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ON THE FOURIER TRANSFORM ON THE INFINITE SYMMETRIC GROUP

A. M. Vershik∗ and N. V. Tsilevich∗ UDC 517.986

We present a sketch of the Fourier theory on the infinite symmetric group S∞. As a dual space to S∞, we suggest
the space (groupoid) of Young bitableaux B. The Fourier transform of a function on the infinite symmetric group
is a martingale with respect to the so-called full Plancherel measure on the groupoid of bitableaux. The Plancherel
formula determines an isometry of the space l2(S∞, m) of square summable functions on the infinite symmetric
group with the counting measure and the space L2(B, µ̃) of square integrable functions on the groupoid of bitableaux
with the full Plancherel measure. Bibliography: 16 titles.

1. Introduction

The duality between spaces of functions on a group and spaces of some objects on the set of irreducible
representations of this group has always been attracting particular attention of specialists in representation
theory and analysis, and there are hundreds of papers on this subject. In the case of commutative groups, there
is a well-developed canonical theory, which is a direct generalization of the theory of classical Fourier series and
integrals; it uses the theory of characters of commutative locally compact groups.

In the case of noncommutative groups, where irreducible representations are no longer necessarily one-
dimensional, there is no indisputable and generally accepted candidate to the role of Fourier theory, and there
are many different versions of such a theory. Some facts and notions similar to the commutative case, such
as Plancherel measure and Plancherel formula, Bochner theorem, central functions, etc., are well studied and
widely used, but they are far from exhausting the problem. The point of view according to which the Fourier
transforms of functions on a group are operator-valued functions on the set of irreducible representations (or
sections of some tautological foliations over this set) is a too literal generalization of the commutative case and
does not lead to any interesting results in particular cases.

In this paper, we present a sketch of a generalization of the Fourier theory for the infinite symmetric group.
Our approach is based on the fact that this group has an inductive (increasing) family of subgroups, which
leads to the appearance of many additional structures, such as the Gelfand–Tsetlin algebra, Young diagrams
and tableaux, etc. Undoubtedly, a similar theory can be developed for other inductive families of groups, but
here we restrict ourselves only to the symmetric groups.

We do not reproduce well-known definitions, which can be found in the textbooks and papers mentioned in
the list of references. However, relatively new notions developed in recent years are described in more detail.
Since this article will be continued in subsequent papers on the Fourier transform on the symmetric groups and
other classical series of groups, we do not try to give all relevant references and describe all arising links, but
restrict ourselves only to necessary definitions. However, we would like to mention that this series of papers
naturally generalizes and exploits the series of papers by the first author and S. V. Kerov (see, e.g., [13]) started
about 30 years ago and devoted to asymptotic representation theory and the inductive approach to this theory,
as well as subsequent papers on close subjects by G. I. Olshanski and others (see, e.g., [8, 7]).

As a dual space to the symmetric group, we suggest the space (groupoid) of Young bitableaux, i.e., the
space of pairs of tableaux with the same diagram. In fact, it is the space of matrix elements of all irreducible
representations in a special basis, namely, the Gelfand–Tsetlin basis. Thus the Fourier transform of a function
on the symmetric group is, by definition, a function on bitableaux; and instead of matrix-valued functions on
the space of irreducible representations, we consider scalar functions which are the matrix elements of these
representations in the chosen basis. The groupoid of bitableaux is equipped with the so-called full Plancherel
measure, and the Plancherel formula determines an isometry of two Hilbert spaces of square integrable functions:
the L2 space on the symmetric group with the Haar measure, and the L2 space on the groupoid of bitableaux
with the full Plancherel measure.

Remarkably, these statements can be extended to the infinite symmetric group. Note that the space of classes
of irreducible representations of this group is immense, so that the ordinary (operator-valued) version of duality
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cannot even be formulated. However, the suggested approach allows us to consider the problem of describing
the Fourier transforms of different classes of functions on the group, etc. The crucial role is played by the
Gelfand–Tsetlin maximal commutative subalgebra, which diagonalizes in all representations.

In the more general context of inductive limits of groups and algebras, as well as in the case of symmetric
groups, we pay special attention to projective limits of groups and algebras with respect to some conditional
expectations (not necessarily positive). For the symmetric groups, a nontrivial example of such an expectation
and projective limit was first considered in [4, 5] (virtual permutations). In Fourier theory, projective limits lead
to martingale theory on noncommutative groupoids, which, apparently, was not studied earlier.

