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N. V. Tsilevich

SPECTRAL PROPERTIES OF THE
PERIODIC COXETER LAPLACIAN IN THE
TWO-ROW FERROMAGNETIC CASE

ABSTRACT. This paper is a part of the project suggested by A. M. Vershik
and the author and aimed to combine the known results on the represen-
tation theory of finite and infinite symmetric groups and a circle of results
related to the quantum inverse scattering method and Bethe ansatz. In
this first part, we consider the simplest spectral properties of a distin-
guished operator in the group algebra of the symmetric group, which we
call the periodic Coxeter Laplacian. Namely, we study this operator in the
two-row representations of symmetric groups and in the “ferromagnetic”
asymptotic mode.

1. INTRODUCTION

This paper is a part of the project suggested by A. M. Vershik and
the author and aimed to combine the known results on the representation
theory of finite and infinite symmetric groups and a circle of results related
to the quantum inverse scattering method and Bethe ansatz.

In this first part, we consider the simplest spectral properties of a dis-
tinguished operator in the group algebra of the symmetric group, which
we call the periodic Coxeter Laplacian. Namely, we study this operator
in the two-row representations of symmetric groups and in the “ferro-
magnetic” asymptotic mode. In subsequent papers, we will consider the
analogous problems for the “antiferromagnetic mode” and for other rep-
resentations. The importance of this operator is due to its close relation
to one of the classical integrable models of statistical physics, namely,
the XXX Heisenberg model of spins. On the other hand, this is the or-
dinary Laplace operator for the Cayley graph of the symmetric group

Key words and phrases: Coxeter Laplacian, representations of symmetric groups,
Bethe ansatz.

Supported by the grants REBR 08-01-00379-a, 09-01-12175-ofi_m, and 10-01-90411-
Ukr_a

111



112 N. V. TSILEVICH

corresponding to the periodic Coxeter system of generators, i.e., the clas-
sical Coxeter generators with one additional transposition (N, 1) imposed
by the periodic conditions.

The importance of studying the spectral properties of the periodic Cox-
eter Laplacian in various representations of the symmetric group, though
obvious enough, became clear quite recently. A significant role in our un-
derstanding of this connection was played by discussions with P. P. Kul-
ish and V. O. Tarasov, whom we would like to thank. The author is also
grateful to P. P. Kulish for comments that have led to improvement of
the presentation, and to A. M. Vershik for numerous fruitful discussions
of various problems related to this project.

The paper is organized as follows. In Sec. 2, we recall the basic facts
related to the XXX Heisenberg model and Bethe ansatz, and introduce our
main object of study, the periodic Coxeter Laplacian. Section 3 is devoted
to the description of the quantum inverse scattering method for the model
under consideration and the related subalgebra of the group algebra of
the symmetric group. In Sec. 4, we present some results concerning the
spectra of the periodic Coxeter Laplacian in finite cases. Finally, Sec. 5,
which is the main section of the paper, deals with asymptotic results on
the spectrum of the periodic Coxeter Laplacian in the “ferromagnetic”
mode.

2. BETHE ANSATZ AND THE PERIODIC COXETER LAPLACIAN

The XXX Heisenberg model describes a chain of N interacting spins
with quantum number s = 1/2 on a one-dimensional lattice. The Hamil-
tonian of this model acts in the Hilbert space H = (C?)®" of dimension
2V spanned by the orthogonal basis vectors |e;. ..cx), where ¢, =1 repre-
sents an up spin and €, =] represents a down spin at site n, and is given
by the formula

|
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with o acting in the nth space and I being the identity matrix in C2,

. (0 1 (0 —i . (1 0
w= () =) =6 )

are the Pauli matrices, of = 0% +icY are spin flip operators, and J is a
parameter (J > 0 corresponding to the ferromagnetic case, and J < 0 to
the antiferromagnetic one). We assume the periodic boundary conditions,
that is, o, | =01, a =1z,y, 2.

The Bethe ansatz is a method for calculating the eigenvalues and eigen-
functions of H.

Observe that the symmetric group G acts in the space H by permut-
ing the factors in the tensor product (C?)®V. Denote this representation
of G by 7. By the Schur—Weyl duality, we have

™= @ ™ @ pt, (1)

s
where 7# is the irreducible representation of & corresponding to a Young
diagram p of size |u| = N and length (number of rows) ¢(u) < 2, and p#
is the irreducible representation of GL(2,C) corresponding to u.
Now let sy, be the transposition (k,k + 1) (hereafter we always adopt
the convention that N 4+ 1 = 1), and put

Ly =Ne—(s1+...+sn),

where e is the identity permutation. Note that the sum contains the N —1
Coxeter transpositions s, k = 1,..., N — 1, and the additional transpo-
sition sy = (IV, 1) imposed by the periodic boundary conditions. We will
call Ly the periodic Coxeter Laplacian for the symmetric group Gy .

