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Abstract

With an arbitrary finite graph having a special form of 2-intervals
(a diamond-shaped graph) we associate a subgroup of a symmetric
group and a representation of this subgroup; state a series of problems
on such groups and their representations; and present results of some
computer simulations. The case we are most interested in is that of
the Young graph and subgroups generated by natural involutions of
Young tableaux. In particular, the classical Young’s orthogonal form
can be regarded as a deformation of our construction. We also state
asymptotic problems for infinite groups.
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1 The main construction

1.1 Combinatorial involutions on diamond-shaped graphs

and the group of permutations of paths

We begin with a finite directed graded graph1 with one minimal and one
maximal element, and assume that it also satisfies the following property.

Definition 1. A graded graph is said to be diamond-shaped if every its
nonempty 2-interval2 contains either one or two vertices of the intermediate
level, i.e., is either a chain or a rhombus.

Diamond-shaped graphs appear in the following situation. Consider a fi-
nite partially ordered set P with minimal element ∅ and the partially ordered
set J(P ) of its ideals (subsets that contain with every element all smaller el-
ements). This partially ordered set of ideals is a distributive lattice, and its
Hasse diagram is a diamond-shaped graph. By a well-known theorem, the
converse is also true: every finite distributive lattice is the lattice of ideals
of a finite partially ordered set (see, e.g., [6, Chap. 3] or [1]). The property
of being diamond-shaped is a weakening of distributivity; the latter imposes
conditions on all intervals (and not only 2-intervals).

Consider an arbitrary Z+-graded finite diamond-shaped graph Γ; denote
by Γk the set of its vertices of level k. Let T (Γ) be the set of maximal
paths of Γ, i.e., paths connecting the minimal vertex (of level 0) with the
maximal vertex (of level n). Denote by SΓ the group of all permutations of
the set T (Γ) (clearly, it is isomorphic to the symmetric group SN where N is
the total number of maximal paths in the graph).

Definition 2. For i = 1, 2, . . . , n − 1, the combinatorial involution σi is
the involution σi ∈ SΓ that acts as follows. Let t = (t0, t1, . . . , tn) ∈ T (Γ)
where tk ∈ Γk. The involution σi leaves all vertices of the path t except ti+1

unchanged. Consider the 2-interval [ti, ti+2] in Γ. If it is a chain, then
σi(t) = t. If it is a rhombus with intermediate vertices ti+1, t

′

i+1, then

σi(t) = (t0, . . . , ti, t
′

i+1, ti+2, . . . , tn).

1For the general theory of graded graphs and Bratteli diagrams, see, e.g., [8] or [4].
2By a 2-interval [v, w] of a graded graph Γ we mean a subgraph of Γ consisting of two

vertices v and w of levels k and k + 2, respectively (for some k), and all the vertices of
level k + 1 connected with both these vertices.

2



By our assumptions on the graph, the action of σi is well defined on all
paths of the graph.

Definition 3. The group of permutations of paths of the graph Γ is the
group GΓ = 〈σ1, . . . , σn−1〉 generated by the n − 1 combinatorial involutions
σ1, . . . , σn−1 of Γ.

Consider the R-vector space V (Γ) of formal linear combinations of max-
imal paths of Γ. Above we have defined not only the group GΓ, but also
a representation of this group in V (Γ). The action of every involution σi

is not identical only in two-dimensional spaces corresponding to the pair of
paths of the same rhombus at the levels i, i+ 1, i+ 2.

The obvious relations satisfied by the involutions σi, i = 1, 2, . . . , n − 1,
are as follows:

σ2
i = id, σiσj = σjσi for |i− j| ≥ 2,

where id is the identity transformation.
The relations between σi and σi+1 depend on the graph in a complicated

manner, and it is difficult to describe them in the general case. Thus, GΓ is
defined as a permutation group (a subgroup of a symmetric group) by its
generators. (For the general theory of permutation groups, see, e.g., [2].)

Our main question is how does this group look like for various graphs,
and whether it is possible to obtain a classification of such groups.

Problem 1. To what extent does the group GΓ characterize the original
graph Γ? How can one characterize the class of graphs corresponding to
isomorphic groups GΓ?

Consider the first simple example. Hereafter, by Sn we denote the sym-
metric group of degree n.

Theorem 1. Let Γ be the Hasse diagram of the finite Boolean algebra Bn

with n atoms. Then GΓ ≃ Sn.

