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Abstract. This paper gives a description of stationary random partitions of positive integers
(equivalently, stationary coherent sequences of random permutations) under the action of the infi-
nite symmetric group. Equivalently, all stationary coherent sequences of random permutations are
described. This result gives a new characterization of the Poisson–Dirichlet distribution PD(1) with
the unit parameter, which turns out to be the unique invariant distribution for a family of Markovian
operators on the infinite-dimensional simplex. This result also provides a new characterization of the
Haar measure on the projective limit of finite symmetric groups.

Key words. random partitions, random permutations, stationary distribution, Markovian op-
erator, Poisson–Dirichlet distribution

PII. S0040585X97977331

1. The setting of the problem and the formulation of the results. The
classical de Finetti theorem describes all exchangeable sequences of scalar random
variables, i.e., random sequences whose joint distributions are invariant under finite
permutations. According to this theorem any random exchangeable sequence (or a
class of equivalent random variables in the terminology of [4]) can be represented as a
mixture of sequences of independent identically distributed (i.i.d.) random variables.
There are a number of different proofs of this important result; we mention only
papers [1], [4], [9] out of many. It is convenient to formulate the de Finetti theorem
as follows: Any ergodic measure defined on the infinite product

∏∞
1 [0, 1] which is

invariant under the group of finite permutations is a Bernoulli distribution.
The same group of finite permutations of positive integers, i.e., the infinite sym-

metric group S∞, acts in the natural fashion on the space of all partitions Π∞ of the
set of all positive integers N. Namely, the image of the partition ξ ∈ Π∞ under the
permutation g ∈ S∞ is the partition gξ such that elements i and j belong to the same
component of the partition gξ if and only if elements g−1i and g−1j belong to the
same component of the partition ξ. Kingman [13], (see also [12]) posed and solved
the question for exchangeable random partitions of positive integers similar to that
for random exchangeable sequences.

Endow the space Π∞ with the topology of the projective limit of spaces of par-
titions of finite sets [n] = {1, . . . , n}. Let M(Π∞) denote the collection of all Borel
distributions on the space Π∞. The distribution η ∈ M(Π∞) is called exchangeable
and the random partition ξ ∈ Π∞ with distribution η is called exchangeable if η is
invariant under the described action of finite permutations.

According to Kingman’s result [13] any ergodic exchangeable partition of positive
integers can be parametrized by the elements of the simplex Σ = {x = (x1, x2, . . .):
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x1 ! x2 ! · · · ! 0,
∑∞

i=1 xi " 1} and can be constructed as follows. For x ∈ Σ
consider the distribution α over the interval [0, 1] which has a countable number of
different atoms with the weights x1, x2, . . . and an absolutely continuous component
with the weight 1−x1−x2−· · · . Let Z1, Z2, . . . be a sequence of i.i.d. random variables
with common distribution α. This sequence defines a random equivalence relation on
N (leading to a random partition ξx of N into equivalence classes). Namely, i ∼ j
if and only if Zi = Zj . By construction, this random partition ξx is exchangeable.
Denote its distribution by P

x
.

Theorem 1 (see [13]). Let ξ be an exchangeable random partition of positive
integers. Denote by ξn its restriction onto the set [n] ⊂ N and let L1(ξn) ! L2(ξn) !
· · · be the sizes of components of the partition ξn written in nonincreasing order. Then
the limits

Xi(ξ) = lim
n→∞

Li(ξn)

n
, i = 1, 2, . . . ,

exist with probability one. For any x ∈ Σ the conditional distribution of ξ under
the condition (X1, X2, . . .) = x is P

x
. Thus, the distribution µ of an exchangeable

sequence ξ has the form

µ =

∫

Σ
P

x
dν(x),

where ν is the distribution of the vector X = (X1, X2, . . .) on the simplex Σ.
Exchangeable random partitions are used in many branches of mathematics and

its applications such as combinatorics, the theory of symmetric groups, and population
genetics. The most important is Ewens’ random partition, closely related to Haar
measures over symmetric groups and the Poisson–Dirichlet distribution on the simplex
(see Example 1). This partition admits many additional symmetries. The goal of this
paper is to derive a new characterization of this random partition.

To relate this problem to the theory of representations of the infinite symmetric
group it is convenient to reformulate Theorem 1 as follows: Let Sn be the symmetric
group of degree n, i.e., the group of all permutations of the set [n]. The canonical
projection πn: Sn+1 → Sn puts into correspondence to a permutation w ∈ Sn+1 the
permutation of the set [n] obtained by deletion of the element n+ 1 from the cycle of
permutation w which contains this element.

The sequence (w1, w2, . . .), where wi ∈ Si, of permutations is called coherent if
πnwn+1 = wn for all n = 1, 2, . . . . Denote by S∞ the space of all coherent sequences
of permutations endowed with the topology of the projective limit of finite groups Sn.
This space is introduced in [11] and is called the space of virtual permutations. Let
M(S∞) denote the collection of all Borel probability distributions on S∞.

An action of the group G = S∞ × S∞ is defined on the space S∞ as follows. Let
ω = (w1, w2, . . .) be a coherent sequence of permutations and fix (g1, g2) ∈ Sn × Sn.
Put

(
(g1, g2)ω

)
i
=

{
g−1
1 wig2 if i ! n;

πi(g
−1
1 wng2) if i < n.

