The 16th Hilbert problem, a story of mystery, mistakes and solution.

Oleg Viro

April 20, 2007
Read the Sixteenth Hilbert Problem

- **Harnack's inequality**
- Two natures of Harnack inequality
- Relative position of branches
- Harnack's construction
- Hilbert's construction
- Hilbert sextics
- Why impossible?
- Hilbert-Rohn-Gudkov method
- Call for attack
- Solutions
- Solved?

Breakthrough

Post Solution
Harnack’s inequality

16. Problem of the topology of algebraic curves and surfaces
Harnack’s inequality

16. Problem of the topology of algebraic curves and surfaces

Hilbert started with reminding of a background result:
16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane algebraic curve of the n-th order can have has been determined by Harnack (Mathematische Annalen, vol. 10).
16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane algebraic curve of the n-th order can have has been determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following Harnack inequality.
16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane algebraic curve of the n-th order can have has been determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following *Harnack inequality*.

The words *Harnack inequality* are confusing: there are other, more famous Harnack inequalities concerning values of a positive harmonic function.
16. Problem of the topology of algebraic curves and surfaces

The maximum number of closed and separate branches which a plane algebraic curve of the n-th order can have has been determined by Harnack (Mathematische Annalen, vol. 10).

Here Hilbert referred to the following Harnack inequality. The number of connected components of a plane projective real algebraic curve of degree \(n \)
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has

$$\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1.$$
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has

$$\#(ovals) > M = \frac{(n-1)(n-2)}{2} + 1.$$

- Draw a curve B of degree $n - 2$ through M points chosen on M ovals of A and $n - 3$ points on one more oval.
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has
\[
\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1.
\]

- Draw a curve B of degree $n-2$ through M points chosen on M ovals of A and $n-3$ points on one more oval.

A curve of degree $n-2$ is defined by an equation with
\[
\frac{(n-1)n}{2} - 1 = \frac{(n-1)(n-2)}{2} + n - 1 - 1 = M + n - 3 \text{ points.}
\]
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has

$$
\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1.
$$

- Draw a curve B of degree $n - 2$ through M points chosen on M ovals of A and $n - 3$ points on one more oval.
- Estimate the number of intersection points:
Two natures of Harnack inequality

Harnack’s proof: Let curve \(A \) of degree \(n \) has
\[\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1.\]
- Draw a curve \(B \) of degree \(n - 2 \) through \(M \) points chosen on \(M \) ovals of \(A \) and \(n - 3 \) points on one more oval.
- Estimate the number of intersection points:
\[\geq 2M + n - 3\]
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has
\[\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1. \]
- Draw a curve B of degree $n - 2$ through M points chosen on M ovals of A and $n - 3$ points on one more oval.
- Estimate the number of intersection points:
\[\geq 2M + n - 3 \]

An oval is met even number of times.
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has
$(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1$.

- Draw a curve B of degree $n - 2$ through M points chosen on M ovals of A and $n - 3$ points on one more oval.
- Estimate the number of intersection points:
$$\geq 2M + n - 3 = (n - 1)(n - 2) + 2 + n - 3 = n^2 - 2n + 1 > n(n - 2) ,$$
Two natures of Harnack inequality

Harnack’s proof: Let curve A of degree n has
$\#(\text{ovals}) > M = \frac{(n-1)(n-2)}{2} + 1$.

- Draw a curve B of degree $n - 2$ through M points chosen on M ovals of A and $n - 3$ points on one more oval.
- Estimate the number of intersection points:
 $\geq 2M + n - 3 = (n - 1)(n - 2) + 2 + n - 3 = n^2 - 2n + 1 > n(n - 2)$,
- and apply the Bezout Theorem.
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \rightarrow S$ an orientation reversing involution, and F the fixed point set of σ.
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
• the complexification of the curve and
• the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then
$$\#\text{connected components}(F) \leq \text{genus}(S) + 1.$$
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then

$\text{#connected components}(F') \leq \text{genus}(S) + 1.$

Lemma: $\text{#connected components}(S \setminus F) \leq 2.$
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to

- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let \(S \) be an orientable closed connected surface, \(\sigma : S \to S \) an orientation reversing involution, and \(F \) the fixed point set of \(\sigma \). Then
\[
\#\text{connected components}(F') \leq \text{genus}(S) + 1.
\]

Lemma: \(\#\text{connected components}(S \setminus F) \leq 2 \).

Proof. Let \(A \) be a connected component of \(S \setminus F \).
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to

- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \rightarrow S$ an orientation reversing involution, and F the fixed point set of σ. Then

$$\text{# connected components}(F') \leq \text{genus}(S) + 1.$$

Lemma: $\text{# connected components}(S \setminus F) \leq 2$.