2. Symmetric groups Sn

The classical representation theory of the finite symmetric groups is described, for instance, in the books [2, 1];
these books also contain references to other sources on this subject. In [15] (see also [16]), a new approach to this
theory is presented, in which Young diagrams and tableaux and the branching rule for irreducible representations
appear in a natural way; this approach is based on the systematic use of the Gelfand–Tsetlin algebras and
Young–Jucys–Murphy elements. The classical (operator-valued) theory of Fourier transform on finite groups can
be found, e.g., in [3]. Note that there is also a remarkable bijection (“combinatorial Fourier transform”), called
the Robinson–Schensted–Knuth (RSK) correspondence, between the elements of the symmetric group and the
bitableaux; see [11].

2.1. Basic definitions and notation
Let Sn be the symmetric group of degree n, C[Sn] be the group algebra of Sn, and mn be the counting

measure on Sn (that is, mn(w) = 1 for every w ∈ Sn).
Denote by Yn the set of Young diagrams with n cells (by definition, Y0 consists of the empty diagram ∅).

This set parametrizes the irreducible representations of the group Sn. Denote by πλ the irreducible unitary
representation of Sn corresponding to a digram λ ∈ Yn, by χλ the character of πλ, and by dimλ the dimension
of πλ.

The branching graph of the irreducible representations of the symmetric groups is the Young graph Y defined
as follows: the vertex set of Y is ∪nYn, and two vertices λ ∈ Yn and µ ∈ Yn−1 are joined by an edge whenever
µ ⊂ λ.

Denote by T (λ) the set of Young tableaux of shape λ ∈ Yn, i.e., the set of paths in the Young graph from ∅
to λ. This set consists of dimλ elements. Given a tableau t ∈ T (λ), set dim t = dimλ. Let Tn = ∪λ∈YnT (λ) be
the set of Young tableaux with n cells, i.e., the set of paths of length n in the Young graph.

According to the branching rule for irreducible representations of the symmetric groups, with each Young
tableau t ∈ T (λ) one can associate a one-dimensional subspace in the space Vλ of the representation πλ. Choose
a unit vector ht in this subspace. The obtained basis {ht; t ∈ T (λ)} in the space Vλ is called the Gelfand–Tsetlin
basis.

Let Bn = {(s, t) : s, t ∈ Tn are of the same shape} be the space of bitableaux (loops) of size n, i.e., the set
of pairs of paths of length n in the Young graph ending at the same vertex. Clearly, dim s = dim t whenever
(s, t) ∈ Bn.

2.2. The Plancherel measure
There are three closely related measures — on the space of Young diagrams, on the space of Young tableaux,

and on the space of Young bitableaux, which will be called Plancherel measures.
The most classical of these measures is the Plancherel measure on the space Yn of Young diagrams with n

cells, i.e., on the space of irreducible representations of the group Sn; it is given by the formula

Pln({λ}) =
dim2 λ

n!
, λ ∈ Yn.

It is a probability measure, as follows from the classical Burnside formula:

∑

λ∈Yn

dim2 λ

n!
= 1.

Now consider the measure on the space Tn of Young tableaux with n cells whose projection to Yn coincides
with the Plancherel measure Pln and, given λ ∈ Yn, the distribution on the set T (λ) of tableaux of shape λ is
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uniform; this measure is called the Plancherel measure on the space of Young tableaux, and it will be denoted by
the same symbol; obviously, it is also a probability measure, and

Pln({t}) =
dim t

n!
, t ∈ Tn.

Finally, the Plancherel measure on the space of bitableaux Bn is given by the formula

µn{(s, t)} =
dim s

n!
, (s, t) ∈ Bn.

This definition is motivated by the groupoid structure on the space of bitableaux. Namely, if we equip Bn with
the structure of a principal groupoid with diagonal Tn as described in Sec. 5.2 for the infinite case, then µn

is precisely the measure induced on the groupoid Bn by the Plancherel measure Pln on Tn. In other words,
the projection of µn to the first component s is the Plancherel measure Pln on tableaux, and the conditional
measure on the second component t given a fixed first component s is the counting measure. Clearly, the
Plancherel measure on bitableaux is not normalized:

∑

(s,t)∈Bn

µn{(s, t)} =
∑

(s,t)∈Bn

dim t

n!
=

∑

λ∈Bn

dim3 λ

n!
→ ∞ as n → ∞.

As we will see in Sec. 5.1, this measure is an analog of the “correct” Plancherel measure for the infinite symmetric
group.

