Curves Encomplexed

Oleg Viro

October 31, 2006
Introduction

- Encomplex
- Curves
- curves and complexification

Whitney number

Writhe

Arnold invariants

Encomplexing \(J \)
Many objects studied in geometry are defined in real coordinates by equations.
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates.
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer, although they are less visual.
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them.
Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. This is how algebraic geometry became complex.
Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. **Real objects are replaced by their complex counter-parts, complexifications.**
Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called *complexification*.
Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.

Another option is to consider the original objects embedded into its complexification.
Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.

Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called \textit{complexification}.

Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!

I will call this \textit{to encomplex}
Encomplex

Many objects studied in geometry are defined in real coordinates by equations. Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer. When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.

Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!

I will call this to encomplex and try to show its difficulties and advantages on a simple material of curves.
A real plane curve is a generically immersed circle
A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$
Curves

A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$, belongs to Differential Geometry,
Curves

A real plane curve is a generically immersed circle, immersion \(S^1 \hookrightarrow \mathbb{R}^2 \), belongs to Differential Geometry, presumably has no complexification.
Curves

A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.
Curves

A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.

One of the most classical of them is the Whitney classification of curves up to regular homotopy.
A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.

One of the most classical of them is the Whitney classification of curves up to regular homotopy.

The next masterpiece is Arnold’s theory on three first order invariants of generic plane curves.
Curves

A real plane curve is a generically immersed circle, immersion $S^1 \hookrightarrow \mathbb{R}^2$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.

One of the most classical of them is the Whitney classification of curves up to regular homotopy.

The next masterpiece is Arnold’s theory on three first order invariants of generic plane curves.

I am going to encomplex them in this talk.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.
curves and complexification

A generic immersion $S^1 \rightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity
curves and complexification

A generic immersion \(S^1 \rightarrow \mathbb{R}^2 \) is not assumed to have a complexification.

Require algebraicity

that is assume that the curve-image is defined by a polynomial equation
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification:
curves and complexification

A generic immersion $S^1 \looparrowright \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus,
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus,
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus,
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus, moduli,
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus, moduli,
curves and complexification

A generic immersion $S^1 \rightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus, moduli,
curves and complexification

A generic immersion $S^1 \rightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What's in a complex view?

• Geometry hidden in complexification: genus, moduli, type (of complex conjugation).

Type I: the set of real points divides the set of complex points into two connected components.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.

Type II: the set of real points does not divide the set of complex points.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.

Whitney number is related to complex asymptotes.
curves and complexification

A generic immersion $S^1 \looparrowright \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.

Arnold’s invariant J_- is related to the number of imaginary intersection points of complex halves.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.

Introduction

- Encomplex
- Curves
- curves and complexification

Whitney number

Writhe

Arnold invariants

Encomplexing J_-
A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?

• Geometry hidden in complexification: genus, moduli, type.
• Interaction between real and complex.
• Results on real curves inspired by results on curves with complexification.

Formula for J_-:

$$J_-(C) = 1 - \int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x).$$
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What’s in a complex view?
- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.
curves and complexification

A generic immersion $S^1 \hookrightarrow \mathbb{R}^2$ is not assumed to have a complexification. Require algebraicity, and you get complex points.

What’s in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.

Arnold’s strangeness of rational real algebraic curves.
curves and complexification

A generic immersion $S^1 \ni \mathbb{R}^2$ is not assumed to have a complexification.

Require algebraicity, and you get complex points.

What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.

The simplest complexification of curves are rational curves: genus zero, no moduli, polynomial parametrization.
Introduction

Whitney number
- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants

Encomplexing J
Whitney number

For an oriented smooth closed immersed curve C on plane
For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number.
For an oriented smooth closed immersed curve C on plane $w(C')$, Whitney number W is the rotation number of the velocity vector.
Whitney number

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number

= rotation number of the velocity vector
= degree of the Gauss map $C \rightarrow S^1$.

Arnold invariants

Encomplexing J.
Whitney number

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number

$= \text{rotation number of the velocity vector}$

$= \text{degree of the Gauss map } C \to S^1.$

Example.

$$w(C) = +2$$
Whitney number

For an oriented smooth closed immersed curve C on plane $w(C)$, *Whitney number*

= rotation number of the velocity vector

= degree of the Gauss map $C \rightarrow S^1$.

Example.

\[w(C) = +3 \]
For an oriented smooth closed immersed curve C on plane $w(C')$, *Whitney number*

$w(C') = 0$
Whitney number

For an oriented smooth closed immersed curve C on plane \mathbb{R}^2, Whitney number $w(C)$, Whitney number

$= \text{rotation number of the velocity vector}$

$= \text{degree of the Gauss map } C \to S^1.$

Whitney Theorem.

$w(C)$ determines $C : S^1 \rightarrow \mathbb{R}^2$ up to regular homotopy.
Consider irreducible plane affine real algebraic curves A such that
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact, real branches don’t go to infinity!
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s, $\mathbb{R}A$ generically immersed.
Consider irreducible plane affine real algebraic curves A such that:

- $\mathcal{R}A$ is compact,
- all real singularities are \times's,
- $\mathcal{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- $\mathcal{R}A$ is compact,
- all real singularities are \times's,
- $\mathcal{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

...to be naturally oriented...
Consider irreducible plane affine real algebraic curves A such that:

- $\mathcal{R}A$ is compact,
- all real singularities are \times’s,
- $\mathcal{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

to be naturally oriented
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- RA is compact,
- all real singularities are \times's,
- RA is zero homologous modulo 2 in $CA \subset CP^2$

If RA is zero homologous in CA then A is said to be of type I.

(Felix Klein)
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times's,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

If $\mathbb{R}A$ is zero homologous in $\mathbb{C}A$ then A is said to be of type I.

