Curves Encomplexed

Oleg Viro

October 31, 2006

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Introduction

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

Encomplex

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer, although they are less visual.

Encomplex

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.

The new complex objects are even nicer.
When possible, mathematicians tend to switch to them.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them.
This is how algebraic geometry became complex.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.
Another option is to consider the original objects embedded into its complexification.

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.
Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.
Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!
I will call this to encomplex

Encomplex

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

Many objects studied in geometry are defined in real coordinates by equations.
Often, the equations make sense even for complex values of coordinates, and define the corresponding objects in the complex space.
The new complex objects are even nicer.
When possible, mathematicians tend to switch to them. Real objects are replaced by their complex counter-parts, complexifications. This is called complexification.
Another option is to consider the original objects embedded into its complexification. More difficult, but nonetheless rewarding!
I will call this to encomplex and try to show its difficulties and advantages on a simple material of curves.

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A real plane curve is a generically immersed circle

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A real plane curve is a generically immersed circle, immersion $S^{1} \rightarrow \mathbb{R}^{2}$

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A real plane curve is a generically immersed circle, immersion $S^{1} \rightarrow \mathbb{R}^{2}$, belongs to Differential Geometry,

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A real plane curve is a generically immersed circle, immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$, belongs to Differential Geometry, presumably has no complexification.

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A real plane curve is a generically immersed circle, immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A real plane curve is a generically immersed circle, immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.

One of the most classical of them is the Whitney classification of curves up to regular homotopy.

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification

Whitney number
Writhe

Arnold invariants

Encomplexing J

A real plane curve is a generically immersed circle, immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.
One of the most classical of them is the Whitney classification of curves up to regular homotopy.
The next masterpiece is Arnold's theory on three first order invariants of generic plane curves.

Curves

Introduction

- Encomplex
- Curves
- curves and
complexification

Whitney number
Writhe

Arnold invariants

Encomplexing J

A real plane curve is a generically immersed circle, immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$, belongs to Differential Geometry, presumably has no complexification.

There are results on generic plane curves with a global topological flavor.
One of the most classical of them is the Whitney classification of curves up to regular homotopy.
The next masterpiece is Arnold's theory on three first order invariants of generic plane curves.
I am going to encomplex them in this talk.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity
that is assume that the curve-image is defined by a polynomial equation

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification:

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli,

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe

Arnold invariants

Encomplexing J

A generic immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type (of complex conjugation).

Type I: the set of real points divides the set of complex points into two connected components.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.

Type II: the set of real points does not divide the set of complex points.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.

Whitney number is related to complex asymptotes.

curves and complexification

Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.

Arnold's invariant J_{-}is related to
the number of imaginary intersection points of complex halves.

curves and complexification

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.

curves and complexification

- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.

Formula for J_{-}:

$$
J_{-}(C)=1-\int_{\mathbb{R}^{2} \backslash \widetilde{C}}\left(\operatorname{ind}_{\widetilde{C}}(x)\right)^{2} d \chi(x)
$$

curves and complexification

Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.

curves and complexification

Introduction

- Encomplex
- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.

Arnold's strangeness of rational real algebraic curves.

curves and complexification

- Curves
- curves and
complexification
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

A generic immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is not assumed to have a complexification.
Require algebraicity, and you get complex points.
What's in a complex view?

- Geometry hidden in complexification: genus, moduli, type.
- Interaction between real and complex.
- Results on real curves inspired by results on curves with complexification.
- A world parallel to Real Geometry.

The simplest complexification of curves are rational curves: genus zero, no moduli, polynomial parametrization.

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J

Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number

Writhe

Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane

Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number

Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
 $=$ rotation number of the velocity vector

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
$=$ rotation number of the velocity vector
$=$ degree of the Gauss map $C \rightarrow S^{1}$.

Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
$=$ rotation number of the velocity vector
$=$ degree of the Gauss map $C \rightarrow S^{1}$.

Example.

Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
$=$ rotation number of the velocity vector
$=$ degree of the Gauss map $C \rightarrow S^{1}$.
Example.

$$
w(C)=+3
$$

Whitney number

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
$=$ rotation number of the velocity vector
$=$ degree of the Gauss map $C \rightarrow S^{1}$.

Example.

Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

For an oriented smooth closed immersed curve C on plane $w(C)$, Whitney number
$=$ rotation number of the velocity vector
$=$ degree of the Gauss map $C \rightarrow S^{1}$.

Whitney Theorem.

$w(C)$ determines $C: S^{1} \leftrightarrow \mathbb{R}^{2}$ up to regular homotopy.

choice of curves

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that

choice of curves

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine

real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
\bullet

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact, real branches don't go to infinity!

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
-

choice of curves

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's, $\mathbb{R} A$ generically immersed
-

choice of curves

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

choice of curves

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$
to be naturally oriented

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I.
(Felix Klein)

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I. (Felix Klein)

Any real rational curve with infinite $\mathbb{R} A$ is of type I.