(1)

Denote by K = {(h, h), h ∈ S∞} the diagonal subgroup of the group G which
is isomorphic to S∞. The distribution µ ∈ M(S∞) is called central if it is invariant
under the action of the diagonal subgroup K.
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Each coherent sequence of permutations ω ∈ S∞ defines a partition ξ(ω) of the set
of all positive integers. Namely, the elements i and j belong to the same component
of ξ(ω) if i and j belong to the same cycle of permutation wn for sufficiently large n.
Denote by Φ: S∞ → Π∞ the mapping ω → ξ(ω). The action of the group K, which
is isomorphic to S∞, on the space S∞ agrees with that of the group S∞ on the
space Π∞, i.e., gΦ(ω) = Φ(g−1ωg). For this reason the mapping Φ transforms central
distributions on S∞ into exchangeable distributions on Π∞. This mapping is one-to-
one since a central measure on the symmetric group Sn is completely determined by
the distribution of its cycle partition.

Let P x be the central distribution on the space S∞ which corresponds to an
ergodic distribution P

x
on the space Π∞. Kingman’s theorem can be formulated in

terms of random permutations as follows.
Theorem 1′. Let ω = (w1, w2, . . .) be a central sequence of random permutations.

Denote by l1(wn) ! l2(wn) ! · · · the sizes of cycles of the permutation wn ∈ Sn written
in nonincreasing order. Then the limits

Xi(ω) = lim
n→∞

li(wn)

n
, i = 1, 2, . . . ,(2)

exist with probability one. For any x ∈ Σ the conditional distribution of ω given
(X1, X2, . . .) = x is P x. Thus, the distribution µ of the central sequence ω has the
form

µ =

∫

Σ
P x dν(x),(3)

where ν is the distribution of the vector X = (X1, X2, . . .) on the simplex Σ.
The limit Xi(ω) is called the normalized length of the ith cycle of the sequence ω.

The central distribution µ is called saturated if it is supported by the set of sequences
whose normalized cycles lengths add up to one. Denote by φ: S∞ → Σ the mapping
sending ω → (X1(ω), X2(ω), . . .).

Example 1. Let w1 = e ∈ S1 be the identical permutation. If wn has been
defined, put wn+1 = wn(n+1, k) with probability 1/(n+1) for k = 1, . . . , n+1 (here
(i, j) denotes the transposition which interchanges elements i and j). The obtained
random sequence ω = (w1, w2, . . .) is coherent, central, and the permutation wn has
the uniform distribution on the symmetric group Sn. The distribution of this se-
quence ω ∈ S∞ is called the Haar measure on the space of virtual permutations. The
corresponding random exchangeable partition of positive integers is called the Ewens
random partition. The distribution of the normalized cycles lengths of the sequence
with the Haar measure is the known Poisson–Dirichlet distribution PD(1) [14]. (An in-
dependent proof is given in [8].) Thus the Haar measure admits the representation (3)
with ν = PD(1). In particular, the Haar measure is not ergodic. The distribution
PD(1) is supported by the sequences with the unit sum, so that the Haar measure is
saturated.

The Haar measure on S∞ is the only distribution which is invariant under the right
(left) action of the group S∞. Indeed, for any n ∈ N the finite-dimensional projection
of an invariant measure on Sn is invariant under all shifts, and therefore it must be
the Haar measure on Sn. It turns out that the condition of S∞-invariance is too
strong, and the Haar measure on S∞ is the only distribution which satisfies a weaker
condition of stationarity (in the class of all saturated distributions). We describe
now this more general setting of the problem suggested by A. M. Vershik. Note that
the image Rgµ of a central distribution µ on S∞, under the right multiplication Rg
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by a permutation g ∈ S∞, is not a central measure. However, one can determine
its projection PRgµ onto the space of all central distributions (see section 3.) The
following problem appears to be a natural one: Describe all central distributions µ such
that for any finite permutation g ∈ S∞ the measure µ is preserved by the composition
of the shift Rg and the projection P , i.e., for all g ∈ S∞, PRgµ = µ. We will call
such distributions stationary. In other words, stationary distributions are central and
invariant under a family of Markovian operators.

The main result of this paper is the description of all stationary central distribu-
tions.

Theorem 3. Ergodic central stationary distributions on the space S∞ are pa-
rametrized by the elements of the unit interval [0, 1]. For an ergodic measure M t

corresponding to t ∈ [0, 1] the sum of the normalized cycle lengths is equal to t with
probability one, and the finite-dimensional distributions of this measure have the form

M t
n(h) =

s∑

k=0

1

(n− k)!

(
n

k

)
tn−k(1 − t)k,

where s denotes the number of fixed points of permutation h ∈ Sn.
It follows that in the class of all saturated distributions the Haar measure is the

unique stationary distribution.
Without going into detail, we mention that the shift Rg can be projected onto

the space Π∞ via the mapping Φ. The obtained projection Rg is not a one-to-one
mapping but is a Markovian operator (or a polymorphism in the terminology of [2]).
The distribution µ ∈ M(Π∞) is called stationary if for any finite permutation g the
measure µ is preserved by the composition of the shift Rg and the projection onto the
space M(Π∞) of exchangeable distributions. Theorem 3 reformulated in terms of all
exchangeable partitions gives the description of all stationary distributions on Π∞.
We will not give here any exact formulations.