(Felix Klein)

Any real rational curve with infinite $\mathbb{R}A$ is of type I.
Consider irreducible plane affine real algebraic curves A such that:

- RA is compact,
- all real singularities are \mathbf{X}’s,
- RA is zero homologous modulo 2 in $CA \subset CP^2$

If RA is zero homologous in CA then A is said to be of type I.
(Felix Klein)

Any normal A of genus g such that RA has $g + 1$ components is of type I.
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- $\mathbb{R}A$ is compact,
- all real singularities are \times’s,
- $\mathbb{R}A$ is zero homologous modulo 2 in $\mathbb{C}A \subset \mathbb{C}P^2$

If $\mathbb{R}A$ is zero homologous in $\mathbb{C}A$ then A is said to be of type I.

(Felix Klein)

Type I implies:

$$b_0(\mathbb{R} \text{ normalized } A) \equiv \text{genus}(A) + 1 \mod 2.$$
choice of curves

Consider irreducible plane affine real algebraic curves A such that:

- R_A is compact,
- all real singularities are \times’s,
- R_A is zero homologous modulo 2 in $CA \subset \mathbb{C}P^2$

If R_A is zero homologous in CA then A is said to be of type I. (Felix Klein)

The orientation of R_A induced from $CA_+ \subset CA$ with $\partial CA_+ = R_A$ is called a complex orientation. (V.A.Rokhlin)
Consider irreducible plane affine real algebraic curves A such that:

- RA is compact,
- all real singularities are \times's,
- RA is zero homologous modulo 2 in $CA \subset CP^2$

If RA is zero homologous in CA then A is said to be of type I. (Felix Klein)

The orientation of RA induced from $CA_+ \subset CA$ with $\partial CA_+ = RA$ is called a complex orientation. (V.A.Rokhlin)

Denote RA equipped with the orientation induced from $CA_+ \subset CA$ by RA_+.
<table>
<thead>
<tr>
<th>Introduction</th>
<th>Arnold invariants</th>
<th>Whitney number</th>
<th>proof of Theorem 1</th>
<th>improving Whitney number</th>
<th>choice of curves in terms of asymptotes</th>
<th>complex line at infinity</th>
</tr>
</thead>
</table>

$$\mathbb{C}P^1_\infty = \mathbb{C}P^2 \setminus \mathbb{C}^2.$$
complex line at infinity

\[\mathbb{C}P^1_\infty = \mathbb{C}P^2 \setminus \mathbb{C}^2, \quad \mathbb{R}P^1_\infty = \mathbb{R}P^2 \setminus \mathbb{R}^2 \]
complex line at infinity

\[\mathbb{C}P^1 = \mathbb{C}P^2 \setminus \mathbb{C}^2, \quad \mathbb{R}P^1 = \mathbb{R}P^2 \setminus \mathbb{R}^2 \]

Denote \(\mathbb{R}P^1_\infty \) equipped with the orientation induced by the standard orientation of \(\mathbb{R}^2 \) by \(\mathbb{R}P^1_\infty^+ \).

say, counter-clockwise orientation of \(\mathbb{R}^2 \).
complex line at infinity

\[\mathbb{C}P^1_\infty = \mathbb{C}P^2 \setminus \mathbb{C}^2, \quad \mathbb{R}P^1_\infty = \mathbb{R}P^2 \setminus \mathbb{R}^2 \]

Denote \(\mathbb{R}P^1_\infty \) equipped with the orientation induced by the standard orientation of \(\mathbb{R}^2 \) by \(\mathbb{R}P^1_\infty^+ \).

Denote by \(\mathbb{C}P^1_\infty^+ \) the hemisphere of \(\mathbb{C}P^1_\infty \) with \(\partial \mathbb{C}P^1_\infty^+ = \mathbb{R}P^1_\infty^+ \).
complex line at infinity

\[\mathbb{C}P^1_{\infty} = \mathbb{C}P^2 \setminus \mathbb{C}^2, \quad \mathbb{R}P^1_{\infty} = \mathbb{R}P^2 \setminus \mathbb{R}^2 \]

Denote \(\mathbb{R}P^1_{\infty} \) equipped with the orientation induced by the standard orientation of \(\mathbb{R}^2 \) by \(\mathbb{R}P^1_{\infty+} \).

Denote by \(\mathbb{C}P^1_{\infty+} \) the hemisphere of \(\mathbb{C}P^1_{\infty} \) with

\[\partial \mathbb{C}P^1_{\infty+} = \mathbb{R}P^1_{\infty+}. \]
Theorem 1

Let A be a plane affine real algebraic curve of type I,
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that

- $\mathcal{R}A$ is compact,
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that

- $\mathcal{R}A$ is compact,
- all real singularities are \times's.
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R}A$ is compact,
- all real singularities are \times's.

Then $w(\mathbb{R}A_+) = CA_+ \circ CP^1_{\infty+} - CA_+ \circ CP^1_{\infty-}$.
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R}A$ is compact,
- all real singularities are \times's.

Then $w(\mathbb{R}A_+) = CA_+ \circ \mathbb{C}P^1_{\infty+} - CA_+ \circ \mathbb{C}P^1_{\infty-}$.

Corollary. $|w(\mathbb{R}A)| \leq \frac{1}{2} \deg A.$
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that
- $\mathbb{R}A$ is compact,
- all real singularities are \times’s.

Then $w(\mathbb{R}A_+) = CA_+ \circ CP^1_{\infty+} - CA_+ \circ CP^1_{\infty-}$.

Corollary. $|w(\mathbb{R}A)| \leq \frac{1}{2} \deg A$.

Indeed, $|w(\mathbb{R}A)| = |CA_+ \circ CP^1_{\infty+} - CA_+ \circ CP^1_{\infty-}|$
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that
- $\mathbb{R}A$ is compact,
- all real singularities are \times's.

Then $w(\mathbb{R}A_+) = CA_+ \circ \mathbb{C}P^1_{\infty+} - CA_+ \circ \mathbb{C}P^1_{\infty-}$.

Corollary. $|w(\mathbb{R}A)| \leq \frac{1}{2} \deg A$.