Proof. Let A be a connected component of $S \setminus F$. Then $\text{Cl}(A) \cup \sigma(A)$ is a closed surface.
Two natures of Harnack inequality

Klein's proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then
\[# \text{connected components}(F) \leq \text{genus}(S) + 1.\]

Lemma: $\# \text{connected components}(S \setminus F) \leq 2$.

Proof. Let A be a connected component of $S \setminus F$. Then $\text{Cl}(A) \cup \sigma(A)$ is a closed surface. Hence $\text{Cl}(A) \cup \sigma(A) = S$.
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then

\[\#\text{connected components}(F') \leq \text{genus}(S) + 1. \]

Lemma: $\#\text{connected components}(S \setminus F) \leq 2$.

Proof. Let A be a connected component of $S \setminus F$. Then $\text{Cl}(A) \cup \sigma(A)$ is a closed surface. Hence $\text{Cl}(A) \cup \sigma(A) = S$. If $A \neq \sigma(A)$, then

\[\#\text{connected components}(S \setminus F) = 2. \]
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then
\[
\text{#connected components}(F') \leq \text{genus}(S) + 1.
\]

Lemma: $\text{#connected components}(S \setminus F) \leq 2$.

Proof. Let A be a connected component of $S \setminus F$. Then $\text{Cl}(A) \cup \sigma(A)$ is a closed surface.
Hence $\text{Cl}(A) \cup \sigma(A) = S$. If $A \neq \sigma(A)$, then
\[
\text{#connected components}(S \setminus F) = 2. \quad \text{If } A = \sigma(A), \text{ then}
\]
\[
\text{#connected components}(S \setminus F) = 1. \quad \square
\]
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let S be an orientable closed connected surface, $\sigma : S \to S$ an orientation reversing involution, and F the fixed point set of σ. Then
\[
\#\text{connected components}(F') \leq \text{genus}(S) + 1.
\]

Lemma: $\#\text{connected components}(S \setminus F) \leq 2$.

Proof of Theorem. A curve with $> \text{genus}(S) + x$ components divides S to $> x + 1$ components.

\[\square\]
Two natures of Harnack inequality

Klein’s proof: apply the following theorem to
- the complexification of the curve and
- the complex conjugation involution on it:

Theorem. Let \(S \) be an orientable closed connected surface, \(\sigma : S \to S \) an orientation reversing involution, and \(F \) the fixed point set of \(\sigma \). Then

\[
\#\text{connected components}(F') \leq \text{genus}(S) + 1.
\]

Lemma: \(\#\text{connected components}(S \setminus F) \leq 2 \).

Proof of Theorem. A curve with \(> \text{genus}(S) + x \) components divides \(S \) to \(> x + 1 \) components. ☐

Which proof is better?
Let us come back to Hilbert’s text.
Let us come back to Hilbert’s text. He continued:
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.
Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper Über die reellen Züge algebraischen Curven, Mathematische Annalen 38 (1891), 115–138.
Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper *Über die reellen Züge algebraischen Curven*, Mathematische Annalen 38 (1891), 115–138. Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper "Über die reellen Züge algebraischen Curven," Mathematische Annalen 38 (1891), 115–138.

Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper "Über die reellen Züge algebraischen Curven", Mathematische Annalen 38 (1891), 115–138.

Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:

- The depth of each of their nests ≤ 2.

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper *Über die reellen Züge algebraischen Curven*, Mathematische Annalen 38 (1891), 115–138. Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:

- The depth of each of their nests ≤ 2.
- A Harnack curve of degree n has
Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper *Über die reellen Züge algebraischen Curven*, Mathematische Annalen 38 (1891), 115–138.

Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:
- The depth of each of their nests \(\leq 2 \).
- A Harnack curve of degree \(n \) has
 \[
 \frac{3n^2 - 6n}{8} + 1
 \] outer and
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper *Über die reellen Züge algebraischen Curven*, Mathematische Annalen 38 (1891), 115–138.

Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:

- The depth of each of their nests ≤ 2.
- A Harnack curve of degree n has $$\frac{3n^2-6n}{8} + 1$$ outer and $$\frac{n^2-6n}{8} + 1$$ inner ovals.
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper Über die reellen Züge algebraischen Curven, Mathematische Annalen 38 (1891), 115–138.

Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:

- The depth of each of their nests ≤ 2.
- A Harnack curve of degree n has $\frac{3n^2 - 6n}{8} + 1$ outer and $\frac{n^2 - 6n}{8} + 1$ inner ovals.

