Compliments to Bad Spaces

Oleg Viro

March 13, 2007

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples:

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples:

differentiable manifolds and finite topological spaces.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples: differentiable manifolds and finite topological spaces.

I am going to emphasize opportunities

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples: differentiable manifolds and finite topological spaces.

I am going to emphasize opportunities, but need to motivate the positive things by some criticism.

Human factor

Differential Spaces

Finite Topological Spaces

The ways that mathematical theories find to the core of mainstream mathematical curriculums are strongly influenced by accident circumstances.

Individuals shape Mathematics.

The shapes are not perfect.

Often basic definitions could be made more convenient than the present ones.

I do not mean to criticize Calculus, although it is awful.

Take fresher examples: differentiable manifolds and finite topological spaces.

I am going to emphasize opportunities, but need to motivate the positive things by some criticism.

The opportunities are not lost yet.

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Differential Spaces

Differentiable Manifolds

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The modern definition of differential manifold was given in the book by O. Veblen and J.H.C. Whitehead The foundations of differential geometry. Cambridge tracts in mathematics and mathermatical physics.

Differentiable Manifolds

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The modern definition of differential manifold was given in the book by O. Veblen and J.H.C. Whitehead The foundations of differential geometry. Cambridge tracts in mathematics and mathermatical physics.

Published in 1932 by Cambridge University Press.

Differentiable Manifolds

Human factor

Differential Spaces

Differentiable Manifolds

- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The modern definition of differential manifold was given in the book by O. Veblen and J.H.C. Whitehead The foundations of differential geometry. Cambridge tracts in mathematics and mathermatical physics.

Published in 1932 by Cambridge University Press.

Inspired by H.Weyl's book on Riemann surfaces Die Idee der

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology, where any set-theoretic construction has a topological counter-part:

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology, where any set-theoretic construction has a topological counter-part:

a subset \mapsto a subspace,

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology, where any set-theoretic construction has a topological counter-part:

a subset \mapsto a subspace,

a quotient set \mapsto a quotient space, etc.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology, where any set-theoretic construction has a topological counter-part:

a subset \mapsto a subspace, a quotient set \mapsto a quotient space, etc.

The image of a differential manifold under a differentiable map may be not a manifold,

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

The traditional definition of smooth structures is quite long and different from definitions of similar and closely related structures studied in algebraic geometry and topology.

Smooth structures are traditionally defined only on manifolds. This deprives us of flexibility that we enjoy in general topology, where any set-theoretic construction has a topological counter-part:

a subset \mapsto a subspace, a quotient set \mapsto a quotient space, etc.

The image of a differential manifold under a differentiable map may be not a manifold, and hence not eligible to bear any trace of a differential structure.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces. Is this *good?*

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this *good?*

Is this acceptable?

Even if you hate pathology

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this *good?*

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$?

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if you hate pathology, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$? smooth structure on a Cantor set?

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$?

smooth structure on a Cantor set?, a fractal set?

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this *good?*

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$?

smooth structure on a Cantor set?, a fractal set?

The notion of *differential space* was developed in the sixties

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$? smooth structure on a Cantor set?, a fractal set?

The notion of *differential space* was developed in the sixties, but has not found a way to the mainstream Mathematics.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$? smooth structure on a Cantor set?, a fractal set?

The notion of *differential space* was developed in the sixties, but has not found a way to the mainstream Mathematics.

Why?

Political correctness in Mathematics

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this good?

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$? smooth structure on a Cantor set? , a fractal set?

The notion of *differential space* was developed in the sixties, but has not found a way to the mainstream Mathematics.

Why? Was it not a right time for this?

Political correctness in Mathematics

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Terminology related to differentiable manifolds does not let us speak on bad spaces.

Is this *good?*

Is this acceptable?

Even if *you hate pathology*, do you know beforehand what is pathologically bad in Mathematics?

Would you like to have an *ability to speak* about the natural smooth structure on $\mathbb{C}P^2/\operatorname{conj}$? smooth structure on a Cantor set?, a fractal set?

The notion of *differential space* was developed in the sixties, but has not found a way to the mainstream Mathematics.

Why? Was it not a right time for this? Were there not right people?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ .

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A differential structure of class C^r on X

not differentiable, but differential, for nobody is going to differentiate it!

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $C^r(X)$ with C^r -differentiable function belongs to $C^r(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $\mathcal{C}^r(X)$ with C^r -differentiable function belongs to $\mathcal{C}^r(X)$.