Now fix N and denote by L the operator corresponding to Ly in the
representation m: L = w(Ly). It is easy to check that

H= %(2L— N).

That is, the operators H and L have the same eigenfunctions, and the
eigenvalues E; of H are related to the eigenvalues A; of L by

J
Ej = Z(QAJ - N),
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or, denoting by Ey = —JN/4 the smallest eigenvalue (the ground energy
of the ferromagnetic chain),

Ej—EOZ )\J

J
2
Thus the original problem reduces to finding the eigenvalues and eigen-
functions of the periodic Cozeter Laplacian in the representation .

The very important property of the operators H and L is that they
commute with the periodic shift T that sends the kth factor in the tensor
product H = (C?)®N to the (k + 1)th one, k = 1,2,..., N (as usual, this
means, in particular, that the Nth factor goes to the first one):

HT =TH, HL=LH.

Obviously, the eigenvalues of the operator T' are the N roots of unity of
degree N:
ap =e¥™R/N -k =0,1,...,N—1.

N
Let S* = ) oZ. We have [H,S?] = 0, so this spin is conserved, and
1

we decomposg the whole space H into the sum of subspaces according to
the quantum number S* = N/2 —r, where r is the number of down spins.
In the decomposition (1), the parameter r corresponds to the length of
the second row of the diagram p.

The case r = 0 corresponds to the identity representation 7# with
i = (N), so that the only eigenvalue of L is 0 and the corresponding
eigenvalue of H is Ey = —JN/4.

3. QUANTUM INVERSE SCATTERING METHOD

The quantum inverse scattering method for the XXX Heisenberg model
proceeds as follows (see, e.g., [8]).
The local transition matrix is the 2 x 2 operator-valued matrix of the

form ; ;
>\I+ .—U'fl .—0'7,:
LX) = < igt A an>

K2
27n 2

where A is a spectral parameter. It satisfies the basic relation

R =) (£n(N) @ Ln(p) = (Ln(p) @ Ln(A) BA = 1) (2)
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with the R-matrix

bo

>
T

R()) =

oo O -
> >

o+‘>«+‘s- o
N [
>

=

-0 oo

The monodromy matrix is defined as
InA) = Ly (A). . .L1 (V).
It satisfies the same relation (2). Set

C(AxO) By
TNW—(cﬁ(A) Dﬁm)’

where the matrix elements A,(\), BnN(\),Cn(M\),Dn(A) of the mon-
odromy matrix act in the quantum space H.
Now set
T'n(A) = An(A) + DN (N).

Our goal in this section is to study the algebra Tn generated by the
operators {T n(A)}.

First of all, as follows from the quantum inverse scattering method, all
these operators commute:

[T'n(A), TN ()] = 0.
Further, each of them also commutes with the action of GL(2,C). Hence,
by the Schur—Weyl duality, it is an element of the group algebra of the

symmetric group G . It is more convenient to introduce the parameter
= —i(A —i/2) and consider the operators

Tn(p) = (=) T (in +1/2). (3)

Lemma 1. The explicit form of the operators T (u) is as follows:

N
Tn(p) = Ty, (4)
k=0
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where

Tnp = > (ivio...in_g) fork=0,...N—1 (5

1<i1 <82 <. <in -k <N

and
TN7N = 2e.

Proof. We have
Tn(p) = tr ((—0)Ln(ip+i/2).. (i) Li(ip +i/2)),

and, as can easily be seen,

(=)L (ip +i/2) = pl + (@ q71> |
4 P

where

L (10 ~_ (00 L _ (01 ~_ (00
Pn=00) = o 1)> T \o o) ®7\10)

+ —_
Denote M™ = (pi q’l).
dn DPn
Let us first consider the case k = 0, i.e., prove that Tl ¢ is the periodic
shift (1 2 ... N). We have

— N 1\ N N-1 2 1
Tyo=tr (MN..MY) = (MY, ML M M
JiyeeN—1=1,2
N N-1 2 1
MY, MNTL M2 ML)

