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ON THE MARKOV–KREIN IDENTITY AND QUASI-INVARIANCE OF THE GAMMA
PROCESS

A. Vershik, M. Yor, and N. Tsilevich UDC 512

We present a simple proof of the Markov–Krein identity for distributions of means of linear functionals of the
Dirichlet process and its various generalizations. The key idea is to use the representation of the Dirichlet process
as the normalized gamma process and fundamental properties of gamma processes. Bibliography: 19 titles.

Dedicated to the memory of S. V. Kerov

1. Introduction: Dirichlet processes, gamma processes and the Markov–Krein identity. The pur-
pose of this paper is to apply the presentation of Dirichlet processes as the normalized gamma processes to prove
the Markov–Krein identity for distributions of means of Dirichlet processes. This approach turns out to be very
fruitful; in particular, it allows us to obtain the desired formula almost immediately.

The Dirichlet processes introduced in [4] play a key role in Bayesian nonparametric statistics. The classical
definition of these processes is the following. Denote by

∆n = {x = (x0, . . . , xn) : xi ≥ 0,
∑

xi = 1}

the standard n-dimensional simplex. The Dirichlet distribution Dir(τ0, . . . , τn) on ∆n with parameters τ0, . . . ,
τn > 0 is determined by the density

Γ(τ0 + . . . + τn)
Γ(τ0) . . .Γ(τn)

xτ0−1
0 . . . xτn−1

n

with respect to the Lebesgue measure on ∆n.

Definition 1. Let (X, ν) be a standard Borel space with a nonatomic finite positive measure ν. A Dirichlet
process on the space X with parameter measure ν is a random probability distribution P on X such that for
every finite measurable partition X = A0 ∪ . . . ∪ An the vector (P (A0), . . . , P (An)) has Dirichlet distribution
Dir(ν(A0), . . . , ν(An)) on ∆n.

Denote by θ = ν(X) the total charge of the measure ν, and let ν̄ = ν/θ be the normalized measure ν. An
explicit construction of the Dirichlet process is given by the following formula:

P =
∞∑

i=1

QiδYi , (1)

where Y = (Y1, Y2, . . .) is a sequence of i.i.d. variables on the space X with common distribution ν̄, and
Q = (Q1, Q2, . . . ) is a random point of the infinite-dimensional simplex

Σ = {x = (x1, x2, . . . ) : x1 ≥ x2 ≥ . . . ≥ 0,
∑

xi = 1}

that is independent of Y and has the Poisson–Dirichlet distribution PD(θ) with parameter θ.
Many papers are devoted to the study of the distributions of random means of Dirichlet processes. Let

a : X → R be a measurable function. It defines a linear functional fa(ξ) =
∫
X

a(x)dξ(x) on the space of Borel
measures on X. The problem is to describe the distribution µa of this functional with respect to the Dirichlet
process P . The answer is as follows. Let νa be the distribution of the function a with respect to the normalized
parameter measure ν̄. Then the measures µa and νa are related by the following integral identity:∫

R

1
(1 + zu)θ

dµa(u) = exp
(
−

∫
X

log(1 + zu)θdνa(u)
)

. (∗)

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 283, 2001, pp. 21–36. Original article submitted November
15, 2001.
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If the measures under consideration have finite moments of all orders, then identity (∗) is equivalent to the
following moment identity (regarded as an equality of formal power series):

∞∑
n=0

hnzn = exp
∞∑

n=1

pn

n
zn,

where hn =
∫

undµa(u) and pn =
∫

undνa(u) are the moments of the measures µa and νa respectively. Note that
this identity coincides with the identity from the theory of symmetric functions that relates complete symmetric
functions and power sums (see [12]).

Formula (∗) was first obtained in [2] by hard analytic arguments (see also simpler proofs in [3, 8]). In the case
θ = 1 this identity means that the distribution µa is the Markov–Krein transform of the measure νa (the term
suggested by S. V. Kerov). This transform arises in many various contexts like the Markov moment problem,
continued fractions theory, exponential representations of analytic functions, the spectral shift function of a
self-adjoint operator, the Plancherel growth of Young diagrams, etc. (see Kerov [7] for a detailed survey). It
first appeared in A. A. Markov’s paper [13], and later was intensively studied by M. G. Krein and his school. In
particular, this identity gives a link between the so-called Markov moment problem and the classical Hausdorff
moment problem. Let us briefly discuss this link.