2.3. The Fourier transform on the finite symmetric groups

Definition 1. The Fourier transform on the finite symmetric group Sn is the operator that maps a function

f ∈ C[Sn] to a function f̂ ∈ C(Bn) where

f̂(s, t) =
∑

w∈Sn

f(w)(πλ(w)hs, ht), (s, t) ∈ Bn. (1)

This formula can be understood as follows. Denote by End Vλ the algebra of matrices in the space Vλ of the
representation πλ, with distinguished basis consisting of the matrix elements of πλ with respect to the Gelfand–
Tsetlin basis. Note that this algebra, regarded as a subalgebra of C[Sn], is a minimal two-sided ideal. The
representation πλ can be extended by linearity to the group algebra C[Sn]. Thus for every function f ∈ C[Sn]
we have the matrix πλ(f) =

∑
w∈Sn

f(w)πλ(w) from EndVλ. We can define the matrix Fourier transform of a
function f as

f̂(λ) = πλ(f) =
∑

w∈Sn

f(w)πλ(w), λ ∈ Yn. (2)

Thus the matrix Fourier transform associates with a function f ∈ C[Sn] a function f̂ on the set of diagrams
Yn, with f̂(λ) taking values in EndVλ. The above-defined values f̂(s, t) are the matrix elements of f̂(λ) in the
Gelfand–Tsetlin basis. This form of the Fourier transform will be called the tableau Fourier transform.

The inversion formula for the Fourier transform reads as

f(w) =
∑

(s,t)∈Bn

f̂(s, t)(πλ(w)ht, hs)µn(s, t), w ∈ Sn, (3)

or, in matrix form,

f(w) =
∑

λ∈Yn

dimλ

n!
tr(f̂(λ)π∗

λ(w)), w ∈ Sn

(where ∗ stands for the matrix conjugation).
The Fourier transform establishes an isometry between the spaces L2(Sn, mn) and L2(Bn, µn); namely, the

following Plancherel formula holds:
∑

w∈Sn

f(w)g(w) =
∑

(s,t)∈Bn

f̂(s, t)ĝ(s, t)µn(s, t).

The Fourier transform sends convolution of functions on Sn to matrix multiplication:

(̂f ∗ g)(λ) = f̂(λ)ĝ(λ),

or, in tableau form,
(̂f ∗ g)(s, t) =

∑

r∼s

f̂(s, r)ĝ(r, t).
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2.4. The Fourier transform of central functions
Denote by Z[Sn] the center of the group algebra of the symmetric group Sn, i.e., the set of central functions

on Sn. For a central function f ∈ Z[Sn], the operator πλ(f) =
∑

w∈Sn
f(w)πλ(w) is scalar on Vλ, thus the

matrix Fourier transform of a central function f takes the form

f̂(λ) =

(
∑

w∈Sn

f(w)
χλ(w)
dim λ

)
Eλ, t ∈ T (λ),

where Eλ is the identity operator in Vλ. In the tableau form, this means that the function f̂ is supported by the
diagonal {(t, t), t ∈ Tn} and its value at a bitableau (t, t) ∈ λ depends only on λ. Such functions on the space
of bitableaux will be called central.

Thus the Fourier transform of a central function on Sn can be identified with a function on the set Yn of
Young diagrams with n cells. The inverse Fourier transform for central functions takes the form

f(w) =
∑

λ∈Yn

χλ(w)f̂(λ)
dim λ

n!
;

in particular,

f(e) =
∑

λ∈Yn

f̂(λ)
dim2 λ

n!
; (4)

the Plancherel formula in this case reads as
∑

w∈Sn

f(w)g(w) =
∑

λ∈Yn

f̂(λ)ĝ(λ)
dim2 λ

n!
.

In particular, the Fourier transform of an irreducible character χλ is the function

χ̂λ(µ) =
{

0 if µ 	= λ,
n!

dim λ if µ = λ.

Note (see [6]) that there is a canonical correspondence between central functions on the symmetric groups
and symmetric functions.

2.5. Gelfand–Tsetlin algebras and Young–Jucys–Murphy elements
The key role in the inductive construction of the representation theory of the symmetric groups [15] (see also

[16]) is played by the Gelfand–Tsetlin algebras and Young–Jucys–Murphy elements.
The Gelfand–Tsetlin algebra of the symmetric group Sn is the subalgebra GZ(n) ⊂ C[Sn] generated by

the centers Z[S1], Z[S2], . . . , Z[Sn]. This is a maximal commutative subalgebra of the group algebra C[Sn].
Namely, this is the algebra of all operators diagonal in the Gelfand–Tsetlin basis.

Thus the Fourier transform of an element of the Gelfand–Tsetlin algebra is a function supported by the
diagonal Tn.

The Young–Jucys–Murphy (YJM) elements are the following elements Xk ∈ C[Sn], k = 1, . . . , n:

Xk = (1 k) + (2 k) + . . . + (k − 1 k)

(as usual, (i, j) stands for the transposition permuting i and j). The YJM-elements form a multiplicative basis
of the Gelfand–Tsetlin algebra GZ(n).