The required assertion now follows from the following simple observation:
if ji is equal to 1 (say), then, on the one hand, the corresponding term
applied to a basis vector |e ...exy > does not vanish only if the kth spin is
up (since both operators pZ‘ and g, in the first row of M* do), and, on the
other hand, the (k4 1)th spin of the image of this term is necessarily up,
too (since this is so for both operators pZ‘H and q,';_l in the first column
of M*k+1),
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Now, to prove the assertion for arbitrary k, observe that
S + -
1<j1<j2<...<jN-k <N 4 Pj Din_r Pin_y

For k > 0, each term in this sum is exactly the operator Ty ¢ for the
model restricted to the sites i1,...,in—_k, S0, as we have already proved,
it is equal to (i142...iny—k)- The lemma follows. O

Thus, in particular,
Tno=1In0)=(1 2 ... N)=T

is the periodic shift,

ITyi=(1 2 ... N-1)+(1 2 ... N—-2 N)
+...+(2 3 ... N)
is the sum of the IV cycles of length IV —1 obtained by deleting one element
from the cycle '=(1 2 ... N). Note that
Ini=T- (514 +5sn), (6)

where s; + -+ + sy = Ne — Ly is the (periodic) sum of Coxeter transpo-
sitions. Also, we have that

TnN-2= Z(U)

i<j
is the sum of all transpositions in &y and
TN,N—I = Ne.

Finally, the periodic Coxeter Laplacian Ly is essentially the logarithmic
derivative of Tiv(u) at u = 0:

d _ _
@logTN(u) =Tny - Tyo=T-(s14...4s8)-T ' =s14...+sn,
n=0
so that J
LN = Ne — @ lOgTN(/I,) . (7)

pu=0
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Thus the algebra ¥ is the commutative subalgebra of C[S ] generated
by the elements e,Tno,IN1,...,Tn n—2. Alternatively, we can consider
the generators

RN7]€:TN’]C-T1;710: Z Sip e Sigo kZO,].,...,N—].,
i1 <o i
where s; = (4,7 + 1) is a Coxeter generator (with sy = (IV, 1)) and the in-
equalities are understood with respect to the cyclic order (which does not
lead to any ambiguity, since nonneighbor Coxeter generators commute).

The algebra Tn was also independently studied in [7].

Now let pn41,~ be the canonical (virtual) projection from the group
algebra of G411 to the group algebra of Gy; recall that for g € Gny1
the projection pny1,nvg is obtained by deleting the element N + 1 from
the corresponding cycle of g. The following lemma can be proved directly
using the explicit form of the operators T (p).

Lemma 2. We have
PN+ NTN () = (L+ )T (i) — pe. (8)
In other words, if we introduce the operators Tn(u) = Tn(u) — pVe

(taking TN, = e instead of 2e), then
Py, NN () = (1 + @) T (p)

4. EXACT SOLUTIONS

4.1. The case r =1

Here the problem is to find the eigenvalues of the peridodic Coxeter
Laplacian in the irreducible representation 7# of &y for the Young dia-
gram pu = (N —1,1). It is more convenient to turn to the representation o*
of G induced from the identity representation of the Young subgroup
61 x 6Gn_1, which, as is well known, is the sum of 7#* and the identity

representation.

The representation ¢! is the natural representation of &y in CV, which
we realize as the space of functions f : {1,..., N} — C, so that the matrix
of L has the form

-2 1 o 0 ... 0 O 1
1 -2 1 0 0O 0 O

—A:—As\l,):— 0 1 -2 1 0 0 O )
o 0 0 O 1 -2 1
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(an almost Jacobi matrix, with two extra 1’s at the north-east and south-
west corners). The eigenvalues of L can be found in several ways.

The first method is to express the characteristic polynomial Py (x) of
the matrix —A + 27 through Chebyshev polynomials Uy of the second
kind, using the well-known formula

2z 1 o o0 ... 0 0 O
1 2z 1 o ... 0 0 O
Un(z) = det 0 1 2 1 .00 00 (N x N matrix).
o o o0 o ... 1 2z 1
o o o0 o0 ... 0 1 22

In this way, we obtain
Py(—) = Un(2/2) = Un—a(z/2) = 2(-1)" = 2(In(2/2) — (-1)7),

where T’y is a Chebyshev polynomial of the first kind, i. e., using the fact
that T is odd for odd N and even for even N,

Pn(z) = (=1D)N - 2(Tn(z/2) — 1).

