
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 462, 2017 Ç.N. V. TsilevihON THE DUAL COMPLEXITY AND SPECTRA OFSOME COMBINATORIAL FUNCTIONSAbstrat. In a reent paper, A. M. Vershik and the author startedthe study of representation-theoreti aspets of well-known ombi-natorial funtions on the symmetri groups Sn. The note presentsa series of further results in this diretion.
§1. IntrodutionIn [9℄, A. M. Vershik and the author started the projet onerned withthe study of representation-theoreti aspets of ombinatorial funtions onthe symmetri groups Sn. The idea is, given a ombinatorial statisti a(i. e., a funtion on Sn, or an element of the group algebra C[Sn℄), tostudy the representation of Sn whih is the restrition of the left regularrepresentation to the left ideal C[G℄a generated by a. In partiular, weonsidered the notion of the dual omplexity of a, originally suggested byA. M. Vershik, whih is the dimension of this representation. The statistisonsidered in [9℄ are the major index, the desent number, and the inversionnumber of a permutation. It turned out that eah of them generates thesame ideal, and the orresponding representation of Sn is isomorphi toits representation in the spae of n×n skew-symmetri matries, whih al-lowed us to obtain formulas for the funtions under onsideration in termsof matries of an exeptionally simple form, whih, in turn, were appliedto �nd their spetra in the regular representation, as well as to dedue aseries of identities relating them to one another and to the number of �xedpoints. In this note, we onsider a series of further examples. First, theseare the so-alled m-pattern and onseutive m-pattern funtionals (seeDe�nitions 2 and 3), whih essentially ount the number of ourrenesof subsequenes of length m with ertain order strutures in permutations(regarded as words in the alphabet 1; 2; : : : ; n). The study of suh fun-tionals (from the ombinatori point of view) goes bak to Knuth [5℄; fora omprehensive survey on lassial and generalized patterns, see, e.g., [3℄.Key words and phrases: dual omplexity, pattern funtional, exedane number.Supported by the RFBR grant 17-01-00433.112



ON THE DUAL COMPLEXITY AND SPECTRA 113The number of inversions and the number of desents studied in [9℄ are a2-pattern funtional and a onseutive 2-pattern funtional, respetively.In Se. 3, we state a general result on the dual omplexity of a patternfuntional (Theorem 2, Corollaries 1 and 2), and then in Se. 4 onsidersome examples, namely, the number of peaks, valleys, double asents, anddouble desents, whih are 3-pattern funtionals. The tehniques used indealing with this series of examples are related to the so-alled Solomondesent algebra, so that in Se. 2 we present the neessary bakground.Another type of statistis, with a quite di�erent behavior as regards therepresentation-theoreti aspets, is onsidered in Se. 5; these are the ex-edane number and the number of �xed points.The author is grateful to A. M. Vershik for many fruitful disussions.
§2. The Solomon desent algebra and Lie haraters ofthe symmetri groupFor n ∈ N, denote by Comp(n) the set of ompositions of n and byPart(n) the set of partitions of n.Given a permutation � ∈ Sn, we denote by Des(�) its desent set:Des(�) = {i ∈ {1; : : : ; n − 1} : �(i) > �(i + 1)}. For p = (�1; : : : ; �k) ∈Comp(n), putBp = ∑�:Des(�)⊂{�1;�1+�2;:::;�1+:::+�k−1}� ∈ C[Sn℄:In partiular, B(1n) = ∑�∈Sn �, and for p(2)k = (1; : : : ; 1; 2; 1; : : : ; 1) (whe-re 2 is in the kth position) Bp(2)k = ∑�:k=∈Des(�) �.The elements {Bp}p∈Comp(n) form a basis of a subalgebra �n of thegroup algebra C[Sn℄ alled the Solomon algebra. In [2℄, another importantbasis {Ip}p∈Comp(n) of �n was introdued. Denote by k(p) the number ofparts of a omposition p. Given two ompositions p; q ∈ Comp(n) withp 6 q (i.e., p being a re�nement of q), let ki be the number of parts ofp that subdivide the ith part of q, and denote k(p; q) = k1k2 : : : ks andk!(p; q) = k1!k2! : : : ks!. Then the elements of the two bases are related asfollows: Iq = ∑p6q (−1)k(p) − (−1)k(q)k(p; q) Bp; Br = ∑q6r 1k!(q; r) Iq :