The matrix Fourier transform of a YJM-element Xk sends a diagram λ to the diagonal matrix from EndVλ

in which the diagonal element corresponding to a tableau t ∈ λ is equal to the content1 ck(t) of the cell of t
containing the element k. Thus the set of such diagonal matrices, with diagonal elements equal to the contents
of tableaux, form a multiplicative basis in the algebra of all diagonal matrices, which is the Fourier transform of
the Gelfand–Tsetlin algebra. The tableau Fourier transform of a YJM-element Xk is the function on bitableaux
given by the formula

X̂k(t, s) =
{

ck(t) if s = t,

0 otherwise.

1Recall that the content of a cell � of a Young diagram lying at the intersection of the ith row and jth column is the number

c(�) = i − j.
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3. The infinite symmetric group S∞

Necessary facts from the representation theory of the infinite symmetric group can be found, e.g., in [14].
Let S∞ = ∪∞

n=1Sn = lim−→Sn be the infinite symmetric group with the fixed structure of inductive limit, and
let C[S∞] be the group algebra of S∞.

Denote by T = lim←−Tn the space of infinite tableaux, i.e., the space of infinite paths in the Young graph.
The tail equivalence relation ∼ on T is defined as follows: paths s = (s1, s2, . . .) and t = (t1, t2, . . .) are

equivalent if and only if sk = tk for sufficiently large k. In a similar way we define the n-equivalence relation on
T : s ∼n t if and only if sk = tk for k ≥ n.

Consider the space B = {(s, t) : s, t ∈ T, s ∼ t} of infinite bitableaux (loops) with the topology of the
inductive limit B = lim−→Bn, where Bn = {(s, t) : s, t ∈ T, s ∼n t}. Thus B is a separable totally disconnected
locally compact space, and its diagonal B0 = {(t, t), t ∈ T} is homeomorphic to the space T of paths.

The Fourier transform establishes a canonical isomorphism between the group algebra C[S∞] of the infinite
symmetric group and the ∗-algebra C(B) of locally constant finitary functions on B; multiplication in this algebra
is defined as

fg(s, t) =
∑

r∼t

f(s, r)g(r, t), (5)

and involution is given by the formula
f∗(s, t) = f(t, s).

The Gelfand–Tsetlin algebra of the infinite symmetric group GZ(∞) (i.e., the subalgebra in C[S∞] generated
by all centers Z[S1], Z[S2], . . . , Z[Sn], . . .) goes to the commutative subalgebra of functions supported by the
diagonal B0.

A measure M on the space of paths T is called central if the measure of each cylinder set M({t : [t]n = s}),
where [t]n is the initial segment of length n of the path t and s is a fixed tableau from Tn, depends only on the
shape of t. The cotransition probabilities Prob{[t]n = s | [t]n+1 = u} are the same for all central measures and
depend only on the graph.

The Plancherel measure on the space T of infinite tableaux (i.e., infinite paths in the Young graph) is the
Markov central measure µ with transition probabilities

p∞(s, u) =
dimu

(n + 1) dim s
, s ∈ Tn, u ∈ Tn+1, (6)

and initial distribution supported by the unique one-cell tableau. Thus the measure µ is defined on cylinder sets
as follows:

µ({t ∈ T : [t]n = s}) =
dim s

n!
.

4. The Plancherel expectation

4.1. Definition of the Plancherel expectation
Let in be the canonical embedding of Sn into Sn+1. By the same letter we will denote the corresponding

embedding of the group algebras in : C[Sn] → C[Sn+1]. We will regard elements of the group algebra as
measures on the group and, correspondingly, write them in the form

∑
w fwδw. Then the embedding in takes

the form

(inf)u =
{

fu if u ∈ Sn,

0 otherwise,
f =

∑

w∈Sn+1

fwδw ∈ C[Sn+1], u ∈ Sn,

i.e., in(
∑

w∈Sn+1
fwδw) =

∑
u∈Sn+1

fuδu.
Consider the operator pn = i∗n conjugate to in (with respect to the scalar products in C[Sn] and C[Sn+1]

determined by the measures mn and mn+1, respectively). We will regard elements of the dual spaces to the
group algebras (which, of course, are isomorphic to the group algebras themselves) as functions on groups and
write them in functional notation. The projection pn : C[Sn+1] → C[Sn] has the form

(pnf)(w) = f(w), f ∈ C[Sn+1], w ∈ Sn.
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Thus pn is the restriction to a subgroup. It is not difficult to check that pn is a positive conditional expectation2

from the algebra C[Sn+1] to the subalgebra C[Sn].
Recall (see [12]) that an arbitrary positive conditional expectation from C[Sn+1] to C[Sn] is determined by

a collection of nonpositive numbers aµλ, µ ∈ Yn, λ ∈ Yn+1, such that
∑

λ:µ⊂λ aµλ = 1 for every µ. The above-
defined expectation pn corresponds to the Plancherel coefficients aµλ = p∞(µ, λ) = dim λ

(n+1)dim µ , thus it is natural
to call it the Plancherel conditional expectation.