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J \qquad

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I. (Felix Klein)

Any normal A of genus g such that $\mathbb{R} A$ has $g+1$ components is of type I .

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I. (Felix Klein)

Type I implies:

$$
b_{0}(\mathbb{R} \text { normalized } A) \equiv \operatorname{genus}(A)+1 \bmod 2
$$

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J \qquad

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are X's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I. (Felix Klein)

The orientation of $\mathbb{R} A$ induced from $\mathbb{C} A_{+} \subset \mathbb{C} A$ with $\partial \mathbb{C} A_{+}=\mathbb{R} A$ is called a complex orientation. (V.A.Rokhlin)

choice of curves

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J \qquad

Consider irreducible plane affine
real algebraic curves A such that:

- $\mathbb{R} A$ is compact,
- all real singularities are χ 's,
- $\mathbb{R} A$ is zero homologous modulo 2 in $\mathbb{C} A \subset \mathbb{C} P^{2}$

If $\mathbb{R} A$ is zero homologous in $\mathbb{C} A$ then A is said to be of type I. (Felix Klein)

The orientation of $\mathbb{R} A$ induced from $\mathbb{C} A_{+} \subset \mathbb{C} A$ with $\partial \mathbb{C} A_{+}=\mathbb{R} A$ is called a complex orientation. (V.A.Rokhlin) Denote $\mathbb{R} A$ equipped with the orientation induced from $\mathbb{C} A_{+} \subset \mathbb{C} A$ by $\mathbb{R} A_{+}$.

complex line at infinity

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

$$
\mathbb{C} P_{\infty}^{1}=\mathbb{C} P^{2} \backslash \mathbb{C}^{2},
$$

complex line at infinity

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

$$
\mathbb{C} P_{\infty}^{1}=\mathbb{C} P^{2} \backslash \mathbb{C}^{2}, \quad \mathbb{R} P_{\infty}^{1}=\mathbb{R} P^{2} \backslash \mathbb{R}^{2}
$$

complex line at infinity

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}
$\mathbb{C} P_{\infty}^{1}=\mathbb{C} P^{2} \backslash \mathbb{C}^{2}, \quad \mathbb{R} P_{\infty}^{1}=\mathbb{R} P^{2} \backslash \mathbb{R}^{2}$
Denote $\mathbb{R} P_{\infty}^{1}$ equipped with the orientation induced by the standard orientation of \mathbb{R}^{2} by $\mathbb{R} P_{\infty+\text {. }}^{1}$
say, counter-clockwise orientation of \mathbb{R}^{2}.

complex line at infinity

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}
$\mathbb{C} P_{\infty}^{1}=\mathbb{C} P^{2} \backslash \mathbb{C}^{2}, \quad \mathbb{R} P_{\infty}^{1}=\mathbb{R} P^{2} \backslash \mathbb{R}^{2}$
Denote $\mathbb{R} P_{\infty}^{1}$ equipped with the orientation induced by the standard orientation of \mathbb{R}^{2} by $\mathbb{R} P_{\infty+}^{1}$.

Denote by $\mathbb{C} P_{\infty+}^{1}$ the hemisphere of $\mathbb{C} P_{\infty}^{1}$ with $\partial \mathbb{C} P_{\infty+}^{1}=\mathbb{R} P_{\infty+}^{1}$.

complex line at infinity

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}
$\mathbb{C} P_{\infty}^{1}=\mathbb{C} P^{2} \backslash \mathbb{C}^{2}, \quad \mathbb{R} P_{\infty}^{1}=\mathbb{R} P^{2} \backslash \mathbb{R}^{2}$
Denote $\mathbb{R} P_{\infty}^{1}$ equipped with the orientation induced by the standard orientation of \mathbb{R}^{2} by $\mathbb{R} P_{\infty+\text {. }}^{1}$.

Denote by $\mathbb{C} P_{\infty+}^{1}$ the hemisphere of $\mathbb{C} P_{\infty}^{1}$ with $\partial \mathbb{C} P_{\infty+}^{1}=\mathbb{R} P_{\infty+}^{1}$.

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

Let A be a plane affine real algebraic curve of type I,

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants
Encomplexing J_{-}

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants
Encomplexing J_{-}

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are X's.

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants

Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants

Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are

Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.
Corollary. $\quad|w(\mathbb{R} A)| \leq \frac{1}{2} \operatorname{deg} A$.