An equivalent setting of the problem is to describe the distributions on the sim-
plex Σ which are invariant under a family of Markovian operators. Namely, consider
the operator T̃g which transforms an element x, x ∈ Σ, into φ(ωxg). Here ωx is the
central sequence of random permutations with the distribution P x.

Theorem 2. Ergodic measures on the simplex Σ for the family of operators
{T̃g}g∈S∞ are parametrized by the points of the unit interval [0, 1]. The ergodic dis-
tribution corresponding to the point t ∈ [0, 1] is supported by the simplex Σt of all
monotone sequences with the sum equal to t and coincides with the image of the
Poisson–Dirichlet distribution PD(1) under the homothety action x → tx.

In particular, the Poisson–Dirichlet distribution PD(1) is the only invariant mea-
sure on the simplex of all monotone sequences with the unit sum. Thus, a new
characterization of the Poisson–Dirichlet distribution PD(1) is obtained.

The paper is organized as follows. Section 2 contains necessary background on
the space of virtual permutations and central measures on this space. In section 3
different formulations of the main result are offered. The proof of the main theorem
is given in three steps. The first step (Lemmas 1, 2) consists in applying the ergodic
method [1] to reduce the original problem to a collection of conditions formulated in
terms of distributions on finite symmetric groups. Section 5 contains the proof of
the principal particular case of Theorem 3. Namely, the uniqueness of the stationary
distribution in the class of saturated measures is established. The main idea of the
proof here is considering the shift by a random permutation g ∈ Sn. This additional
randomization provides with good uniformity properties of the obtained sequence of
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permutations, which allows showing that its distribution is arbitrarily close to the
Haar measure. Finally, in section 6 Theorem 3 is reduced to this particular case.

2. The space of virtual permutations. In this section we give all necessary
background on the space of virtual permutations and central measures on this space.

Definition. For a given subset J ⊂ [n] and a given permutation w ∈ Sn denote
by πn,Jw the permutation of the set J which is obtained by deletion from the cycles
of permutation w all elements not belonging to the set J . The permutation πn,Jw is
called the induced permutation of w on the set J .

The induced permutation on the set J = [m] will be denoted by πn,mw. The
index n, if determined by the context, will be usually omitted. For example, if
w = (6351)(42)(7), then π4 w = (31)(42).

Definition. The space of virtual permutations S∞ is defined as the projec-
tive limit S∞ = lim←− Sn of finite symmetric groups Sn with regard to the canonical

projections πn+1,n: Sn+1 → Sn.
Thus, the virtual permutation is a sequence ω = (w1, w2, . . .) ∈ S1 ×S2 × · · · such

that wn is the induced permutation of wn+1 for all n ∈ N.
Note that the projection πn commutes with the shifts by elements of the group Sn.

In other terms, for any N > n, one has πn(g−1
1 hg2) = g−1

1 πn(h)g2 for all h ∈ SN and
g1, g2 ∈ Sn. Thus, the action of the group G = S∞ × S∞ on the space of virtual
permutations S∞ is well defined by (1).

The sequence {µn} of distributions on finite symmetric groups Sn is called co-
herent if it agrees with the action of the projections, πn+1,n, i.e., if for any n ∈ N,
πn+1,nµn+1 = µn. Any coherent sequence of distributions defines a Borel measure
µ = lim←− µn on the space of virtual permutations S∞, and every Borel measure on S∞

admits such a representation. Further, all measures under consideration are assumed
to be Borel probability measures. If all distributions µn are central, i.e., are invariant
under inner automorphisms of Sn, then the limiting distribution µ is invariant under
the action of the diagonal subgroup K = {(g1, g2) ∈ G, g1 = g2}. A distribution on
the space of virtual permutations S∞ is called central if it is invariant under the action
of the diagonal subgroup K. These measures correspond to the central measures of
the branching graph of conjugacy classes of symmetric groups; see [3], [5]. We denote
by MK(S∞) the set of all central measures.

Theorem 1′ gives a complete description of all central measures on the space
of virtual permutations. In particular, this result implies that for any measure ν
on the simplex Σ there exists a unique central measure µ on S∞, such that ν is
its distribution of the vector of normalized cycle lengths. Let M(Σ) denote the set
of all Borel distributions on the simplex Σ. Let ρ be the operator which puts in
correspondence to the distribution ν ∈ M(Σ) the central measure µ =

∫
P x dν(x).

Example 2. The simplest description of the Poisson–Dirichlet distribution PD(1),
which is the distribution of the normalized cycle lengths of virtual permutations with
regard to the Haar measure (see Example 1), can be derived from the following model:
Let U1, U2, . . . be a sequence of i.i.d. random variables with the uniform distribution
on the interval [0, 1]. Put Vn = Un

∏n−1
i=1 (1 − Ui). The Poisson–Dirichlet measure

PD(1) represents the distribution of order statistics V(1) ! V(1) ! · · · of the sequence
V1, V2, . . . .