In degree 6: 10 outer ovals and 1 inner oval.
Relative position of branches

Let us come back to Hilbert’s text. He continued:

There arises the further question as to the relative position of the branches in the plane.

This question was raised by Hilbert in his paper *Über die reellen Züge algebraischen Curven*, Mathematische Annalen 38 (1891), 115–138. Harnack, in the paper mentioned by Hilbert, constructed curves with the maximal number of components for each degree.

His curves are very special:
- The depth of each of their nests ≤ 2.
- A Harnack curve of degree n has $\frac{3n^2 - 6n}{8} + 1$ outer and $\frac{n^2 - 6n}{8} + 1$ inner ovals.

In degree 6:

![Diagram of a Harnack curve in degree 6]
Harnack’s construction

Take a line and circle:
Harnack’s construction

Take a line and circle:

Perturb their union:
Harnack’s construction

Take a line and circle:

Perturb their union:

Perturb the union of the result and the line:
Harnack’s construction

Take a line and circle:

Perturb their union:

Perturb the union of the result and the line:

Perturb the union of the result and the line:
Harnack’s construction

Take a line and circle:

Perturb their union:

Perturb the union of the result and the line:

Perturb the union of the result and the line:

And so on…
Hilbert’s construction

Hilbert, in his paper of 1891, suggested another construction:
Hilbert’s construction

Hilbert, in his paper of 1891, suggested another construction:
Hilbert’s construction

Hilbert, in his paper of 1891, suggested another construction:

An ellipse does what the line did in Harnack’s construction.
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:

1. the configuration obtained by Harnack:
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:

1. the configuration obtained by Harnack:

 ![Configuration 1](attachment:image1.png)

2. a new configuration, which cannot be realized by Harnack’s construction:

 ![Configuration 2](attachment:image2.png)
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:

1. the configuration obtained by Harnack:

 ![Harnack's configuration diagram]

2. a new configuration, which cannot be realized by Harnack’s construction:

![New configuration diagram]

Hilbert worked hard
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:

1. the configuration obtained by Harnack:

```
○ ○ ○ ○ ○ ○ ○ ○ ○ ○
```

Hilbert worked hard, but could not construct curves of degree 6 with 11 connected components positioned with respect to each other in any other way.

2. a new configuration, which cannot be realized by Harnack’s construction:

```
○ [○ ○ ○ ○ ○ ○ ○ ○ ○ ○]
```
Hilbert sextics

Each Hilbert’s curve of degree 6 has one of the following two configurations of ovals:

1. the configuration obtained by Harnack:

 ![Diagram of the configuration obtained by Harnack]

 Hilbert worked hard, but could not construct curves of degree 6 with 11 connected components positioned with respect to each other in any other way.

 He concluded that this is impossible.

2. a new configuration, which cannot be realized by Harnack’s construction:

 ![Diagram of a new configuration which cannot be realized by Harnack’s construction]
Why impossible?

Read the Sixteenth Hilbert Problem

- **Harnack's inequality**
- Two natures of Harnack inequality
- Relative position of branches
- Harnack's construction
- Hilbert's construction
- Hilbert sextics
- **Why impossible?**
- Hilbert-Rohn-Gudkov method
- Call for attack
- Solutions
- Solved?

Breakthrough

Post Solution
Why impossible?

Hilbert turned to proof of impossibility:
Why impossible?

Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another,
Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.
Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.

In other words, only mutual positions of ovals realized by Harnack’s and Hilbert’s constructions are possible.
Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.

In other words, only mutual positions of ovals realized by Harnack’s and Hilbert’s constructions are possible.

Hilbert’s “complicated process” allows one to answer to virtually all questions on topology of curves of degree 6.
Hilbert turned to proof of impossibility:

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.

In other words, only mutual positions of ovals realized by Harnack’s and Hilbert’s constructions are possible.

Hilbert’s “complicated process” allows one to answer to virtually all questions on topology of curves of degree 6.

Now it is called _Hilbert-Rohn-Gudkov method_.

Why impossible?

- Harnack’s inequality
- Two natures of Harnack inequality
- Relative position of branches
- Harnack’s construction
- Hilbert’s construction
- Hilbert sextics
- Why impossible?
- Hilbert-Rohn-Gudkov method
- Call for attack
- Solutions
- Solved?

Breakthrough

Post Solution
Hilbert-Rohn-Gudkov method involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.
Hilbert-Rohn-Gudkov method

involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments of singularity theory, which had not been elaborated at the time of Hilbert.
Hilbert-Rohn-Gudkov method

involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments of singularity theory, which had not been elaborated at the time of Hilbert.