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe

Arnold invariants
Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are

Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.
Corollary. $\quad|w(\mathbb{R} A)| \leq \frac{1}{2} \operatorname{deg} A$.
Indeed, $|w(\mathbb{R} A)|=\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right|$

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are

Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.
Corollary. $\quad|w(\mathbb{R} A)| \leq \frac{1}{2} \operatorname{deg} A$.
Indeed, $|w(\mathbb{R} A)|=\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right|$ $\leq\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}+\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right|$

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are

Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.
Corollary. $\quad|w(\mathbb{R} A)| \leq \frac{1}{2} \operatorname{deg} A$.

$$
\text { Indeed, } \begin{aligned}
|w(\mathbb{R} A)| & =\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right| \\
& \leq\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}+\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right| \\
& =\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty}^{1}\right|
\end{aligned}
$$

Theorem 1

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Let A be a plane affine real algebraic curve of type I, such that

- $\mathbb{R} A$ is compact,
- all real singularities are

Then $w\left(\mathbb{R} A_{+}\right)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$.
Corollary. $\quad|w(\mathbb{R} A)| \leq \frac{1}{2} \operatorname{deg} A$.

$$
\text { Indeed, } \begin{aligned}
|w(\mathbb{R} A)| & =\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right| \\
& \leq\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}+\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right| \\
& =\left|\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty}^{1}\right| \\
& =\frac{1}{2} \operatorname{deg} A .
\end{aligned}
$$

in terms of asymptotes

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

If $\mathbb{C} A \pitchfork \mathbb{C} P_{\infty}^{1}$, then each point of $\mathbb{C} A \cap \mathbb{C} P_{\infty}^{1}$ corresponds to an asymptote of $\mathbb{C} A \cap \mathbb{C}^{2}$.

in terms of asymptotes

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

If $\mathbb{C} A \pitchfork \mathbb{C} P_{\infty}^{1}$, then each point of $\mathbb{C} A \cap \mathbb{C} P_{\infty}^{1}$ corresponds to an asymptote of $\mathbb{C} A \cap \mathbb{C}^{2}$.
Asymptotes are imaginary.

in terms of asymptotes

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

If $\mathbb{C} A \pitchfork \mathbb{C} P_{\infty}^{1}$, then each point of $\mathbb{C} A \cap \mathbb{C} P_{\infty}^{1}$ corresponds to an asymptote of $\mathbb{C} A \cap \mathbb{C}^{2}$.
Asymptotes are imaginary.
An imaginary line disjoint with $\mathbb{R} P_{\infty}^{1}$ meets either $\mathbb{C} P_{\infty+}^{1}$ or $\mathbb{C} P_{\infty-}^{1}$.

in terms of asymptotes

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

If $\mathbb{C} A \pitchfork \mathbb{C} P_{\infty}^{1}$, then each point of $\mathbb{C} A \cap \mathbb{C} P_{\infty}^{1}$ corresponds to an asymptote of $\mathbb{C} A \cap \mathbb{C}^{2}$.
Asymptotes are imaginary.
An imaginary line disjoint with $\mathbb{R} P_{\infty}^{1}$ meets either $\mathbb{C} P_{\infty+}^{1}$ or $\mathbb{C} P_{\infty-}^{1}$.
Theorem 1 says:
$w\left(\mathbb{R} A_{+}\right)$equals the difference between the numbers of the asymptotes of $\mathbb{C} A_{+} \cap \mathbb{C}^{2}$ of these two sorts.
near a kiss

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Lemma

near a kiss

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

Lemma (Imaginary intersection after a real kiss)

near a kiss

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe

Arnold invariants
Encomplexing J_{-}

Lemma (Imaginary intersection after a real kiss) Let A and B be curves of type I,

near a kiss

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I,
with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

near a kiss

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

Lemma (Imaginary intersection after a real kiss) Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

near a kiss

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

Then $\mathbb{C} A_{+}$meets $\mathbb{C} B_{+}$at an imaginary point near p

near a kiss

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

Then $\mathbb{C} A_{+}$meets $\mathbb{C} B_{+}$at an imaginary point near p, while $\mathbb{C} A_{\text {- }}$ does not.

near a kiss

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

Then $\mathbb{C} A_{+}$meets $\mathbb{C} B_{+}$at an imaginary point near p, while $\mathbb{C} A_{\text {- }}$ does not.
Proof. Look at the scene complexly from the left hand side.

near a kiss

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

Then $\mathbb{C} A_{+}$meets $\mathbb{C} B_{+}$at an imaginary point near p, while $\mathbb{C} A_{\text {- }}$ does not.
Proof. Look at the scene complexly from the left hand side.

near a kiss

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

Lemma (Imaginary intersection after a real kiss)
Let A and B be curves of type I, with $\mathbb{R} A_{+}$and $\mathbb{R} B_{+}$almost kissing each other near a point p.

Then $\mathbb{C} A_{+}$meets $\mathbb{C} B_{+}$at an imaginary point near p, while $\mathbb{C} A_{\text {- }}$ does not.
Proof. Look at the scene complexly from the left hand side.

Pictures:

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p
(In \mathbb{R}^{2} rotation around a point at infinity is a translation.)