Now we describe a modification of Kingman’s construction for ergodic exchange-
able partitions, which allows the construction of a random virtual permutation with
the distribution P x. Put x0 = 1 − x1 − x2 − · · · . We distribute stepwise elements
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1, 2, . . . into cycles and assign to these cycles random labels, so that at each stage a
new element with probability x0 will form a special cycle of length 1, which has no
label and to which addition of any new elements is forbidden. Thus,

(1) at the first stage element 1 with probability x0 forms a special cycle and with
probability xj (j = 1, 2, . . .) forms a regular cycle of length 1 with the label j;

(2) if the elements 1, . . . ,m have been allocated so that there are several special cy-
cles and k regular cycles with labels i1, . . . , ik, then the element m+1 is allocated into
one of the possible positions in the jth regular cycle with probability xij , j = 1, . . . , k.
With probability xi, i ̸= i1, . . . , ik, it forms a new regular cycle of length 1 having the
label i, and with probability x0 it forms a new special cycle.

After the nth step of this procedure one obtains a random permutation wn ∈ Sn.
According to the construction the sequence wn is coherent. It is easy to see that its
distribution is given by P x. In particular, when x = (0, 0, . . .), the distribution P 0 is
supported by the sequence of identity permutations.

Example 3. The projection of an ergodic measure P x onto the group S2 is given
by the formula

P x
2

(
(1) (2)

)
= 2

∑

1!i<j<∞

xixj + x2
0 + 2x0 (1 − x0 ), P x

2 ((12)) =
∞∑

i=1

x2
i .

Notice that the sum of normalized cycle lengths of a virtual permutation may
not be equal to one. The simplest illustration of this fact is provided by the virtual
permutation e = (e1, e2, . . .) with ei ∈ Si being identity permutations. Clearly the
lengths of all cycles are equal to zero.

Definition. A central distribution µ on the space of virtual permutations is called
saturated if the sum of normalized cycle lengths equals one almost surely with regard
to µ. A coherent family {µn} of central distributions on symmetric groups is called
saturated if the limiting distribution µ = lim←− µn on the space of virtual permutations

is saturated.
The problem with general central distributions on the space of virtual permuta-

tions in many cases can be reduced to that with saturated distributions.
More precisely, let t ∈ [0, 1]. Denote by Σt = {x ∈ Σ:

∑∞
i=1 xi = t} the simplex

of monotone sequences with the sum t. When t ̸= 0, the standard simplex Σ1 is
identified with Σt via homothety Γt: x → xt. Denote by Γ0 the constant mapping
of Σ1 into Σ0 = {0}. Let a distribution ν be given on the simplex Σ and denote
by τ the image of the measure ν under the mapping x → x1 + x2 + · · · and by νt

the conditional distribution of ν on the simplex Σt, so that ν =
∫ 1
0 νt dτ(t). Let

νt = Γ−1
t νt. One can show that the finite-dimensional distributions of the central

measure µ which corresponds to ν are given by the formula

µn(h) =

∫ 1

0

s∑

k=0

(
n

k

)
tn−k(1 − t)kµt

n−k(h
k) dτ(t),(4)

where µt =
∫
Σ1

P y νt(y) is the saturated central distribution corresponding to νt, s

denotes the number of fixed points of permutation h ∈ Sn, and hk is the permutation
obtained from h by deletion of k fixed points.

Remark. The space S∞ of virtual permutations has been introduced in [11].
This paper gives a family of quasi-invariant distributions on the space S∞ under the
described action of the group G = S∞×S∞ and studies the related family of unitary
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representations of the infinite symmetric group. The subsequent papers [6], [7], and [8]
deal with different properties of the space of virtual permutations.

3. The main theorem. The infinite symmetric group S∞ acts on the space of
virtual permutations by two-sided shifts (1). Denote as Rg: S∞ → S∞ the right shift
by a permutation g ∈ S∞.

It is not difficult to show that for the image µg = Rgµ of a central distribution µ
the normalized cycle lengths (2) exist under almost all with respect to µg virtual
permutations. Therefore one can define the projection of the shift Rg onto the sim-
plex Σ which must be a Markovian operator. This operator transforms x ∈ Σ into
the element φ(ωxg), where ωx is a random virtual permutation with distribution P x.
Thus the corresponding operator T̃g completes the following commutative diagram:

MK(S∞)
Rg−→ M(S∞)

ρ ↑ φ ↓

M(Σ)
T̃g−→ M(Σ)

It is easy to see that the operator T̃g depends only on the conjugacy class of the
permutation g, i.e., only on the cycle structure of g.

Example 4. Obviously T̃e is the identity operator. The simplest nontrivial exam-
ple is the operator corresponding to a transposition. The construction of the ergodic
measure P x implies that the restriction T(1,2) of the operator T̃(1,2) onto the simplex
Σ1 can be obtained as follows: Let V be the operator which puts the coordinates in
nonincreasing order. Then

T(1,2)x =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V (xi + xj , x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . .), i < j,

with probability 2xixj ;

V (t, xi − t, x1, . . . , xi−1, xi+1, . . .), i = 1, 2, . . . ,

with probability dt, t ∈ [0, xi].

It is clear that if the measure µ is invariant with respect to the shift Rg, then

the distribution ν = φµ is invariant under the operator T̃g. Therefore the Poisson–

Dirichlet distribution PD(1) is T̃g-invariant for any g ∈ S∞.
It is easy to show that for any t ∈ [0, 1] the set Σt = {x ∈ Σ:

∑
xi = t} is

invariant under T̃g. Indeed, a shift by a finite permutation does not change the sum
of normalized cycle lengths of a virtual permutation. It turns out that these sets
are ergodic components, and the ergodic measure supported by Σt coincides with the
image of the Poisson–Dirichlet distribution PD(1) under the homothety Γt: Σ → Σt.