In other words, $(g \circ f : X \to \mathbb{R}) \in \mathcal{C}^r(X)$

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $\mathcal{C}^r(X)$ with C^r -differentiable function belongs to $\mathcal{C}^r(X)$.

In other words, $(g \circ f : X \to \mathbb{R}) \in \mathcal{C}^r(X)$ if $f : X \to U$ is defined by $f_1, \ldots, f_n \in \mathcal{C}^r(X)$, $U \subset \mathbb{R}^n$ is an open set,

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $\mathcal{C}^r(X)$ with C^r -differentiable function belongs to $\mathcal{C}^r(X)$.

In other words, $(g \circ f : X \to \mathbb{R}) \in \mathcal{C}^r(X)$ if $f : X \to U$ is defined by $f_1, \ldots, f_n \in \mathcal{C}^r(X)$, $U \subset \mathbb{R}^n$ is an open set, and $g : U \to \mathbb{R}$ is a C^r -map.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $\mathcal{C}^r(X)$ with C^r -differentiable function belongs to $\mathcal{C}^r(X)$.

In other words, $(g \circ f : X \to \mathbb{R}) \in \mathcal{C}^r(X)$ if $f : X \to U$ is defined by $f_1, \ldots, f_n \in \mathcal{C}^r(X)$, $U \subset \mathbb{R}^n$ is an open set, and $g : U \to \mathbb{R}$ is a C^r -map.

2. $f \in \mathcal{C}^r(X)$ if near each point of X it coincides with a function belonging to $\mathcal{C}^r(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a set and r be a natural number or ∞ . A *differential structure* of class C^r on X is an algebra $\mathcal{C}^r(X)$ of functions $X \to \mathbb{R}$ such that:

1. Composition of functions belonging to $\mathcal{C}^r(X)$ with C^r -differentiable function belongs to $\mathcal{C}^r(X)$.

In other words, $(g \circ f : X \to \mathbb{R}) \in \mathcal{C}^r(X)$ if $f : X \to U$ is defined by $f_1, \ldots, f_n \in \mathcal{C}^r(X)$, $U \subset \mathbb{R}^n$ is an open set, and $g : U \to \mathbb{R}$ is a C^r -map.

2. $f \in \mathcal{C}^r(X)$ if near each point of X it coincides with a function belonging to $\mathcal{C}^r(X)$.

In other words, $f \in \mathcal{C}^r(X)$ if for each $a \in X$ there exist $g, h \in \mathcal{C}^r(X)$ such that h(a) > 0 and f(x) = g(x) for each x with h(x) > 0.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

Examples

1. Any smooth manifold X with algebra $\mathcal{C}^r(X)$ of C^r -differentiable functions.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

- 1. Any smooth manifold X with algebra $\mathcal{C}^r(X)$ of C^r -differentiable functions.
- 2. Discrete space. Any X and all functions $X \to \mathbb{R}$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

- 1. Any smooth manifold X with algebra $\mathcal{C}^r(X)$ of C^r -differentiable functions.
- 2. Discrete space. Any X and all functions $X \to \mathbb{R}$.
- 3. Indiscrete space. Any X and all constant functions $X \to \mathbb{R}$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

A pair consisting of a set X and a differential structure of class C^r on X is called a *differential space of class* C^r , or just a C^r -space.

- 1. Any smooth manifold X with algebra $\mathcal{C}^r(X)$ of C^r -differentiable functions.
- 2. Discrete space. Any X and all functions $X \to \mathbb{R}$.
- 3. Indiscrete space. Any X and all constant functions $X \to \mathbb{R}$.
- 4. *Topological space.* A topological space X with all continuous functions $X \to \mathbb{R}$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be C^r -spaces.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be C^r -spaces. $f: X \to Y \text{ is called } \textbf{a} \ C^r\text{-map}$ if $f \circ \phi \in \mathcal{C}^r(X)$ for any $\phi \in \mathcal{C}^r(Y)$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be C^r -spaces.

 $f: X \to Y$ is called a C^r -map

if $f \circ \phi \in \mathcal{C}^r(X)$ for any $\phi \in \mathcal{C}^r(Y)$.

A C^r -map $f: X \to Y$ induces $f^*: \mathcal{C}^r(Y) \to \mathcal{C}^r(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be C^r -spaces.

 $f: X \to Y$ is called a C^r -map

if $f \circ \phi \in \mathcal{C}^r(X)$ for any $\phi \in \mathcal{C}^r(Y)$.