114 N. V. TSILEVICHIn partiular, B(1n) = I(1n); Bp(2)k = Ip(2)k + 12I(1n): (1)Consider the representation�� = IndSn
Sm1 [S1℄×:::×Smk [Sk ℄×:::(Idm1 [Lie1℄⊗ : : :⊗ Idmk [Liek℄⊗ : : :); (2)where Smk [Sk℄ is the wreath produt (Sk)mk ≀Smk and Idmk [Liek℄ is therepresentation of Smk [Sk℄ onstruted from the identity representationIdmk of Smk and the so-alled Lie representation Liek (see, e.g., [2℄) of

Sk. The struture of the representation Liek is desribed in [4, 6℄ (seealso [8, Ex. 7.88℄).The following result is essentially proved in [2, Theorem 4.4℄ (see also [1,Theorem 2.2 and Corollary 2.3℄).Theorem 1 ( [1,2℄). Let a = ∑q aqIq be an element of �n, and let Ma bethe matrix of the right multipliation by a in C[Sn℄. Then the eigenvaluess� of Ma are indexed by the partitions � ∈ Part(n) ands� = b� ∑p:�(p)=� ap; (3)where b� = ∏mk! for � = (kmk). The restrition of the left regular repre-sentation of Sn to the orresponding eigenspae V� is isomorphi to ��. Inpartiular, dim V�, i.e., the multipliity of the eigenvalue s�, is n!z� , wherez� = ∏ kmkmk!, that is, the ardinality of the onjugay lass of Sn or-responding to �.In partiular, we have the following deomposition of the left regularrepresentation Regl of Sn:
C[Sn℄ = ∑�∈Part(n)V�; i.e., Regl = ∑�∈Part(n) ��: (4)

§3. The dual omplexity of pattern funtionalsReall the de�nition of dual omplexity from [9℄.De�nition 1. The dual omplexity d(�) of an element � of the groupalgebra C[G℄ is the dimension of the yli subspae (ideal) Ide(�) = C[G℄�generated by all left translations of this element.



ON THE DUAL COMPLEXITY AND SPECTRA 115The purpose of this setion is to study the dual omplexity of so-alledpattern funtionals on the symmetri groups.Let m 6 n. For every element a ∈ C[Sm℄ (regarded as a funtion on
Sm), onsider the following funtional on Sn:�a(g) = ∑16k1<k2<:::<km6n a(g|{k1;:::;km});where the notation g|{k1;:::;km} = � for � ∈ Sm means that g(ki) < g(kj)
⇐⇒ �(i) < �(j) for any i; j = 1; : : : ;m.De�nition 2. The funtionals of the form �a, a ∈ C[Sm℄, are alledm-pattern funtionals.Given a ∈ C[Sm℄, denote by �a the restrition of the left regular repre-sentation Regl of Sn to the ideal Ide(�a).Theorem 2. Consider the deomposition (4), and let a∈V�, �∈Part(m).Assume that � has m − k rows of length 1, and denote by � the diagramof size k obtained from � by removing all these rows. Then�a = IndSn

Sk×Sn−k(�� × Idn−k)and, in partiular, d(�a) = dim �� ·
(nk).Proof. Given b ∈ V� ⊂ C[Sm℄ and 1 6 i1 < : : : < im 6 n, onsider thefuntional F b

{i1;:::;im} on C[Sn℄, whereF b
{i1;:::;im}(g) := b(g|{i1;:::;im}); g ∈ C[Sn℄:It is not diÆult to hek that the subsetW� of C[Sn℄ spanned by F b

{i1;:::;im}for all b ∈ V� and all sets of m indies {i1; : : : ; im} is a left ideal and therestrition of Regl toW� is isomorphi to IndSn
Sm×Sn−m(��×Idn−m). More-over, it is lear that this ideal ontains Ide(�a). If we realize the induedrepresentation in the spae of funtions on Sn=(Sm ×Sn−m) with valuesin V�, then �a orresponds to the onstant funtion identially equal toa ∈ V�.On the other hand, sine �� = IndSm