The inductive limit of the group algebras C[Sn] with respect to the embeddings in is the group algebra of the
infinite symmetric group:

lim−→(C[Sn], in) = C[S∞].

The projective limit of the group algebras C[Sn] (regarded as spaces of functions on the groups) with respect
to the conditional expectations pn is the space of arbitrary functions on the infinite symmetric group:

lim←−(C[Sn], pn) = F(S∞).

4.2. The Fourier transform of the Plancherel conditional expectation
An easy calculation shows that the Fourier transform sends the embedding in to the operator (for simplicity,

we will denote it by the same letter) in : C(Bn) → C(Bn+1), where for f ∈ C(Bn), (s, t) ∈ Bn+1,

(inf)(s, t) =
{

f([s]n, [t]n) if s ∼n t,

0 otherwise.

The Plancherel conditional expectation goes to the operator pn : C(Bn+1) → C(Bn), where

(pnf)(s, t) =
∑

(u,v)∈Bn+1:(s,t)↗(u,v)

p∞(s, u)f(u, v), f ∈ C(Bn+1), (s, t) ∈ Bn; (7)

here p∞(s, u) is the Plancherel transition probability (6), and the notation (s, t) ↗ (u, v) means that the pair of
paths (s, t) is obtained from the pair (u, v) by removing the last vertex.

The inductive limit of the spaces C(Bn) with respect to the operators in is the space of finitary functions on
the space of infinite bitableaux B:

lim−→(C(Bn), in) = Cfin(B).

Our nearest goal is to describe the projective limit of the spaces C(Bn) with respect to the Plancherel
conditional expectations pn.

5. The full Plancherel measure and the projective limit of the spaces
C(Bn) with respect to the Plancherel conditional expectations

5.1. The full Plancherel measure
Traditionally, Plancherel measure associated with the infinite symmetric group is understood as the Plancherel

measure on the space of infinite tableaux T introduced in Sec. 3. However, the “true” Plancherel measure for the
infinite symmetric group S∞ is a measure in the space of bitableaux B, which we introduce in this section. For
this measure, there is a Plancherel theorem, i.e., the Fourier transform establishes an isometry between the space
of square integrable functions on S∞ with respect to the counting measure and the space of square integrable
functions on B with respect to this Plancherel measure (Theorem 2).

Given a tableau t ∈ T , denote by Gt = {(t, ·) ∈ B} the countable set of bitableaux with the first component
equal to t. Let λt be the counting measure on the set Gt.

Definition 2. The full Plancherel measure on the space of bitableaux B is the σ-finite measure

µ̃ =
∫

T

λtdµ(t).

2Concerning the notion of conditional expectation from a C∗-algebra to its C∗-subalgebra, see, e.g., [9]; note that in the classical

version, one considers only positive expectations; concerning nonpositive expectations, see [12] and Sec. 7.1.
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In other words, this is the measure whose projection to the first component coincides with the Plancherel measure
µ on the space of tableaux T and the conditional distribution on the second component for a fixed first component
is the counting measure.

In Sec 5.2, we will explain that this definition is directly related to the groupoid structure on the space of
bitableaux, and it should be understood precisely in this way. On the other hand, in some cases it is convenient
to use the following explicit description of the full Plancherel measure.

Let B = ∪∞
n=1Bn be the disjoint union of the sets of finite loops. We say that a finite bitableau (a, b) ∈ B is

proper if (a, b) ∈ Bn and a �n−1 b (i.e., ([a]n−1, [b]n−1) /∈ Bn−1). By definition, the unique element of the first
level is a proper bitableau. Denote by Bprop ⊂ B the set of all proper bitableaux.

There is a natural mapping P : B → Bprop, where P (s, t) = ([s]n, [t]n) if s ∼n t but s �n−1 t. Moreover, if
a, b ∈ T (λ), λ ∈ Yn, then the set T(a,b) = P−1(a, b) can be naturally identified with the set Tλ of infinite paths
in the Young graph starting from the vertex λ. (In particular, the space T(1,1), where (1, 1) is the unique loop of
the first level, is naturally identified with the space T of all infinite paths in the Young graph.) Thus we have a
natural decomposition

B =
⋃

(a,b)∈Bprop

T(a,b).