Indeed, $|w(\mathbb{R}A)| = |CA_+ \circ \mathbb{C}P^1_{\infty+} - CA_+ \circ \mathbb{C}P^1_{\infty-}|$

$\leq |CA_+ \circ \mathbb{C}P^1_{\infty+} + CA_+ \circ \mathbb{C}P^1_{\infty-}|$
Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R}A$ is compact,
- all real singularities are \times's.

Then $w(\mathbb{R}A_+) = CA_+ \circ CP_{\infty+} - CA_+ \circ CP_{\infty-}$.

Corollary. $|w(\mathbb{R}A)| \leq \frac{1}{2} \deg A$.

Indeed, $|w(\mathbb{R}A)| = |CA_+ \circ CP_{\infty+} - CA_+ \circ CP_{\infty-}|$

$\leq |CA_+ \circ CP_{\infty+} + CA_+ \circ CP_{\infty-}|$

$= |CA_+ \circ CP_{\infty}|$
Theorem 1

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R}A$ is compact,
- all real singularities are \times's.

Then $w(\mathbb{R}A_{+}) = CA_{+} \circ CP^{1}_{\infty+} - CA_{+} \circ CP^{1}_{\infty-}$.

Corollary. $|w(\mathbb{R}A)| \leq \frac{1}{2} \deg A$.

Indeed, $|w(\mathbb{R}A)| = |CA_{+} \circ CP^{1}_{\infty+} - CA_{+} \circ CP^{1}_{\infty-}|$

$\leq |CA_{+} \circ CP^{1}_{\infty+} + CA_{+} \circ CP^{1}_{\infty-}|$

$= |CA_{+} \circ CP^{1}_{\infty}|$

$= \frac{1}{2} \deg A$.
in terms of asymptotes

If $CA \cap \mathbb{CP}^1$, then each point of $CA \cap \mathbb{CP}^1$ corresponds to an asymptote of $CA \cap \mathbb{C}^2$.
in terms of asymptotes

If $\mathbb{C} A \cap \mathbb{C} P^1$, then each point of $\mathbb{C} A \cap \mathbb{C} P^1$ corresponds to an asymptote of $\mathbb{C} A \cap \mathbb{C}^2$. Asymptotes are imaginary.
in terms of asymptotes

If $\mathcal{C}A \cap \mathbb{C}P^1$, then each point of $\mathcal{C}A \cap \mathbb{C}P^1$ corresponds to an asymptote of $\mathcal{C}A \cap \mathbb{C}^2$.

Asymptotes are imaginary.

An imaginary line disjoint with $\mathbb{R}P^1_\infty$ meets either $\mathbb{C}P^1_\infty+$ or $\mathbb{C}P^1_\infty-$.
in terms of asymptotes

If $CA \cap CP^1_\infty$, then each point of $CA \cap CP^1_\infty$ corresponds to an asymptote of $CA \cap C^2$. Asymptotes are imaginary. An imaginary line disjoint with RP^1_∞ meets either $CP^1_\infty^+$ or $CP^1_\infty^-$. Theorem 1 says:

$w(RA_+)$ equals the difference between the numbers of the asymptotes of $CA_+ \cap C^2$ of these two sorts.
near a kiss

Lemma
near a kiss

Lemma (Imaginary intersection after a real kiss)
Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I,
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with R_A^+ and R_B^+ almost kissing each other near a point p.
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with RA_+ and RB_+ almost kissing each other near a point p.

\[
RA_+ \quad \overset{p}{\quad} \quad RB_+
\]
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with $\mathbb{R}A_+$ and $\mathbb{R}B_+$ almost kissing each other near a point p.

Then $\mathbb{C}A_+$ meets $\mathbb{C}B_+$ at an imaginary point near p.
Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with R_A^+ and R_B^+ almost kissing each other near a point p.

Then C_A^+ meets C_B^+ at an imaginary point near p, while C_A^- does not.
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with $\mathbb{R}A_+$ and $\mathbb{R}B_+$ almost kissing each other near a point p.

Then $\mathcal{C}A_+$ meets $\mathcal{C}B_+$ at an imaginary point near p, while $\mathcal{C}A_-$ does not.

Proof. Look at the scene *complexly* from the left hand side.
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with R_A^+ and R_B^+ almost kissing each other near a point p.

Then C_A^+ meets C_B^+ at an imaginary point near p, while C_A^- does not.

Proof. Look at the scene complexly from the left hand side.
Lemma (Imaginary intersection after a real kiss)

Let A and B be curves of type I, with RA_+ and RB_+ almost kissing each other near a point p.

\[
\begin{align*}
&\text{Then } CA_+ \text{ meets } CB_+ \text{ at an imaginary point near } p, \\
&\text{while } CA_- \text{ does not.}
\end{align*}
\]

Proof. Look at the scene complexly from the left hand side.

Pictures:
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P^1 \) and
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_1^∞ and rotate oriented real line L around p.
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P_1^1 \) and rotate oriented real line \(L \) around \(p \).
(In \(\mathbb{R}^2 \) rotation around a point at infinity is a translation.)
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $\mathcal{C}A_+ \circ \mathcal{C}L_+ - \mathcal{C}A_+ \circ \mathcal{C}L_-$. We consider only imaginary intersection points.
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P^1_{\infty} \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).

We consider only imaginary intersection points.

(Although we start with \(RL = \mathbb{R}P^1_{\infty} \) and \(\mathbb{R}P^1_{\infty} \cap RA = \emptyset \), \(RL \) sweeps the whole \(RA \) while moving).
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $CA_+ \circ CL_+ - CA_+ \circ CL_-$. $CA_+ \circ CL_+ - CA_+ \circ CL_-$ changes, when RL gets tangent to RA.
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_1^∞ and rotate oriented real line L around p counting changes of $CA_+ \circ CL_+ - CA_+ \circ CL_-$. $CA_+ \circ CL_+ - CA_+ \circ CL_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \to S^1$.
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \). \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \to S^1 \).

Consider, for example, the following curve:
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-$. $\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \rightarrow S^1$.