Proof. It is sufficient (and easy) to verify that in this case we have the re-
lations σiσi+1σi = σi+1σiσi+1, i = 1, 2, . . . , n− 1, which, together with the
above ones, define the group Sn. Note that the paths in Γ can be indexed
in a natural way by the permutations of the numbers 1, . . . , n, and the rep-
resentation of the group GΓ in the space V (Γ) is the regular representation
of the symmetric group Sn.
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The next result is less obvious. By definition, the d-dimensional Pascal
graph P d, where d ≥ 2, is the Z+-graded graph whose nth level consists
of all d-tuples (k1, . . . , kd) ∈ Zd

+ such that k1 + . . . + kd = n, and an edge
connects two vertices of neighboring levels that are obtained from each other
by changing one coordinate by 1. In particular, P := P 2 is the ordinary
Pascal graph (infinite Pascal triangle), see, e.g., [7]. For an arbitrary vertex
v ∈ P d, denote by P d(v) the finite subgraph in P d induced by the set of
vertices of all paths leading from the minimal vertex ∅ = (0, . . . , 0) to v. We
say that P d(v) is an interval of length n of the Pascal graph if v is a vertex
of level n.

Theorem 2. If Γ is an arbitrary interval of length n of the d-dimensional
Pascal graph, then GΓ = Sn.

Proof. Let Γ = P d(v) where v ∈ P d
n is a vertex of level n. Let v =

(m1, . . . , md). Then the vertices of the graph P d(v) can be indexed in an ob-
vious way by all sequences of the form (a1, . . . , an) where ai ∈ [d] = {1, . . . , d}
and #{i : ai = k} = mk for every k = 1, . . . , d. It is easy to see that, under
this parametrization, the combinatorial involution σi, i = 1, . . . , n − 1, acts
as the transposition that swaps ai and ai+1. But this action coincides with
the action of the Coxeter generators s1, . . . , sn−1 of the symmetric group Sn

in the standard realization of the induced representation IndSn

Sm1
×···×Smd

Id,

where Id = π(n) is the identity representation of Sn. This implies the desired
result.

Note that we have described, in particular, the representation of the
group GΓ arising in this case; it is the representation IndSn

Sm1
×···×Sm

d

Id of

the symmetric group induced from an appropriate Young subgroup.
In Sec. 2, we will consider groups of permutations of paths on the Young

graph. As we will see, in this case GΓ is not always isomorphic to a symmetric
group, and even in the cases when it is isomorphic to a symmetric group, this
group, in contrast to the previous examples, is defined as being generated
not by the traditional transpositions, but by involutions of general form.
Apparently, in the general case the groups of the type GΓ constitute a quite
special class of groups.
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1.2 Problems about infinite groups

Obviously, the group corresponding to an interval of a graph is a natural sub-
group of the group corresponding to the graph itself. Hence, we can consider
an infinite path in an infinite graded graph (Bratteli diagram), for instance,
in the Young graph, and the inductive limit of the groups of permutations
of paths corresponding to initial segments of this path. A number of natural
questions arise.

Problem 2. How does the resulting infinite group look like? For what pairs
of paths are the corresponding groups naturally isomorphic?

Even for the Young graph Y (see Sec. 2), this results in a series of es-
pecially intriguing problems. Consider an indecomposable character of the
infinite symmetric group S∞ and the corresponding representation (see,
e.g., [4, 9]). For almost every, with respect to the corresponding measure,
path T = (λ0, λ1, . . . ), where λk ∈ Yk, consider the group GT which is the
inductive limit of the groups GYλn

corresponding to finite initial segments of
the path. Clearly, finitely equivalent paths lead to the same group.

Problem 3. Are all these infinite groups GT isomorphic for almost all paths?
If no, what is the partition of the set of paths into isomorphism classes of
the corresponding groups? If yes, is this unique (up to isomorphism) group
isomorphic to the infinite symmetric group?

2 Groups generated by combinatorial involu-

tions on the Young graph

In this section, we describe the above setting in detail for the Young graph.
Recall that by Sn we denote the symmetric group of degree n. By si ∈ Sn

we denote the Coxeter generator si = (i, i+1), i =1, . . . , n− 1.
Let Y be the Young graph; the nth level of Y is the set Yn of Young

diagrams with n cells, and an edge connects two vertices of neighboring levels
such that the larger one is obtained from the smaller one by adding one cell.
Given a diagram λ ∈ Yn, denote by Yλ the finite subgraph in Y induced
by the set of vertices of all paths leading from the minimal vertex (empty
diagram) to λ. Then the set of paths in the graph Yλ can be identified
with the set of standard Young tableaux of shape λ, and the linear space

5



Vλ := V (Yλ) spanned by Tλ is the space of the irreducible representation πλ

of the group Sn corresponding to the diagram λ.
Recall that the action of the Coxeter generators σi in the representation πλ

in the Gelfand–Tsetlin basis indexed by the Young tableaux of shape λ is
given by Young’s orthogonal form (see Sec. 4). But, according to Defini-
tion 2, we consider the following permutation action of the Coxeter generators
σ1, . . . , σn−1:

ρλ(σi)t =

{

t′i if i and i+ 1 lie in different columns and different rows of t,

t otherwise,

where t′i is the standard tableau obtained from t by swapping i and i + 1.
Observe that σ1 is always the identity transformation, since 1 and 2 always
lie either in one column, or in one row.