Hilbert’s arguments were full of gaps.
Hilbert-Rohn-Gudkov method

involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments of singularity theory, which had not been elaborated at the time of Hilbert.

Hilbert’s arguments were full of gaps.

His approach was realized completely only 69 years later by D.A. Gudkov.
Hilbert-Rohn-Gudkov method

involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments of singularity theory, which had not been elaborated at the time of Hilbert.

Hilbert’s arguments were full of gaps.

His approach was realized completely only 69 years later by D.A. Gudkov.

In 1954 Gudkov, in his Candidate dissertation (Ph.D.), proved Hilbert’s statement about topology of sextic curves with 11 components.
Hilbert-Rohn-Gudkov method

involves a detailed analysis of singular curves which could be obtained by continuous deformation from a given nonsingular one.

The Hilbert-Rohn-Gudkov method required complicated fragments of singularity theory, which had not been elaborated at the time of Hilbert.

Hilbert’s arguments were full of gaps.

His approach was realized completely only 69 years later by D.A. Gudkov

In 1954 Gudkov, in his Candidate dissertation (Ph.D.), proved Hilbert’s statement about topology of sextic curves with 11 components.

15 years later, in his Doctor dissertation, Gudkov disproved it and found the final answer.
Call for attack

A “complicated process” could not really satisfy Hilbert.
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Why did Hilbert distinguish curves with maximal number of branches?
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Why did Hilbert distinguish curves with maximal number of branches?

Extremal cases of inequalities had been known to be of extreme interest.
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Why did Hilbert distinguish curves with maximal number of branches?

Extremal cases of inequalities had been known to be of extreme interest.

Hilbert deeply appreciated this paradigm of the calculus of variations.
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Now people (especially, specialists) tend to widen the content of Hilbert’s 16th problem.
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Now people (especially, specialists) tend to widen the content of Hilbert’s 16th problem as just a call for study of the topology of all real algebraic varieties.
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest,

Now people (especially, specialists) tend to widen the content of Hilbert’s 16th problem as just a call for study of the topology of all real algebraic varieties.

To support this view, they cite also the next piece of Hilbert’s text:
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest, and not less so the corresponding investigation as to the number, form, and position of the sheets of an algebraic surface in space.
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest, and not less so the corresponding investigation as to the number, form, and position of the sheets of an algebraic surface in space.

The word corresponding is crucial here. Without it, this would really be a mere call to study the topology of real algebraic surfaces.
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest, and not less so the corresponding investigation as to the number, form, and position of the sheets of an algebraic surface in space.

The word corresponding is crucial here. Without it, this would really be a mere call to study the topology of real algebraic surfaces. So, what is “the corresponding”?
Call for attack

A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest, and not less so the corresponding investigation as to the number, form, and position of the sheets of an algebraic surface in space.

The word corresponding is crucial here. Without it, this would really be a mere call to study the topology of real algebraic surfaces. So, what is “the corresponding”? Hilbert continues:
A “complicated process” could not really satisfy Hilbert. Desperately wishing to understand the real reasons of this very mysterious phenomenon, Hilbert called for attack:

A thorough investigation of the relative position of the separate branches when their number is the maximum seems to me to be of very great interest, and not less so the corresponding investigation as to the number, form, and position of the sheets of an algebraic surface in space. Till now, indeed, it is not even known what is the maximum number of sheets which a surface of the 4-th order in three dimensional space can really have (Cf. Rohn, “Flächen vierter Ordnung” 1886).
Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is 10.
Solutions

Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is 10.

This was proven in 1972 by V.M. Kharlamov in his Master thesis.
Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is *10*.

This was proven in 1972 by V.M.Kharlamov in his Master thesis in the *breakthrough* of 1969-72, which *solved* the sixteenth Hilbert problem.
Solutions

Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is 10.

This was proven in 1972 by V.M.Kharlamov in his Master thesis in the breakthrough of 1969-72, which solved the sixteenth Hilbert problem.

All the questions contained, explicitly or implicitly, in the sixteenth problem have been answered by D.A.Gudkov, V.I.Arnold, V.A.Rokhlin and V.M.Kharlamov in this breakthrough.
Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is **10**.

This was proven in 1972 by *V.M.Kharlamov* in his Master thesis in the **breakthrough** of 1969-72, which solved the sixteenth Hilbert problem.

In 1969, *D.A.Gudkov* found the final answer to the question about **position of real branches of maximal curves of degree 6**.
Solutions

Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is \(10\).

This was proven in 1972 by V.M.Kharlamov in his Master thesis in the breakthrough of 1969-72, which solved the sixteenth Hilbert problem.