The roots of Py are thus 2cos(27k/N), k = 0,1,...,N — 1, and the
eigenvalues of L are 2(1 — cos(27k/N)), k=0,1,...,N — 1.

But the easiest way is to use the invariance of L under the shift 7',
which means that C"V decomposes into the eigenspaces H,, indexed by the
eigenvalues o of T'. If v € H, is an eigenvector from H,, then, denoting
f(1) = x, we have f(k) = a*~1z, and the equation for the eigenvalues
of L takes the form

A=2—a—a !

whence
Ar =2(1 —cos(2mk/N)), k=0,1,...,N—1 (10)

In particular, we see that all eigenvalues lie in the interval [0, 4] for
every N, and it is easy to show by standard arguments that the limiting
distribution of the eigenvalues on this interval has the density

P = e (1)

which is just a linear transformation of the so-called Chebyshev density

L. \/11_7, x € [-1,1], which is the limiting density of the roots of a large

class of orthogonal polynomials including the Chebyshev ones.
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4.2, The case r = 2

As in the previous section, we will consider the representation o2
of G induced from the identity representation of the Young subgroup
Gy X G _y, which is the sum of 7(V=22) 7 (N=L1) "and the identity rep-
resentation 1:

92 _ 7_‘,(N—2,2) + 7l,(N—l,l) 4+1= 7_‘,(N—2,2) + Ql- (12)

This representation is realized in the linear space H(?) with basis consist-
ing of all (unordered) pairs (kl) of distinct numbers with k,1=1,...,N,
k # 1. Again, this space decomposes into the sum of eigenspaces of T":

H® = Z H,,
a:alN=1

and we will find the eigenvalues of L in each H,.
First assume for simplicity that N = 2m + 1 is odd, m > 2. Under the
action of the shift T, the basis of H(?) splits into m orbits of length N:

Q 12 — 23 - ... - N-1,N — 1N,
Qs : 13 — 24 - ... — IL,N -1 — 2N,
Qn: 1m+1 —- 2m+2 —- ... - m—-1,N—-1 — mN,

and for each eigenfunction f € H,, the value of f at the jth element of
is equal to &1 f(1,k+1),k=1,...,m, j = 1,...,N. Writing down the
equations for an eigenvalue A of L, we obtain

Ary =2z — (1+ a_l)xz,

Mrp = —(1+@)zp_y +4op — (1+a Nagyr, k=2,...,m—1,

ALy, = —(14+ @)z + (4 —a™ —a ™)z,

Thus the eigenvalues of L in H, are the eigenvalues of the m x m
three-diagonal matrix

r2 a 0 0 O 0 0 07

b 4 a 0 O 0 0 O

0 b 4 a O 0 0 O
Ay = An(a) = ,

0o 0 0 0 O b 4 «a

Lo 0 0 0 O 0 b ¢
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wherea = —(1+a™ 1), b= —(1+ ),

c=4—-a™—a™ =4—-2cos(2rkm/N) =4 — 2cos(2rk(N — 1)/(2N))
=4 —2(—1)* cos(rk/N).

Denote by P,,(z) the characteristic polynomial of the matrix A,,. By
the standard methods we can deduce a recurrence relation for P, (z):

P (z) = (4 —2)Py—1(x) — abPp_s(z), (13)
where
ab= (14+a ) (1 + a) = 2(1 + cos(2nk/N)) = 4 cos*(1k/N).

Originally, the polynomials P, are defined for m > 2, but we can define
them for m = 0,1 so as to satisfy the recurrence relation (13). Namely,

For m = 2,3, we have

Py(z) = (x — 2)(z — ¢) — ab,
Py(z)=—(x—2)(z —4)(z — ¢) + ab(2z — 2 — ¢).

It is not difficult to compute, using the recurrence relation (13), the
generating function for P, (z):

. 1+%-t(——2(c‘4)x+6—c+—8(;4))

ab
Py (z)tk =
kZ:o e (@) 1—(4—a)t+t%ab

This allows us to write P,,(z) in terms of Chebyshev polynomials of
the second kind:

P (4 —2zVab) e €6 . 2(4 —¢) .
—ar —Um()+mUm—1()+7ab Um-—2(x)



122 N. V. TSILEVICH

Since
c=6 _ 14 (=1)*cos(mk/N) 24—¢) _ (-D)*
Vab cos(mk/N) ’ ab  cos(rk/N)’
we obtain
Pr(4(1 —cosf -x)) 1
(2 cos0)m =Up(2) + (=1)* U1 (2) »
- (Un1() + (1) U (a)
where 8 = wk/N. Thus
Pp(4(1 —cosb-z)) [ Vm(z) — —Vm-1(z), ks even,
(2cos )™ B { Wi (z) — =2 W,,_1(z), k is odd, (15)

cos 6

where Vj, (x) and Wy (z) are Chebyshev polynomials of the third and fourth
kind, respectively (see [6]).