A C^r -map $f: X \to Y$ induces $f^*: \mathcal{C}^r(Y) \to \mathcal{C}^r(X)$.

 C^r -spaces and C^r -maps constitute a category.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be C^r -spaces.

 $f: X \to Y$ is called a C^r -map

if $f \circ \phi \in \mathcal{C}^r(X)$ for any $\phi \in \mathcal{C}^r(Y)$.

A C^r -map $f: X \to Y$ induces $f^*: \mathcal{C}^r(Y) \to \mathcal{C}^r(X)$.

 C^r -spaces and C^r -maps constitute a category.

Isomorphisms of the category are called C^r -diffeomorphims.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} .

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure

which is nothing but a topological structure.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure is a C^r -structure for any r .

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure is a C^r -structure for any r. On the other hand, when decreasing r, we have to add new functions.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure is a C^r -structure for any r. On the other hand, when decreasing r, we have to add new functions.

A C^r -structure \mathcal{A} generated as a C^r -structure by a C^s -structure \mathcal{B} with s>r is called a *relaxation* of \mathcal{B} .

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

For any set \mathcal{F} of real valued functions on a set X, there exists a minimal C^r -structure on X containing \mathcal{F} . It is said to be *generated* by \mathcal{F} .

For example, coordinate projections $\mathbb{R}^n \to \mathbb{R}$ generate the standard differential structure on \mathbb{R}^n .

The C^r -structure generated by a C^s -structure $\mathcal C$ with s < r coincides with $\mathcal C$.

For example, a C^0 -structure is a C^r -structure for any r. On the other hand, when decreasing r, we have to add new functions.

A C^r -structure $\mathcal A$ generated as a C^r -structure by a C^s -structure $\mathcal B$ with s>r is called a *relaxation* of $\mathcal B$. Then $\mathcal B$ is called a *refinement* of $\mathcal A$.

Subspaces

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A \subset X$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A \subset X$. Restrictions to A of functions differentiable on X

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X = \mathbb{R}$ and $A = \mathbb{R}_{>0} = \{x \mid x > 0\}$,

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

but in a neighborhood of any point it is a restriction of a function differentiable on \mathbb{R} .

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A \subset X$.

Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

but in a neighborhood of any point it is a restriction of a function differentiable on \mathbb{R} .

Restrictions to A of functions differentiable on X generate a differential structure.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

but in a neighborhood of any point it is a restriction of a function differentiable on \mathbb{R} .

Restrictions to A of functions differentiable on X generate a differential structure. This structure is said to be $\mathit{induced}$ on A by the structure of X

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A\subset X$. Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

but in a neighborhood of any point it is a restriction of a function differentiable on \mathbb{R} .

Restrictions to A of functions differentiable on X generate a differential structure. This structure is said to be $\mathit{induced}$ on A by the structure of X,

and A equipped with this structure is called a *(differential)* subspace of X.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $A \subset X$.

Restrictions to A of functions differentiable on X do not necessarily constitute a differential structure on A.

For example, if $X=\mathbb{R}$ and $A=\mathbb{R}_{>0}=\{x\mid x>0\}$, the function $A\to\mathbb{R}:x\mapsto \frac{1}{x}$ is not a restriction of any function continuous on \mathbb{R} ,

but in a neighborhood of any point it is a restriction of a function differentiable on \mathbb{R} .

Restrictions to A of functions differentiable on X generate a differential structure. This structure is said to be $\mathit{induced}$ on A by the structure of X,

and A equipped with this structure is called a *(differential)* subspace of X.

Whitney Problem: Describe the differential structure induced on a closed $X \subset \mathbb{R}^n$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be differential spaces (of class C^r).

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be differential spaces (of class C^r). A map $f: X \to Y$ is called a *differential embedding* if it defines a diffeomorphism $X \to f(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be differential spaces (of class C^r). A map $f:X\to Y$ is called a *differential embedding* if it defines a diffeomorphism $X\to f(X)$. (Here f(X) is considered as a differential subspace of Y).

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be differential spaces (of class C^r). A map $f: X \to Y$ is called a *differential embedding* if it defines a diffeomorphism $X \to f(X)$. (Here f(X) is considered as a differential subspace of Y).

For a differential space X , functions f_1, \ldots, f_n define a differential embedding

$$f: X \to \mathbb{R}^n: x \mapsto (f_1(x), \dots, f_n(x))$$

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X and Y be differential spaces (of class C^r). A map $f: X \to Y$ is called a *differential embedding* if it defines a diffeomorphism $X \to f(X)$. (Here f(X) is considered as a differential subspace of Y).