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$. We consider only imaginary intersection points.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$. We consider only imaginary intersection points.
(Although we start with $\mathbb{R} L=\mathbb{R} P_{\infty}^{1}$ and $\mathbb{R} P_{\infty}^{1} \cap \mathbb{R} A=\varnothing$, $\mathbb{R} L$ sweeps the whole $\mathbb{R} A$ while moving).

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$. At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.

Consider, for example, the following curve:

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=-1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=-1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$. At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$
$l d e g=-1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$
$l d e g=-1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$
$l d e g=-1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$
$l d e g=-1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$. At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

At each of the moments, $\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} \overleftarrow{\left.A_{+} \circ \mathbb{C} L_{-}\right)=-l} d e g\right.$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}\right)=0$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=+1$,
$\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}\right)=-1$
$l d e g=+1$

At each of the moments, $\Delta\left(\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} \overleftarrow{\left.A_{+} \circ \mathbb{C} L_{-}\right)=-l} d e g\right.$.
The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$, since we have summed up $-l d e g$ over the preimages of 2 points.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$. $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$. At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.

The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.
On the other hand, the full change is

$$
-2\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right)
$$

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$. At these moments, evaluate also local degree ldeg of Gauss map $\mathbb{R} A \rightarrow S^{1}$.

The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.
On the other hand, the full change is

$$
-2\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right)
$$

Indeed, we have turned $\mathbb{R} P_{\infty}^{1}$ by π,

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.
On the other hand, the full change is

$$
-2\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right)
$$

Indeed, we have turned $\mathbb{R} P_{\infty}^{1}$ by π,
its orientation has reversed,

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.
On the other hand, the full change is

$$
-2\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right)
$$

Indeed, we have turned $\mathbb{R} P_{\infty}^{1}$ by π,
its orientation has reversed, and $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$evolved from $\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}$ to
$\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}=-\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right)$.

proof of Theorem 1

Choose a generic point p on $\mathbb{R} P_{\infty}^{1}$ and rotate oriented real line L around p counting changes of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$.
$\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$changes, when $\mathbb{R} L$ gets tangent to $\mathbb{R} A$.
At these moments, evaluate also local degree ldeg of Gauss map
$\mathbb{R} A \rightarrow S^{1}$.
The full change of $\mathbb{C} A_{+} \circ \mathbb{C} L_{+}-\mathbb{C} A_{+} \circ \mathbb{C} L_{-}$is $-2 w(\mathbb{R} A)$.
On the other hand, the full change is

Thus,

$$
\begin{array}{r}
-2\left(\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}\right) \\
w(\mathbb{R} A)=\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty+}^{1}-\mathbb{C} A_{+} \circ \mathbb{C} P_{\infty-}^{1}
\end{array}
$$

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself:

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney
number
Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but \mathcal{C}^{0}.

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:

improving Whitney number

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I.

improving Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. It takes two, to become imaginary!

improving Whitney number

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches.

improving Whitney number

Introduction

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches.

improving Whitney number

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches.

improving Whitney number

Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches.

improving Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1.

improving Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points,

improving Whitney number

Introduction
Whitney number

- Whitney number
- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w\left(\mathbb{R} A_{+}\right)$.

improving Whitney number

- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w\left(\mathbb{R} A_{+}\right)$. Only one of the branches passing through it, belongs to $\mathbb{C} A_{+}$.

improving Whitney number

- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w\left(\mathbb{R} A_{+}\right)$. Only one of the branches passing through it, belongs to $\mathbb{C} A_{+}$. Its intersection number with \mathbb{R}^{2} is to be added to $w\left(\mathbb{R} A_{+}\right)$.

improving Whitney number

- choice of curves
- complex line at infinity
- Theorem 1
- in terms of
asymptotes
- near a kiss
- proof of Theorem 1
- improving Whitney number

Writhe
Arnold invariants
Encomplexing J_{-}

The expression provided by Theorem 1 for Whitney number seems to be more stable than the Whitney number itself: not \mathcal{C}^{1}, but $\mathcal{C}^{0} . \quad w(C)$ changes by 1 , when C moves like that:
However, this move is impossible for algebraic curves of type I. A real double point cannot disappear by becoming imaginary alone. Instead, it can turn into a double point isolated on $\mathbb{R} A$ with imaginary complex conjugate branches. A double real point with imaginary branches is not allowed in Theorem 1. Allow such points, but take into account their contribution to $w\left(\mathbb{R} A_{+}\right)$. Only one of the branches passing through it, belongs to $\mathbb{C} A_{+}$. Its intersection number with \mathbb{R}^{2} is to be added to $w\left(\mathbb{R} A_{+}\right)$. Improved $w\left(\mathbb{R} A_{+}\right)$is more invariant, and Theorem 1 holds true for it.