Theorem 2. Ergodic measures on the simplex Σ with respect to the family of
operators {T̃g}g∈S∞ are parametrized by the points of the unit interval [0, 1]. The
ergodic distribution corresponding to the point t ∈ [0, 1] is supported by the simplex Σt

and is equal to PDt(1) = Γt(PD(1)).
Corollary. Any distribution on the simplex Σ which is invariant under the

family of operators {T̃g}, g ∈ S∞, has the form ν =
∫ 1
0 PDt(1) dτ(t), with some Borel

distribution τ on the interval [0, 1].
The main problem admits the following reformulation: Let ν ∈ M(Σ), and

let ρ(T̃gν) denote the central measure corresponding to the distribution T̃gν. Ac-

cording to the definition of the operator T̃g one has T̃gν = φµg, where µ = ρν is
the central measure on S∞, which corresponds to ν, and µg = Rgµ. Therefore,
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ρ(T̃gν) =
∫
Σ P x d(φµg)(x). Thus, the distribution ν is invariant under T̃g if and only

if µ satisfies the condition

µ =

∫

Σ
P x d(φµg)(x).(5)

A central measure µ on the space of virtual permutations is called stationary if
it satisfies (5) for all g ∈ S∞.

The right-hand side of (5) defines the projection Pµg of the measure µg onto the
space MK(S∞) of all central (i.e., K-invariant) measures. Namely, Pµg is the unique
central measure which has the same distribution of normalized cycle lengths as µg.
Notice that the group K, which is isomorphic to S∞, is locally finite. A. M. Vershik [1]
suggested using the following ergodic method to determine the projection P .

Lemma 1. Let η be a distribution on the space of virtual permutations such that
the normalized cycle lengths exist almost surely with regard to η. Then the projection
of the distribution η onto the space of central measures MK(S∞) can be found from
the formula

Pη = lim
N→∞

1

N !

∑

u∈SN

u−1ηu.(6)

Remark. Here and further the weak convergence of distributions is meant.
Proof. Let ηN = (N !)−1

∑
u∈SN

u−1ηu. The space M(S∞) is compact. Thus

one can find a weakly convergent subsequence {ηNk} of the sequence {ηN}. Let η0

be the limit of this subsequence. Since the operation of conjugation does not change
the cycles lengths, one has φ(u−1ηu) = φ(η) for any u ∈ S∞. Thus φ(η0 ) = φ(η).

Let Kn = K ∩ (Sn×Sn) so that K = ∪Kn. Clearly for N ! n, the measure ηN is
invariant under Kn. Therefore for any n ∈ N the measure η0 is invariant under Kn,
i.e., η0 ∈ MK(S∞).

Thus, the measure η0 is central and has the same distribution of the normalized
cycle lengths as η, i.e., η0 = Pη. We have shown that any convergent subsequence of
the sequence {ηN} converges to Pη, which proves (6).

Remark. One can define a stationary measure by the formula

µ = lim
N→∞

1

N !

∑

u∈SN

u−1µgu, g ∈ S∞.(7)

Recall the classical notion of a stationary distribution under a group action for a locally
compact group (cf. [10]). Let G be a locally compact group acting on a measurable
space X, and let κ be a distribution over G. A distribution η on X is called stationary
(with respect to κ ) if, with ηα denoting the image of the measure η under the element
α ∈ G, one has η =

∫
G ηα dκ (α). Formula (7) provides a natural generalization of this

definition for locally finite groups.
According to formula (4), Theorem 2 is tantamount to the following theorem.
Theorem 3. Any stationary probability distribution µ = lim←− µn on the space of

virtual permutations has the form

µn(h) =
s∑

k=0

1

(n− k)!

(
n

k

)∫ 1

0
tn−k(1 − t)k dτ(t),
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with some Borel distribution τ on the interval [0, 1] and s denoting the number of fixed
points of permutation h ∈ Sn.

In the class of all saturated distributions (corresponding to the measure τ con-
centrated at t = 1) the unique stationary distribution is the Haar measure. Thus, the
class of all saturated distributions does not contain noninvariant stationary distribu-
tions.

Remark. As the family {T̃g} does not provide a group action of S∞, it is natural
to pose a question about the description of all distributions which are invariant under
merely one operator T̃(1,2) arising from transpositions. This question is more inter-

esting, as this operator T̃(1,2) has a very simple form (see Example 4). We conjecture

that the set of all invariant distributions for the operator T̃(1,2) is the same as for the

whole family {T̃g}, g ∈ S∞, but this remains an open problem.

4. Reduction to the finite-dimensional conditions. The first part of the
proof of the main theorem consists in reducing our infinite-dimensional problem to
an (infinite) number of conditions which are formulated in terms of finite symmetric
groups.