In 1969, D.A.Gudkov found the final answer to the question about position of real branches of maximal curves of degree 6. V.I.Arnold and V.A.Rokhlin found in 1971-72 a conceptual cause of the phenomenon which struck Hilbert.
Solutions

Now we know that the maximum number of connected components of a quartic surface in the 3-dimensional projective space is 10.

This was proven in 1972 by V.M. Kharlamov in his Master thesis in the breakthrough of 1969-72, which solved the sixteenth Hilbert problem.

In 1969, D.A. Gudkov found the final answer to the question about position of real branches of maximal curves of degree 6.

V.I. Arnold and V.A. Rokhlin found in 1971-72 a conceptual cause of the phenomenon which struck Hilbert.

Kharlamov completed by 1976 the “corresponding investigation” of nonsingular quartic surfaces.
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

Unusual?
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.
All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It looks like a final point.
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem **solved**.

However, I am not aware about any publication, where it is claimed.

The solution was **initiated by completion** of long difficult technical work.

It followed by opening **a bright new world**
All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It followed by opening a bright new world with a relation to the complex domain,
All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It followed by opening a bright new world with a relation to the complex domain, 4-dimensional topology,
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It followed by opening a bright new world with a relation to the complex domain, 4-dimensional topology, complex algebraic geometry.
All in all this gives good reasons to consider the sixteenth Hilbert problem **solved**.

However, I am not aware about any publication, where it is claimed.

The solution was **initiated by completion** of long difficult technical work.

It followed by opening a **bright new world** with a relation to the complex domain, 4-dimensional topology, complex algebraic geometry.

The sixteenth Hilbert problem was the **symbol** of the breakthrough.
Solved?

All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It followed by opening a bright new world with a relation to the complex domain, 4-dimensional topology, complex algebraic geometry.

The sixteenth Hilbert problem was the symbol of the breakthrough.

Nobody wanted to dispose of the symbol.
All in all this gives good reasons to consider the sixteenth Hilbert problem solved.

However, I am not aware about any publication, where it is claimed.

The solution was initiated by completion of long difficult technical work.

It followed by opening a bright new world with a relation to the complex domain, 4-dimensional topology, complex algebraic geometry.

The sixteenth Hilbert problem was the symbol of the breakthrough.

Nobody cared that the puzzle had been solved.
Read the Sixteenth Hilbert Problem

Breakthrough
- Isotopy classification of nonsingular sextics
- Gudkov's M-curve
- Gudkov's conjecture
- Arnold's congruence
- Complexification
- In homology
- Proof of Arnold's congruence
- Gudkov-Rokhlin congruence
- The role of complexification
- Mystery of the 16th Hilbert problem
- Second part
- Second part
- The first part success

Post Solution
Isotopy classification of nonsingular sextics

In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.

A.A. Andronov proposed to Gudkov: develop theory of degrees of coarseness for real algebraic curves.
Isotopy classification of nonsingular sextics

In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.

A.A. Andronov proposed to Gudkov: develop theory of degrees of coarseness for real algebraic curves. Like in the theory of dynamical systems.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.

A.A. Andronov proposed to Gudkov: develop theory of degrees of coarseness for real algebraic curves.

I.G. Petrovsky suggested to unite this with study of sextics.
In 1969, D.A.Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.

A.A.Andronov proposed to Gudkov: develop theory of degrees of coarseness for real algebraic curves.

I.G.Petrovsky suggested to unite this with study of sextics.

In 1954 Gudkov defended PhD.
Isotopy classification of nonsingular sextics

In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6. The project started in 1948.

A.A. Andronov proposed to Gudkov: develop theory of degrees of coarseness for real algebraic curves.

I.G. Petrovsky suggested to unite this with study of sextics.

In 1954 Gudkov defended PhD. About 12-14 years later he prepared publication.
Isotopy classification of nonsingular sextics

In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

\[p + n : 11 \]

\[p - n : -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10 \]
Isotopy classification of nonsingular sextics

In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

The referee did not like it.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

He suggested to make it more symmetric.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

\[p + n: \begin{array}{c} 11 \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array} \]

\[p - n: \begin{array}{c} -10 \ -8 \ -6 \ -4 \ -2 \ 0 \ 2 \ 4 \ 6 \ 8 \ 10 \end{array} \]

Gudkov found a mistake
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

\[p + n: 11 \]
\[p - n: -10 -8 -6 -4 -2 0 2 4 6 8 10 \]

Gudkov found a mistake and the final answer.
In 1969, D.A. Gudkov completed isotopy classification of nonsingular real algebraic plane projective curves of degree 6.