Remark. For an odd k, setting £ = cost and using the trigonometric
definition of Chebyshev polynomials, we obtain

cos@ - sin((2m + 1)t/2) — sin((2m — 1)t/2)

=0. 16
sin(t/2) 0 (16)
It is not difficult to transform this equation into
tg(mt) 2
= ctg“(0/2). 17
73 = e 0/) (1)
In a similar way, for an even k& we obtain
cos @ - cos((2m + 1)t/2) — cos((2m — 1)t/2)
=0, (18)
cos(t/2)
or
tg(mt) tg(t/2) = — tg*(6/2). (19)

Thus the eigenvalues of the periodic Coxeter Laplacian L in the sec-
tor H, corresponding to an eigenvalue o = e2"*/N of the shift T are
the solutions of (17) for even k and the solutions of (19) for odd k.
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Obviously, the solutions for k& and —k coincide, so it suffices to con-
sider K = 0,1,...,m, keeping in mind that the eigenvalues obtained for
k=1,...,m should be counted twice.

Example. Consider the simplest case of £k = 0, i.e., @ = 1. In this case,
a = b = ¢ = 2, so that we obtain that the characteristic polynomial P,,(x)
of the matrix A,,(0) is a multiple of the Chebyshev polynomial:

P, (z) = 2" '2U,, 1 (1 — %) .

The corresponding eigenvalues of L are

0 and 4(1—cosﬂ), j=1,...m—1.
m

Example. Since the representation ¢® contains o' (see (12)), the eigen-
values of L in H(?) must contain, in particular, the eigenvalues (10). More
precisely, Ay must be an eigenvalue of L in the sector H,, with a@ = e>T**/N
Let us check that Ay, is indeed a root of P, given by (14) for § = 7k/N.
From the equation 4 —4 cosf-x = 2 —2cos 26 we obtain x = cos#, so that
in (17) and (19) we have t = # and these equations are easy to verify.

Since V; and W; form families of orthogonal polynomials on the in-
terval [—1, 1], we easily obtain from the properties of roots of orthogonal
polynomials that the right-hand side of (15) has m — 1 roots inside the
interval [—1, 1] and one root lying outside this interval. More precisely, if &
is odd and cosf > 0, there is a root of the right-hand side of (15) between
the jth root z; = cos %ﬁ;) of W, and the jth root y; = cos 7;5711172)
of Wy,—1,j =1,...,m — 1, and similarly in the other cases.

Using all these facts and the properties of orthogonal polynomials, with
some tedious calculations one can obtain the limiting density of eigenval-
ues of the Coxeter Laplacian in the representation o?:

1
pPw) =K (1-7), welos) (20)
where K'(v) = K(v/1 —v?) is the complete elliptic integral of the first
kind.

It is not difficult to check that the “two-magnon” limiting density
p?) (u) is the convolution of two “one-magnon” densities p(*) (u):

P (u) = / P (w—2)p (@) dr.
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In the next section we will prove that this convolution formula holds for
all r, that is, the limiting density of eigenvalues of the periodic Coxeter
Laplacian in the representation induced from the identity representation
of &, x Sy, is the r-fold convolution of p().

5. ASYMPTOTIC RESULTS. FERROMAGNETIC CASE

In this section, we find the limiting distribution of eigenvalues of the
periodic Coxeter Laplacian Ly in the representation induced from the
identity representation of G, x & y_, when r is fixed and N goes to infinity.
In the framework of the XXX Heisenberg model, this asymptotic mode
corresponds to considering excitations of the ferromagnetic chain (J > 0).