$\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+) = -1,$
$\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_-) = 0,$
$\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-) = -1$

$ldeg = +1$
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}^1_{\infty} \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \). \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \to S^1 \).

\[
\Delta(CA_+ \circ CL_+) = -1,
\Delta(CA_+ \circ CL_-) = 0,
\Delta(CA_+ \circ CL_+ - CA_+ \circ CL_-) = -1
\]

\(ldeg = +1 \)
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_- \). \(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \to S^1 \).

\[
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+) = 0, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_-) = -1, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-) = +1 \\
ldeg = -1
\]
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}^1_{\infty} \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).
\(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \).
At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

\[
\Delta(CA_+ \circ CL_+) = 0,
\Delta(CA_+ \circ CL_-) = -1,
\Delta(CA_+ \circ CL_+ - CA_+ \circ CL_-) = +1
\]
\(ldeg = -1 \)
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_- \). \(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

\[
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+) = +1, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_-) = 0, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-) = +1 \\
ldeg = -1
\]
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $CA_+ \circ CL_+ - CA_+ \circ CL_-$. $CA_+ \circ CL_+ - CA_+ \circ CL_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \rightarrow S^1$.

$\Delta(\text{CA}_+ \circ \text{CL}_+) = +1$,
$\Delta(\text{CA}_+ \circ \text{CL}_-) = 0$,
$\Delta(\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_-) = +1$
$ldeg = -1$
proof of Theorem 1

Choose a generic point p on $\mathbb{R}P^1_\infty$ and rotate oriented real line L around p counting changes of $\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_-$. $\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \to S^1$.

$\Delta(\text{CA}_+ \circ \text{CL}_+) = 0$,
$\Delta(\text{CA}_+ \circ \text{CL}_-) = +1$,
$\Delta(\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_-) = -1$

$ldeg = +1$
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $CA_+ \circ CL_+ - CA_+ \circ CL_-$. $CA_+ \circ CL_+ - CA_+ \circ CL_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \rightarrow S^1$.

$\Delta(CA_+ \circ CL_+) = 0$,

$\Delta(CA_+ \circ CL_-) = +1$,

$\Delta(CA_+ \circ CL_+ - CA_+ \circ CL_-) = -1$

$ldeg = +1$
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}^1_\infty \) and rotate oriented real line \(L \) around \(p \) counting changes of \(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_- \).

At these moments, evaluate also local degree \(ldeg \) of Gauss map \(\mathbb{RA} \rightarrow S^1 \).

\[
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+) = 0, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_-) = +1, \\
\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-) = -1 \\
ldeg = +1
\]

At each of the moments, \(\Delta(\mathcal{CA}_+ \circ \mathcal{CL}_+ - \mathcal{CA}_+ \circ \mathcal{CL}_-) = -ldeg \).
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P^1_\infty \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).
\(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \).
At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \to S^1 \).

\[
\Delta(CA_+ \circ CL_+) = 0,
\Delta(CA_+ \circ CL_-) = +1,
\Delta(CA_+ \circ CL_+ - CA_+ \circ CL_-) = -1
\]
\(ldeg = +1 \)

At each of the moments, \(\Delta(CA_+ \circ CL_+ - CA_+ \circ CL_-) = -ldeg \).
The full change of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) is \(-2w(\mathcal{RA}) \), since we have summed up \(-ldeg \) over the preimages of 2 points.
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_- \). \(\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

The full change of \(\text{CA}_+ \circ \text{CL}_+ - \text{CA}_+ \circ \text{CL}_- \) is \(-2w(RA)\).
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).

\(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

The full change of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) is \(-2w(\mathbb{RA})\).

On the other hand, the full change is

\[-2(CA_+ \circ CP^1_{\infty+} - CA_+ \circ CP^1_{\infty-})\]
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \). \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \to S^1 \).

The full change of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) is \(-2w(RA)\).

On the other hand, the full change is

\[
-2(CA_+ \circ CP_\infty^1_+ - CA_+ \circ CP_\infty^1_-)
\]

Indeed, we have turned \(\mathbb{RP}_\infty^1 \) by \(\pi \),
proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{RP}_\infty^1 \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \).

\(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \).

At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

The full change of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) is \(-2w(RA) \).

On the other hand, the full change is
\[-2(CA_+ \circ CP_{\infty_+}^1 - CA_+ \circ CP_{\infty_-}^1)\]

Indeed, we have turned \(\mathbb{RP}_\infty^1 \) by \(\pi \), its orientation has reversed,
proof of Theorem 1

Choose a generic point p on \mathbb{RP}_∞^1 and rotate oriented real line L around p counting changes of $CA_+ \circ CL_+ - CA_+ \circ CL_-$. $CA_+ \circ CL_+ - CA_+ \circ CL_-$ changes, when RL gets tangent to RA. At these moments, evaluate also local degree $ldeg$ of Gauss map $RA \to S^1$.

The full change of $CA_+ \circ CL_+ - CA_+ \circ CL_-$ is $-2w(RA)$. On the other hand, the full change is

$$-2(\text{CA}_+ \circ CP_{\infty+}^1 - \text{CA}_+ \circ CP_{\infty-}^1)$$

Indeed, we have turned \mathbb{RP}_∞^1 by π, its orientation has reversed, and $CA_+ \circ CL_+ - CA_+ \circ CL_-$ evolved from $\text{CA}_+ \circ CP_{\infty+}^1 - \text{CA}_+ \circ CP_{\infty-}^1$ to $\text{CA}_+ \circ CP_{\infty-}^1 - \text{CA}_+ \circ CP_{\infty+}^1 = -(\text{CA}_+ \circ CP_{\infty+}^1 - \text{CA}_+ \circ CP_{\infty-}^1)$.

proof of Theorem 1

Choose a generic point \(p \) on \(\mathbb{R}P^1_\infty \) and rotate oriented real line \(L \) around \(p \) counting changes of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \). \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) changes, when \(RL \) gets tangent to \(RA \). At these moments, evaluate also local degree \(ldeg \) of Gauss map \(RA \rightarrow S^1 \).

