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ON THE BEHAVIOR OF THE PERIODIC COXETER
LAPLACIAN IN SOME REPRESENTATIONS RELATED
TO THE ANTIFERROMAGNETIC ASYMPTOTIC
MODE AND CONTINUAL LIMITS

ABSTRACT. We consider some problems related to the asymptotic
behavior of the so-called periodic Coxeter Laplacian (a distinguished
operator in the group algebra of the symmetric group essentially
coinciding with the Hamiltonian of the XXX Heisenberg model of
spins) in some representations corresponding to the antiferromag-
netic asymptotic mode, as well as in some related continual limits.

§1. INTRODUCTION

In this note, which is a direct continuation of [5], we consider some prob-
lems related to the asymptotic behavior of the so-called periodic Coxeter
Laplacian (a distinguished operator in the group algebra of the symmetric
group essentially coinciding with the Hamiltonian of the XXX Heisenberg
model of spins) in some representations corresponding to the antiferro-
magnetic asymptotic mode, as well as in some related continual limits.

Recall that the periodic Cozeter Laplacian is the operator Ly = Ne —
(s1 + ...+ sy) in the group algebra of the symmetric group &y, where
sy is the Coxeter transposition (k,k + 1) (hereafter we always adopt the
convention that N + 1 = 1). Consider the representation 7 of Gy in
the tensor product (C2)®V by permutations of factors. Then the operator
L = 7(Ly) is related to the Hamiltonian of the XXX Heisenberg model on
the periodic one-dimensional lattice with N sites (see, e.g., [2, 4]) by the
formula H = %(2L — N), where J > 0 corresponds to the ferromagnetic
case, and J < 0 to the antiferromagnetic one.

See the first part [5] for a discussion of motivation, background, nota-
tion, etc. In this note, we show that the ground state of the XXX antifer-
romagnet, i.e., the eigenvector of L with the greatest eigenvalue, lies in the
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irreducible representation corresponding to the Young diagram with the
greatest possible second row (Theorem 1); show that the limiting density of
eigenvalues of the normalized Coxeter Laplacian in the antiferromagnetic
mode is a §-measure (Propositions 1 and 2); show that the normalized Cox-
eter Laplacian has scalar weak limits in several natural representations of
the infinite symmetric group (Propositions 3, 4, and 5), the correspond-
ing constants being equal to 1 for the irreducible “two-block” induced
representation, % for the factor representation with Thoma parameters
a=(%,1),8 =0, and 2 for the discrete elementary representation with
1 3 5

2 4 6
algebras (Sec. 3.1); show that a family of operators essentially coinciding
with the Fourier transform of the Coxeter Laplacian in this continual limit
yields a representation of the Witt algebra (Sec. 3.2).

Most problems considered in this note were posed by and discussed
with A. M. Vershik within our joint project aimed to combine the known
results on the representation theory of finite and infinite symmetric groups
and a circle of results related to the quantum inverse scattering method
and Bethe ansatz. The author is also grateful to P. P. Kulish for fruitful
discussions.

the tableau tg = ( ; consider a continual limit of the Bethe

§2. ANTIFERROMAGNETIC MODE

In [5], we considered the asymptotic behavior of the periodic Coxeter
Laplacian in the ferromagnetic mode, which corresponds to considering it
in the representations g, of Gy induced from the identity representations
of the Young subgroups &, x &y _, when r is fixed and N — co. Now we
are interested in another asymptotic mode, namely, assuming for simplicity
that N = 2n is even (the case of odd N can be treated in a similar way),
we consider the operator Ly in the representation g%, of G, induced from
the identity representation of &,, x &, as n — oo and in the irreducible
representation m,, with diagram gy = (n,n). This mode corresponds to
considering the antiferromagnetic XXX chain. In particular, the ground
state of this model corresponds to the eigenvector of Ly in o} with the
greatest eigenvalue.

2.1. The ground state.

Theorem 1. The ground state of the antiferromagnetic XXX chain lies
in the irreducible representation 7., of Gn with diagram pnx = (n,n).
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Let T be the image in the representation 7 of the periodic shift in Gy,
i.e., the one-cycle permutation Ty = (12...N). Recall that it commutes
with the Hamiltonian H and the Laplacian L.