Sk×Sm−k (��× Idm−k) by (2), we anrealize V� as the spae of funtions on Sm=(Sk×Sm−k) with values in V�,and then it is not diÆult to see, using the properties of indued represen-tations, that Ide(�a) is in fat the spae of IndSn
Sk×Sn−k(�� × Idn−k). �



116 N. V. TSILEVICHDe�nition 3. Anm-pattern funtional on Sn of the form �a where a ∈ V�and � has k rows of length greater than 1 will be alled a k-ary patternfuntional.Corollary 1. For a k-ary funtional �a, the representation �a is isomor-phi to a representation of Sn in a spae of tensors of rank k.An element a ∈ Sm determines, along with �a, another natural fun-tional on Sn:  a(g) = n−m+1∑k=1 a(g|{k;k+1;:::;k+m−1}):De�nition 4. A funtional of the form  a is alled a onseutive m-pat-tern funtional on Sn.Corollary 2. For every a ∈ C[Sm℄ we have Ide( a) = Ide(�a), and theonlusions of the theorem hold for  a, too.Proof. Follows from the proof of Theorem 2. �

§4. Examples; the number of peaks, valleys, doubleasents, and double desentsGiven � ∈ Part(n), by �� we denote the irreduible representation of
Sn orresponding to �.For k 6 3, from (2) we have�(1) ≃ �(1);�(12) ≃ �(2); �(2) ≃ �(12);�(13) ≃ �(3); �(2;1) ≃ �(21) ⊕ �(13); �(3) ≃ �(21):Thus, a 1-pattern funtional on Sn is just a onstant funtional, whihis 0-ary. There are no 1-ary funtionals.The set of 2-pattern funtionals is spanned by the 0-ary onstant fun-tionals and the 2-ary funtional �a with a = Æe − Æ(1;2) ∈ C[S2℄. Clearly,this is the entered1 number of inversions ĩnv(g) = inv(g) − n(n−1)4 . Itsdual omplexity is equal to n(n−1)2 , and the orresponding representationis isomorphi to the representation of Sn in the spae of n × n skew-symmetri matries. The orresponding onseutive funtional  a is the1By a entered funtional we mean a funtional orthogonal to the subspae of on-stants, i.e., suh that the sum of its values over all elements of the group vanishes.



ON THE DUAL COMPLEXITY AND SPECTRA 117entered number of desents d̃es(g) = des(g) − n−12 . For more details,see [9℄.For k = 3, we have also the set of 3-ary funtionals, for whih theorresponding representation �a is isomorphi to a representation of Sn inthe spae of tensors of rank 3 and deomposes asIndSn
S3×Sn−3(�(2;1) × �(n−3)) = �(n−1;1) + �(n−2;2) + �(n−2;12) + �(n−3;2;1):The dual omplexity of suh a funtional is equal to n(n−1)(n−2)3 .Consider, for example, the following well-known onseutive 3-patternfuntionals  a, a ∈ S3: the number of peaks, valleys, double asents, anddouble desentspeaks(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) < �(i) > �(i+ 1)};valleys(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) > �(i) < �(i+ 1)};das(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) < �(i) < �(i+ 1)};ddes(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) > �(i) > �(i+ 1)}:It is easy to see that these funtionals are of the form  a for the funtionsapeaks(g) = Æ[132℄ + Æ[231℄, avalleys(g) = Æ[213℄ + Æ[312℄, adas(g) = Æ[123℄, andaddes(g) = Æ[321℄, respetively.Observe that all these funtionals belong to the Solomon algebra, so thatTheorem 1 gives all the neessary information on the spetra. Namely, de-note by p2;j the omposition of n of the form (1; : : : ; 1; 2; 1; : : : ; 1) with 2 atposition j, and by p3;j the omposition of n of the form (1; : : : ; 1; 3; 1; : : : ; 1)with 3 at position j. Then it is easy to see thatpeaks = n−2∑j=1(Bp2;j −Bp3;j ) = n− 23 I(1n) − n−2∑j=1 Ip3;j + 12(Ip2;1 − Ip2;n−1);so that, in the notation of Theorem 1, we have only two nonzero eigenval-ues: s(1n) = n! · n− 23 ; s(31n−3) = −(n− 3)! · (n− 2);the �rst one (of multipliity 1) orresponding to the identity representa-tion, and the seond one (of multipliity n(n−1)(n−2)3 ) orresponding to the3-ary funtional obtained from the number of peaks by entering.Obviously, exatly the same results hold for the number of valleys.