Recall that the Hausdorff moment problem consists in describing all sequences s0, s1, . . . that arise as the
moment sequences of probability measures κ on [0, 1]. The solution of this problem is well known. A less known
Markov moment problem is to describe all sequences m0, m1, . . . that arise as the moment sequences of absolutely
continuous measures f(t)dt on [0, 1] with bounded densities: 0 ≤ f(t) ≤ 1. It turns out (see [10]) that the second
problem can be reduced to the first one as follows. There is a one-to-one correspondence between bounded
densities 0 ≤ f(t) ≤ 1 on [0, 1] and probability measures κ on [0, 1] given by the formula

∫ 1

0

dκ(t)
z − t

=
1
z

exp
∫ 1

0

f(t)dt

z − t
. (∗∗)

In terms of moments, this identity takes the form

∞∑
n=0

snz−n = exp
∞∑

n=1

mn−1z
−n.

This allows one to explicitly express the moments of κ via the moments of f(t)dt. It follows that {mn} is a
Markov moment sequence if and only if the sequence {sn} constructed by the above formula is a Hausdorff
moment sequence. There is an explicit probabilistic procedure due to S. Kerov [6] for constructing the measure
κ related to a given measure f(t)dt by (∗∗). In order to reduce (∗∗) to (∗), one should take f(t) = νa((t,∞)) =
ν({x ∈ X : a(x) > t}), κ = µa, replace z by −1

z and integrate by parts.
In this note we present a new and remarkably simple proof of the Markov–Krein identity for the distribution

of means of Dirichlet processes which is based on the close relation between Dirichlet processes and gamma
processes. The starting point of our approach is the following obvious fact.

The link between Dirichlet processes and gamma processes. The Dirichlet process on the space X with
parameter measure ν is the normalized gamma process γ̄(x) = γ(x)/γ(X).

Thus, the problem of describing the distributions of means of Dirichlet processes can be formulated in terms
of gamma processes as follows. Given a linear functional fa(ξ)=

∫
X a(x)dξ(x) determined by a function a : X →

R+, describe the distribution µa of the functional fa with respect to the normalized gamma process in terms of
the distribution νa of the function a.

This reduction to gamma processes is a powerful tool for the study of Dirichlet processes. In particular, even
the simplest properties of the gamma processes make it possible to easily obtain formula (∗). The crucial point
is the following fundamental property.

Independence property. The normalized gamma process γ̄ and the total charge γ(X) are independent.

According to a personal communication of S. Kerov, in the simplest case of discrete parameter measure ν
(in this case the gamma process is simply a sum of independent gamma variables, and the normalized gamma
process is a random point of a finite-dimensional simplex with Dirichlet distribution), the idea of proving (∗) via
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the Laplace transform of gamma variables was used by F. Huffer. However, it was not noticed earlier that the
general case of arbitrary parameter measures can be handled in a strikingly simple way by using general gamma
processes.

The independence property leads to many other distinguished properties of gamma processes, e.g., the so-
called multiplicative quasi-invariance, see [17, 19].

Quasi-invariance property. The gamma process γ on the space (X, ν) is quasi-invariant with respect to
multiplicators Maγ(x) = a(x)γ(x) for all functions

a : X → R+ with

∫
X

| loga(x)|dν(x) < ∞.

We would also like to mention that the law of the gamma process admits an equivalent sigma-finite measure
which is already invariant with respect to all multiplicators Ma. This measure enjoys many important properties;
it is a natural infinite-dimensional analogue of the Lebesgue measure, and plays a key role in the representation
theory of the current group SL(2, R)X . See [19] for a detailed treatment of this topic.

We would like to emphasize that the transition from Dirichlet processes to gamma processes (i.e., from the
normalized process to the nonnormalized one, or from the simplex to the cone) makes the proof of the Markov–
Krein formula (∗) for Dirichlet processes remarkably simple. Thus it would probably be fruitful to consider the
Markov moment problem itself, and numerous related questions, from this standpoint. It is interesting that a
very similar lifting from the simplex to the cone was recently used by A. Borodin and G. Olshanski in their work
on the harmonic analysis on the infinite symmetric group and point processes, see, e.g., [1].