For a differential space X , functions f_1, \ldots, f_n define a differential embedding

$$f: X \to \mathbb{R}^n: x \mapsto (f_1(x), \dots, f_n(x))$$

iff f_1, \dots, f_n generate $\mathcal{C}^r(X)$ and f is injective.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

How does the space $(\mathbb{R}, \mathcal{C})$ look like? Is it embeddable to \mathbb{R}^2 ?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set C of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

How does the space $(\mathbb{R}, \mathcal{C})$ look like? Is it embeddable to \mathbb{R}^2 ?

We need functions $u,v:\mathbb{R}\to\mathbb{R}$ with u'(0)=v'(0)=0 such that any differential function $f:\mathbb{R}\to\mathbb{R}$ with f'(0)=0 was a composition $F\circ(u\times v)$ for some differentiable $F:\mathbb{R}^2\to\mathbb{R}$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

How does the space $(\mathbb{R}, \mathcal{C})$ look like? Is it embeddable to \mathbb{R}^2 ?

We need functions $u,v:\mathbb{R}\to\mathbb{R}$ with u'(0)=v'(0)=0 such that any differential function $f:\mathbb{R}\to\mathbb{R}$ with f'(0)=0 was a composition $F\circ(u\times v)$ for some differentiable $F:\mathbb{R}^2\to\mathbb{R}$.

Take $u(x) = x^2$, $v(x) = x^3$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

How does the space $(\mathbb{R}, \mathcal{C})$ look like? Is it embeddable to \mathbb{R}^2 ?

We need functions $u,v:\mathbb{R}\to\mathbb{R}$ with u'(0)=v'(0)=0 such that any differential function $f:\mathbb{R}\to\mathbb{R}$ with f'(0)=0 was a composition $F\circ(u\times v)$ for some differentiable $F:\mathbb{R}^2\to\mathbb{R}$.

Take
$$u(x) = x^2$$
, $v(x) = x^3$.

A parametrization of semicubical parabola:

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Consider the set \mathcal{C} of all differentiable functions $\mathbb{R} \to \mathbb{R}$ with derivative vanishing at 0. This is a differential structure.

How does the space $(\mathbb{R}, \mathcal{C})$ look like? Is it embeddable to \mathbb{R}^2 ?

We need functions $u,v:\mathbb{R}\to\mathbb{R}$ with u'(0)=v'(0)=0 such that any differential function $f:\mathbb{R}\to\mathbb{R}$ with f'(0)=0 was a composition $F\circ(u\times v)$ for some differentiable $F:\mathbb{R}^2\to\mathbb{R}$.

Take
$$u(x) = x^2$$
, $v(x) = x^3$.

A parametrization of semicubical parabola:

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces. The canonical way to define C^r -structure in $X\times Y$

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces. The canonical way to define C^r -structure in $X \times Y$ is to generate it by $\{f \circ pr_X \mid f \in \mathcal{C}^r(X)\} \cup \{g \circ pr_Y \mid g \in \mathcal{C}^r(Y)\}$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces.

The canonical way to define C^r -structure in $X \times Y$ is to generate it by

$$\{f \circ pr_X \mid f \in \mathcal{C}^r(X)\} \cup \{g \circ pr_Y \mid g \in \mathcal{C}^r(Y)\}.$$

Factorization. Let X be a C^r -space and

 \sim be an equivalence relation in X .

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces.

The canonical way to define C^r -structure in $X \times Y$ is to generate it by

$$\{f \circ pr_X \mid f \in \mathcal{C}^r(X)\} \cup \{g \circ pr_Y \mid g \in \mathcal{C}^r(Y)\}.$$

Factorization. Let X be a C^r -space and

 \sim be an equivalence relation in X .

The C^r -structure in the quotient set X/\sim canonically defined by $\mathcal{C}^r(X)$

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Multiplication. Let X and Y be C^r -spaces.

The canonical way to define C^r -structure in $X\times Y$ is to generate it by

$$\{f \circ pr_X \mid f \in \mathcal{C}^r(X)\} \cup \{g \circ pr_Y \mid g \in \mathcal{C}^r(Y)\}.$$

Factorization. Let X be a C^r -space and

 \sim be an equivalence relation in X .

The C^r -structure in the quotient set X/\sim

canonically defined by $\mathcal{C}^r(X)$

consists of $f:X/{\sim} \to \mathbb{R}$ such that

$$(f \circ pr : X \to \mathbb{R}) \in \mathcal{C}^r(X)$$
.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like?