On the set T(a,b) � Tλ we have the distribution µ(a,b) = µλ induced by the Plancherel measure µ on T , which is
just the law of the random walk on T starting from the vertex λ and having the Plancherel transition probabilities
(6). The full Plancherel measure on the space of bitableaux B can be represented in the form

µ̃ =
∑

(a,b)∈Bprop

dim a

n!
µ(a,b), (a, b) ∈ Bn.

5.2. Groupoid structure on the space of bitableaux
It is convenient to describe the space of bitableaux and measures on it in terms of groupoid theory (see,

e.g., [10]).
We can regard the space of bitableaux B = {(s, t) : s, t ∈ T, s ∼ t} as the principal groupoid generated

by the tail equivalence relation on paths. Namely, pairs (s, t) and (u, v) are composable if and only if u = t,
and (s, t) · (t, v) = (s, v). The mappings r and d are given by the formulas r(s, t) = (s, s) and d(s, t) = (t, t),
respectively. The unit space can be identified with the diagonal B0 = {(s, s), s ∈ T}, i.e., with the space T of
infinite tableaux. The set Gs = r−1(s) for s ∈ T is Gs = {(s, t), t ∼ s} (it is a countable set). The left Haar
system on the principal groupoid B consists of the counting measures λt on the sets Gt. Consider the Plancherel
measure µ on the diagonal T . The measure

∫
T λtdµ(t) on the groupoid B generated by µ is precisely the full

Plancherel measure µ̃.

5.3. The projective limit of the spaces C(Bn) with respect to the Plancherel conditional expecta-
tions

Theorem 1. The projective limit of the spaces C(Bn) with respect to the Plancherel conditional expectations
pn is the space

lim←−(C(Bn), pn) = Mart(B, µ̃)

of martingales on the space of infinite bitableaux B with respect to the full Plancherel measure µ̃.

The space of martingales Mart(B, µ̃) with respect to the σ-finite measure µ̃ is understood as the space of
collections {φ(a,b)}(a,b)∈Bprop, where φ(a,b) is a martingale on T(a,b) with respect to the measure µ(a,b).

Proof. Let A be the Borel σ-algebra in the space B. Denote by An its σ-subalgebra generated by functions
supported by Bn and depending only on the first n coordinates of a bitableau (the set of such functions is
naturally identified with C(Bn)). The theorem follows from the fact that, as can easily be seen, the right-hand
side of formula (7) describes the conditional expectation of a function f with respect to the σ-algebra An. �

Thus we obtain the following definition of the Fourier transform on the infinite symmetric group S∞.

Definition 3. The Fourier transform of an arbitrary function f on the infinite symmetric group S∞ is the
martingale (φ1, φ2, . . .) on the space of infinite bitableaux B with respect to the full Plancherel measure µ̃, where

φn = f̂n is the Fourier transform of the restriction fn of the function f to the finite symmetric group Sn.
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6. The Fourier transform of different classes of functions on S∞

6.1. Square integrable functions
Consider the counting measure m on the infinite symmetric group S∞.

Theorem 2. The Fourier transform is an isometry of the space l2m(S∞) of square integrable functions on the
infinite symmetric group S∞ with respect to the counting measure and the space L2(B, µ̃) of square integrable
functions on the space of infinite bitableaux B with respect to the full Plancherel measure µ̃. The Plancherel
formula takes the form

∑

w∈S∞

f(w)ḡ(w) =
∫

B
f̂(s, t)ĝ(s, t)dµ̃(s, t), f, g ∈ l2m(S∞).

Proof. The Fourier transform of a square integrable function on S∞ is a square integrable martingale with respect
to the full Plancherel measure (since the Plancherel conditional expectations pn accord with the Hilbert structures
in the group algebras), which, according to martingale theory, in turn corresponds to a square integrable function
on B with respect to the full Plancherel measure. �

6.2. The Gelfand–Tsetlin space
As observed above, the Fourier transform of an element of the Gelfand–Tsetlin algebra GZ(∞) of the infinite

symmetric group is a function supported by the diagonal T .
Clearly, the Plancherel conditional expectation (as well as any other conditional expectation from C[Sn+1] to

C[Sn]) sends the Gelfand–Tsetlin algebra GZ(n + 1) to GZ(n), thus we can consider the space GZ = lim←−GZ(n).
It is no longer an algebra, but is a left and right C[S∞]-bimodule. We will call it the Gelfand–Tsetlin space
of the infinite symmetric group. It follows from above that the Fourier transform of an element from GZ is a
martingale on the space of paths T with respect to the Plancherel measure µ.

6.3. Central functions
The Fourier transform of a central function on S∞ is a central martingale (f1, f2, . . .) on the space of tableaux

T with respect to the Plancherel measure, which means that all functions fk are central in the sense of Sec. 2.4
(i.e., they are supported by the diagonal and depend only on the shape of tableaux).