118 N. V. TSILEVICHIn a similar way, we havedas = n−2∑j=1 Bp3;j = n− 26 I(1n) + n−2∑j=1 Ip3;j + 12 n−1∑j=2(Ip2;j−1 − Ip2;j );so that in this ase there are three nonzero eigenvalues:s(1n) = n!·n− 26 ; s(21n−2) = (n−2)!·(n−2); s(31n−3) = (n−3)!·(n−2);of multipliities 1, n(n−1)2 , and n(n−1)(n−2)3 , respetively, orresponding tothe deomposition of das into a sum of a 0-ary, 2-ary, and 3-ary funtion-als.It is not diÆult to see that the ase of the number of double desentsdi�ers from this one only in that the seond and third eigenvalues havethe opposite sign.
§5. The exedane number and the number of fixedpointsIn this setion, we onsider statistis of another type, whih are notpattern funtionals and demonstrate a quite di�erent behavior of spetra.The exedane number of a permutation � ∈ [Sn℄ is de�ned as follows:ex(�) = #{i = 1; : : : ; n− 1 : �(i) > i}:This statisti was �rst studied by MaMahon [7℄, and it is an Eulerianstatistis, that is, its generating funtion is given by the Euler polynomials:

∑�∈Sn qex(�) = An(q); where ∑n>0An(q)znn! = (1− q)ezeqz − qez :It is not diÆult to dedue thatCn = ∑�∈Sn ex(�) = n! · n− 12 : (5)Denote by uex the orresponding element of C[Sn℄:uex = ∑g∈Sn ex(g)g ∈ C[Sn℄:Theorem 3. The dual omplexity of the funtion ex is equal to (n−1)2+1,and Ide(uex) oinides with the spae of the primary omponent of the rep-resentation �(n−1;1) plus the subspae of onstants.



ON THE DUAL COMPLEXITY AND SPECTRA 119Proof. Consider the following elements of C[Sn℄:eij = ∑�∈Sn "ij(�)�; where "ij(�) = {1; �(i) > j;0 otherwise; (6)for i = 1; : : : ; n, j = 1; : : : ; n − 1. Then it is not diÆult to see that forevery g ∈ Sn, geij = eg−1(i);j : (7)It easily follows that for every j = 1; : : : ; n−1, the subspae Lj spanned byeij for i = 1; : : : ; n is invariant for Regl and the orresponding subrepresen-tation is isomorphi to �(n−1;1)⊕�(n). Then the whole spae L = ⊕n−1j=1 Ljspanned by all eij is the primary omponent of the representation �(n−1;1)plus the subspae of onstants.Now we obviously have uex = n∑i=1 eii; and the theorem follows. �Theorem 4. Let Mex = Regl(uex) be the operator of the left multiplia-tion by uex in C[Sn℄. Then the eigenvalues of Mex ares0 = n! · n− 12 (with multipliity 1) andsk = −
n(n− 2)!1− !k ; where !k = e 2�ikn ; k = 1; : : : ; n− 1;eah having the multipliity n− 1. The eigenspae of s0 is the subspae ofonstants, and the eigenspae orresponding to sk with k = 1; : : : ; n− 1 isspan{ n∑m=1!m−1k emj ; j = 1; : : : ; n− 1} :Remark. Another form of sk issk = −n(n− 2)! · 1 + i ot �kn2 ; k = 1; : : : ; n− 1:Lemma 1. In eah of the spaes Lj, the matrix of the operator Mex inthe basis (6) is the following irulant matrix:(n− 2)! ·  an an + 1 an + 2 : : : an + n− 1an + n− 1 an an + 1 : : : an + n− 2: : :an + 1 an + 2 an + 3 : : : an 

 ;where an = (n−1)(n−2)2 .