Lemma 1. The ground state lies in the eigenspace of T corresponding to
the eigenvalue o = 1 for n even and a = —1 for n odd.

Proof. The induced representation g%, can be realized in the linear space
with basis (ey) parametrized by n-tuples I C {1,...,2n}, |I| = n. Consider
the graph G = (V, E) whose vertices are exactly such n-tuples I and two
vertices I; and I, are joined by an edge if and only if the tuples I; and I, are
obtained from each other by changing one element by 1 (mod2n). Then
the periodic Coxeter Laplacian is exactly the graph-theoretic Laplacian
of GG. Thus the largest eigenvalue A of L can be found by the well-known
formula

\ = max Zh~12 (xn, — 3312)27 (1)
@ Yrev(@r)?
where I} ~ I, means that I; and I, are joined by an edge and the maximum
is taken over all nonzero vectors (zy)rey orthogonal to the subspaces of
constant vectors.

Now observe that the graph G is obviously bipartite: V' is the disjoint
union of V, and V,, where V, (respectively, V;) consists of n-tuples I such
that the sum of its elements is even (respectively, odd), and each edge joins
a vertex from V., and a vertex from V. Let 2 be a unit largest eigenvector
of L, which is simultaneously an eigenvector of T' with eigenvalue a. We
want to prove that o = 1 if n is even and a = —1 if n is odd. But observe
that if we replace xy by |z| for I € V, and by —|x;| for I € V,, then the
norm of the vector will not change and the sum in the numerator of (1)
will not decrease. It easily follows that for a largest eigenvector we have
zy > 0for I € V. and z;y <0 for z € V, (or vice versa). Now let n be even.
Then the orbits of 7" are contained in V, or V,, which implies that o = 1.
If n is odd, in a similar way we obtain that a = —1. O

Proof of the theorem. Since p}, = ®F_mn—k,,x (Where mn_ 1 is the
irreducible representation of &y corresponding to the two-row Young dia-
gram (N —k, k)), and for the representation pgfl induced from the identity
representation of &,,11 X &,,_1 we have pgfl = EBZ;SWN,IM, it suffices to
show that the largest eigenvector of L in the space of p}, does not lie in
the subspace of prl. But this follows from the lemma. Indeed, if, say, n is
even, then the largest eigenvector of L in p} lies in the o = 1 eigenspace
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of the shift 7', but exactly the same argument as in the proof of the lemma
shows that the largest eigenvector of L in p’]t,_l must lie in the a = —1
eigenspace of T'. O

2.2. The limiting density of eigenvalues.

Proposition 1. The limiting distribution of the eigenvalues of the opera-
tor &L in the representation 7, is the 6-measure at 1/2.

Proof. In the proof of this proposition we use the following result. Denote
Ly =Ne—Ly=(1,2)+(2,3)+...4+ (N —1,N) + (N,1). Let 7 be a
representation of the symmetric group &y (and its group algebra), x be
its character, and M = dim7 be its dimension. Let Ai,..., Ay be all
eigenvalues of Ly in the representation 7. It follows from the results of [1]
that for every positive integer k,

Z >‘k Z Z 0]1 U]k (2)

J1=1 Jr=1
Now let m = 7, . Then

1L (X Xun (05105,
L Aj N \YJ1- Jk
MZ<N> N’c Z Z dlmXuN '
Jj=1 Jji=1 Je=1
It is not difficult to see that the leading term of the last expression is

Xun (UkrN)
dim X,y

where oy n is a permutation with cycle type (2, 1V=2%). Now it follows

from the asymptotic theory of characters of the symmetric group (see
[8]) that this limit equals the value of the character xo, of the infinite
symmetric group S, with Thoma parameters o = (1/2,1/2), 8 =0 at a
permutation of cycle type 2¥, and the same theory says that this value is
equal to (3)*. Thus we see that

Mo/ \* k
1 e 1
P (N) - (3)-
Jj=1
which implies that the limiting distribution of the eigenvalues £ \; of =Ly

is 01 /2, so that the limiting distribution of the eigenvalues %/\j =1- %)\j
is also 4y /». O
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Proposition 2. The limiting distribution of the eigenvalues of the op-

erator %LN in the induced representation Qx/2 is also the §-measure at
1/2.
Proof. An easy corollary of the previous proposition. (I