The Markov–Krein identity (∗) may also be interpreted as a relation between the Laplace transform of the
distribution of the functional fa with respect to the gamma process and the Cauchy transform of the distribution
of the same functional with respect to the normalized gamma process.

Our interpretation of the Markov–Krein identity leads to the following general problem: given an arbitrary
Lévy process η on (X, ν) and a function a : X → R+, describe the relation between the distribution of the
functional fa with respect to η and the distribution of the same functional with respect to the normalized Lévy
process η̄.

A preliminary exposition of the main results of this paper appeared as a preprint [18].

2. General Lévy processes. It is natural to consider Dirichlet processes in the context of general Lévy
processes. In this section we present the necessary background following [17, 19].

Let (X, ν) be a standard Borel space with nonatomic finite nonnegative measure ν, and let ν(X) = θ be the
total charge of ν. Denote by

D =
{∑

ziδxi , xi ∈ X, zi ∈ R,
∑

|zi| < ∞
}

the real linear space of all finite real discrete measures on X, and let D+ = {
∑

ziδxi ∈ D : zi > 0} ⊂ D be the
cone in D consisting of all positive measures.

Let Λ be a measure on R+ that satisfies the following conditions:

Λ(0,∞) = ∞, Λ(1,∞) < ∞,∫ 1

0

sdΛ(s) < ∞, Λ({0}) = 0.
(2)

Denote by ψΛ the Laplace transform of the infinitely divisible distribution FΛ with Lévy measure Λ:

ψΛ(t) = exp
(
−

∫ ∞

0

(1 − e−ts)dΛ(s)
)

.

Each bounded Borel function a : X → R defines a linear functional fa on D by the formula fa(η) =∫
X

a(x)dη(x), η ∈ D.
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Definition 2. A Lévy process on the space (X, ν) with Lévy measure Λ satisfying (2) is a generalized process
on D whose law PΛ has Laplace transform

E

[
exp

(
−

∫
X

a(x)dη(x)
)]

= exp
(∫

X

logψΛ(a(x))dν(x)
)

, (3)

where a is an arbitrary nonnegative bounded Borel function on X.

It is easy to show that the distribution PΛ of a Lévy process is supported by the cone D+ of positive discrete
measures.

Consider the cone C = {z = (z1, z2, . . . ) : z1 ≥ z2 ≥ . . . ≥ 0,
∑

zi < ∞} ⊂ l1 and define a map T : D+ →
C × X∞ by the formula

Tη =
(
(Q1, Q2, . . . ), (X1, X2, . . . )

)
if η =

∑
QiδXi .

Definition 3. Let P be a distribution on the space D+, and let η =
∑

QiδXi be a random process obeying P .
The random sequence of charges (Q1, Q2, . . . ) is called the conic part of the process η, and its distribution on
the cone C is called the conic part of the law P .

It is not difficult to show that the conic part of the Lévy process with Lévy measure Λ is the ordered sequence
of points of the Poisson process on R+ with mean measure |ν|Λ. Thus the conic part depends only on the Lévy
measure Λ and on the full charge of the parameter measure ν. The following theorem shows that the study of
a Lévy process can be essentially reduced to the study of its conic part since the construction of the process
involves the parameter measure in a trivial way. This fundamental property of Lévy processes is a particular
case of the theorem proved first in [5]. A simpler proof of this fact is given in [18].

Theorem 1 ([5, 18]). Let η =
∑

QiδXi be a Lévy process on the space (X, ν) with Lévy measure Λ. Then
TPΛ = κ|ν|Λ × ν̄∞, i.e., X1, X2, . . . is a sequence of i.i.d. random variables with common distribution ν̄ = ν/|ν|,
and this sequence is independent of the conic part (Q1, Q2, . . . ).