Introduction
Whitney number
Writhe

- writhe of a knot
diagram
- encomplexed writhe

Arnold invariants
Encomplexing J

Writhe

$+$

writhe of a knot diagram

Introduction
Whitney number
Writhe

- writhe of a knot
diagram
- encomplexed writhe

Arnold invariants
Encomplexing J

At a crossing an oriented link diagram looks either like this: $\boldsymbol{\lambda}$

writhe of a knot diagram

Introduction
Whitney number
Writhe

- writhe of a knot
diagram
- encomplexed writhe

Arnold invariants
Encomplexing J

At a crossing an oriented link diagram looks either like this: $\boldsymbol{\lambda}^{\boldsymbol{\prime}}$ or like that: ${ }^{\prime}$.

writhe of a knot diagram

Introduction

Whitney number
Writhe
diagram

- encomplexed writhe

Arnold invariants
Encomplexing J

At a crossing an oriented link diagram looks either like this: λ or like that: ${ }^{\wedge}$. (Local) writhe: $w\left(\boldsymbol{\lambda}^{\star}\right)=+1, w(\pi)-1$.

writhe of a knot diagram

Whitney number
Writhe
diagram

- encomplexed writhe

Arnold invariants
Encomplexing J

At a crossing an oriented link diagram looks either like this: $\boldsymbol{\lambda}$ or like that: ${ }^{\star \lambda}$.
(Local) writhe: $w\left(\chi^{*}\right)=+1, w(\pi)-1$. Writhe of an oriented link diagram is the sum of local writhes over all crossings.

writhe of a knot diagram

Whitney number
Writhe
diagram

- encomplexed writhe

Arnold invariants
Encomplexing J

At a crossing an oriented link diagram looks either like this: λ or like that: ${ }^{\wedge}$.
(Local) writhe: $w\left(\chi^{*}\right)=+1, w(\pi)-1$.
Writhe of an oriented link diagram is the sum of local writhes over all crossings. It is not invariant: the first Reidemeister

encomplexed writhe

Introduction
Whitney number

Writhe
 - writhe of a knot

diagram

- encomplexed writhe

Arnold invariants
Encomplexing J

For an algebraic link the move
 cannot happen.

encomplexed writhe

Introduction

Whitney number
diagram

- encomplexed writhe

Arnold invariants
For an algebraic link the move

Encomplexing J cannot happen.
The first real algebraic Reidemeister move looks like that:

encomplexed writhe

Writhe

- writhe of a knot
diagram
- encomplexed writhe

Arnold invariants
For an algebraic link the move

Encomplexing J

cannot happen.
The first real algebraic Reidemeister move looks like that:
 A crossing turns into a solitary real crossing of two complex conjugate imaginary branches.

encomplexed writhe

Writhe

- writhe of a knot
diagram
- encomplexed writhe

Arnold invariants
For an algebraic link the move

Encomplexing J
cannot happen.

The first real algebraic Reidemeister move looks like that:
 A crossing turns into a solitary real crossing of two complex conjugate imaginary branches.

There is a writhe of a solitary crossing such that the total writhe does not change.

Arnold invariants

genericity of immersions

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

An immersion $S^{1} \rightarrow \mathbb{R}^{2}$ is generic, if it has neither triple point, nor a point of self-tangency.

genericity of immersions

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

genericity of immersions

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.

genericity of immersions

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.
A self-tangency point of an immersion is ordinary, if the branches have distinct curvatures at the point.

genericity of immersions

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.
A self-tangency point of an immersion is ordinary, if the branches have distinct curvatures at the point.
A self-tangency point of an immersion is called direct, if the velocity vectors are pointing the same direction;

genericity of immersions

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.
A self-tangency point of an immersion is ordinary, if the branches have distinct curvatures at the point.
A self-tangency point of an immersion is called direct, if the velocity vectors are pointing the same direction; otherwise it is inverse.

genericity of immersions

An immersion $S^{1} \leftrightarrow \mathbb{R}^{2}$ is generic, if has neither triple point, nor a point of self-tangency. It has only ordinary double points of transversal self-intersection.

A triple point of an immersion is ordinary, if the branches at the point are transversal to each other.
A self-tangency point of an immersion is ordinary, if the branches have distinct curvatures at the point.
A self-tangency point of an immersion is called direct, if the velocity vectors are pointing the same direction; otherwise it is inverse.

All non-generic immersions form a discriminant hypersurface, or just discriminant in the space of all immersions.

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified.