For instance, let f be the characteristic function of a conjugacy class in S∞. This means that there exists
a diagram ρ ∈ Yk without rows of length 1 such that the restriction of f to Sn for n ≥ k is the characteristic
function of the conjugacy class Cρn corresponding to the diagram ρn = ρ ∪ 1n−k ∈ Yn. Then the Fourier
transform of the function f = fρ is the central martingale (φ1, φ2, . . .), where

φn(s, t) =

{
χλ(ρn)
dim λ

|Cρn | if s = t and [t]n ∈ λ,

0 otherwise.

6.4. Positive definite functions
The Fourier transform of a positive definite function on S∞ is a martingale (f1, f2, . . .) such that

∑

(s,t)∈Bn

fn(s, t)h(s)h̄(t)
dim s

n!
≥ 0 for every n ∈ N, for every h ∈ C(Tn).

In particular, the restriction of a positive definite martingale to the diagonal {(t, t)} � T is a positive mar-
tingale on T . Note that there is a natural one-to-one correspondence between positive martingales on T and
(positive) measures on T = lim←−Tn. Namely, φ = (φ1, φ2, . . . ) ↔ Mφ = lim←−Mφ

n , where

Mφ
n (s) := Mφ({t : [t]n = s}) = φn(s)

dim s

n!
, s ∈ Tn.

Thus the restriction of a positive definite martingale to the diagonal (i.e., the Fourier transform of the projection
of the original central function to the Gelfand–Tsetlin space) is a (positive) measure on the space of paths T .
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6.5. Characters
In particular, if f is a character, i.e., a central positive definite normalized (f(e) = 1) function on S∞, then its

Fourier transform is a positive probability central measure on T (in view of (4), a central function is normalized
if and only if the corresponding measure is normalized). Thus we obtain the classical correspondence (see, e.g.,
[14] or [4]) χ ↔ M between characters of the infinite symmetric group and central probability measures on the
space of bitableaux, which is given by the formula

χn =
∑

λ∈Yn

M (n)(λ)
χλ

dimλ
,

where χn = χ|Sn and M (n)(λ) = M({t : [t]n ∈ λ}).
6.6. Examples
1. The Fourier transform of the δ-function δg at an element g ∈ S∞ is the function3

δ̂g(s, t) =
{

(πλ(g)h[t]n , h[s]n), s ∼n t,

0 otherwise,
where g ∈ Sn and λ is the shape of the tableaux [s]n, [t]n.

In particular, δ̂e(s, t) = δst is the characteristic function of the diagonal.
2. Using the Young orthogonal form (see, e.g., [1]), we can write the Fourier transforms of the Coxeter generators
σk = (k, k + 1) in a more explicit form. Namely,

σ̂k(s, t) =






δts if k and k + 1 are in the same row of t,
−δts if k and k + 1 are in the same column of t,
ρ1δts + ρ2δσkt,s otherwise,

where
ρ1 =

1
ck+1(t) − ck(t)

, ρ2 =
√

1 − ρ2
1,

and the tableau σkt is obtained from t by permuting the elements k and k + 1.
3. As noted above, the Fourier transform of a Young–Jucys–Murphy element is the function

X̂k(s, t) =
{

ck(t), s = t,

0, s 	= t,

where ck(t) is the content of the cell of t that contains k.
4. One can use the Fourier transform and the inverse Fourier transform to transfer the action of operators from
the group algebra to the space of functions on bitableaux and vice versa. For example, consider the operator
that acts on tableaux (and hence on bitableaux) by reflecting with respect to the main diagonal (more exactly,
the induced operator on functions). It is easy to see that the corresponding operator on the group algebra is the
operator of multiplication by the sign ε(g) of a permutation, i.e., a(g) �→ ε(g)a(g).

7. Other conditional expectations

7.1. Virtual projection
Let πn : Sn+1 → Sn be the virtual projection, which associates with a permutation w ∈ Sn+1 its derivative

permutation, i.e., the permutation obtained by deleting the element n+1 from the corresponding cycle of w. By
the same letter we will denote the extension of the virtual projection to the group algebras by linearity, i.e., the
projection πn : C[Sn+1] → C[Sn] given by the formula (elements of the group algebra are regarded as measures)

(πnf)u =
∑

w∈Sn+1
πnw=u

fw, f =
∑

w∈Sn+1

fwδw, u ∈ Sn.