The full change of \(CA_+ \circ CL_+ - CA_+ \circ CL_- \) is \(-2w(RA)\).

On the other hand, the full change is
\[
-2(CA_+ \circ CP^1_\infty_+ - CA_+ \circ CP^1_\infty_-)
\]
Thus,
\[
w(RA) = CA_+ \circ CP^1_\infty_+ - CA_+ \circ CP^1_\infty_-
\]
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself:
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \(C^1 \), but \(C^0 \).
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. **It takes two, to become imaginary!**
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R}A$ with imaginary complex conjugate branches.
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches.
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1.
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points,
The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R}A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w(\mathbb{R}A_+)$.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C)$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \mathbb{RA} with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w(\mathbb{RA}_+)$. Only one of the branches passing through it, belongs to \mathbb{CA}_+.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not C^1, but C^0. $w(C')$ changes by 1, when C moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R}A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w(\mathbb{R}A_+)$. Only one of the branches passing through it, belongs to $\mathbb{C}A_+$. Its intersection number with \mathbb{R}^2 is to be added to $w(\mathbb{R}A_+)$.
improving Whitney number

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \(C^1 \), but \(C^0 \). \(w(C) \) changes by 1, when \(C \) moves like that:

However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on \(RA \) with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to \(w(RA_+) \). Only one of the branches passing through it, belongs to \(CA_+ \). Its intersection number with \(\mathbb{R}^2 \) is to be added to \(w(RA_+) \). Improved \(w(RA_+) \) is more invariant, and Theorem 1 holds true for it.
Writhe

• wrihte of a knot diagram
• encomplexed wrihte

Arnold invariants

Encomplexing J
writhe of a knot diagram

At a crossing an oriented link diagram looks either like this: ✻
writhe of a knot diagram

At a crossing an oriented link diagram looks either like this: ⤡ or like that: ⤣.
writhe of a knot diagram

At a crossing an oriented link diagram looks either like this: \(\xleftarrow{\xrightarrow{}}\) or like that: \(\xleftarrow{\xrightarrow{}}\).

(Local) writhe: \(w(\xleftarrow{\xrightarrow{}}) = +1\), \(w(\xleftarrow{\xrightarrow{}}) = -1\).
writhe of a knot diagram

At a crossing an oriented link diagram looks either like this: \(\frown \) or like that: \(\frown \).

\((Local)\text{ writhe}:\) \(w(\frown) = +1, \ w(\frown) = -1. \)

\text{Writhe} of an oriented link diagram is the sum of local writhes over all crossings.
writhe of a knot diagram

At a crossing an oriented link diagram looks either like this: \(\heartsuit \) or like that: \(\bowtie \).

(Local) writhe: \(w(\heartsuit) = +1 \), \(w(\bowtie) = -1 \).

Writhe of an oriented link diagram is the sum of local writhes over all crossings. It is not invariant: the first Reidemeister move changes it by one.
encomplexed writhe

Introduction

Whitney number

Writhe
- writhe of a knot diagram
 - encomplexed writhe

Arnold invariants

Encomplexing J_-

For an algebraic link the move cannot happen.
For an algebraic link the move cannot happen.
The first real algebraic Reidemeister move looks like that:
For an algebraic link the move
cannot happen.

The first real algebraic Reidemeister move looks like that:
A crossing turns into a solitary real crossing of
two complex conjugate imaginary branches.
encomplexed writhe

For an algebraic link the move

\[
\begin{array}{c}
\rightarrow \\
\downarrow
\end{array}
\]

cannot happen.

The first real algebraic Reidemeister move looks like that:

A crossing turns into a solitary real crossing of two complex conjugate imaginary branches.

There is a writhe of a solitary crossing such that the total writhe does not change.
Arnold invariants

- genericity of immersions
- main strata of discriminant
- perestroikas
- Arnold's invariants

Encomplexing J
genericity of immersions

An immersion $S^1 \looparrowright \mathbb{R}^2$ is \textit{generic}, if it has neither triple point, nor a point of self-tangency.
genericity of immersions

An immersion $S^1 \hookrightarrow \mathbb{R}^2$ is \textit{generic}, if has neither triple point, nor a point of self-tangency. It has \textbf{only ordinary double points} of transversal self-intersection.
genericity of immersions

An immersion \(S^1 \hookrightarrow \mathbb{R}^2 \) is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.
genericity of immersions

An immersion $S^1 \hookrightarrow \mathbb{R}^2$ is *generic*, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is *ordinary*, if the branches at the point are transversal to each other.

A self-tangency point of an immersion is *ordinary*, if the branches have distinct curvatures at the point.
An immersion $S^1 \to \mathbb{R}^2$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.

A self-tangency point of an immersion is ordinary, if the branches have distinct curvatures at the point.

A self-tangency point of an immersion is called direct, if the velocity vectors are pointing the same direction;
genericity of immersions

An immersion $S^1 \hookrightarrow \mathbb{R}^2$ is *generic*, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is *ordinary*, if the branches at the point are transversal to each other.

A self-tangency point of an immersion is *ordinary*, if the branches have distinct curvatures at the point.

A self-tangency point of an immersion is called *direct*, if the velocity vectors are pointing the same direction; otherwise it is *inverse*.
An immersion \(S^1 \rightarrow \mathbb{R}^2 \) is *generic*, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is *ordinary*, if the branches at the point are transversal to each other.

A self-tangency point of an immersion is *ordinary*, if the branches have distinct curvatures at the point.

A self-tangency point of an immersion is called *direct*, if the velocity vectors are pointing the same direction; otherwise it is *inverse*.

All non-generic immersions form a *discriminant hypersurface*, or just discriminant in the space of all immersions.
main strata of discriminant

The discriminant is stratified.
main strata of discriminant

The discriminant is stratified. There are 3 main open strata:
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points,
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point,
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points,
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point,
The discriminant is stratified. There are 3 main strata:

- The set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- The set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions which have only one triple point,
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions which have only one triple point, this point is ordinary,
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

• the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.