Lemma 2. Let µ be a central distribution on the space of virtual permutations and
let {µn} be the corresponding coherent family of distributions on symmetric groups Sn.
Then the finite-dimensional projections of the distribution Pµg, g ∈ Sk, can be found
from the formula

(Pµg)n(u) =
∑

w∈Sn+k
πn(w)=u

µn+k(wg
n), u ∈ Sn,

where gn ∈ Sn+k is a permutation such that gn(i) = i for i = 1, . . . , n; π{n+1,···,n+k}g
n

has the same cycle structure as g.
Proof. Let η = Pµg and u ∈ Sn. Then

ηn(u) = lim
N→∞

1

N !

∑

h∈SN

∑

w∈SN
πn(w)=u

µN (h−1whg).

Denote by Πn the class of all partitions of an integer n. The conjugacy classes
of the symmetric group Sn can be parametrized by elements λ ∈ Πn. Thus there
exists a one-to-one correspondence between central measures on Sn and distributions
on Πn. Let [λ] denote the conjugacy class corresponding to λ ∈ Πn, i.e., the set of
all permutations whose cycle lengths form a partition λ, and let |λ| be the number of
elements in this class. The distribution corresponding to the measure η has the form

ηn(λ) =
∑

v∈[λ]

ηn(v) = |λ| ηn(u),

where u is an arbitrary representative of the class [λ]. Thus

ηn(λ) = lim
N→∞

1

N !

∑

h∈SN

∑

w∈SN
πn(w)∈[λ]

µN (h−1whg).

Denote by σN the expression within the limit sign in the right-hand side of this
identity. This quantity can be rewritten in the following form:

∑

v∈SN

µN (v)
1

N !
#

{
h ∈ SN : πn(hvg−1h−1) ∈ [λ]

}
=

∑

v∈SN

µN (v) q(v,λ).
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Here q(v,λ) are the transition probabilities of the Markovian operator acting from SN

into Πn and transforming the permutation v ∈ SN into the partition, which corre-
sponds to the class of the permutation πn(w) with a random permutation w uniformly
distributed on the class containing vg−1. Notice that the study of the induced per-
mutation on the set [n] of a random representative of the class containing vg−1 is
equivalent to studying the induced permutation of vg−1 on a random subset J ⊂ [N ]
of cardinality n, i.e.,

q(v,λ) =
1(N
n

)#
{
J ⊂ [N ]: #J = n, πJ(vg−1) ∈ [λ]

}
.

Let δλ denote the indicator function of the class [λ]. Then

∑

v∈SN

µN (v)q(v,λ) =
1(N
n

)
∑

J⊂[N]
#J=n

∑

v∈SN

µN (v) δλ
(
πJ(vg−1)

)
.

Assume that N ! n + k. Since Pµg depends only on the cycle structure of the
permutation g, one can take g ∈ S[n + 1, . . . , n + k]. Let J = {j1, . . . , jn}. Assume
that

{j1, . . . , jn} ∩ {n + 1, . . . , n + k} = ∅.(8)

The probability that a random subset of the set [N ] of cardinality n possesses this
property is

(N−k
n

)
/
(N
n

)
. Consider the permutation h ∈ SN such that h(j1) = 1, . . . ,

h(jn) = n and h(i) = i for i ̸∈ J . Obviously, h and g commute. Since µN is a central
measure, it follows that the sum

∑

v∈SN

µN (v) δλ
(
πJ(vg−1)

)
=

∑

v∈SN

µN (v) δλ
(
πJ(hvh−1g−1)

)

=
∑

v∈SN

µN (v) δλ
(
πJ(hvg−1h−1)

)

=
∑

v∈SN

µN (v) δλ
(
πn(vg−1)

)

does not depend on the subset J provided that it satisfies (8). Also since g ∈ S[n +
1, . . . , n + k], the last sum is equal to

∑
v∈Sn+k

µn+k(v) δλ(πn(vg−1)). Therefore

σN =

(N−k
n

)
(N
n

)
∑

v∈Sn+k

µn+k(v) δλ
(
πn(vg−1)

)
+ RN ,

where |RN | " 1 −
(N−k

n

)
/
(N
n

)
→ 0 as N → ∞, which proves this lemma.

5. The main lemma. As noted above, all statements about general central
measures on the space of virtual permutations commonly are reduced to the case of
saturated measures. In agreement with this principle we prove here first that the Haar
measure is the only stationary measure in the class of saturated distributions. To be
more exact, an even stronger result holds, two equivalent versions of which follow.

Theorem 4. Let Tg be the restriction of the operator T̃g on an invariant sub-
set Σ1. Denote by Tn the average of the operator Tg over the symmetric group Sn,

Tn =
1

n!

∑

g∈Sn

Tg.
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The Poisson–Dirichlet distribution PD(1) is the only measure on the simplex Σ1 which
is invariant under the family {Tn, n ∈ N}.

Theorem 5. Let Rn be the Markovian operator which shifts by a random per-
mutation with uniform distribution on the group Sn. The Haar measure on the
space of virtual permutations is the only central measure which satisfies the condi-
tion µ = P (Rnµ), n ∈ N.

Because of Lemma 2, Theorems 4 and 5 follow from Main Lemma 3.
For fixed n, k ∈ N, let Sk = S[n + 1, . . . , n + k].
Main lemma 3. Let {µn} be a saturated coherent family of central distributions

over symmetric groups Sn under the conditions

∑

w∈Sn+k
πn(w)=u

1

k!