2.3. Limiting operators in various representations. The inductive
limit of the representations g%/ ? as N — oo is the irreducible “two-block”
induced representation p°°>° of the infinite symmetric group S of type
oc? (see [6]), namely, the representation of G, induced from the identity

representation of the Young subgroup &y 35 .3 X G2456,..}-

Proposition 3. The weak limit of the operators %LN in the representa-

/2

tions g% as N — oo is identity operator E in the space of 9°°>°,

00,00

Proof. In this case, o can be realized in the space L?(Il) where II
is the set of 0 — 1 sequences tail-equivalent to & = 010101.... Let H,,
be the subspace of functions supported by sequences m-equivalent to ¢
(i.e., coinciding with ¢ starting from the mth position). Then U, H,,
is dense in L?(II). But for f,g € H,,, obviously, ((k,k + 1)f,g) = 0 for
k > m. Hence lim(%f/Nf, g) = 0, since only finitely many terms survive.
The proposition follows. O

We can also consider the primary representation dim uy - 7, . Obvi-
ously, the spectrum of the operator Ly in this representation is just a
multiple of its spectrum in the irreducible representation m,,. But the
limit of such primary representations is the factor representation p 1,0)

);

1
2
1
2

(I

of the infinite symmetric group G, with Thoma parameters a = (

B =0.

Proposition 4. The weak limit of the operators %LN in the representa-
tions dim un - 7, as N — oo is the scalar operator %E’ in the space of
the factor representation P(L .30

’

Proof. Let us consider the “dynamic” realization of the factor represen-

tation (1, %;0) (see [9]). Consider the space of sequences X =[]~ {0, 1}

with the (%, %)—Bernoulli measure m. The infinite symmetric group G,
acts on X by substitutions of coordinates, and this action preserves the
measure m. Define an equivalence relation ~ on X as follows: z ~ y if

there exists o € G such that y = oz. Let X = {(z,y) : =,y € X,z ~y}
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be the principal groupoid with diagonal X constructed from this equiva-
lence relation. Consider the measure m on the groupoid X induced by the
measure m on the diagonal X, and set K = L?(X, m). Thus the scalar
product in K is given by (hy,hz) = [, > gz 111 (T ,y)ha(z,y)dm(z). The
infinite symmetric group acts in the space K according to the formula
(Vyh)(z,y) = h(g~'z,y). Let ® € K be the characteristic function of the
diagonal: ®(z,y) = 1 if = y and 0 otherwise. The restriction of the
representation V' to the cyclic hull £y of the vector @ is just the factor
representation p1 1.q).

Now let H,, C Ko be the set of functions supported by pairs (z,y)
coinciding from the mth position. Again, UX_, H,, is dense in Ky. But for
f,9 € Hy, and k > m we have ((k,k +1)f,9) = 3(f,g). The proposition
follows. O

Remark. It is easy to see that the weak limit of the operators ]{,L N in the
“two-row” factor representation with Thoma parameters a = (p,1-p),
B = 0 is the scalar operator with constant 1 — p? — (1 — p)?2.

It is interesting to look at this result using the “tableaux realization” of
the factor representation, which acts in the space L*(B, M'/?1/2), where B
is the groupoid of infinite Young bitableaux and M*/2:1/2 is the measure on
this groupoid induced by the central measure M'/21/2 on its diagonal (the
space 7 of infinite Young tableaux) associated with the Thoma parameters
a = (%,4), B = 0. The action of the Coxeter generators in this model is
given by Young’s orthogonal form, and it is not very difficult to see that
the result of the previous proposition in this setting is equivalent to the

following assertion: for every n = 1,2,.. ., for every tableau s of length n,
1" 1

lim E| — t], = =- 3

N (N k:ZnH e (t) ‘H” S) 2’ )

where r(t) is the kth axial distance of the tableau ¢ (equal to cgx41 () —c (t)
where ¢; is the content of the [th cell in ¢) and the conditional expectation
is taken with respect to the central measure M'/21/2. The direct proof
of this assertion proceeds through symmetric functions approach, using
the expression for the cylinder distributions of M'/%1/2 in terms of Schur
functions and Pieri-type identities.