The summary of results:

\[p + n : 11 \]
\[p - n : -10 -8 -6 -4 -2 0 2 4 6 8 10 \]

Gudkov found a mistake and the final answer.
<table>
<thead>
<tr>
<th>Breakthrough</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Isotopy classification of nonsingular sextics</td>
</tr>
<tr>
<td>• Gudkov’s M-curve</td>
</tr>
<tr>
<td>• Gudkov’s conjecture</td>
</tr>
<tr>
<td>• Arnold’s congruence</td>
</tr>
<tr>
<td>• Complexification</td>
</tr>
<tr>
<td>• In homology</td>
</tr>
<tr>
<td>• Proof of Arnold’s congruence</td>
</tr>
<tr>
<td>• Gudkov-Rokhlin congruence</td>
</tr>
<tr>
<td>• The role of complexification</td>
</tr>
<tr>
<td>• Mystery of the 16th Hilbert problem</td>
</tr>
<tr>
<td>• Second part</td>
</tr>
<tr>
<td>• Second part</td>
</tr>
<tr>
<td>• The first part success</td>
</tr>
</tbody>
</table>

Post Solution
Gudkov’s M-curve

The missing curve
Gudkov’s M-curve

The missing curve

\[
\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

disproved Hilbert’s statement.
Gudkov’s M-curve

The missing curve disproved Hilbert’s statement.

As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.
The missing curve disproved Hilbert’s statement.
In the first version Hilbert was more cautious and correct:
As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another, but that one branch must exist in whose interior one branch and in whose exterior nine branches lie, or inversely.
The missing curve disproved Hilbert’s statement. In the first version Hilbert was more cautious and correct: As to curves of the 6-th order, I have satisfied myself—by a complicated process, it is true—that of the eleven branches which they can have according to Harnack, by no means all can lie external to one another.
Gudkov’s conjecture

Symmetric top of the table

\[p + n: 11 \]

\[p - n: -10 -8 -6 -4 -2 \]

forced Gudkov to formulate:
Gudkov’s conjecture

Symmetric top of the table

\[
p + n: 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 \]

\[
p - n: -10, -8, -6, -4, -2, 0, 2, 4, 6, 8, 10 \]

forced Gudkov to formulate:

Gudkov’s Conjecture. For any curve of even degree \(d = 2k \) with maximal number of ovals, \(p - n \equiv k^2 \mod 8 \).
Gudkov’s Conjecture. For any curve of even degree $d = 2k$ with maximal number of ovals, $p - n \equiv k^2 \mod 8$. It was this conjecture that inspired the breakthrough.

Symmetric top of the table

$$p + n: 11 \quad 10 \quad 9 \quad 8 \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1 \quad 0$$

$$p - n: -10 \quad -8 \quad -6 \quad -4 \quad -2 \quad 0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10$$

forced Gudkov to formulate:

Gudkov’s Conjecture.
Arnold’s congruence

In 1971 Arnold proved a *half* of Gudkov’s conjecture:
Arnold’s congruence

In 1971 Arnold proved a half of Gudkov’s conjecture:

What is a half of congruence

\[p - n \equiv k^2 \mod 8 \]
Arnold’s congruence

In 1971 Arnold proved a *half* of Gudkov’s conjecture: the same congruence, but *modulo 4*
Arnold’s congruence

In 1971 Arnold proved a half of Gudkov’s conjecture: the same congruence, but modulo 4: \(p - n \equiv k^2 \mod 4 \).
Arnold’s congruence

In 1971 Arnold proved a *half* of Gudkov’s conjecture: the same congruence, but *modulo* 4: \(p - n \equiv k^2 \mod 4 \). Arnold’s proof works for a larger class of curves:
Arnold’s congruence

In 1971 Arnold proved a half of Gudkov’s conjecture: the same congruence, but modulo 4: \(p - n \equiv k^2 \mod 4 \).

Arnold’s proof works for a larger class of curves: for any nonsingular curve of type I.
Arnold’s congruence

In 1971 Arnold proved a half of Gudkov’s conjecture: the same congruence, but modulo 4: \(p - n \equiv k^2 \mod 4 \).

Arnold’s proof works for a larger class of curves: for any nonsingular curve of type I – a curve whose real ovals divide the Riemann surface of its complex points.
Arnold’s congruence

In 1971 Arnold proved a half of Gudkov’s conjecture: the same congruence, but modulo 4: \(p - n \equiv k^2 \mod 4 \).

Arnold’s proof works for a larger class of curves: for any nonsingular curve of type I – a curve whose real ovals divide the Riemann surface of its complex points.