5.1. Some facts on the limiting distribution of eigenvalues
Given an n X n matrix A = {a;;}, denote by || A]| its spectral norm

JA]l = max || Az|

llzll=1

(here ||z|| is the Euclidean norm of a vector z) and by |A| its normalized
Frobenius (Hilbert—Schmidt) norm

AP = 25 agl”

i=1 j=1

Recall the useful inequality

Al < VAl 1Al (21)

n n
where [|Alj; = max; > |a;;] and |4 = max; Y |asl.
i=1 j=1
Denote by A (A) the kth largest eigenvalue of A.
Now, let C), and D,, be n x n matrices. Let us say that the sequences
{Cr}and {D,},n=1,2,... areequivalent if the following two conditions
hold:

dM < oo such that Vn, ||Cyl], || Dnl < M; (22)
lim |Cp — Dyl = 0. (23)

We denote this fact by {C,} ~ {D,}. Note that (22) implies that the
spectra of all the matrices C,, and D,, are uniformly bounded, i.e., there
exists a bounded interval [m, M] such that \;(Cy), Ax(Dy) € [m, M] for
all n, k.

The following result borrowed from [4] essentially relies on the well-
known Wielandt-Hoffman theorem (see, e.g., [11]).
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Lemma 3. Let {C,} and {D,,} be two equivalent sequences of Hermi-
tian matrices. Then the sequences of their eigenvalues are asymptotically
absolutely equally distributed, i.e., for an arbitrary continuous function
f(z) on [m, M],

1l
Jim = [ fw(Cn) = Fk(Dn)] = 0.
k=1
In particular, it follows that if either of the limits exists separately, then
. e
Jim —~ ; FO(Cn)) = lim — ; Fw(Dn))- (24)

5.2. The r =1 case

Now consider the r = 1 case, i.e., the representation o' of &y induced
from the identity representation of the Young subgroup &; x G _;. Note
that the matrix (9) of the Coxeter Laplacian L in this representation is
almost a three-diagonal Toeplitz matrix, namely, differs from the three-
diagonal Toeplitz matrix

2 -1 0 o ... 0 0 0
-1 2 -1 0 ... 0 0 0
By = o -1 2 -1 ... 0 0 0 (25)
0 0 0 0 -1 2 -1
0 0 0 0 0 -1 2

only by two extra minus ones in the north-east and south-west corners.
However, as long as we are interested in the limiting distribution of eigen-
values, this small difference is irrelevant, because it is easy to check that
the sequences of real symmetric matrices {Anx} and {Bx} are equiva-
lent (indeed, (22) easily follows from the inequality (21), and, obviously,
|Ax — By|* < %). Thus Lemma 3 applies, and we deduce that these se-
quences of matrices have the same limiting distribution of eigenvalues. But
for By this distribution is given by a well-known result from the theory
of Toeplitz matrices. Namely, given a sequence {t;} (for our purposes, it
suffices to consider only finite sequences, ¢, = 0 for |k| > m, correspond-
ing to banded Toeplitz matrices), consider a sequence of Toeplitz matrices
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oo .
Tn = (tj—k)k,j=1,..n- Let a(\) = > te?** be the corresponding sym-
k=—oc0
bol. If a is real, i.e., the matrices T}, = T},(a) are symmetric, then for any
continuous function f,

27

Jm 23 O = 5 [ Fa)an (26)
k=1 0
In our case, By = T (a), where
a(A) =2 —2cos A, (27)

so that applying (26) and making an appropriate change of variables, we
recover the Chebyshev density (11).

5.3. General case

For clarity, consider first the 7 = 2 case, i.e., the representation o>
of G induced from the identity representation of the Young subgroup
G2 X ©Gn_2. Denote by eg, 1 < k < [ < N, the natural basis of the
space H?) of this representation. It is easy to see that the action of the

periodic Coxeter Laplacian L in terms of this basis reads as follows (with
N+1=1):

dep; — €p—1,0 — €kt1,0 — €kji—1 — €kit1, L FKk+1,
Lekl =

2€k k41 — €k—1,k+1 — Ckk+2, l=k+1

Denote the corresponding matrix by Aﬁ).

Let H() be the space of the representation ¢!, consider the space H =
H® @ HM, and the operator B](?) = A%) RQI+T® A%) in this space.
Clearly, the eigenvalues of B](?) are exactly the sums A+ p, where A, p are
the eigenvalues of Ag\l,), so that the limiting distribution of eigenvalues of
BI(\?) as N — oo is the convolution of two copies of p(1).

Now we may assume that H(?) is the subspace of H spanned by eg
with & < [. We may also extend the action of L to the whole H putting
Ley; = Ley, for k > 1 and Leg, = 0. Denote the corresponding matrix
by AS\Z,). Obviously, the limiting distribution of eigenvalues for 1415\2,) is the

same as for AS?,).
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Lemma 4. The sequences of matrices {Aﬁ)} and {BI(\?)} are equivalent,
i.e., satisfy the conditions of Lemma 3.