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ? If so, how does the the image look like? Like this: (

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ? If so, how does the the image look like? Like this: (

No, like this:

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ? If so, how does the the image look like? Like this: (

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ? If so, how does the the image look like? Like this: ? No, like this: ! ! Or that: ! But not this: !

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:

No, like this: ! Or that: ! But not this: !

2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1?

?

Human factor

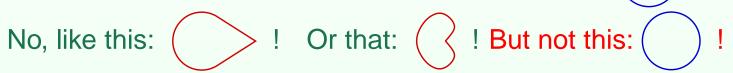
Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1?

Then we get really a space diffeomorphic to (

?

Human factor

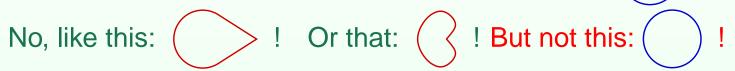
Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1 ?

Then we get really a space diffeomorphic to ()

New factorization:

Human factor

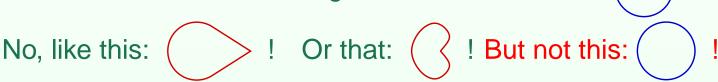
Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1 ?

Then we get really a space diffeomorphic to ()

New factorization:

Identifying end points of [0,1], identify also tangent vectors!

Human factor

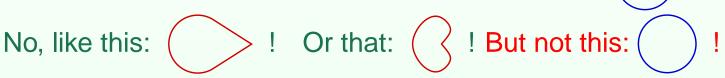
Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1?

Then we get really a space diffeomorphic to ()

New factorization:

Identifying end points of [0,1], identify also tangent vectors! That is consider functions $f:[0,1]\to\mathbb{R}$ with f(0)=f(1) and f'(0)=f'(1).

Human factor

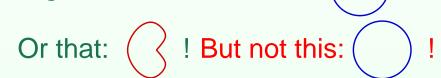
Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1?

Then we get really a space diffeomorphic to (

New factorization:

No, like this:

Identifying end points of $\left[0,1\right]$, identify also tangent vectors!

That is consider functions $f:[0,1] \to \mathbb{R}$ with

$$f(0) = f(1)$$
 and $f'(0) = f'(1)$.

The resulting space:

Human factor

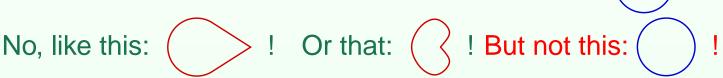
Differential Spaces

- Differentiable Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

1. What differential space is obtained by identification of the end points of [0,1]? Is it embeddable to \mathbb{R}^2 ?

If so, how does the the image look like? Like this:



2. What if we take [0, 1.5] and identify each $x \in [0, 0.5]$ with x + 1 ?

Then we get really a space diffeomorphic to

New factorization:

Identifying end points of [0,1], identify also tangent vectors!

That is consider functions $f:[0,1] \to \mathbb{R}$ with

$$f(0) = f(1)$$
 and $f'(0) = f'(1)$.

The resulting space: . Smooth, but with jump of curvature.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors. Let X be a differential space and $p \in X$.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors. Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors. Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p.

It is easier to define cotangent vectors.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

Other traditional definition of tangent vectors (via an equivalence of smooth paths)

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

Other traditional definition of tangent vectors (via an equivalence of smooth paths) gives another result

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

Other traditional definition of tangent vectors (via an equivalence of smooth paths) gives another result and does not give a vector space.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $n \in X$

Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p. For example, $\dim T_0([0,1]/(0\sim 1))=2$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

It is easier to define cotangent vectors.

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p. For example, $\dim T_0([0,1]/(0\sim 1))=2$.

Theorem: If $\mathcal{C}^r(X)$ is the set of all continuous functions on a topological space X, then $\dim T_p^*(X)=0$.

It is easier to define cotangent vectors.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $p\in X$. Functions vanishing at p form a maximal ideal m_p of $\mathbb R$ -algebra

 $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p. For example, $\dim T_0([0,1]/(0\sim 1))=2$.

Theorem: If $\mathcal{C}^r(X)$ is the set of all continuous functions on a topological space X, then $\dim T_p^*(X)=0$.

The quotient space $D^2/\partial D^2$ of disk D^2 is homeomorphic to sphere S^2 .

It is easier to define cotangent vectors.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_n^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p. For example, $\dim T_0([0,1]/(0\sim 1))=2$.

Theorem: If $\mathcal{C}^r(X)$ is the set of all continuous functions on a topological space X, then $\dim T_p^*(X)=0$.