Arnold’s proof relies on the topology of the configuration formed in the complex projective plane \(\mathbb{C}P^2 \) by the complexification \(\mathbb{C}A \) of the curve and the real projective plane \(\mathbb{R}P^2 \).
Complexification

Curve A of degree $d = 2k$,

- Isotopy classification of nonsingular sextics
- Gudkov's M-curve
- Gudkov's conjecture
- Arnold's congruence
- Complexification
- In homology
- Proof of Arnold's congruence
- Gudkov-Rokhlin congruence
- The role of complexification
- Mystery of the 16th Hilbert problem
- Second part
- Second part
- The first part success

Post Solution
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane,
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d.
Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$.

Read the Sixteenth Hilbert Problem

Breakthrough

- Isotopy classification of nonsingular sextics
- Gudkov's M-curve
- Gudkov's conjecture
- Arnold's congruence
- Complexification
- In homology
- Proof of Arnold's congruence
- Gudkov-Rokhlin congruence
- The role of complexification
- Mystery of the 16th Hilbert problem
- Second part
- Second part
- The first part success
Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$.

Complexification
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. They are well-defined, as $F(\lambda x) = \lambda^{2k} F(x)$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{RP}^2$, a collection of smooth ovals in \mathbb{RP}^2 and $\mathbb{C}A \subset \mathbb{CP}^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides \mathbb{RP}^2 into \mathbb{RP}^2_+, where $F(x) \geq 0$, and \mathbb{RP}^2_-, where $F(x) \leq 0$. Choose F to have \mathbb{RP}^2_+ orientable. $p - n = \chi(\mathbb{RP}^2_+)$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $R^A \subset R P^2$, a collection of smooth ovals in $R P^2$ and $C^A \subset C P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, R^A divides $R P^2$ into $R P^2_+$, where $F(x) \geq 0$, and $R P^2_-$, where $F(x) \leq 0$. Choose F to have $R P^2_+$ orientable. $p - n = \chi(R P^2_+)$. p is the number of even ovals.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$. p is the number of even ovals, the number of components of $\mathbb{R}P^2_+$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $RA \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $CA \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, RA divides $\mathbb{R}P^2$ into $\mathbb{R}P_+^2$, where $F(x) \geq 0$, and $\mathbb{R}P_-^2$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P_+^2$ orientable. $p - n = \chi(\mathbb{R}P_+^2)$. p is the number of even ovals, the number of components of $\mathbb{R}P_+^2$. n is the number of odd ovals, the number of holes in $\mathbb{R}P_+^2$.

Post Solution
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. \(p - n = \chi(\mathbb{R}P^2_+) \).

How to complexify $\mathbb{R}P^2_+$?
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where

F is a real homogeneous polynomial of degree d.

If F is generic, then $F(x_0, x_1, x_2) = 0$ defines

$\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$

and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$.

Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$.

How to complexify $\mathbb{R}P^2_+$?

How to complexify the notion of manifold with boundary?
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d.

If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2$, where $F(x) \geq 0$, and $\mathbb{R}P^2$, where $F(x) \leq 0$.

Choose F to have $\mathbb{R}P^2$ orientable. $p - n = \chi(\mathbb{R}P^2)$. How to complexify $\mathbb{R}P^2$?

How to complexify the notion of manifold with boundary? How to complexify inequality $F(x) \geq 0$?
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$.

Arnold: Complexification of inequality is two-fold branched covering!
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$. Arnold: Complexification of inequality is two-fold branched covering!

Indeed, $F(x) \geq 0 \Leftrightarrow \exists y \in \mathbb{R} : F(x) = y^2$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$.

$F(x_0, x_1, x_2) = y^2$ defines a surface $\mathbb{C}Y$ in 3-variety $E = (\mathbb{C}^3 \setminus 0) \times \mathbb{C}/(x_0, x_1, x_2, y) \sim (tx_0, tx_1, tx_2, t^ky)$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$.

$F(x_0, x_1, x_2) = y^2$ defines a surface $\mathbb{C}Y$ in 3-variety $E = (\mathbb{C}^3 \setminus 0) \times \mathbb{C}/(x_0, x_1, x_2, y) \sim (tx_0, tx_1, tx_2, t^ky)$. Projection $\mathbb{C}Y \to \mathbb{C}P^2 : [x_0, x_1, x_2, y] \mapsto [x_0 : x_1 : x_2]$ is a two-fold covering branched over $\mathbb{C}A$.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{RA} \subset \mathbb{RP}^2$, a collection of smooth ovals in \mathbb{RP}^2 and $\mathbb{CA} \subset \mathbb{CP}^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, \mathbb{RA} divides \mathbb{RP}^2 into \mathbb{RP}^2_+, where $F(x) \geq 0$, and \mathbb{RP}^2_-, where $F(x) \leq 0$. Choose F to have \mathbb{RP}^2_+ orientable. $p - n = \chi(\mathbb{RP}^2_+)$.

