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The 16th Hilbert problem, a story of mystery, mistakes and
solution.

Oleg Viro

April 20, 2007
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16. Problem of the topology of algebraic curves and
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16. Problem of the topology of algebraic curves and
surfaces
Hilbert started with reminding of a background result:
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16. Problem of the topology of algebraic curves and
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The maximum number of closed and separate branches which
a plane algebraic curve of the n-th order can have has been
determined by Harnack (Mathematische Annalen, vol. 10).
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Here Hilbert referred to the following Harnack inequality.



Harnack’s inequality

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

3 / 32

16. Problem of the topology of algebraic curves and
surfaces

The maximum number of closed and separate branches which
a plane algebraic curve of the n-th order can have has been
determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following Harnack inequality.

The words Harnack inequality are confusing: there are other,
more famous Harnack inequalities concerning values of a
positive harmonic function.
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16. Problem of the topology of algebraic curves and
surfaces

The maximum number of closed and separate branches which
a plane algebraic curve of the n-th order can have has been
determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following Harnack inequality.

The number of connected
components of a plane projective
real algebraic curve of degree n

≤ (n−1)(n−2)
2

+ 1 .
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Harnack’s proof: Let curve A of degree n has
#(ovals) > M = (n−1)(n−2)

2
+ 1 .
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• Draw a curve B of degree n − 2 through M points
chosen on M ovals of A and n− 3 points on one more oval.
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Harnack’s proof: Let curve A of degree n has
#(ovals) > M = (n−1)(n−2)

2
+ 1 .

• Draw a curve B of degree n − 2 through M points
chosen on M ovals of A and n− 3 points on one more oval.

A curve of degree n − 2 is defined by an equation with
(n−1)n

2
coefficients. Hence it can be drawn through

(n−1)n
2

− 1 = (n−1)(n−2)
2

+ n − 1 − 1 = M + n − 3 points.
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Harnack’s proof: Let curve A of degree n has
#(ovals) > M = (n−1)(n−2)

2
+ 1 .

• Draw a curve B of degree n − 2 through M points
chosen on M ovals of A and n− 3 points on one more oval.
• Estimate the number of intersection points:

≥ 2M + n − 3

An oval is met even number of times.
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Harnack’s proof: Let curve A of degree n has
#(ovals) > M = (n−1)(n−2)

2
+ 1 .

• Draw a curve B of degree n − 2 through M points
chosen on M ovals of A and n− 3 points on one more oval.
• Estimate the number of intersection points:

≥ 2M + n − 3 = (n − 1)(n − 2) + 2 + n − 3 =
n2 − 2n + 1 > n(n − 2) ,
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Harnack’s proof: Let curve A of degree n has
#(ovals) > M = (n−1)(n−2)

2
+ 1 .

• Draw a curve B of degree n − 2 through M points
chosen on M ovals of A and n− 3 points on one more oval.
• Estimate the number of intersection points:

≥ 2M + n − 3 = (n − 1)(n − 2) + 2 + n − 3 =
n2 − 2n + 1 > n(n − 2) ,
• and apply the Bezout Theorem.
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• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ .
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.
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σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof. Let A ba a connected component of S r F .
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof. Let A ba a connected component of S r F .
Then Cl(A) ∪ σ(A) is a closed surface.
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof. Let A ba a connected component of S r F .
Then Cl(A) ∪ σ(A) is a closed surface.
Hence Cl(A) ∪ σ(A) = S .
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof. Let A ba a connected component of S r F .
Then Cl(A) ∪ σ(A) is a closed surface.
Hence Cl(A) ∪ σ(A) = S . If A 6= σ(A) , then
#connected components(S r F ) = 2 .
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof. Let A ba a connected component of S r F .
Then Cl(A) ∪ σ(A) is a closed surface.
Hence Cl(A) ∪ σ(A) = S . If A 6= σ(A) , then
#connected components(S r F ) = 2 . If A = σ(A) , then
#connected components(S r F ) = 1 . �
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof of Theorem. A curve with > genus(S) + x
components divides S to > x + 1 components. �
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Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface,

σ : S → S an orientation reversing involution,
and F the fixed point set of σ . Then
#connected components(F ) ≤ genus(S) + 1.

