact that the group algebra of
the group 

 

�

 

�

 

 (as well as any inductive limit of semi-
simple algebras with simple branching) has a natural
structure of a skew product: the canonical commutative
subalgebra is the so-called Gelfand–Tsetlin algebra,
i.e., the algebra of functions on infinite Young tableaux,
and an analog of its normalizer subgroup is the group of
elements of the algebra that preserve the partition of the
space of infinite Young tableaux into equivalence
classes with respect to the “tail” equivalence relation
(two tableaux are equivalent if they differ only by a
finite beginning). Thus, every unitary representation of
the group 

 

�

 

�

 

 is determined by a Borel measure on the
space of infinite Young tableaux (it is natural to call it
the spectral measure of the representation) and by a
cocycle with values in the group of unitary operators of
an auxiliary Hilbert space. This measure is quasi-
invariant with respect to equivalence-preserving trans-
formations, and its ergodicity, together with the inde-
composability of the cocycle, is equivalent to the irre-
ducibility of the representation. The analysis of the
spectral measure of the representation, regarded as a
measure on the space of infinite Young tableaux, is the
most difficult and interesting part of the theory, and it is
natural to call it the Fourier theory for the infinite sym-
metric group (see [3, 6]). The article [4] and subsequent
papers contain a relatively detailed study of only the so-
called central measures, i.e., the spectral measures of
representations with traces, or, in our terms, the Fourier
transforms of characters, e.g., the Plancherel measure.
This program for other representations of 

 

�

 

�

 

 has not
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yet been carried out even for such natural representa-
tions as induced ones.

PARTITIONS, YOUNG SUBGROUPS, INDUCTION
The group 

 

�

 

�

 

 is the countable group of finite per-
mutations of the set of positive integers; we regard it as
the inductive limit of the increasing family of finite
symmetric groups 

 

�

 

n

 

, 

 

n

 

 = 1, 2, …

 

, with natural embed-
dings. Consider partitions of the set of positive integers

 

�

 

 and the corresponding Young subgroups. Let 

 

Π

 

 =
(

 

A

 

1

 

, 

 

A

 

2

 

, …)

 

 be an arbitrary partition of 

 

�

 

. Denote the
set of all partitions of 

 

�

 

 by 

 

�

 

. We will characterize a
partition by its type, which is the vector of multiplici-
ties of the cardinalities of its elements (blocks). Thus,
the type of a partition is the sequence

which consists of nonnegative integers or 

 

∞

 

, where 

 

r

 

0

 

 is
the number of infinite blocks, 

 

r

 

1

 

 is the number of blocks
consisting of a single element, etc., 

 

r

 

m

 

 is the number of
blocks of cardinality 

 

m

 

, 

 

m

 

 = 1, 2, …

 

.
The Young subgroup 

 

�

 

Π

 

 corresponding to a parti-
tion 

 

Π

 

 = (

 

A

 

1

 

, 

 

A

 

2

 

, …)

 

 consists of all elements of the
group 

 

�

 

�

 

 that leave the blocks 

 

A

 

1

 

, 

 

A

 

2

 

, …

 

 fixed. The
representation of 

 

�

 

�

 

 by right shifts of the argument in
the space 

 

l

 

2

 

(

 

�

 

�

 

/

 

�

 

Π

 

)

 

 of functions on the space of left
cosets of this subgroup is the representation induced
from the identity representation of the subgroup 

 

�

 

Π

 

,

denoted by 

 

1

 

 or, in short, 

 

ind

 

Π

 

. Note that 

 

�

 

�

 

 acts

in a natural way on the set of all partitions 

 

�

 

, and the
orbits of this action correspond precisely to the classes
of conjugate Young subgroups: 

 

�

 

g

 

Π

 

 = 

 

g

 

�

 

Π

 

g

 

–1

 

. Obvi-
ously, induction from conjugate Young subgroups
yields equivalent representations. The converse asser-
tion is also true.

 

Theorem 1.

 

 

 

The representations induced from two
Young subgroups that are not conjugate in

 

 

 

�

 

�

 

 

 

are not
equivalent.

 

It is convenient to divide all partitions into two
classes: the class 

 

�

 

l

 

 of large partitions that contain

finitely many finite blocks 

 

 < 

 

∞

 

 and, hence, at

least one infinite block (

 

r

 

0

 

 > 0

 

) and the class 

 

�

 

s

 

 of small
partitions that contain infinitely many finite blocks and
an arbitrary (possibly zero) number of infinite blocks

 

 = 

 

∞

 

; obviously, 

 

�

 

 = 

 

�

 

l

 

 ∪ 

 

�

 

s

 

.