120 N. V. TSILEVICHProof. It follows from (7) that the entries of the matrix in question aremik = ∑�∈Sn:�−1(i)=k ex(�):It is lear that for every i we have mii = Cn−1 = (n−1)!(n−2)2 = (n− 2)!anby (5). Now, it is not diÆult to show that for k > i,
∑�∈Sn:�−1(i)=k+1 ex(�) = ∑�∈Sn:�−1(i)=k ex(�) + (n− 2)!;by onsidering the bijetion

( : : : k k + 1 : : :: : : x i : : : )
↔

( : : : k k + 1 : : :: : : i x : : : ) ;whih does not hange the number of exedanes if x 6= k+1 and hanges itby 1 if x = k+1. In a similar way one an hek that mi−1;i = mii+(n−1)!and that mk−1;i = mki − (n− 2)! for every k < i. The lemma now followsby indution. �Proof of Theorem 4. The theorem follows from Lemma 1 and the well-known desription of the spetrum of a irulant matrix. Namely, for theirulant matrix with the �rst row (0; n−1; : : : ; 2; 1), the eigenvalues aregiven bysk = 0+n−1!k+n−2!2k+ : : :+1!n−1k ; where !k = e 2�ikn ; k = 1; : : : ; n;and the orresponding eigenvetors are (1; !k; !2k; : : : ; !n−1k )T : �Now onsider the number of �xed points�x(�) = #{i = 1; : : : ; n : �(i) = i}:Theorem 5. The dual omplexity of the funtion �x is equal to (n−1)2+1,and Ide(uex) oinides with the spae of the primary omponent of therepresentation �(n−1;1) plus the subspae of onstants.Proof. The proof is similar to that of Theorem 3; it suÆes to observethat u�x = n∑i=1(ei;i−1 − eii): �Theorem 6. LetM�x = Regl(u�x) be the operator of the left multipliationby u�x in C[Sn℄. Then M�x has two nonzero eigenvalues: s0 = n! withmultipliity 1 and s1 = n · (n−2)! with multipliity (n−1)2, the eigenspae



ON THE DUAL COMPLEXITY AND SPECTRA 121of s0 being the subspae of onstants and that of s1 being the primaryomponent of the representation �(n−1;1).Proof. Like Theorem 4, follows from the lemma below, whih an beproved similarly to Lemma 1. �Lemma 2. In eah of the spaes Lj , the matrix of the operator M�x inthe basis (6) is the matrix whose all diagonal entries are equal to 2(n− 1)!and all o�-diagonal entries are equal to (n− 2)!(n− 2).Denote by ẽx and �̃x the entered versions of the orresponding statis-tis: ẽx(�) = ex(�) − n− 12 ; �̃x(�) = �x(�)− 1:Corollary 3. uẽx ∗ u�̃x = u�̃x ∗ uẽx = n(n− 2)! · uẽx:Referenes1. A. R. Calderbank, P. Hanlon, and S. Sundaram, Representations of the symmetrigroup in deformations of the free Lie algebra. | Trans. Amer. Math. So. 341, No. 1(1994), 315{333.2. A. Garsia and C. Reutenauer, A deomposition of Solomon's desent algebra. |Adv. Math. 77 (1989), 189{262.3. S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, Berlin{Heidelberg,2011.4. A. A. Klyahko, Lie elements in the tensor algebra. | Siberian Math. J. 15, No. 6(1974), 914{920.5. D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading,1975.6. W. Kraskiewiz and J. Weyman, Algebra of oinvariants and the ation of a Coxeterelement. | Bayr. Math. Shr. 63 (2001), 265{284.7. P. A. MaMahon, Combinatory Analysis, Vol. 2, Cambridge Univ. Press, 1915{1916.Reprinted by Chelsea, New York, 1960.8. R. Stanley, Enumerative Combinatoris, Vol. 2, Cambidge Univ. Press, 1999.9. A. M. Vershik and N. V. Tsilevih, On the relation of some ombinatorial funtionsto representation theory. | Funt. Anal. Appl. 51, No. 1 (2017), 28{39.ðÏÓÔÕ�ÉÌÏ 8 ÓÅÎÔÑÂÒÑ 2017 Ç.St.Petersburg Department ofSteklov Institute of Mathematis;St.Petersburg State University,St.Petersburg, RussiaE-mail : natalia�pdmi.ras.ru