Proof. Obviously, ||A5\2,) | < (||/1$\2,) ||1||AS\2,) oo)'/? < 8 and a similar
bound holds for Bj(\?), so that the first condition of equivalence is satisfied.
Now, the order of these matrices is N2 and

0, [l—k|>1,
(BI(\?) — As\zf))ekl = 2er —ekx — eu, l=k+1,

depk — €k—1,k — Cht1k — €k k—1 — Ekt1, | =K,

so that Bj(\?) - As\z,) has at most O(N) nonzero entries, each being O(1).
It follows that |B1(3) - Ag\% =5 O(N)-0O(1) = 0 as N — oo, and the
second condition is also satisfied. ]

Corollary 1. The limiting density p'®) of eigenvalues of the periodic
Coxeter Laplacian L in the r = 2 sector is the convolution of two copies
of the limiting density p{!) of the eigenvalues of L in the r = 1 sector:

P (w) = W «pM)(w),  uelo,8].
In exactly the same way one can prove the following general result.

Theorem 1. The limiting density pt*) of eigenvalues of the periodic Cox-
eter Laplacian Ly in the representation chv induced from the identity
representation of the Young subgroup Gy x Gny_j as N — 0 is the con-
volution of k copies of the limiting density p(!) of the eigenvalues of Ly
in the representation o, :

PP (w) = (pM) ..« pM)(w), u € [0,4k]. (28)
k

Corollary 2. For a fixed k = 1,2, ..., the limiting distribution of eigen-
values of the periodic Coxeter Laplacian Ly in the irreducible represen-
tation corresponding to the two-row Young diagram pk = (N — k, k) as
N — oo is equal to (28).

Proof. Follows from the fact that the relative dimension of pk in oF
tends to 1 as N — oc:
dimpl, NN —2k+1) K(N—k! N-—2k+1

_ - 1. O
dimgf, KN —k+ 1) N N—k+1
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Remarks. 1. In terms of the XXX Heisenberg model, the result of Theo-
rem 1 means that in the limit under consideration, only eigenvalues corre-
sponding to “independent magnons” survive. The number of eigenvalues
corresponding to “bound magnons” is asymptotically negligible and does
not affect the limiting density.

2. As follows from the proof, the limiting density of eigenvalues for the

periodic Coxeter Laplacian is the same as for the ordinary (nonperiodic)
Coxeter Laplacian Ne — (1,2) — (2,3) —...— (N — 1, N).

Taking into account the convolution formula (28), it is natural to use
the Fourier transform for finding the limiting density p*). Let F(t) be
the Fourier transform of p(*). Then p*) is the inverse Fourier transform
of F(t)*. But (see, e.g., [3, 3.387.2])

F(t) =

5=

Va4 —zx)

where Jy is the Bessel function of the first kind. Thus we are interested
in the inverse Fourier transforms of powers of Bessel functions. For k = 2,
using the known formulas for integral transforms of the product of tho
Bessel functions, we can recover the density (20). Unfortunately, for k > 2,
the corresponding integrals are not known. For Taylor series expansions
of powers of Bessel functions, see [2].

4 e—itw .
/7 dz = e 2 Jy(~2¢),
0

5.4. Limiting operators

Denote by AS\?) the operator of the Coxeter Laplacian L in the rep-
resentation QS\]?) of the symmetric group &y induced from the identity
representation of the Young subgroup Gy X Gny_g. The inductive limit of
the representations Q(Nk) as N — oo is the irreducible representation p(*) of
the infinite symmetric group G, induced from the identity representation

of the Young subgroup &1, x} X Gpq1,r+2,.} (see [9]).

Lemma 5. The operators A%“) weakly converge as N — oo to some
operator A®) in the space of the representation p'¥). In particular, A =
T'(a) is the infinite Toeplitz matrix with the symbol a(p) = 2 — 2 cosp.

Proof. The space of the representation p(¥) is {?(II;,), where II;, is the set
of k-tuples of distinct positive integers. Denote by H,,, C [?>(II;) the subset
of functions supported by k-tuples of integers < m. Then the set US°_, H,,
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is dense in [2(II ), and it suffices to check that the limits limpy _ o (AS\]f) f,9)
exist for f,g € H,, for all m. But it is obvious that for such f, g we have
((k,k+1)f,9)=(f,9) for k > m and ((1,N)f,g) = 0. Thus the required
limits exist, and we see that the operators A(Nk) weakly converge to some
operator A®) such that for f € H,,,

AW f = ((m+1)E— ((1,2) +...+ (m,m + 1)) f. 0

Remark. We have shown that the weak limit of the operators AS;) of
the periodic Coxeter Laplacian of G in the “one-row” representation gk
is the infinite Toeplitz operator with the symbol a(p) = 2 — 2cosp. It
follows from the spectral theory of Toeplitz operators that this operator
is unitarily equivalent to the multiplication by x in the space

2 [0,4],1 w4 —x) ).
(1.9 5=)

Recall that the limiting density of eigenvalues in this asymptotic mode is
——, z€][0,4].