This projection is a generalized (i.e., nonpositive) conditional expectation from C[Sn+1] to C[Sn]. Let us
recall the corresponding definition (see [12]). Let A be a C∗-algebra with identity over C and B be its C∗-
subalgebra. A linear operator P : A −→ B is called a conditional expectation, or simply expectation, from the
algebra A to the subalgebra B if (1) P (b) = b and P (b1ab2) = b1P (a)b2 for every a ∈ A and b, b1, b2 ∈ B; (2)
P (a∗) = a∗, P1 = 1; (3) P ≥ 0, which means that for every a ∈ A the element P (aa∗) is positive, i.e., belongs
to the real cone in B generated by elements of the form bb∗. If only conditions (1) and (2) hold, then P is called
a generalized expectation.

3Recall that ht stands for the element of the Gelfand–Tsetlin basis corresponding to the tableau t.
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Lemma 1. For n ≥ 4, the virtual projection is the only conditional expectation from C[Sn+1] to C[Sn] satisfying
the following condition: an element of the group Sn+1 (regarded as an element of the group algebra) goes to an
element of the group Sn.

The conjugate (with respect to the counting measures on Sn+1 and Sn) operator π∗
n : C[Sn] → C[Sn+1]

takes the form (in the conjugate space, elements of the group algebra are regarded as functions)

π∗
nf(w) = f(πnw), f ∈ C[Sn], w ∈ Sn+1.

The projective limit of the symmetric groups with respect to the virtual projections πn is called the space of
virtual permutations S∞:

S∞ = lim←−(Sn, πn).

This space was introduced in [4] (see also a detailed version [5]).
The inductive limit of the group algebras C[Sn] with respect to the operators π∗

n is the space of finitary
functions on the space of virtual permutations:

lim−→(C[Sn], π∗
n) = Cfin(S∞).

The projective limit of the group algebras with respect to the projections πn is the space of Borel measures on
the space of virtual permutations:

lim−→(C[Sn], πn) = M(S∞).

The Fourier transform sends the virtual projection and the conjugate operator to the operators

(πnf)(s, t) =
∑

(u,v)∈Bn+1:(s,t)↗(u,v)

p∞(s, u)(cn+1(u) + 1)f(u, v), f ∈ C(Bn+1), (s, t) ∈ Bn,

and

(π∗
nf)(s, t) =

{
f([s]n, [t]n)(cn+1(t) + 1) if s ∼n t,

0 otherwise,
f ∈ C(Bn), (s, t) ∈ Bn+1,

respectively.
The inconvenience of the projection πn is that it does not accord with the Hilbert structures in the group

algebras determined by the counting measures on the symmetric groups. To overcome this difficulty, one should
consider the normalized projections π̃n = 1√

n+1
πn, i.e.,

(πnf)u =
1√

n + 1

∑

w∈Sn+1
πnw=u

fw , f =
∑

w∈Sn+1

fww, u ∈ Sn,

(πnf)(s, t) =
1√

n + 1

∑

(u,v)∈Bn+1:(s,t)↗(u,v)

p∞(s, u)(cn+1(u) + 1)f(u, v), f ∈ C(Bn+1), (s, t) ∈ Bn.

7.2. z-Projections
Let z ∈ C ∪ {∞}, t = |z|2.
The z-projection pz

n : C[Sn+1] → C[Sn] is the following linear combination of the Plancherel and virtual
projections:

pz
n =

1√
n + t

((z − 1)pn + πn).

An explicit formula takes the form

(pz
nf)(u) =

1√
n + t




∑

w∈Sn+1
πnw=u

f(w) + (z − 1)f(u)1u∈Sn



 , f ∈ C[Sn+1], u ∈ Sn.

The Fourier transform sends the z-projection to the operator

(πnf)(s, t) =
1√

n + t

∑

(u,v)∈Bn+1:(s,t)↗(u,v)

p∞(s, u)(cn+1(u) + z)f(u, v), f ∈ C(Bn+1), (s, t) ∈ Bn.

The virtual and Plancherel projections are particular cases of the z-projection, corresponding to z = 1 and
z = ∞, respectively.
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Lemma 2. For n ≥ 4, the z-projections exhaust all conditional expectations from C[Sn+1] to C[Sn] satisfying
the following condition: an element of the group Sn+1 goes to an element of the group Sn with, possibly, some
coefficient.

In particular, the Plancherel projection sends an element of the group to an element of the group or 0.

Lemma 3. For every function f ∈ C[Sn],

(pz
1p

z
2 . . . pz

n−1p
z
nf)(w) = 〈f, z[w]〉,

where 〈·, ·〉 stands for the scalar product in C[Sn] determined by the counting measure on Sn, and [w] denotes
the number of cycles of a permutation w ∈ Sn.

In particular, for the Plancherel expectation we have

(p1p2 . . . pn−1pnf)(w) = 〈f, δe〉 = f(e),

and for the virtual projection,

(π1π2 . . . πn−1πnf)(w) = 〈f, 1〉 =
∑

w∈Sn

f(w).
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