• the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.

• the set TP of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.
main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.

A generic path in the space of immersions (i.e. a generic regular homotopy)
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.

A generic path in the space of immersions intersects the discriminant in a finite number of points,
The discriminant is stratified. There are 3 main strata:

- the set ST_+ of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set ST_- of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set TP of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.

A generic path in the space of immersions intersects the discriminant in a finite number of points, these points belong to the main strata.
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

Direct self-tangency perestrojka. Passing through ST_+.
perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

Direct self-tangency perestrojka. Passing through ST_+.
Changes experienced by an immersion when it goes through one of the strata were called \textit{perestrojkas} by Arnold.

Direct self-tangency perestrojka. Passing through ST_+.
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

Direct self-tangency perestrojka. Passing through ST_+

Inverse self-tangency perestrojka. Passing through ST_-
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

- **Direct self-tangency perestrojka.** Passing through ST_+

- **Inverse self-tangency perestrojka.** Passing through ST_-
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

Direct self-tangency perestrojka. Passing through ST_+

Inverse self-tangency perestrojka. Passing through ST_-
Changes experienced by an immersion when it goes through one of the strata were called *perestrojkas* by Arnold.

- **Direct self-tangency perestrojka.** Passing through $S T_+$
- **Inverse self-tangency perestrojka.** Passing through $S T_-$
- **Triple point perestrojka.** Passing through $T P$
Changes experienced by an immersion when it goes through one of the strata were called \textit{perestrojkas} by Arnold.

Direct self-tangency perestrojka. Passing through ST_+

Inverse self-tangency perestrojka. Passing through ST_-

Triple point perestrojka. Passing through TP
Changes experienced by an immersion when it goes through one of the strata were called *perestrojka* by Arnold.

Direct self-tangency perestrojka. Passing through ST_+

Inverse self-tangency perestrojka. Passing through ST_-

Triple point perestrojka. Passing through TP
Changes experienced by an immersion when it goes through one of the strata were called \textit{perestrojkas} by Arnold.

Direct self-tangency perestrojka. Passing through ST_+.

Inverse self-tangency perestrojka. Passing through ST_-.

Triple point perestrojka. Passing through TP.
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestroikas:
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestrojkas:

<table>
<thead>
<tr>
<th>perestrojka</th>
<th>J_+</th>
<th>J_-</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct self-tangency</td>
<td>$+2$</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestrojkas:

<table>
<thead>
<tr>
<th>perestrojka</th>
<th>J_+</th>
<th>J_-</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct self-tangency</td>
<td>+2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inverse self-tangency</td>
<td>0</td>
<td>−2</td>
<td>0</td>
</tr>
</tbody>
</table>
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestrojkas:

<table>
<thead>
<tr>
<th>perestrojka</th>
<th>J_+</th>
<th>J_-</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct self-tangency</td>
<td>+2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inverse self-tangency</td>
<td>0</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>triple point</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestroikas:

<table>
<thead>
<tr>
<th>perestrojka</th>
<th>J_+</th>
<th>J_-</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct self-tangency</td>
<td>+2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inverse self-tangency</td>
<td>0</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>triple point</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

- For curves K_0, K_1, K_2, K_3, K_4, …

the invariants take the following values:
Arnold’s invariants

For generic $C : S^1 \hookrightarrow \mathbb{R}^2$, Arnold introduced numerical characteristics $J^+(C)$, $J^-(C)$ and $St(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestrojkas:

<table>
<thead>
<tr>
<th>perestrojka</th>
<th>J_+</th>
<th>J_-</th>
<th>St</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct self-tangency</td>
<td>+2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>inverse self-tangency</td>
<td>0</td>
<td>−2</td>
<td>0</td>
</tr>
<tr>
<td>triple point</td>
<td>0</td>
<td>0</td>
<td>+1</td>
</tr>
</tbody>
</table>

$J^+(K_0) = 0$, $J^+(K_{i+1}) = −2i$ ($i = 0, 1, \ldots$);
$J^−(K_0) = −1$, $J^−(K_{i+1}) = −3i$ ($i = 0, 1, \ldots$);
$St(K_0) = 0$, $St(K_{i+1}) = i$ ($i = 0, 1, \ldots$).
Introduction

Whitney number

Writhe

Arnold invariants

Encomplexing J_-
- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation formula
- intersection of complex halves
- encomplexing J_-
- back to immersed circles
- J_+
- last slide

Encomplexing J_-
choice of curves

Consider irreducible real curves of degree d
Consider irreducible real plane projective curves of degree d.

choice of curves
choice of curves

Consider irreducible real plane projective curves of degree d, genus g
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I
Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points.
Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations. A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:
Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches
Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches
- solitary real double point with two imaginary conjugate branches

isolated point in $\mathbb{R}A$, local normal form $x^2 + y^2 = 0$.
choice of curves

Consider irreducible real plane projective curves of degree \(d \), genus \(g \) and type I, equipped with complex orientations.

A generic curve \(A \) of this kind has only non-degenerate double singular points, they can be of the following 4 types:
- real double points with two real branches \(\times \),
- solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of \(CA_+ \) determines a local orientation of \(\mathbb{RP}^2 \).
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches x,
- solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of $C A_+$ determines a local orientation of $\mathbb{R}P^2$ such that $\mathbb{R}P^2$ equipped with this local orientation intersects $C A_+$ at this point with intersection number $+1$.
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches \times,
- solitary real double point with two imaginary conjugate branches.

At a solitary ordinary double point, the choice of $\mathbb{C}A_+$ determines a local orientation of $\mathbb{R}P^2$.

Another way to get the local orientation: perturb the curve keeping type I and converting the solitary point into an oval.
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:
- real double points with two real branches \times,
- solitary real double point with two imaginary conjugate branches,

At a solitary ordinary double point, the choice of $\mathcal{C}A_+$ determines a local orientation of $\mathbb{R}P^2$.