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main open strata:

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points,

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point,

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.

main strata of discriminant

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions

main strata of discriminant

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points,

main strata of discriminant

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point,

main strata of discriminant

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.

main strata of discriminant

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions

main strata of discriminant

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point,

main strata of discriminant

Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point, this point is ordinary,

main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.

main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.
A generic path in the space of immersions (i.e. a generic regular homotopy)

main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.
A generic path in the space of immersions intersects the discriminant in a finite number of points,

main strata of discriminant

The discriminant is stratified. There are 3 main strata:

- the set $S T_{+}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary direct self-tangency point.
- the set $S T_{-}$of all immersions without triple points, with only one non-transversal double point, and this is an ordinary inverse self-tangency point.
- the set $T P$ of all immersions which have only one triple point, this point is ordinary, besides this point, there are only ordinary double points.
A generic path in the space of immersions intersects the discriminant in a finite number of points, these points belong to the main strata.

perestrojkas

Introduction
Whitney number

Writhe

Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

perestrojkas

Whitney number

Writhe

Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

perestrojkas

Whitney number

Writhe

Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

perestrojkas

Whitney number

Writhe

Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

perestrojkas

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

$$
\downarrow \ggg>
$$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

Triple point perestrojka. Passing through TP

perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

$$
\downarrow \ggg>
$$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

Triple point perestrojka. Passing through TP

perestrojkas

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

\longrightarrow

Triple point perestrojka. Passing through TP

perestrojkas

Arnold invariants - genericity of
immersions

- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

Changes experienced by an immersion when it goes through one of the strata were called perestrojkas by Arnold.

Direct self-tangency perestrojka. Passing through $S T_{+}$

$$
)(-4)(-x
$$

Inverse self-tangency perestrojka. Passing through $S T_{-}$

Triple point perestrojka. Passing through TP

Arnold's invariants

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

Arnold's invariants

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.

Arnold's invariants

Introduction
Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of
discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

Arnold's invariants

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

perestrojka	J_{+}	J_{-}	$S t$
direct self-tangency	+2	0	0

Arnold's invariants

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

perestrojka	J_{+}	J_{-}	$S t$
direct self-tangency	+2	0	0
inverse self-tangency	0	-2	0

Arnold's invariants

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

perestrojka	J_{+}	J_{-}	$S t$
direct self-tangency	+2	0	0
inverse self-tangency	0	-2	0
triple point	0	0	+1

Arnold's invariants

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

perestrojka	J_{+}	J_{-}	$S t$
direct self-tangency	+2	0	0
inverse self-tangency	0	-2	0
triple point	0	0	+1

- For curves

K_{0}

K_{1}

K_{2}

K_{3}

K_{4}
the invariants take the following values:

Arnold's invariants

Introduction

Whitney number
Writhe
Arnold invariants

- genericity of
immersions
- main strata of discriminant
- perestrojkas
- Arnold's invariants

Encomplexing J_{-}

For generic $C: S^{1} \rightarrow \mathbb{R}^{2}$, Arnold introduced numerical characteristics $J^{+}(C), J^{-}(C)$ and $S t(C)$ defined by the following properties:

- invariance under regular homotopy in the class of generic immersions.
- the following increments under perestojkas:

perestrojka	J_{+}	J_{-}	$S t$
direct self-tangency	+2	0	0
inverse self-tangency	0	-2	0
triple point	0	0	+1

$$
\begin{array}{ccl}
J^{+}\left(K_{0}\right)=0, & J^{+}\left(K_{i+1}\right)=-2 i & (i=0,1, \ldots) ; \\
J^{-}\left(K_{0}\right)=-1, & J^{-}\left(K_{i+1}\right)=-3 i & (i=0,1, \ldots) ; \\
\operatorname{St}\left(K_{0}\right)=0, & \operatorname{St}\left(K_{i+1}\right)=i & (i=0,1, \ldots)
\end{array}
$$

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Encomplexing J_{-}

choice of curves

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real
curves of degree d

choice of curves

Introduction

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d

choice of curves

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d,

 genus g
choice of curves

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d,

 genus g and type I
choice of curves

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.

choice of curves

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations. A generic curve A of this kind has only non-degenerate double singular points

choice of curves

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

choice of curves

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X.
- solitary real double point with two imaginary conjugate branches, isolated point in $\mathbb{R} A$, local normal form $x^{2}+y^{2}=0$.

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X,
- solitary real double point with two imaginary conjugate branches,
At a solitary ordinary double point, the choice of $\mathbb{C} A_{+}$ determines a local orientation of $\mathbb{R} P^{2}$

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X,
- solitary real double point with two imaginary conjugate branches,
At a solitary ordinary double point, the choice of $\mathbb{C} A_{+}$ determines a local orientation of $\mathbb{R} P^{2}$
such that $\mathbb{R} P^{2}$ equipped with this local orientation intersects $\mathbb{C} A_{+}$at this point with intersection number +1 .

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points, they can be of the following 4 types:

- real double points with two real branches X.
- solitary real double point with two imaginary conjugate branches,
At a solitary ordinary double point, the choice of $\mathbb{C} A_{+}$ determines a local orientation of $\mathbb{R} P^{2}$.
Another way to get the local orientation:
perturb the curve keeping type I and converting the solitary point into an oval.