Lemma: #connected components(S r F ) ≤ 2 .

Proof of Theorem. A curve with > genus(S) + x
components divides S to > x + 1 components. �

Which proof is better?
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the branches in the plane.
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Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of
the branches in the plane.

This question was raised by Hilbert in his paper
Über die reellen Züge algebraischen Curven,
Mathematische Annalen 38 (1891), 115–138.
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There arises the further question as to the relative position of
the branches in the plane.
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There arises the further question as to the relative position of
the branches in the plane.

This question was raised by Hilbert in his paper
Über die reellen Züge algebraischen Curven,
Mathematische Annalen 38 (1891), 115–138.
Harnack, in the paper mentioned by Hilbert, constructed
curves with the maximal number of components for each
degree.
His curves are very special:
• The depth of each of their nests ≤ 2 .



Relative position of branches

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

5 / 32

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of
the branches in the plane.
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Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of
the branches in the plane.

This question was raised by Hilbert in his paper
Über die reellen Züge algebraischen Curven,
Mathematische Annalen 38 (1891), 115–138.
Harnack, in the paper mentioned by Hilbert, constructed
curves with the maximal number of components for each
degree.
His curves are very special:
• The depth of each of their nests ≤ 2 .
• A Harnack curve of degree n has
3n2

−6n
8

+ 1 outer and n2
−6n
8

+ 1 inner ovals.
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There arises the further question as to the relative position of
the branches in the plane.

This question was raised by Hilbert in his paper
Über die reellen Züge algebraischen Curven,
Mathematische Annalen 38 (1891), 115–138.
Harnack, in the paper mentioned by Hilbert, constructed
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An ellipse does what the line did in Harnack’s construction.
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Each Hilbert’s curve of degree 6 has one of the following two
configurations of ovals:
1. the configuration obtained by Harnack:

2. a new configuration, which cannot be realized by Harnack’s
construction:

Hilbert worked hard, but could not construct curves of degree
6 with 11 connected components positioned with respect to
each other in any other way.

He concluded that this is impossible.
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Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself–by a

complicated process, it is true–that of the eleven branches

which they can have according to Harnack, by no means all

can lie external to one another, but that one branch must exist

in whose interior one branch and in whose exterior nine

branches lie, or inversely.

In other words, only mutual positions of ovals realized by

Harnack’s and Hilbert’s constructions are possible.

Hilbert’s “complicated process” allows one to answer to

virtually all questions on topology of curves of degree 6.

Now it is called Hilbert-Rohn-Gudkov method.
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involves a detailed analysis of singular curves which could be
obtained by continuous deformation from a given nonsingular
one.

The Hilbert-Rohn-Gudkov method required complicated
fragments of singularity theory, which had not been elaborated
at the time of Hilbert.

Hilbert’s arguments were full of gaps.

His approach was realized completely only 69 years later by
D.A.Gudkov
In 1954 Gudkov, in his Candidate dissertation (Ph.D.), proved
Hilbert’s statement about topology of sextic curves with 11
components.
15 years later, in his Doctor dissertation, Gudkov disproved it
and found the final answer.



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate

branches when their number is the maximum seems to me to

be of very great interest,



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate

branches when their number is the maximum seems to me to

be of very great interest,

Why did Hilbert distinguish curves with maximal number of

branches?



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate

branches when their number is the maximum seems to me to

be of very great interest,

Why did Hilbert distinguish curves with maximal number of

branches?

Extremal cases of inequalities had been known to be of

extreme interest.



Call for attack

Read the Sixteenth
Hilbert Problem

• Harnack’s inequality
• Two natures of
Harnack inequality

• Relative position of
branches
• Harnack’s
construction

• Hilbert’s construction

• Hilbert sextics

• Why impossible?

• Hilbert-Rohn-Gudkov
method

• Call for attack

• Solutions

• Solved?

Breakthrough

Post Solution

11 / 32

A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate

branches when their number is the maximum seems to me to

be of very great interest,

Why did Hilbert distinguish curves with maximal number of

branches?

Extremal cases of inequalities had been known to be of

extreme interest.

Hilbert deeply appreciated this paradigm of the calculus of

variations.
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A “complicated process” could not really satisfy Hilbert.