Denote by D+
1 ⊂ D+ the simplex of all normalized atomic measures. Then D+ = D+

1 × [0,∞), i.e., each
η ∈ D+ can be represented as

η = (η/η(X), η(X)),
where η(X) is the total charge of the measure η, and η̄ = η/η(X) is the normalized process. It follows from the
definition of the Lévy process that η(X) obeys the infinite divisible law FΛ corresponding to the Lévy measure
Λ. As follows from Lemma 1 below and the remark after this lemma, the law of a Lévy process is a product
measure in this decomposition if and only if it is a gamma process.

Consider a map T ′ : D+ → R+ ×Σ × X∞, where

Σ = {y = (y1, y2, . . .) : y1 ≥ y2 ≥ . . . ≥ 0, y1 + y2 + . . . = 1}
is the infinite-dimensional simplex, and

T ′η =
(
η(X), (Q1/η(X), Q2/η(X), . . . ), (X1, X2, . . . )

)
if η =

∑
QiδXi .

Definition 4. Let P be a probability measure on D+, and η =
∑

QiδXi be a random process obeying P . The
random normalized sequence of charges (Q1/η(X), Q2/η(X), . . . ) is called the simplicial part of the process, and
its distribution on Σ is called the simplicial part of the law P .

3. The gamma process. In this section we summarize basic properties of the gamma processes which we need
to prove the Markov–Krein identity (∗).
Definition 5. The standard gamma process on the space (X, ν) is a Lévy process γ on (X, ν) with Lévy measure
dΛ(z) = z−1dz, z > 0. Thus the law G of the gamma process has Laplace transform

EG

[
exp

(
−

∫
X

a(x)dγ(x)
)]

= exp
(
−

∫
X

log (1 + a(x)) dν(x)
)

. (4)

It is easy to show that formula (4) holds for any measurable function

a ∈ M = {a : X → R+ :
∫

X

log(a(x) + 1)dν(x) < ∞}.

Lemma 1, which presents the key property of the gamma process, immediately follows from the corresponding
property of gamma variables: if Y and Z are independent gamma variables with the same scale parameter, then
the variables Y + Z and Y

Y +Z are independent.
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Lemma 1. The total charge γ(X) of the gamma process and the normalized gamma process γ̄ = γ/γ(X) are
independent. The distribution of the total charge is the gamma distribution with shape parameter θ = |ν|,

1
Γ(θ)

tθ−1e−tdt, t > 0.

As follows from a remarkable result of Lukacs [11] for gamma variables, this property is characteristic of the
gamma processes. That is, if η is a Lévy process such that η̄ and η(X) are independent, then η is a gamma
process (possibly with some scale parameter).

Lemma 2 ([9]). The simplicial part of the law G of the gamma process with |ν| = θ is the Poisson–Dirichlet
measure PD(θ).

It is easy to see from (3) that for every measurable subset A ⊂ X the random variable γ(A) has gamma
distribution with shape parameter ν(A), and for every measurable partition A0, . . . , An of X the variables
γ(A0), . . . γ(An) are independent. It follows that the vector (γ(A0)/γ(X), . . . , γ(An)/γ(X)) has Dirichlet dis-
tribution on the simplex with parameters (ν(A0), . . . , ν(An)). Thus the Dirichlet process on the space X with
parameter measure ν is the normalized gamma process on D(X, ν). One can also establish this relation in terms
of the explicit construction (1). Indeed, in view of Theorem 1 and Lemmas 1 and 2, the right-hand side of (1)
is the normalized gamma process on (X, ν).

4. The Markov–Krein identity for means of Dirichlet processes. In this section we prove the Markov–
Krein identity for means of Dirichlet processes. It can be interpreted as a formula relating the distribution of a
linear functional with respect to the gamma process and the distribution of the same functional with respect to the
normalized gamma process. This interpretation allows us to prove it immediately, using only the independence
property of the gamma processes.

Given a function a ∈ M, denote by µa the distribution of the linear functional η 
→ fa(η) =
∫

X
a(x)dη(x) on

D with respect to the law D of the Dirichlet process on (X, ν) (i.e., the law of the normalized gamma process),
and let νa be the distribution of the function a with respect to the normalized parameter measure ν̄.