5.5. Antiferromagnetic case

We may also consider another asymptotic mode, namely, assuming for
simplicity that NV = 2n is even, consider the operator Ly in the represen-
tation g%, induced from the identity representation of &, x &,, as N — oo
and in the irreducible representation 7, with diagram unx = (n,n). This
mode corresponds to considering the antiferromagnetic XXX chain. The
results for this case will be presented in a subsequent paper.

5.6. Applications: characters of the symmetric groups

Let 7 be a representation of the symmetric group &y (and its group al-
gebra), x be its character, and M = dim 7 be its dimension. Let Ay, ..., Ay
be the eigenvalues of the periodic Coxeter Laplacian in the representation
m. Then it follows from the results of [1] that for every positive integer k

N N
Z Z X U]l (e - Ujk))' (29)

Ji=1 Je=1

TM:
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Combining (29) with the results on the limiting densities of eigenvalues
obtained in the previous sections, we can derive some interesting asymp-
totic formulas.

First let m be the representation o' of G induced from the identity
representation of the Young subgroup 61 x Gy _;. It is easy to see that its
dimension is equal to IV and the value of its character at a permutation
g € Gy equals the number 7 (g) of fixed points of g. On the other hand,
from the results of Sec. 4.1 we have

N 4

1 1 dz 2k (2k — 1)!!
lim — Y M= —/CUIC = :
Nﬁoon; J 7r0 V(4 —1) k!

Thus for every positive integer k,

1 X N 2F(2k — 1)1
lim N;...Zn((e—am...(e—ajk))=T- (30)

N —oo 4
Je=1

Examples. Let £k = 1. Then r1(e —0) =r1(e) —r1(0c) =n—(n—2) =2,
and the left-hand side of (30) equals + - N -2 = 2, which is the right-hand
side for k = 1.

Now let k = 2. Then ri ((e—0j,)(e—0j,)) = r1(e) —2r1(0) +r1(0j,0,).
But 71(0j,0j,) is equal to N if j; = jo, equal to N — 4 if the (periodic)
distance between j; and js is at least two, and equal to N — 3 if j; and
Jo are neighbors, whence the left-hand side of (30) equals

% [N>(N —2(N —2)) + N>+ N(N —3)(N —4) + 2N(N — 3)] =6,
again in accordance with the right-hand side for k = 2.

Consider now the representation ¢? of Gy induced from the identity
representation of the Young subgroup G2 x Sx_». In this case, the dimen-
sion is equal to N (N — 1)/2 and the value of the corresponding character
at a permutation g € Gy equals (”ég)) +72(g) where 71 (g) and r2(g) are
the number of fixed points of g and the number of cycles of length 2 in g,
respectively. On the other hand, from the results of Sec. 4.2 we have

8

N
: 2 k __ 1 k 11
M N(N—l)j;/\j =g | TR -e/h)dr




SPECTRAL PROPERTIES OF THE PERIODIC COXETER LAPLACIAN 131

Examples. Let k¥ = 1. Then the integral in the right-hand side of (31)

equals
1

1 1
Ja-vK W= [ K@y~ [vrw .
1 1 1

the first summand being equal to 7%/2 by [3, 6.141.2] and the second one

vanishing since K’(y) is an even function of y. That is, the right-hand side
is equal to 4. Now, the left-hand side equals

For k = 2, using again the evenness of K’, we have

1 / / 7T2 7T2
/(1 —y)’K'(y) dy = /K’(y) dy + /y2K’(y) dy =5+,

-1

where the second integral was find using [3, 6.147 and 6.148.2]. Thus the
right-hand side of (31) is equal to 20. Now, the left-hand side equals

N(N2_ 5 {N”N;N—l) _oN? ((N—2)2(N—3) +1)

+NW+N(N_3) <w+2>

+N-2- — 20.

(N—-3)(N—4)] 20N —48
2 }_N(N—l)
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