Desperately wishing to understand the real reasons of this

very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate

branches when their number is the maximum seems to me to

be of very great interest, and not less so the corresponding

investigation as to the number, form, and position of the sheets

of an algebraic surface in space.

The word corresponding is crucial here. Without it, this would

really be a mere call to study the topology of real algebraic

surfaces.
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of an algebraic surface in space. Till now, indeed, it is not even

known what is the maximum number of sheets which a surface
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This was proven in 1972 by V.M.Kharlamov in his Master thesis

in the breakthrough of 1969-72, which solved the sixteenth

Hilbert problem.

In 1969, D.A.Gudkov found the final answer to the question

about position of real branches of maximal curves of degree 6.

V.I.Arnold and V.A.Rokhlin found in 1971-72 a conceptual

cause of the phenomenon which struck Hilbert.

Kharlamov completed by 1976 the “corresponding

investigation” of nonsingular quartic surfaces.
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In 1954 Gudkov defended PhD.
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Gudkov’s Conjecture. For any curve of even degree d = 2k
with maximal number of ovals, p − n ≡ k2 mod 8.
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In 1971 Arnold proved a half of Gudkov’s conjecture:

What is a half of congruence

p − n ≡ k2 mod 8 ?
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In 1971 Arnold proved a half of Gudkov’s conjecture: the same
congruence, but modulo 4: p − n ≡ k2 mod 4 .
Arnold’s proof works for a larger class of curves:
for any nonsingular curve of type I – a curve whose real ovals
divide the Riemann surface of its complex points.

Arnold’s proof relies on the topology of the configuration
formed in the complex projective plane CP 2 by the
complexification CA of the curve and the real projective plane
RP 2 .
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+ ?
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w ∈ Zr is a characteristic class of Φ ,
if Φ(x, x) ≡ Φ(x,w) mod 2 for any x ∈ Zr .

Lemma. For any two characteristic classes w,w′ of a form Φ
Φ(w′, w′) ≡ Φ(w,w) mod 8

Back to CY : As we have seen [CA] and [RY ] are
characteristic for ◦τ , if RA divides CA .
Therefore [CA] ◦τ [CA] ≡ [RY ] ◦τ [RY ] mod 8 .
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[RY ] ◦τ [RY ] = −[RY ] ◦ [RY ] = −(−χ(RY )) =
χ(RY ) = 2χ(RP 2

+) = 2(p − n).
Finally, we get 2k2 ≡ 2(p − n) mod 8 ,
that is p − n ≡ k2 mod 4 . Provided RA bounds in CA . �
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H∗(CA; Z2) for any A )
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Soon after Arnold’s paper, Rokhlin published a paper ”Proof of
Gudkov’s conjecture”. He extended his famous topological
theorem on divisibility of signature by 16, and deduced the
Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of
Gudkov conjecture to maximal varieties of any dimension with
a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic
variety of even dimension with
dimZ2

H∗(RA; Z2) = dimZ2
H∗(CA; Z2) .

Then χ(RA) ≡ σ(CA) mod 16 .

Between the two papers by Rokhlin, there was a paper by
Kharlamov with the upper bound (=10) for the number of
connected components of a quartic surface.
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Hilbert’s puzzle had been solved!
The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization
proven by Rokhlin explain all the phenomena which had struck
Hilbert and motivated his sixteenth problem.

They are real manifestations of fundamental topological
phenomena located in the complex.

Hilbert never showed a slightest sign that he had expected a
progress via getting out of the real world into the realm of
complex. Felix Klein consciously looked for interaction of real
and complex pictures as early as in 1876.
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that emerged when the problem was solved.
This is its number !
The number sixteen plays a very special role
in the topology of real algebraic varieties.
Rokhlin’s paper with his proof of Gudkov’s conjecture
and its generalizations is entitled:
“Congruences modulo sixteen

in the sixteen th Hilbert problem”.
Many of subsequent results in this field have also the form of
congruences modulo 16.
It is difficult to believe that Hilbert was aware of phenomena
that would not be discovered until some seventy years later.
Nonetheless, 16 was the number chosen by Hilbert.
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Hilbert’s sixteenth problem does not stop where I stopped
citation, it has the second half:
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In connection with this purely algebraic problem, I wish to bring
forward a question which, it seems to me, may be attacked by
the same method of continuous variation of coefficients, and
whose answer is of corresponding value for the topology of
families of curves defined by differential equations. This is the
question as to the maximum number and position of Poincaré’s
boundary cycles (cycles limites) for a differential equation of
the first order and degree of the form

dy

dx
= Y

X
,

where X and Y are rational integral functions of the nth
degree in x and y .