Another way to get the local orientation: perturb the curve keeping type I and converting the solitary point into an oval. The complex orientation of this oval gives the local orientation of $\mathbb{R}P^2$.
Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches \times,
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of \mathcal{CA}_+,
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches \times,
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of CA_+,
- imaginary intersection point of CA_+ and CA_-.
choice of curves

Consider irreducible real plane projective curves of degree d, genus g and type I, equipped with complex orientations.

A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:
- real double points with two real branches \times,
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of CA_+,
- imaginary intersection point of CA_+ and CA_-. Denote the number of the latter points by σ.
new perestrojcas

Generic RA experiences perestrojcas considered above plus the following three new ones.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.
new perestrojkas

Generic $\mathbb{R}A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.
new perestrojkas

Generic \mathbb{RA} experiences perestrojkas considered above plus the following three new ones.

- Solitary self-tangency perestrojka.
- Triple point perestrojka with two imaginary branches.
- Cusp perestrojka.

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation formula
- intersection of complex halves
- encomplexing J_-
- back to immersed circles
- J_+
- last slide
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

- Solitary self-tangency perestrojka.
- Triple point perestrojka with two imaginary branches.
- Cusp perestrojka.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

- Solitary self-tangency perestrojka.
- Triple point perestrojka with two imaginary branches.
- Cusp perestrojka.
new perestrojkas

Generic RA experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.
Smoothing of curve

Smoothen a generic curve of type I according to the complex orientation: $A \mapsto \tilde{A}$
Smoothing of curve

Smoothen a generic curve of type I according to the complex orientation: $A \leftrightarrow \tilde{A}$
Smoothing of curve

Smoothen a generic curve of type I according to the complex orientation: $\mathcal{A} \mapsto \tilde{\mathcal{A}}$

\[\longleftrightarrow \]
Smoothing of curve

Smoothen a generic curve of type I according to the complex orientation: $A \leftrightarrow \tilde{A}$
Smoothing of curve

Smoothen a generic curve of type I according to the complex orientation: $A \leftrightarrow \tilde{A}$
Index of point

For oriented closed curve $C \subset \mathbb{R}P^2$ and $x \in \mathbb{R}P^2 \setminus C$,
Index of point

For oriented closed curve \(C \subset \mathbb{R}P^2 \) and \(x \in \mathbb{R}P^2 \setminus C \), define non-negative integer or half-integer \(\text{ind}_C(x) \):
Index of point

For oriented closed curve $C \subset \mathbb{R}P^2$ and $x \in \mathbb{R}P^2 \setminus C$, define non-negative integer or half-integer $\text{ind}_C(x)$: C realizes $2 \cdot \text{ind}_C(x)$-fold generator of $H_1(\mathbb{R}P^2 \setminus \{x\}) = \mathbb{Z}$.
For oriented closed curve $C \subset \mathbb{R}P^2$ and $x \in \mathbb{R}P^2 \setminus C$, define non-negative integer or half-integer $\text{ind}_C(x)$:

C realizes $2 \cdot \text{ind}_C(x)$-fold generator of $H_1(\mathbb{R}P^2 \setminus \{x\}) = \mathbb{Z}$.

Examples:

1. $\text{ind}_{\mathbb{R}P^1}(x) = \frac{1}{2}$
Index of point

For oriented closed curve $C \subset \mathbb{R}P^2$ and $x \in \mathbb{R}P^2 \setminus C$, define non-negative integer or half-integer $\text{ind}_C(x)$:

C realizes $2 \cdot \text{ind}_C(x)$-fold generator of $H_1(\mathbb{R}P^2 \setminus \{x\}) = \mathbb{Z}$.

Examples:

1. $\text{ind}_{\mathbb{R}P^1}(x) = \frac{1}{2}$

2. If C is a circle $x_1^2 + x_2^2 = x_0^2$ and x is a point in the disk bounded by C, then $\text{ind}_C(x) = 1$ independently on orientation of C.
Index of point

For oriented closed curve $C \subset \mathbb{R}P^2$ and $x \in \mathbb{R}P^2 \setminus C$, define non-negative integer or half-integer $\text{ind}_C(x)$:

C realizes $2 \cdot \text{ind}_C(x)$-fold generator of $H_1(\mathbb{R}P^2 \setminus \{x\}) = \mathbb{Z}$.

Examples:

1. $\text{ind}_{\mathbb{R}P^1}(x) = \frac{1}{2}$
2. If C is a circle $x_1^2 + x_2^2 = x_0^2$ and x is a point in the disk bounded by C, then $\text{ind}_C(x) = 1$.
3. If C consists of two concentric circles, and x is their common center, then $\text{ind}_C(x)$ is either 0 or 2.
Let A be generic real plane projective algebraic curve of degree d and type I.
Complex orientation formula

Let A be generic real plane projective algebraic curve of degree d and type I.

Then

$$\frac{d^2}{4} = \sigma + \int_{\mathbb{RP}^2 \setminus \widetilde{RA}} (\text{ind}_{RA}(x))^2 \, d\chi(x)$$
Complex orientation formula

Let A be generic real plane projective algebraic curve of degree d and type I. Then

$$\frac{d^2}{4} = \sigma + \int_{\mathbb{R}P^2 \setminus \tilde{RA}} \left(\text{ind}_{\mathbb{R}A}(x) \right)^2 d\chi(x)$$

here σ is the number of imaginary double points of A, where $\mathbb{C}A_+$ and $\mathbb{C}A_-$ meet,
Complex orientation formula

Let A be generic real plane projective algebraic curve of degree d and type I.

Then

$$\frac{d^2}{4} = \sigma + \int_{\mathbb{R}P^2 \setminus \tilde{R}A} (\text{ind}_{\mathbb{R}A}(x))^2 \, d\chi(x)$$

here σ is the number of imaginary double points of A, where $\mathbb{C}A_+$ and $\mathbb{C}A_-$ meet, and the integral is against the Euler characteristic.
Complex orientation formula

Let \(A \) be generic real plane projective algebraic curve of degree \(d \) and type I.