Consider the group Gλ = 〈σ2, . . . , σn−1〉 of permutations of the graph Yλ

generated by the involutions σi, i = 2, . . . , n − 1. Our goal is to study the
groups Gλ. Obviously, Gλ is a subgroup of the total group of permutations
of the set Tλ of paths in Y leading to the vertex λ, i.e., of the symmetric
group Sdimλ, where dimλ is the dimension of the diagram λ, i.e., the number
of such paths.

2.1 Exact results

Theorem 3. If λ = (n− k, 1k) is a hook diagram, then Gλ is isomorphic to
the symmetric group Sn−1.

Proof. It is easy to see that for a hook diagram λ = (n− k, 1k), the graph Yλ

is isomorphic to the finite interval P (v) of the Pascal graph where v =
(n− k − 1, k), hence the result follows from Theorem 2.

In particular, as follows from Theorem 2, in this case we have the repre-
sentation Ind

Sn−1

Sk×Sn−k−1
Id of the symmetric group Gλ ≃ Sn−1 in the space Vλ.

Theorem 4. If λ = (n − 2, 2) for n ≥ 4, then Gλ is isomorphic to the
symmetric group Sdimλ.

Proof. Obviously, the group G(2,2) is isomorphic to G(2,1), so the correspond-
ing result follows from Theorem 3; thus, in what follows we assume that
n ≥ 5. Denote G := Gλ.
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Let T1 and T2 be the sets of Young tableaux of shape λ in which the
element 2 lies in the first and second row, respectively. Obviously, T = T1∪T2

and T1, T2 are invariant under σi for i ≥ 3. For k = 1, 2, denote by σ
(k)
i the

restriction of σi to Tk, and let Gk = 〈σ(k)
3 , . . . , σ

(k)
n−1〉. It is easy to see that the

action of the operators σ
(1)
3 , . . . , σ

(1)
n−1 coincides with the action of the Coxeter

generators s1, . . . , sn−3 of Sn−2 in the representation Ind
Sn−2

S2×Sn−4
Id, so G1 is

isomorphic to Sn−2. Analogously, the action of the operators σ
(2)
4 , . . . , σ

(2)
n−1

coincides with the action of the Coxeter generators s1, . . . , sn−4 ofSn−3 in the

representation Ind
Sn−3

S1×Sn−4
Id (while, obviously, σ

(2)
3 is the identity operator),

so G2 is isomorphic to Sn−3.
Now, let us show that these two actions are independent, in the sense that

the subgroup G′ := 〈σ3, . . . , σn−1〉 ⊂ G is isomorphic to Sn−2 × Sn−3. Let
τ = σ3σ4 . . . σn−1. It follows from the observations in the previous paragraph
that τ1 := τ |T1

can be identified with the cycle (1, 2, . . . , n − 2) in Sn−2,
while τ2 := τ |T2

can be identified with a cycle of length n − 3 in Sn−3.
Therefore, τn−3 acts as the cycle (n − 2, n − 3, . . . , 1) on T1 and identically
on T2. Further, σ3 acts as the transposition (1, 2) on T1 and identically on T2.
But it is well known that the permutations (n − 2, n − 3, . . . , 1) and (1, 2)
generate the symmetric group Sn−2. Hence, G

′ contains Sn−2 × {e}, which
clearly implies the desired claim.

It remains to show that 〈G′, σ2〉 is isomorphic to Sdimλ. Let T11 be the
subset of T1 consisting of the tableaux in which the element 3 lies in the
first row and T12 be the subset of T1 consisting of the tableaux in which
the element 3 lies in the second row. Obviously, there is a natural bijection
between T12 and T2 which identifies tableaux differing only by the positions
of the elements 2 and 3. Let T2 = {t1, . . . , tk} and T12 = {t′1, . . . , t′k}, where ti
and t′i correspond to each other under this bijection, and T11 = {r1, . . . , rℓ}.
Then, obviously, σ2 exchanges ti and t′i for each i, while leaving each rj fixed.
Now, as we have already proved, there exist a permutation g1 ∈ G′ that acts
as the cycle (t1, t2, . . . , tk) on T2 and identically on T1 and a permutation
g2 ∈ G′ that acts as the cycle (r1, r2, . . . , rℓ) on T1 and identically on T2. It
is easy to see that the permutation g1σ2g2 is the cycle

c = (t1, t
′

2, t2, t
′

3, t3, . . . , t
′

k, tk, r1, r2, . . . , rℓ, t
′

1)

of length dimλ. On the other hand, there exists g3 ∈ G′ that acts as the
transposition (r1, r2) on T1 and identically on T2. Then 〈c, g3〉 = Sdimλ, as
required.
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3 Computational results for n ≤ 9