∑

g∈Sk

µn+k(wg) = µn(u) ∀n, k ∈ N, ∀u ∈ Sn.(9)

Then the distribution µn coincides with the Haar measure mn on Sn for any n ∈ N.
Proof. Notice that condition (9) can be rewritten in the form

µn(u) =
∑

w∈Sn+k

µn+k(w)P (w, u),

where P (w, u) are the transition probabilities of the Markovian operator acting from
Sn+k into Sn and transforming the permutation w ∈ Sn+k into the permutation
πn(wg) with a random permutation g uniformly distributed on Sk. One obtains for
the corresponding distribution µn+k on the space of partitions Πn+k,

µn(u) =
∑

w∈Sn+k

µn+k(w)P (w, u) =
∑

λ∈Πn+k

µn+k(λ)P (λ, u),

where P (λ, u) = (|λ|)−1
∑

w∈[λ] P (w, u).

The following result shows that the transition probabilities P (λ, u) are close to
the Haar measure mn(u) = 1/n! provided that n is fixed, N = n+ k is large, and the
partition λ ∈ ΠN has few unit summands.

Lemma 4. Let λ ∈ ΠN , and denote by b(λ) the number of the unit summands in
the partition λ. Then for any permutation u ∈ Sn

P (λ, u) = mn(u) + R(λ, u),

where

∣∣R(λ, u)
∣∣ " 1 − (N − b(λ))(N − b(λ) − 2) · · · (N − b(λ) − 2(n− 1))

N(N − 1) · · · (N − (n− 1))
.

Proof. Let us call the elements 1, . . . , n of the set [N ] junior and the remaining
elements n + 1, . . . , N senior . Consider the set D of all permutations from SN such
that the inverse images of the junior elements are senior,

D =
{
w ∈ SN : w−1(i) ∈ {n + 1, . . . , n + k}, i = 1, . . . , n

}
.

Assume that w ∈ D. Let j1 = w−1(1), . . . , jn = w−1(n), and fix the isomorphism
of groups Sn and S[j1, . . . , jn] identifying i and ji. This isomorphism also identifies
πn(w) and π{j1,...,jn}(w). Moreover, for any permutation g ∈ Sk, one gets (wg)−1(i) =
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w−1(i) for all i = 1, . . . , n. Indeed, the junior elements 1, . . . , n are fixed points
of the permutation g. For this reason πn(wg) is identified with π{j1,...,jn}(wg) for
any permutation g ∈ Sk. Thus the distribution of the induced permutation πn(wg)
on the group Sn coincides in the sense of this isomorphism with the distribution
of the permutation π{j1,...,jn}(wg) on S[j1, . . . , jn]. But if a random permutation g
is uniformly distributed on Sk, then the permutation π{j1,...,jn}(wg) is uniformly
distributed on S[j1, . . . , jn].

We have proved that for w ∈ D, P (w, u) = mn(u). It follows that

P (λ, u) =
1

|λ|
∑

w∈[λ]

P (w, u) =
#(D ∩ |λ|)

|λ| mn(u) + r(λ, u),

where

r(λ, u) =
1

|λ|
∑

w∈[λ]\D

P (w, u) " 1 − #(D ∩ |λ|)
|λ| .

Therefore

∣∣R(λ, u)
∣∣ "

∣∣∣∣r(λ, u) −mn(u)

(
1 − #(D ∩ |λ|)

|λ|

)∣∣∣∣ " 1 − #(D ∩ |λ|)
|λ| .

Thus, all we have to do is estimate the probability that a random permutation
w ∈ [λ] belongs to D.

To obtain a uniformly distributed permutation w ∈ [λ] we use the following
procedure: Consider the Young diagram of the partition λ and allocate stepwise the
elements 1, . . . , n into the cells of this diagram, assuming at each stage that the empty
cells all have the same probability. The rows of the completed diagram we interpret
as cycles. In this way one obtains a random permutation w ∈ [λ]. Obviously it has
the uniform distribution on the class [λ].

At the first stage of this procedure we call bad the cells of the diagram which form
the rows of length 1. The number of such cells, as we recall, was denoted by b(λ). The
probability that the element 1 will be allocated into a good (i.e., not a bad) cell is
(N − b(λ))/N . After element 1 has been allocated, we call bad the cell of the diagram
which is adjacent to the left from 1 in the cyclic order. Thus, at the second stage we
have N − 1 empty cells with no more than b(λ) + 1 bad cells. The probability that
the elements 1 and 2 will be allocated into good cells is at least

N − b(λ)

N
· N − b(λ) − 2

N − 1
.

Continue this procedure by adding after each stage to the bad cells of the diagram
the left neighbors of the most recently occupied cell. At each step the number of bad
cells of the diagram can increase by at most one, and thus the probability that the
elements 1, 2, . . . , n will be allocated into good cells is at least

N − b(λ)

N
· N − b(λ) − 2

N − 1
· · · · · N − b(λ) − 2(n− 1)

N − (n− 1)
.

In this situation the elements 1, . . . , n do not belong to the rows of length one (the
cells of one-lines are definitely bad cells). Also the inverse images of these elements
belong to the set {n+1, . . . , n+ k} (the cells positioned to the left in the cyclic order
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from the cells containing junior elements are bad, and must be occupied by senior
elements). Thus the corresponding permutation must belong to the set D. Therefore

#(D ∩ |λ|)
|λ| ! N − b(λ)

N
· N − b(λ) − 2

N − 1
· · · · · N − b(λ) − 2(n− 1)

N − (n− 1)
,

which was to be proven.
To apply the estimate of Lemma 4 one has to show that for the saturated measures

the probability that a random permutation has many fixed points asymptotically
vanishes.