The quotient space $D^2/\partial D^2$ of disk D^2 is homeomorphic to sphere S^2 . What is $\dim_{\partial D^2/\partial D^2}(D^2/\partial D^2)$?

It is easier to define cotangent vectors.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Let X be a differential space and $p \in X$. Functions vanishing at p form a maximal ideal m_p of \mathbb{R} -algebra $\mathcal{C}^r(X)$. The cotangent space $T_p^*(X)$ is m_p/m_p^2 .

Tangent space $T_p(X)$ is the dual to $T_p^*(X)$. It can be defined as the space of differentiations of differentiable functions on X at p. As usual.

 $\dim T_p^*(X)$ may differ from the topological dimension of X at p. For example, $\dim T_0([0,1]/(0\sim 1))=2$.

Theorem: If $\mathcal{C}^r(X)$ is the set of all continuous functions on a topological space X, then $\dim T_p^*(X)=0$.

The quotient space $D^2/\partial D^2$ of disk D^2 is homeomorphic to sphere S^2 . What is $\dim_{\partial D^2/\partial D^2}(D^2/\partial D^2)$? Infinity!

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions:

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points.

However on a Riemannian manifold they are not differentiable.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points. However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from other points form local coordinate system.

Human factor

Differential Spaces

- DifferentiableManifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points. However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from other points form local coordinate system.

Let X be a metric space. A function $f:X\to\mathbb{R}$ is differentiable at $p\in X$ if for any neighborhood U of p there exist points $q_1,\ldots,q_n\in U$ and real numbers a_1,\ldots,a_n such that

$$\frac{|f(x) - f(p) - \sum a_i(\operatorname{dist}(q_i, x) - \operatorname{dist}(q_i, p))|}{\operatorname{dist}(x, p)} \to 0$$

as $x \to p$.

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points. However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from other points form local coordinate system.

Let X be a metric space. A function $f:X\to\mathbb{R}$ is differentiable at $p\in X$ if for any neighborhood U of p there exist points $q_1,\ldots,q_n\in U$ and real numbers a_1,\ldots,a_n such that

$$\frac{|f(x) - f(p) - \sum a_i(\operatorname{dist}(q_i, x) - \operatorname{dist}(q_i, p))|}{\operatorname{dist}(x, p)} \to 0$$

as $x \to p$. Is this definition good?

Human factor

Differential Spaces

- Differentiable
 Manifolds
- What is wrong
- Political correctness in Mathematics
- Differential Structures
- Differential Spaces
- Differentiable maps
- Generating, refining, relaxing
- Subspaces
- Embeddings
- Example
- Constructing new differential spaces
- Examples of quotient spaces
- Tangent vectors and dimensions
- Metric spaces

Finite Topological Spaces

Each metric space is a differential space.

A metric gives rise to many functions: distances from points. However on a Riemannian manifold they are not differentiable.

In a sufficiently small neighborhood of a point, distances from other points form local coordinate system.

Let X be a metric space. A function $f:X\to\mathbb{R}$ is differentiable at $p\in X$ if for any neighborhood U of p there exist points $q_1,\ldots,q_n\in U$ and real numbers a_1,\ldots,a_n such that

$$\frac{|f(x) - f(p) - \sum a_i(\operatorname{dist}(q_i, x) - \operatorname{dist}(q_i, p))|}{\operatorname{dist}(x, p)} \to 0$$

as $x \to p$. Is this definition good? At least, it recovers the smooth structure of a Riemannian manifold.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Finite Topological Spaces

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best about two kinds of finite topological spaces:

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best about two kinds of finite topological spaces: discrete and indiscrete.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best about two kinds of finite topological spaces: discrete and indiscrete.

Let us take a look at the rest of them.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best about two kinds of finite topological spaces: discrete and indiscrete.

Let us take a look at the rest of them. They are not that bad!

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Topology seams to be the only fields in Mathematics that hesitates of its own finite objects, finite topological spaces. Finite sets, finite dimensional vector spaces, finite fields, finite projective spaces, etc. are appreciated by their host theories.

Who is guilty? Interest towards Analysis? Hausdorff axiom? Topology textbooks?

An average mathematician is well aware at best about two kinds of finite topological spaces: discrete and indiscrete.

Let us take a look at the rest of them.

They are not that bad!

At early days of topology, they were the main objects of the *Combinatorial Topology*.

Fundamental group

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

What is the minimal number of points in a topological space with nontrivial fundamental group?