Theorem 2. The measures µa and νa are related by the following integral identity:∫
R

1
(1 + zu)θ

dµa(u) = exp
(
−

∫
X

log(1 + zu)θdνa(u)
)

. (5)

Note that the left-hand side of (5) is the generalized Cauchy–Stieltjes transform of the distribution µa. In
view of (4), the right-hand side of (5) is equal to the value of the Laplace transform of the gamma process
evaluated at the function a. Hence one may regard formula (5) as a relation between an integral (Cauchy–
Stieltjes) transform of the distribution µa of the functional fa with respect to the normalized gamma process
and an integral (Laplace) transform of the distribution of the same functional with respect to the nonnormalized
gamma process.

Proof. By the Laplace transform formula (4), the right-hand side of (5) equals

exp
(
−

∫
X

log(1 + za(x))dν(x)
)

= EG

[
exp

(
−z

∫
X

a(x)dγ(x)
)]

=EG

[
exp

(
−zγ(X)

∫
X

a(x)dγ̄(x)
)]

.

Since the normalized gamma process and the total charge are independent, the conditional distribution of γ(X)
given γ̄(·) is the same for all γ̄(·), and equals the gamma distribution (see Lemma 1). Thus we may rewrite the
above expression as

ED

[
1

Γ(θ)

∫ ∞

0

tθ−1 exp
(
−t − zt

∫
X

a(x)dγ̄(x)
)

dt

]
.

Changing the order of integration, we obtain that the last expression equals

ED

[
1

(1 + z
∫
X a(x)dγ̄(x))θ

]
,

and the theorem follows.

A multivariate version of the Markov–Krein identity for the common distributions of several linear functionals
of the Dirichlet process was first obtained in [8]. Our proof of Theorem 2 works without essential modifications
in the multivariate case too, and gives immediately the desired result.
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Theorem 3. Let a1, . . . , an ∈ M. Denote by µa the common distribution of the linear functionals (fa1 , . . . , fan)
on D with respect to the law D of the Dirichlet process. Let νa be the common distribution of the functions
a1, . . . , an with respect to the normalized parameter measure ν̄. Then the measures µa and νa are related by
the multivariate Markov–Krein identity

∫
Rn

1
(1 + z1u1 + . . . + znun)θ

dµa(u) = exp
(
−

∫
Rn

log(1 + z1u1 + . . . + znun)θdνa(u)
)

. (6)

Proof. Goes exactly as the proof of Theorem 2 with function za(x) replaced by z1a1(x) + . . . + znan(x).

Remark. In fact, Theorem 3 is a particular case of a more general statement. Namely, let V be an arbitrary
real topological linear space, and let L be a space of real linear functionals on V . Given a function a : X → V ,
we can define a V -valued functional fa(η) =

∫
a(x)dη(x) on the space D and study the distribution µa of this

functional with respect to the normalized gamma process. Let νa be the distribution of the function a (on the
space V ) with respect to ν̄. Then, for an arbitrary linear functional F ∈ iL, the following formula holds:

∫
V

dµa(v)
(1 − F (v))θ

= exp
∫

V

log
1

(1 − F (v))θ
dνa(v).

The proof of this formula also reproduces the proof of Theorem 2. Theorem 3 corresponds to a finite-dimensional
case: V = R

n, L = (Rn)∗, and F (x1, . . . , xn) = z1x1 + . . . + znxn. The Markov–Krein identity in arbitrary
linear spaces was first considered in [8, Sect. 9].

5. Two-parameter generalization of the Markov–Krein identity. S. Kerov [7] and J. Pitman [14]
independently in different terms suggested the same class of generalizations of the Dirichlet processes. Let σ be
an arbitrary Borel distribution on the infinite-dimensional simplex Σ. The generalized Dirichlet process on the
space (X, ν) associated with the distribution σ is defined by formula (1), where the sequence Q obeys the law
σ (instead of PD(θ)). An important particular case of the generalized Dirichlet processes is obtained when σ is
the so-called two-parameter Poisson–Dirichlet distribution PD(α, θ) [15]. The range of admissible parameters is
the union of the sets {(α, θ) : α ∈ (0, 1), θ > −α} and {(α,−mα) : α < 0, m ∈ N}. If α = 0, then the measure
PD(0, θ) coincides with the ordinary Poisson–Dirichlet distribution PD(θ). Denote by D(α, θ) the law of the
generalized Dirichlet process associated with the two-parameter Poisson–Dirichlet distribution PD(α, θ).