In a similar way, if, instead of the factor representation, we consider
the concomitant representation corresponding to the Thoma parameters
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a = (3,%), B =0 (see [7]), then the limit of the operators &Ly will be
the scalar operator with the (obviously, smaller) constant

) 1 n+N 1 1 B
1—££nmE<N 2 <rk(t)+ 1‘@) ‘“1”—8)

k=n+1

Another representation it is natural to consider is the elementary rep-
resentation equal to the inductive limit of the irreducible representations

Ty -

Proposition 5. The weak limit of the operators %LN in the represen-
tations m,, as N — oo is the scalar operator %E in the space of the
corresponding elementary representation.

Proof. The elementary representation acts in the discrete I space spanned

by the tableaux tail-equivalent to the “main” tableau ty = ; i 2 . ) .

Assume for simplicity that N = 2n is even. As follows from Young’s or-
thogonal form, sgtg = —to for odd k, and sity = %to - @t’g for even k,
where tf is the tableau obtained from ¢y by swapping k and k+ 1. It easily
follows that

li

. 1 5
Nglw(NLNt07t) = Z(Stot.
It is also obvious that the same formula holds for every tableau s tail-

equivalent to tg, and the proposition follows. (I

§3. CONTINUAL LIMITS

3.1. Continual limit of the Bethe algebras in the ferromagnetic
case. The Bethe algebra Tn is a commutative subalgebra of the group
algebra C[S ] generated by operators naturally arising in the quantum
inverse scattering method for the XXX Heisenberg model (for more details,
see [5]). A system of generators of this algebra is

RNJGZ Z Sip e Sigs kZO,].,...,N—].,
11 <. .. <lg

where the inequalities are understood with respect to the cyclic order
(which does not lead to any ambiguity, since nonneighbor Coxeter gen-
erators commute).
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Now, following [3], consider a new system of generators I, = I ,EN),
k =0,...,N — 2, of the Bethe algebra T . They are defined as follows.
Consider the generating function

N-—-2 e’}
log (1 + ) u’“RMk) => ufI. (4)
k=1

k=1

This formula defines IISN) for £ > 1. Also, put IéN) = Ty (the periodic
shift). Then, as shown in [3], IéN) , Il(N), cen I](VAL)Q is a system of generators
of Tn enjoying the following nice property: for each k¥ = 1,2,... there
exists an element 0, € C[&y,41] such that

N—-1
M =316 Ty forall N, (5)
=0

that is, I IEN) for an arbitrary N is obtained as the sum of all elements of
the orbit of some fixed element of Si4q (which does not depend on N)
under the action of the periodic shift by conjugation.

In particular, it is not difficult to see that for &k = 1 we have 6, = (12)
and [1(N) =1+ ...+ sy is essentially the periodic Coxeter Laplacian Ly
(more exactly, Il(N) = Ne — Ly).

Now consider first the case of the representation p' induced from the
identity representation of &; x Gny_;. As long as we are interested only
in the representation of the Bethe algebra ¥, which is a commutative
algebra containing the periodic shift 7, the space of this representation
can be regarded as the space of functions f : {1/N,2/N,...,N/N} — C
on the discrete circle Cy = {1/N,2/N,...,N/N}. Denote by S = Sy the
(periodic) shift on this space, i.e., (Sf)(z) = f(z+1/N), with N/N +1 =
1/N.

Lemma 2. In this representation, p' ([éN)) =Sy and
1

1I(N)
P(k) A

[(CD*'N + (Sy — DF = (1= SN,
k=1,..,N—2.