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X.
- solitary real double point with two imaginary conjugate branches,
At a solitary ordinary double point, the choice of $\mathbb{C} A_{+}$ determines a local orientation of $\mathbb{R} P^{2}$.
Another way to get the local orientation:
perturb the curve keeping type I and converting the solitary point into an oval. The complex orientation of this oval gives the local orientation of $\mathbb{R} P^{2}$.

choice of curves

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X,
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of $\mathbb{C} A_{+}$,

choice of curves

- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X.
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of $\mathbb{C} A_{+}$,
- imaginary intersection point of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$.

choice of curves

- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Consider irreducible real plane projective curves of degree d, genus g and type I , equipped with complex orientations.
A generic curve A of this kind has only non-degenerate double singular points , they can be of the following 4 types:

- real double points with two real branches X.
- solitary real double point with two imaginary conjugate branches,
- imaginary double point of self-intersection of $\mathbb{C} A_{+}$,
- imaginary intersection point of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$. Denote the number of the latter points by σ.

new perestrojkas

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

new perestrojkas

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

new perestrojkas

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

new perestrojkas

```
Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing }
- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing \(J_{-}\)
- back to immersed
circles
- \(J_{+}\)
- last slide
```

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

$$
\leadsto
$$

Solitary self-tangency perestrojka.

7

new perestrojkas

Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

new perestrojkas

Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

new perestrojkas

Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

new perestrojkas

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.

new perestrojkas

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.

new perestrojkas

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Cusp perestrojka.

new perestrojkas

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Generic $\mathbb{R} A$ experiences perestrojkas considered above plus the following three new ones.

Solitary self-tangency perestrojka.

Triple point perestrojka with two imaginary branches.

Smoothing of curve

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Smoothen a generic curve of type I according to the complex orientation: $A \mapsto \widetilde{A}$

Smoothing of curve

Introduction
Whitney number
Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Smoothen a generic curve of type I according to the complex orientation: $A \mapsto \widetilde{A}$

Smoothing of curve

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Smoothen a generic curve of type I according to the complex

 orientation: $A \mapsto \widetilde{A}$

Smoothing of curve

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Smoothen a generic curve of type I according to the complex

 orientation: $A \mapsto \widetilde{A}$

Smoothing of curve

Introduction

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Smoothen a generic curve of type I according to the complex orientation: $A \mapsto \widetilde{A}$

Index of point

Introduction

Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$,

Index of point

Introduction

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$, define non-negative integer or half-integer $\operatorname{ind}_{C}(x)$:

Index of point

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$, define non-negative integer or half-integer $\operatorname{ind}_{C}(x)$:
C realizes $2 \cdot$ ind $_{C}(x)$-fold generator of $H_{1}\left(\mathbb{R} P^{2} \backslash\{x\}\right)=\mathbb{Z}$.

Index of point

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$, define non-negative integer or half-integer $\operatorname{ind}_{C}(x)$:
C realizes $2 \cdot$ ind $_{C}(x)$-fold generator of $H_{1}\left(\mathbb{R} P^{2} \backslash\{x\}\right)=\mathbb{Z}$.
Examples:

1. $\operatorname{ind}_{\mathbb{R} P^{1}}(x)=\frac{1}{2}$

Index of point

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$, define non-negative integer or half-integer $\operatorname{ind}_{C}(x)$:
C realizes $2 \cdot i n d_{C}(x)$-fold generator of $H_{1}\left(\mathbb{R} P^{2} \backslash\{x\}\right)=\mathbb{Z}$.

Examples:

1. $\operatorname{ind}_{\mathbb{R} P^{1}}(x)=\frac{1}{2}$
2. If C is a circle $x_{1}^{2}+x_{2}^{2}=x_{0}^{2}$ and x is a point in the disk bounded by C, then $\operatorname{ind}_{C}(x)=1$ independently on orientation of C.

Index of point

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

For oriented closed curve $C \subset \mathbb{R} P^{2}$ and $x \in \mathbb{R} P^{2} \backslash C$, define non-negative integer or half-integer $\operatorname{ind}_{C}(x)$:
C realizes $2 \cdot i n d_{C}(x)$-fold generator of
$H_{1}\left(\mathbb{R} P^{2} \backslash\{x\}\right)=\mathbb{Z}$.

Examples:

1. $\operatorname{ind}_{\mathbb{R} P^{1}}(x)=\frac{1}{2}$
2. If C is a circle $x_{1}^{2}+x_{2}^{2}=x_{0}^{2}$ and x is a point in the disk bounded by C, then $\operatorname{ind}_{C}(x)=1$.
3. If C consists of two concentric circles, and x is their common center, then $\operatorname{ind}_{C}(x)$ is either 0 or 2 .

Complex orientation formula

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.

Complex orientation formula

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(\operatorname{ind}_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

Complex orientation formula

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(\operatorname{ind}_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

here σ is the number of imaginary double points of A, where $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$meet,

Complex orientation formula

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(\operatorname{ind}_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

here σ is the number of imaginary double points of A, where $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$meet, and the integral is against the Euler characteristic.