The Young subgroup associated with a partition will
be called large or small depending on the type of the
partition. If the number of finite blocks is finite, then
they form a (possibly empty) Young diagram; denote it
by 

 

λ

 

(

 

Π

 

)

 

.

r r0 r1 r2 …, , ,( ),=

ind�Π

��

ri

i 0>
∑⎝

⎜
⎛

⎠
⎟
⎞

ri

i 0>
∑⎝

⎜
⎛

⎠
⎟
⎞

 

Theorem 2.

 

 

 

The representations induced from large
Young subgroups are representations of type

 

 I (

 

see

 

 [8])
(

 

i.e., they have a unique decomposition into the direct
integral of irreducible representations

 

). 

 

If the partition

 

Π

 

 contains at most one finite block

 

 

 

 

 

≤

 

 1

 

, 

 

then

the representation is irreducible; otherwise it is a finite
sum of irreducible representations indexed by Young

diagrams with

 

 

 

|λ

 

(

 

Π

 

)

 

|

 

 =  cells majorizing λ(Π) in

the dominance ordering; in general, these representa-
tions are not induced from any Young subgroups.

The above decomposition into irreducible compo-
nents can be described explicitly. In a sense, it repro-
duces the decomposition of the representation of a
finite symmetric group from the Young subgroup corre-
sponding to the diagram λ(Π). The part of this theorem
concerning irreducibility was proved in [1].

Let us turn to small Young subgroups; here, we have
a completely different picture. Recall that induction
from the identity subgroup (i.e., the Young subgroup cor-
responding to the partition into separate points: r1 = ∞,
ri = 0 for i ≠ 1) is a factor representation of type II1.
Hence, it is not surprising that a similar assertion holds
for other small subgroups. In a small partition Π, con-
sider finite blocks of finite multiplicities ({i > 0: ri < ∞}).
They form a Young diagram ν(Π).

Theorem 3. The representation induced from the
Young subgroup �Π, where Π is a small partition in
which at least one multiplicity ri, i > 0, is infinite and the
diagram ν(Π) is finite, is a representation of type II. It
is a factor if the diagram ν(Π) is either empty or con-
sists of a single row; otherwise, it decomposes into a
finite sum of factor representations indexed as in the
previous case.

Here, the most interesting phenomenon is the
appearance of coupled factors of different types: II1 and
II∞.

Theorem 4 (on the infinite hook) Consider small
partitions Π of one of the types r0 = 1, r1 = n, ri = 0, i > 1,
where n can be an arbitrary positive integer greater
than one or infinity.

Then the algebra generated by the operators of the
representation indΠ is a factor of type II, and its com-
mutant is a factor of type II1.

Recall that there are examples of factor representa-
tions of the infinite symmetric group with a coupling
constant not equal to one (see [2]). In our case, this con-
stant is equal to infinity; i.e., we have naturally coupled
factors of types II1 and II∞. This means, in particular,
that the group representation has a cyclic vector,
whereas its commutant does not. Note that in this
example, the commutant is also generated by the regu-
lar representation of a subgroup of the original group
isomorphic to ��. The type of the representation indΠ,
where Π is a partition without infinite blocks in which

ri

i 0>
∑⎝

⎜
⎛

⎠
⎟
⎞

ri

i 0>
∑
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all finite blocks are of finite multiplicities, i.e., r0 = 0, ri
< ∞, i > 0, remains an open problem.

As is known, it is natural to classify factor represen-
tations up to quasiequivalence [8] rather than ordinary
(spatial) equivalence. For factor representations,
quasiequivalence is reduced to the algebraic equiva-
lence of representations. The problem of quasiequiva-
lence of induced representations is more complicated.
In any case, one can assuredly assume that, for induced
representations, quasiequivalence is much rougher than
the conjugacy of the corresponding subgroups.

SPECTRAL THEORY
One of the most interesting problems is the spectral

theory of induced representations. We mean a decom-
position of representation operators in spaces of func-
tions on infinite Young tableaux integrable with respect
to some (spectral) measure quasiinvariant with respect
to the tail partition; in other words, we mean the diago-
nalization of representation operators with respect to
the Gelfand–Tsetlin algebra. In [6, 11], we call this cir-
cle of problems the Fourier theory for ��.

Let us define several classes of representations of
the group ��. Note that the space T of infinite Young
tableaux, i.e., infinite paths in the Young graph, is a
totally disconnected (nonstationary) Markov compac-
tum, so that we have a standard notion of a Markov
measure on this space. A representation of �� with a
simple spectrum is called Markov if in the representa-
tion space there is a cyclic vector whose central mea-
sure with respect to the Gelfand–Tsetlin algebra is
Markov. Now let f be a state on the group ��, i.e., a
positive definite complex-valued function normalized
by the condition f (e) = 1 (in what follows, we consider
states that are the characteristic functions of Young sub-
groups). The restrictions of f to the subgroups �n deter-
mine a coherent system of states on �n and the mono-
tone limit of cyclic representations. If these states deter-
mine irreducible representations (respectively,
representations with a simple spectrum) of the groups
�n starting from some n, then the cyclic representation
determined by the state f is called elementary (respec-
tively, simple). In these cases, the spectrum of the rep-
resentation of �∞ determined by this state is simple.