Fundamental group

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

What is the minimal number of points in a topological space with nontrivial fundamental group?

What is the group?

Fundamental group

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

What is the minimal number of points in a topological space with nontrivial fundamental group?

What is the group?

What is the next group?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons.

The quotient space Q is a finite topological space.

Q knows everything on P.

Especially if the partition was a triangulation.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P . Each point of Q represents a face of P .

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood, the intersection of all of its neighborhoods.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

In Q the minimal neighborhood of a point corresponds to the star of corresponding face.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

In Q the minimal neighborhood of a point corresponds to the star of corresponding face.

The star $St(\sigma)$ of a face σ is the union of all faces Σ such that $\partial \Sigma \supset \sigma$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

In Q the minimal neighborhood of a point corresponds to the star of corresponding face. Faces in P are partially ordered by adjacency: $\Sigma > \sigma$ iff $\mathrm{Cl}(\Sigma) \supset \sigma$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

In Q the minimal neighborhood of a point corresponds to the star of corresponding face. Faces in P are partially ordered by adjacency: $\Sigma > \sigma$ iff $\mathrm{Cl}(\Sigma) \supset \sigma$.

This partial order defines and is defined by the topology of $\,Q\,.$

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a compact polyhedron represented as the union of closed convex polyhedra any two of which meet in a common face.

P is partitioned to open faces of these convex polyhedrons. The quotient space Q is a finite topological space.

Q knows everything on P. Each point of Q represents a face of P. Points representing vertices are closed.

The closure of a point $x \in Q$ consists of points corresponding to the faces of the corresponding face of P.

Each point in a finite space has minimal neighborhood.

In Q the minimal neighborhood of a point corresponds to the star of corresponding face. Faces in P are partially ordered by adjacency: $\Sigma > \sigma$ iff $\mathrm{Cl}(\Sigma) \supset \sigma$.

This partial order defines and is defined by the topology of Q.

P can be recovered from Q.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron, Q the space of its simplices

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P)

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P),

 $pr: P \rightarrow Q$ the natural projection.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P),

 $pr: P \rightarrow Q$ the natural projection.

For topological spaces X and Y denote by $\pi(X,Y)$ the set of homotopy classes of maps $X \to Y$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P),

 $pr: P \rightarrow Q$ the natural projection.

For topological spaces X and Y denote by $\pi(X,Y)$ the set of homotopy classes of maps $X \to Y$.

Theorem. For any topological space X , composition with pr defines a bijection $\pi(X,P) \to \pi(X,Q)$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P),

 $pr: P \rightarrow Q$ the natural projection.

For topological spaces X and Y denote by $\pi(X,Y)$ the set of homotopy classes of maps $X \to Y$.

Theorem. For any topological space X , composition with pr defines a bijection $\pi(X,P) \to \pi(X,Q)$.

Corollary. All homotopy and singular homology groups of P and Q are isomorphic.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Let P be a triangulated polyhedron,

Q the space of its simplices (the quotient space of P),

 $pr: P \rightarrow Q$ the natural projection.

For topological spaces X and Y denote by $\pi(X,Y)$ the set of homotopy classes of maps $X \to Y$.

Theorem. For any topological space X , composition with pr defines a bijection $\pi(X,P) \to \pi(X,Q)$.

Corollary. All homotopy and singular homology groups of P and Q are isomorphic.

Corollary. Any compact polyhedron is weak homotopy equivalent to a finite topological space.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 .

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.

Human factor

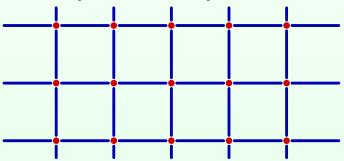
Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n,n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.



Human factor

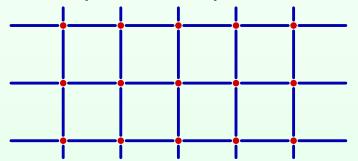
Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.



Digital circle of length d is the quotient space of the circle $S^1 \subset \mathbb{C}$ by the partition formed by complex roots of unity of degree d and open arcs connecting the roots next to each other.

Human factor

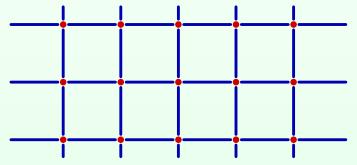
Differential Spaces

Finite Topological Spaces

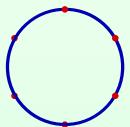
- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.