Complex orientation formula

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

here σ is the number of imaginary double points of A, where $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$meet, and the integral is against the Euler characteristic.
Integral $\int f(x) d \chi(x)$ is defined for f which is a finite linear combination of characteristic functions,

Complex orientation formula

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(\operatorname{ind}_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

here σ is the number of imaginary double points of A, where $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$meet, and the integral is against the Euler characteristic.
Integral $\int f(x) d \chi(x)$ is defined for f which is a finite linear combination of characteristic functions, $f=\sum_{i=1}^{r} \lambda_{i} \mathbb{1}_{S_{i}}$, by formula

Complex orientation formula

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Let A be generic real plane projective algebraic curve of degree d and type I.
Then

$$
\frac{d^{2}}{4}=\sigma+\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)
$$

here σ is the number of imaginary double points of A, where $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$meet, and the integral is against the Euler characteristic.
Integral $\int f(x) d \chi(x)$ is defined for f which is a finite linear combination of characteristic functions, $f=\sum_{i=1}^{r} \lambda_{i} \mathbb{1}_{S_{i}}$, by formula

$$
\int f(x) d \chi(x)=\sum_{i=1}^{r} \lambda_{i} \chi\left(S_{i}\right)
$$

intersection of complex halves

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J_{-}

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

intersection of complex halves

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

intersection of complex halves

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

σ decreases by 2 .

intersection of complex halves

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

σ decreases by 2 .
σ does not change.

intersection of complex halves

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

σ does not change.
σ decreases by 2 .

intersection of complex halves

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

σ does not change.
σ decreases by 2 .
σ does not change.
σ decreases by 2 .
σ increases by 2 .

intersection of complex halves

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Denote by σ the number of imaginary intersection points of $\mathbb{C} A_{+}$and $\mathbb{C} A_{-}$and study its behavior under perestrojkas.

σ does not change.
σ decreases by 2 .
σ does not change.
σ decreases by 2 .
σ increases by 2 .
σ does not change.

encomplexing J_{-}

Introduction

Whitney number
Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Notice that σ behaves in the same way as J_{-}under direct and inverse self-tangency and triple point perestrojkas with only real branches involved.

encomplexing J_{-}

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Notice that σ behaves in the same way as J_{-}under direct and inverse self-tangency and triple point perestrojkas with only real branches involved.

Thus, σ can be considered as an encomplexed J_{-}.

encomplexing J_{-}

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Notice that σ behaves in the same way as J_{-}under direct and inverse self-tangency and triple point perestrojkas with only real branches involved.
Thus, σ can be considered as an encomplexed J_{-}.
Complex orientation formula can be rewritten as a formula for σ :

$$
\sigma=\frac{d^{2}}{4}-\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x) .
$$

back to immersed circles

Whitney number
Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

Integral $-\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)$ has the same behavior under direct and inverse self-tangency and triple point perestrojkas as σ and J_{-}.

back to immersed circles

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Integral $-\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)$ has the same behavior under direct and inverse self-tangency and triple point perestrojkas as σ and J_{-}.
This suggests to compare $J_{-}(C)$ with

$$
-\int_{\mathbb{R}^{2} \backslash \tilde{C}}\left(i n d_{\tilde{C}}(x)\right)^{2} d \chi(x)
$$

for a generic immersed circle C.

back to immersed circles

Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Integral $-\int_{\mathbb{R} P^{2} \backslash \widetilde{\mathbb{R} A}}\left(i n d_{\widetilde{\mathbb{R} A}}(x)\right)^{2} d \chi(x)$ has the same behavior under direct and inverse self-tangency and triple point perestrojkas as σ and J_{-}.
This suggests to compare $J_{-}(C)$ with

$$
-\int_{\mathbb{R}^{2} \backslash \tilde{C}}\left(i n d_{\tilde{C}}(x)\right)^{2} d \chi(x)
$$

for a generic immersed circle C.
Theorem. For any generic immersed circle C

$$
J_{-}(C)=1-\int_{\mathbb{R}^{2} \backslash \widetilde{C}}\left(i n d_{\widetilde{C}}(x)\right)^{2} d \chi(x)
$$

$\underline{J_{+}}$

Introduction

Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

Corollary. For any generic immersed circle C with n double points

$$
J_{+}(C)=1+n-\int_{\mathbb{R}^{2} \backslash \widetilde{C}}\left(\text { ind }_{\widetilde{C}}(x)\right)^{2} d \chi(x) .
$$

last slide

Introduction
Whitney number
Writhe
Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed circles
- J_{+}
- last slide

The beginning of the story

last slide

Introduction
Whitney number

Writhe

Arnold invariants
Encomplexing J

- choice of curves
- new perestrojkas
- Smoothing of curve
- Index of point
- Complex orientation
formula
- intersection of
complex halves
- encomplexing J_{-}
- back to immersed
circles
- J_{+}
- last slide

The beginning of the story, or the end of it?