An analog of the Markov–Krein identity for the distribution of a linear functional with respect to D(α, θ)
is obtained in [16]. We present here a new proof of this identity which is based on the relation between the
two-parameter Poisson–Dirichlet distributions and stable processes.

Definition 6. Let α ∈ (0, 1). The standard α-stable process on the space (X, ν) is a Lévy process with Lévy
measure dΛα = α

Γ(1−α)
s−α−1ds, s > 0. Thus the law Pα of the α-stable process has Laplace transform

EPα

[
exp

(
−

∫
X

a(x)dη(x)
)]

= exp
(
−

∫
X

a(x)αdν(x)
)

, (7)

where a : X → R+ is an arbitrary measurable nonnegative function with
∫

X
a(x)αdν(x) < ∞.

Lemma 3 [15]. The simplicial part of the distribution Pα of the α-stable process is the generalized Poisson–
Dirichlet distribution PD(α, 0).

The Poisson–Dirichlet distribution PD(α, θ) with α, θ �= 0 cannot be represented as the simplicial part of any
Lévy process. However, one may obtain it as the simplicial part of a process which has density with respect to
a stable process. Namely, let θ > −α, and consider the law Pα,θ on D that has density

dPα,θ

dPα
(η) =

cα,θ

η(X)θ
(8)

with respect to the α-stable law Pα. Here cα,θ = Γ(θ+1)
Γ(θ/α+1) is a normalizing constant.
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Lemma 4 [15]. The simplicial part of the measure Pα,θ is the Poisson–Dirichlet distribution PD(α, θ).

It follows from Lemmas 3 and 4 that the generalized Dirichlet process with parameters (α, 0) is the normalized
α-stable process, and the generalized Dirichlet process with parameters (α, θ) is the normalized process governed
by the law Pα,θ.

Given an arbitrary measurable nonnegative function a : X → R+ with
∫

X
a(x)αdν(x) < ∞, let µa be the

distribution of the functional fa with respect to D(α, θ), and let νa be the distribution of a with respect to the
normalized parameter measure ν̄.

Theorem 4. The measures µa and νa are related by the following integral identity:
(1) if θ �= 0, then (∫

R

(1 + zu)−θdµa(u)
)− 1

θ

=
(∫

R

(1 + zu)αdνa(u)
) 1

α

; (9)

(2) if θ = 0, then

exp
(∫

R

log(1 + zu)αdµa(u)
)

=
∫

R

(1 + zu)αdνa(u). (10)

Proof. (1) Denote the left-hand side of the desired identity by A−1/θ, and the right-hand side by B1/α. Using
the identity

1
rθ

=
1

Γ(θ)

∫ ∞

0

tθ−1e−rtdt,

we obtain

A =cα,θE
α

[(
η(X) + z

∫
X

a(x)dη(x)
)−θ

]

=
cα,θ

Γ(θ)
E

α

[∫ ∞

0

tθ−1 exp
(
−t

(
η(X) + z

∫
X

a(x)dη(x)
))

dt

]

=
cα,θ

Γ(θ)

∫ ∞

0

tθ−1
E

α

[
exp

(
−

∫
X

t(1 + za(x))dη(x)
)]

dt.

By the Laplace transform formula (7), the expectation equals precisely e−tαB, thus

A =
cα,θ

Γ(θ)

∫ ∞

0

tθ−1e−tαBdt,

and (9) follows by changing variables.
(2) Follows from (9) by letting θ → 0.

The first and the third authors are partially supported by RFBR grant 99-01-00098, the first author is also
supported by CRDF grant RM1-2244.

Added in the translation. The identity involving the gamma function which we use in the proof of Theorem 4
makes sense only for positive θ. The authors are grateful to L. James for this remark. In fact, for −α < θ < 0
one should use instead the relation Γ(θ) = Γ(θ+1)

θ and the identity for θ + 1 which is already positive.
Translated by N. V. Tsilevich.
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19. N. V. Tsilevich, A. M. Vershik, and M.Yor, “An infinite-dimensional analogue of the Lebesgue measure and
distinguished properties of the gamma process,” J. Funct. Anal, 185, No. 1, 274–296 (2001).

2310