(6)
Proof. It is not difficult to compute that

k
N -1 N-2-1
1 _ —1 [ _ _
p(RN,k)—(k_l)S +§ < e )S, k=1,...,N—-2. (7)

=0
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k—1
=0 k=
Now
N-2 N—2-1
N-—-2-1 N-—-2-1 .
k _ m+l 1l N—2—1
(V2 = e (YR
k=l m=0
so that
N-—2

Ga(u) =Y u'(1+u)N '8
=l
Note that since we are interested only in the first N —2 terms of log(1+
G(u)), we can add to G(u) arbitrary terms of degree k > N — 2. Thus let

~ i . . 1
Gau) =Y w1+ )N 278" = (L4 u)N P —

=0 1+u

and

G (u) = S~ ,i uk @_‘11) —u(l+w)N

Let G'(u) = Gy (u) + G2 (u). Now it is a simple calculation to check that

log G(u) = log <Z ukfik> )
k=0

where A}, are given by the right-hand side of (6) for k =0,1,.. .. O
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It is convenient to get rid of the identity terms and consider the gener-
ators
N N (-1)*N
AV =) - ==

k [(Sy =1)F = (1= SN,

k=1,..,N—2.

el

In particular, AgN) = —p*(Ln). Put also A(()N) =Sv—1L
Now let N — o0, so that the discrete circle turns into the ordinary
continual circle.

Lemma 3. As N — oo,
N’“HA;CN)f(a:) — f(k+1)(a:) for every k =0,1,..., (8)

that is, the limit of the (scaled) generators A;N) in this representation of
the Bethe algebra is the operator of taking the (k + 1)th derivative.

Proof. Follows from the above formulas for the generators and the well-
known theorem from the theory of finite differences that

Sy (%) P =0

i=1 J
for any polynomial P of degree less than n. O

Thus we see that the continual limit of the Bethe algebra in the repre-
sentation p' is the algebra of difference operators with constant coefficients
on the circle. Of course, the image of the Bethe algebra in the representa-
tion p! is generated by only one operator p! (T ), and the limit algebra is
generated by the operator of taking the first derivative.

Now consider the representation p? induced from the identity represen-
tation of G2 X G _o. In this case, the space of the representation can be
realized as {f : Cn x Cny — C| f(z,y) = f(y,x), f(x,z) = 0}. In view of
(5), the image of I ,EN) in this representation involves the terms T}VGkTJQZ,
each involving at most k + 1 neighboring elements. It follows that if the
distance between i and j (on the circle) is greater than k£ + 1, then

P FGIN,GIN) = ALY FG/N,GINY + AL /NN,
where f,EN) = I,EN) — # Ag) acts as AECN) on the [th argument of f.
On the other hand, if k is fixed and N — oo, and we fix ¢ and y, then
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for sufficiently large N we have |z — y| > %L so that this condition is
satisfied, which implies that

~ ak+1 5k+1
N2 fay) — Ot 4 0]

8$k+1 W, k:(),]., (9)

Obviously, analogous reasoning works for the representation p™ with
arbitrary m = 1,2, ..., so that we obtain the following result.

Proposition 6. As N — oo,

" m ok+1
Nk"'lpm([,gN))f(xl,...,xm)%Zax—]ﬁ{, k=0,1,.... (10)

j=1 J
In particular, in this limit, the periodic Coxeter Laplacian Ly turns
into the ordinary Laplacian:

. . ~ 92
N* (L) f = N*p" (<L) f = = (Y5 | f-
j=1 "1

3.2. A representation of the Witt algebra.

Proposition 7. In the continual limit of the representation p', the follow-
ing limits exist:

N
. . 2mijn
—A}gnooNE je~N (e—s;)=W,, nez;

j=1

the operators W,, form a representation of the Witt algebra, i.e., satisfy
the commutation relations

[Wn; Wm] = (m — H)Wm+n.

Proof. Let us first consider the case [ = 1. Denote

N
. 2mijn
VN = —NpH () jeT v (e —s)).

n
j=1
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Then, realizing p! in the space of functions f: {1/N,2/N,...,N/N} — C
on the discrete circle Cy = {1/N,2/N,...,N/N} (as in the previous sec-
tion), we have

V) == (ke (1) - 1)

#E- e (1) - 1) ).

Now if k/N — 8, then the right-hand side can be written as
-N (keZ’””g <f(0) - fo+ %))

# (k= nemme W (1) - 16 1)) ).

and elementary calculus shows that it tends to

ino O
_ 2ming = .

these are the standard generators of the Witt algebra.

For [ > 1, arguing as in the previous section, we see that in the NV — oo
limit, the operators under consideration are the sums of the operators W,
acting separately on each variable, so that we obtain the /th tensor power
of the standard representation of the Witt algebra. (]
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