Using the SageMath software system, we have computed the orders of the
groups Gλ for diagrams λ with n ≤ 9 cells. The results are as follows.

• If λ is a hook diagram, thenGλ is isomorphic to the symmetric groupSn−1

(Theorem 3).

• If λ is one of the diagrams (4, 22), (6, 3), (42, 1), then the order of Gλ

is equal to (dimλ)!
2

.

Conjecture 1. In these cases, Gλ is isomorphic to the alternating
group Adimλ.

• If λ is one of the diagrams (3, 2, 1), (4, 2, 12), (32, 2), (33), then the order
of Gλ is equal to 2k−1k! where k = dimλ

2
is half the dimension of λ.

Conjecture 2. In these cases, Gλ is isomorphic to the Coxeter group Dk.

Remark. The conjecture is verified using SageMath for the diagram
λ = (3, 2, 1).

Conjecture 3. If λ is a symmetric diagram that is not a hook, then
Gλ is isomorphic to the Coxeter group Dk where k = dimλ

2
.

• In all the other cases, the order of Gλ is equal to (dim λ)!, that is, Gλ

is isomorphic to the total symmetric group Sdimλ.

These examples indicate that the groups Gλ for Young diagrams either
are Coxeter groups, or differ little from them. For other graphs, no experi-
ments have been done, it is not even clear in which cases these groups are,
for example, 2-transitive. This question is especially interesting for groups
corresponding to distributive lattices, in particular, for skew Young diagrams.

4 Young’s orthogonal form as a deformation

of a representation of GYλ

Let us extend our definition of groups acting in the spaces Vλ to include the
classical Young’s construction that realizes irreducible representations of the
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symmetric group in the same space Vλ, but in which transpositions act not
as permutations of paths, but as two-dimensional rotations with reflection.
To simplify matters, we state Young’s formulas in C-form.

We still consider the space Vλ = V (Yλ), where λ is a Young diagram with
n cells and Yλ is the corresponding subgraph of the Young graph. The corre-
sponding irreducible representation πλ of the group Sn acts in the space Vλ,
and Young found formulas for the action of the Coxeter transpositions (see,
e.g., a modern exposition in [5] or a classical one in [3]). Namely, in each
two-dimensional space corresponding to a diamond-shaped 2-interval, we in-
troduce a structure of the complex line C. Then the combinatorial involution
introduced above turns into the transformation z 7→ iz̄ (which swaps the real
and imaginary axes). But Young’s involution corresponding to the Coxeter
transposition σk, k = 1, 2, . . . , n − 1, acts in each one-dimensional complex
subspace of this form as

z 7→ eiαλ(k)z̄,

where αλ(k) = arctan
√
r2 − 1 and r is the l1-distance between the cells of

the tableau under consideration containing the elements k and k + 1 (the
so-called axial distance). If the 2-interval is not a rhombus but a chain, then
in the corresponding one-dimensional real subspace the involution acts as ±1
depending on whether the elements k and k+1 lie in the same row or in the
same column.

We see that Young’s involution is a deformation of the combinatorial
involution, the parameters of this deformation being real numbers αλ(k),
and it is these parameters that define a subgroup of the group of unitary
operators in the space Vλ.

Clearly, the finiteness of this group is related to very special values of the
parameters.

Problem 4. For what parameters is this group of unitary operators finite?
infinite?

The remarkable classical result saying that for Young’s values of the pa-
rameters the group is canonically isomorphic to the symmetric group is not
quite obvious.

It is well known that the free groups generated by more than two involu-
tions are “wild,” i.e., the space of their irreducible complex representations is
unmanageable and has no natural parametrization. This applies not only to
free groups, but also to many infinite groups generated by several involutions.
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But we define a group together with a fixed finite-dimensional representation
(not necessarily irreducible) of this group associated with the graph. Hence
it is natural to consider the following question.

Problem 5. For a given group of the type under consideration, characterize
intrinsically the representations arising in the described construction.

The authors are grateful to M. A. Vsemirnov for useful discussions.
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