For large partitions of type r0 = 1,  < ∞ (i.e., for

partitions with one infinite block and finitely many
finite blocks), the spectral measure is obviously dis-
crete and concentrated on one class or finitely many
classes of tail-equivalent Young tableaux; in particular,
if this representation is irreducible, then it is elemen-
tary.

The first unobvious result on the spectral measures
of induced representations (see [7]) is as follows.

Theorem 5. Let Π be a partition of the set of positive
integers � into two infinite blocks (r0 = 2, ri = 0, i > 0),
and let �Π be the corresponding Young subgroup. The

ri

i 0>
∑

spectral measure of the induced representation indΠ is
a Markov measure, and the representation itself is sim-
ple and irreducible.

The irreducibility was already mentioned above,
and the simplicity is a consequence of the following
fact, which is important in itself and connects two
notions that are a priori far from each other:

Theorem 6. A representation of the infinite symmet-
ric group is Markov if and only if it is simple.

In particular, for the induced representation associ-
ated with a two-block partition Π = (A1, A2), the transi-
tion probabilities of the spectral measure are given by
the following formula. Let m(n) = |A1 ∩ {1, 2, …, n}|.
If n + 1 ∉ A1, then

If n + 1 ∈ A1, then

Another nontrivial example of spectral analysis is
the computation of the spectral measure of the induced
representation indΠ, where Π is a small partition of type

r0 = 0, r1 = ∞,  < ∞. Let ν = ν(Π) = (ν1, ν2, …).

Denote by P the Plancherel measure (= the spectral
measure of the regular representation) on the space T of
infinite Young tableaux t = (t1, t2, …) and by Kν, µ the
Kostka numbers.

Theorem 7. The spectral measure of the representa-
tion indΠ for the above partition Π is a convex combi-
nation of conditional Plancherel measures:

where cµ =  and P(·|tn = µ) is the con-

ditional distribution of the Plancherel measure given
that the path goes through the vertex µ at the nth level.
In particular, the spectral measure is absolutely contin-
uous with respect to the Plancherel measure and has a
piecewise constant (cylinder) density.

A detailed exposition of these and other results on
induced representations of the infinite symmetric group
will be published in Pure and Applied Mathematics
Quarterly.

Prob n k– k,( ) n 1 k–+ k,( ),( ) n m n( )– k– 1+
n 2k– 1+

---------------------------------------,=

Prob n k– k,( ) n k– k 1+,( ),( ) m n( ) k–
n 2k– 1+
------------------------.=

Prob n k– k,( ) n 1 k–+ k,( ),( ) m n( ) k– 1+
n 2k– 1+

------------------------------,=

Prob n k– k,( ) n k– k 1+,( ),( ) n m n( )– k–
n 2k– 1+

------------------------------.=
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µ ν
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n!

---------------------------------------



4

DOKLADY MATHEMATICS      Vol. 75      No. 1      2007

VERSHIK, TSILEVICH

ACKNOWLEDGMENTS

This work was supported by the grant CRDF RUM1-
2622-ST-04, the Russian Foundation for Basic Research
(project no. 05-01-00899), and the program “Leading
Scientific Schools” (project no. NSh.-4329.2006.1).

REFERENCES

1. M. W. Binder, Math. Ann. 294, 37–47 (1992).
2. A. M. Vershik, Moscow Math. J. 3, 1141–1157 (2003).
3. A. M. Vershik, The Unity of Mathematics (Birkhäuser,

Boston, 2006), pp. 619–631.
4. A. M. Vershik and S. V. Kerov, Funkts. Anal. Ego

Prilozh. 15, 15–27 (1981).

5. A. M. Vershik and A. Yu. Okun’kov, Zap. Nauchn.
Semin. POMI 307, 57–98 (2004).

6. A. M. Vershik and N. V. Tsilevich, Zap. Nauchn. Semin.
POMI 325, 61–82 (2005).

7. A. M. Vershik and N. V. Tsilevich, Teor. Veroyatn. Ee
Primen. 51, 47–63 (2006).

8. J. Dixmier, Les C*-algébras et leurs répresentations
(Gauthier-Villars, Paris, 1969; Nauka, Moscow, 1974).

9. G. Mackey, The Theory of Unitary Group Representa-
tions (Univ. Chicago Press, Chicago, 1976).

10. W. Fulton, Young Tableaux with Applications to Repre-
sentation Theory and Geometry (Cambridge Univ. Press,
Cambridge, 1997).

11. N. V. Tsilevich and A. M. Vershik, Adv. Appl. Math.
(2006), in press. 