Second part

Read the Sixteenth
Hilbert Problem

Breakthrough

• Isotopy classification
of nonsingular sextics

• Gudkov’s M-curve

• Gudkov’s conjecture

• Arnold’s congruence

• Complexification

• In homology

• Proof of Arnold’s
congruence

• Gudkov-Rokhlin
congruence

• The role of
complexification

• Mystery of the 16th
Hilbert problem

• Second part

• Second part

• The first part success

Post Solution

26 / 32

Written homogeneously, this is

X

(

y
dz

dt
− z

dy

dt

)

+ Y

(

z
dx

dt
− x

dz

dt

)

+

Z

(

x
dy

dt
− y

dx

dt

)

= 0,

where X , Y , and Z are rational integral homogeneous
functions of the n th degree in x , y , z , and the latter are to
be determined as functions of the parameter t .
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There is still almost no progress in the second half of the
sixteenth problem. Hilbert’s hope for a similarity between the
two halves has not realized.
Finiteness for the number of limit cycles for each individual
equation has been proven. But even for n = 2 , the maximal
number of limit cycles is still unknown.
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Contrary to this, the first half was extremely successful:

It contained difficult concrete problems (maximal sextic curves,
number of components of a quartic surface) which have been
solved.

It attracted attention to a difficult field in the core of
Mathematics.

Topological problems are the roughest and allow one to treat
complicated objects unavailable for investigation from more
refined viewpoints.

This direction has little chances to be completed. As a
“thorough investigation”, the problem can hardly be solved.
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Use of complexification made possible to find numerous
restrictions on the topology of real algebraic varieties.
Besides the congruence modulo 4, Arnold proved in the same
paper several inequalities on numerical characteristics of
mutual position of ovals.
Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin
proved congruences modulo various powers of 2 similar to the
Gudkov-Rokhlin congruence.
Rokhlin observed that a curve of type I brings a distinguished
pair of orientations which come from the complexification and
discovered a topological restriction on them. He suggested to
change the main object of study: Add to topology of the real
variety the topology of its position in the complexification.
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algebraic curves of some specific degree. However, one may
ask: For what degrees the classification problems on topology
of real algebraic varieties are solved?
Isotopy classification problem of nonsingular plane projective
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For n = 6 in 1969 by Gudkov.
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Often people ask: To what degree the Hilbert problem has
been solved?
The problem was not to give topological classification of real
algebraic curves of some specific degree. However, one may
ask: For what degrees the classification problems on topology
of real algebraic varieties are solved?
Isotopy classification problem of nonsingular plane projective
curves of degree n has been solved for n ≤ 7 .
For pseudoholomorphic M-curves the isotopy classification
has been done in degree 8 by Orevkov.
Rigid isotopy classification of nonsingular plane projective
curves of degree n has been solved for n ≤ 6 .
For nonsingular surfaces in the projective 3-space all the
problems have been solved for degree ≤ 4 .
For n ≤ 2 see textbooks on Analytic Geometry.
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Often people ask: To what degree the Hilbert problem has
been solved?
The problem was not to give topological classification of real
algebraic curves of some specific degree. However, one may
ask: For what degrees the classification problems on topology
of real algebraic varieties are solved?
Isotopy classification problem of nonsingular plane projective
curves of degree n has been solved for n ≤ 7 .
For pseudoholomorphic M-curves the isotopy classification
has been done in degree 8 by Orevkov.
Rigid isotopy classification of nonsingular plane projective
curves of degree n has been solved for n ≤ 6 .
For nonsingular surfaces in the projective 3-space all the
problems have been solved for degree ≤ 4 .
For n = 3 by Klein.
For n = 4 in the seventies by Nikulin and Kharlamov.
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