Digital circle



Human factor

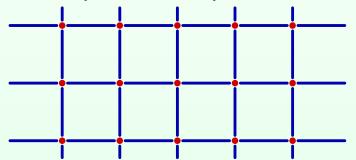
Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.



Digital Jordan Theorem. (Khalimsky, Kiselman) *A digital circle embedded in the digital plane divides it into two connected sets.*

Human factor

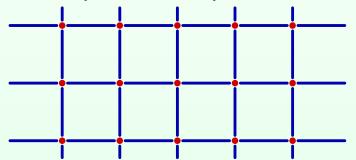
Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

Digital line \mathcal{D} is the quotient space of \mathbb{R} by partition to points of \mathbb{Z} and open intervals (n, n+1).

Digital plane is \mathcal{D}^2 . It is the quotient space of \mathbb{R}^2 by the partition formed by integer points, open unit intervals connecting them, and open unit squares.



Digital Jordan Theorem. (Khalimsky, Kiselman) *A digital circle embedded in the digital plane divides it into two connected sets.*

Not finite, but locally finite.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation: $x \sim y$ if x and y have the same neighborhoods.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 :

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 :

for any pair of points x, y at least one of them has a neighborhood not containing the other one.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Remark. Without T_0 axiom this is only a preorder, that is transitive and reflexive, but not antisymmetric.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Remark. Without T_0 axiom this is only a preorder, that is transitive and reflexive, but not antisymmetric

(if x and y are T_0 -equivalent, then both $x \in \operatorname{Cl} y$ and $y \in \operatorname{Cl} x$).

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Any partial order defines a *poset topology* generated by sets $\{x \mid a \prec x\}$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Any partial order defines a *poset topology* generated by sets $\{x \mid a \prec x\}$.

A topology is a poset topology iff the Kolmogorov axiom holds true and each point has the smallest neighborhood.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Any partial order defines a *poset topology* generated by sets $\{x \mid a \prec x\}$.

A topology is a poset topology iff the Kolmogorov axiom holds true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this is a T_0 -space.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Any partial order defines a *poset topology* generated by sets $\{x \mid a \prec x\}$.

A topology is a poset topology iff the Kolmogorov axiom holds true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this is a T_0 -space.

An arbitrary finite topological space is composed of clusters of T_0 -equivalent points.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

In any topological space there is T_0 -equivalence relation:

 $x \sim y$ if x and y have the same neighborhoods.

The quotient space by the T_0 -equivalence relation satisfies the Kolmogorov separation axiom T_0 .

In any T_0 -space the relation $x \in \operatorname{Cl} y$ is a partial order.

Any partial order defines a *poset topology* generated by sets $\{x \mid a \prec x\}$.

A topology is a poset topology iff the Kolmogorov axiom holds true and each point has the smallest neighborhood.

In particular, topology in a finite space is a poset topology iff this is a T_0 -space.

An arbitrary finite topological space is composed of clusters of T_0 -equivalent points. The clusters are partially ordered and the order determines the topology.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron?

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Not really far, just one step construction.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order. X' is partially ordered by inclusion.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order. X' is partially ordered by inclusion. Poset (X', \subset) is called the *baricentric subdivision of* (X, \prec) .

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order. X' is partially ordered by inclusion.

Poset (X', \subset) is called the *baricentric subdivision of* (X, \prec) . The baricentric subdivision of any finite poset is the space of simplices of a compact triangulated polyhedron.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order. X' is partially ordered by inclusion.

Poset (X', \subset) is called the *baricentric subdivision of* (X, \prec) . The baricentric subdivision of any finite poset is the space of

simplices of a compact triangulated polyhedron.

This construction is used in combinatorics to define homology groups of a poset.

Human factor

Differential Spaces

Finite Topological Spaces

- Hesitation of finite spaces
- Fundamental group
- Space of faces
- Homotopy
- Digital plane and Jordan Theorem
- Arbitrary finite space
- Baricentric subdivision

How far is a poset topology from the face space of a polyhedron? Let (X, \prec) be a poset. Consider $X' = \{a_1 \prec a_2 \prec \cdots \prec a_n \mid a_i \in X\}$, the set of all non-empty finite subsets of X in each of which \prec defines a linear order. X' is partially ordered by inclusion.

Poset (X', \subset) is called the *baricentric subdivision of* (X, \prec) . The baricentric subdivision of any finite poset is the space of

simplices of a compact triangulated polyhedron.

This construction is used in combinatorics to define homology groups of a poset.

Theorem. Any finite topological space is weak homotopy equivalent to a compact polyhedron.