Lemma 5. Let

AN (δ) =

{
λ ∈ ΠN :

b(λ)

N
< δ

}
, 0 < δ < 1.

If {µn} is a saturated coherent family of central distributions over symmetric groups,
then for any δ ∈ (0, 1)

µN

(
AN (δ)

)
→ 1 as N → ∞.

Proof. Fix δ ∈ (0, 1) and let An = An(δ). Consider the vector

φN (w) =

(
l1(w)

N
,
l2(w)

N
, . . .

)
∈ Σ

of the normalized cycle lengths of the permutation w ∈ SN written in nonincreasing
order. Let νN be the image of the measure νN under the mapping φN . Then the
sequence of distributions νN weakly converges to the distribution ν of the vector
of the normalized cycle lengths of virtual permutations with regard to the limiting
measure µ = lim←− µN . By the definition of saturated measures, the distribution ν is

supported by the simplex Σ1 of sequences with the unit sum.
Denote by FN : Σ → [0, 1] the function FN (x) =

∑
i: xi"2/N xi. It is clear that

FN (x) ↗
∑∞

i=1 xi as N → ∞, so that FN (x) ↗ 1 almost surely with regard to the
measure ν. Let BN = {x ∈ Σ: FN (x) ! 1 − δ}. Since BN ↗ B = {x:

∑
xi ! 1 − δ}

one has νBN ↗ 1.
Clearly, λ ∈ AN if and only if for any permutation w ∈ [λ], φN (w) ∈ BN .

Thus µNAN = νNBN . Since the sequence of distributions νN weakly converges to
the distribution ν, the sets BN form an increasing sequence and νBN ↗ 1, one has
νNBN → 1, and the conclusion of the lemma follows.

Now we can conclude the proof of Main Lemma 3. Fix ε > 0. For a partition
λ ∈ πN , put

f(λ) =
(N − b(λ))(N − b(λ) − 2) · · · (N − b(λ) − 2(n− 1))

N(N − 1) · · · (N − (n− 1))
.

Clearly f(λ) → 1 as N → ∞ and b(λ)/N → 0. Hence, one can find N1 ∈ N and
δ > 0 such that 1 − ε " f(λ) " 1 for N ! N1 and b(λ)/N " δ. By Lemma 5 there
exists N ! N1 for which µN (AN (δ)) ! 1 − ε. By Lemma 4, if λ ∈ AN (δ), then
P (λ, u) = mn(u) + R(λ, u) with |R(λ, u)| " ε. Therefore

µn(u) = mn(u) + R1 + R2 −R3 ,
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where

R1 =
∑

λ∈AN (δ)

R(λ, u)µN (λ) " εµN

(
AN (δ)

)
" ε,

R2 =
∑

λ∈ΠN\An(δ)

µN (λ)P (λ, u) " µN

(
Πn \AN (δ)

)
" ε,

R3 = mn(u)
(
1 − µN

(
AN (δ)

))
" ε.

Thus, |µn(u) −mn(u)| " 2ε, which concludes the proof of Main Lemma 3.

6. Reduction to saturated measures. In this section we conclude the proof
of the main theorem by reducing it to Theorem 4.

As was noted in section 3, the sets Σt are invariant under T̃g for all g ∈ S∞. The
case when t = 0 is trivial, as the set Σ0 has only one point, and we can assume that
t ̸= 0.

The definition of the operator T̃g and the construction of ergodic distributions P x

show that after identification of Σt with the standard simplex Σ the restriction of the
operator T̃g takes the form

T t
g = Γ−1

t

(
T̃g

∣∣∣
Σt

)
=

n∑

k=0

tk(1 − t)n−k
∑

J⊂[n]
|J|=k

TπJ (g).

Averaging over g ∈ Sn one obtains

T t
n =

1

n!

∑

g∈Sn

T t
g =

n∑

k=0

tk(1 − t)n−k
∑

J⊂[n]
|J|=k

1

n!

∑

g∈Sn

TπJ (g)

=
n∑

k=0

tk(1 − t)n−k
∑

J⊂[n]
|J|=k

1

k!

∑

h∈S[J]

Th.

Since the operator Tg depends only on the class of the permutation g, the last nor-
malized sum is equal to Tk. Therefore

T t
n =

n∑

k=0

tk(1 − t)n−k
∑

J⊂[n]
|J|=k

Tk =
n∑

k=0

(
n

k

)
(1 − t)n−ktkTk.(10)

Let ν be a {T̃g}-invariant measure and let νt be the conditional distribution of ν
on Σt. Notice that T t

0 = T t
1 = E, where E denotes the identity operator on Σ1.

By (10), T t
2 = t2T2 + (1 − t2)E. Since the measure νt = Γ−1

t νt is invariant under
the operator T t

2 , the last formula implies that this measure is T2-invariant. A similar
argument shows by induction that the measure νt is invariant under the family {Tn},
n = 1, 2, . . . . According to Theorem 4 for any t ∈ [0, 1], νt = PD(1), which completes
the proof.
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