Then

\[
\frac{d^2}{4} = \sigma + \int_{\mathbb{R}P^2 \setminus \tilde{\mathbb{R}}A} (\text{ind}_{\mathbb{R}A}(x))^2 d\chi(x)
\]

here \(\sigma \) is the number of imaginary double points of \(A \), where \(\mathbb{C}A_+ \) and \(\mathbb{C}A_- \) meet, and the integral is against the Euler characteristic.

Integral \(\int f(x) \, d\chi(x) \) is defined for \(f \) which is a finite linear combination of characteristic functions,
Complex orientation formula

Let \(A \) be generic real plane projective algebraic curve of degree \(d \) and type I.

Then

\[
\frac{d^2}{4} = \sigma + \int_{\mathbb{R}P^2 \setminus \mathbb{R}A} (\text{ind}_{\mathbb{R}A}(x))^2 \, d\chi(x)
\]

here \(\sigma \) is the number of imaginary double points of \(A \), where \(\mathbb{C}A_+ \) and \(\mathbb{C}A_- \) meet, and the integral is against the Euler characteristic.

Integral \(\int f(x) \, d\chi(x) \) is defined for \(f \) which is a finite linear combination of characteristic functions,

\[
f = \sum_{i=1}^{r} \lambda_i \mathbb{1}_{S_i},
\]

by formula
Complex orientation formula

Let A be generic real plane projective algebraic curve of degree d and type I.

Then

$$\frac{d^2}{4} = \sigma + \int_{\mathbb{R}P^2 \setminus \mathcal{R}A} (\text{ind}_{\mathcal{R}A}(x))^2 \, d\chi(x)$$

here σ is the number of imaginary double points of A, where $\mathcal{C}A_+$ and $\mathcal{C}A_-$ meet, and the integral is against the Euler characteristic.

Integral $\int f(x) \, d\chi(x)$ is defined for f which is a finite linear combination of characteristic functions,

$$f = \sum_{i=1}^{r} \lambda_i \mathbb{1}_{S_i},$$

by formula

$$\int f(x) \, d\chi(x) = \sum_{i=1}^{r} \lambda_i \chi(S_i).$$
Denote by σ the number of imaginary intersection points of CA_+ and CA_- and study its behavior under perestrojkas.
intersection of complex halves

Denote by σ the number of imaginary intersection points of $\mathcal{C}A_+$ and $\mathcal{C}A_-$ and study its behavior under perestroikas.

σ does not change.
Denote by σ the number of imaginary intersection points of $\mathcal{C}A_+$ and $\mathcal{C}A_-$ and study its behavior under perestrojkas.

σ does not change.

σ decreases by 2.
Denote by σ the number of imaginary intersection points of $\mathcal{C}A_+$ and $\mathcal{C}A_-$ and study its behavior under perestrojka.

σ does not change.

σ decreases by 2.

σ does not change.
Denote by σ the number of imaginary intersection points of CA_+ and CA_- and study its behavior under perestrojkas.

σ does not change.

σ decreases by 2.

σ does not change.

σ decreases by 2.
Denote by σ the number of imaginary intersection points of \mathcal{CA}_+ and \mathcal{CA}_- and study its behavior under perestroikas.

- σ does not change.
- σ decreases by 2.
- σ does not change.
- σ decreases by 2.
- σ increases by 2.
Denote by σ the number of imaginary intersection points of \mathcal{CA}_+ and \mathcal{CA}_- and study its behavior under perestrojkins.

- σ does not change.
- σ decreases by 2.
- σ does not change.
- σ decreases by 2.
- σ increases by 2.
- σ does not change.
encomplexing \(J_- \)

Notice that \(\sigma \) behaves in the same way as \(J_- \) under direct and inverse self-tangency and triple point perestrojkas with only real branches involved.
encomplexing J_-

Notice that σ behaves in the same way as J_- under direct and inverse self-tangency and triple point perestrojkas with only real branches involved. Thus, σ can be considered as an encomplexed J_-.
encomplexing \(J_- \)

Notice that \(\sigma \) behaves in the same way as \(J_- \) under direct and inverse self-tangency and triple point perestrojkas with only real branches involved.

Thus, \(\sigma \) can be considered as an encomplexed \(J_- \).

Complex orientation formula can be rewritten as a formula for \(\sigma \):

\[
\sigma = \frac{d^2}{4} - \int_{\mathbb{R}P^2 \setminus \mathbb{RA}} (\text{ind}_{\mathbb{RA}}(x))^2 \, d\chi(x).
\]
back to immersed circles

Integral \(- \int_{\mathbb{R}P^2 \setminus \mathcal{R}_A} (\text{ind}_{\mathcal{R}_A}(x))^2 \, d\chi(x)\) has the same behavior under direct and inverse self-tangency and triple point perestrojkas as \(\sigma\) and \(J__\).
Integral $-\int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x)$ has the same behavior under direct and inverse self-tangency and triple point perestrojkas as σ and J_-. This suggests to compare $J_-(C')$ with

$$-\int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x)$$

for a generic immersed circle C'.

back to immersed circles
Integral $-\int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{A}}(x))^2 \, d\chi(x)$ has the same behavior under direct and inverse self-tangency and triple point perestroikas as σ and J_-. This suggests to compare $J_-(C')$ with

$$-\int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x)$$

for a generic immersed circle C'.

Theorem. *For any generic immersed circle C'*

$$J_-(C') = 1 - \int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x).$$
Corollary. For any generic immersed circle C with n double points

$$J_+(C) = 1 + n - \int_{\mathbb{R}^2 \setminus \tilde{C}} (\text{ind}_{\tilde{C}}(x))^2 \, d\chi(x).$$
The beginning of the story
last slide

The beginning of the story, or the end of it?