$F(x_0, x_1, x_2) = y^2$ defines a surface \mathbb{CY} in 3-variety $E = (\mathbb{C}^3 \setminus 0) \times \mathbb{C}/(x_0, x_1, x_2, y) \sim (tx_0, tx_1, tx_2, t^ky)$. Projection $\mathbb{CY} \to \mathbb{CP}^2 : [x_0, x_1, x_2, y] \mapsto [x_0:x_1:x_2]$ is a two-fold covering branched over \mathbb{CA}. It maps \mathbb{RY} onto \mathbb{RP}^2_+.
Complexification

Curve A of degree $d = 2k$, is defined by equation $F(x_0, x_1, x_2) = 0$ on projective plane, where F is a real homogeneous polynomial of degree d. If F is generic, then $F(x_0, x_1, x_2) = 0$ defines $\mathbb{R}A \subset \mathbb{R}P^2$, a collection of smooth ovals in $\mathbb{R}P^2$ and $\mathbb{C}A \subset \mathbb{C}P^2$, a smooth sphere with $g = \frac{(d-1)(d-2)}{2}$ handles. Since d is even, $\mathbb{R}A$ divides $\mathbb{R}P^2$ into $\mathbb{R}P^2_+$, where $F(x) \geq 0$, and $\mathbb{R}P^2_-$, where $F(x) \leq 0$. Choose F to have $\mathbb{R}P^2_+$ orientable. $p - n = \chi(\mathbb{R}P^2_+)$. $F(x_0, x_1, x_2) = y^2$ defines a surface $\mathbb{C}Y$ in 3-variety $E = (\mathbb{C}^3 \setminus 0) \times \mathbb{C}/(x_0, x_1, x_2, y) \sim (tx_0, tx_1, tx_2, t^ky)$. Projection $\mathbb{C}Y \to \mathbb{C}P^2 : [x_0, x_1, x_2, y] \mapsto [x_0:x_1:x_2]$ is a two-fold covering branched over $\mathbb{C}A$. It maps $\mathbb{R}Y$ onto $\mathbb{R}P^2_+$. Automorphism $\tau : \mathbb{C}Y \to \mathbb{C}Y$, involution with $\text{fix}(\tau) = \mathbb{C}A$.
\[\pi_1(\mathbb{C}Y) = 0. \]
In homology

\[\pi_1(\mathbb{C}Y) = 0 \]. This simplifies algebra, makes it commutative.
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4} \]
In homology

\[\pi_1(\mathbb{C}Y) = 0 \]. This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2 - 6k + 4}, \text{our scene of algebraic action.} \]
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{ our scene of algebraic action;} \]

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \rightarrow \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta \]
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{ our scene of algebraic action;} \]

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta, \]

symmetric bilinear unimodular form.
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{ our scene of algebraic action;} \]

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{our scene of algebraic action;} \]
decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau^* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau^*(\beta) \]
In homology

\[\pi_1(\mathbb{CY}) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{CY}) = H_4(\mathbb{CY}) = \mathbb{Z}, \quad H_1(\mathbb{CY}) = H_3(\mathbb{CY}) = 0. \]

\[H_2(\mathbb{CY}) = \mathbb{Z}^{4k^2 - 6k + 4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathbb{CY}) \times H_2(\mathbb{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{CY}) \to H_2(\mathbb{CY}). \)

Form of involution \(\tau \)

\[H_2(\mathbb{CY}) \times H_2(\mathbb{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_*(\beta), \]

which is also a symmetric bilinear unimodular form.
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.
\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \] our scene of algebraic action;

decorations: Intersection form
\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \rightarrow \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \rightarrow H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)
\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \rightarrow \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_{\tau} \beta = \alpha \circ \tau_*(\beta) \]

Homology class
\[[CA] \in H_2(\mathbb{C}Y). \]
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \rightarrow \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \rightarrow H_2(\mathbb{C}Y) \).

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \rightarrow \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_{\tau} \beta = \alpha \circ \tau_* (\beta) \]

Homology classes \([\mathbb{R}Y], [\mathbb{C}A] \in H_2(\mathbb{C}Y)\).

We orient \(\mathbb{R}Y \).
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{our scene of algebraic action}; \]

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z}: (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_*: H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z}: (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_*(\beta) \]

Homology classes \[[\infty], [\mathbb{R}Y], [\mathbb{C}A] \in H_2(\mathbb{C}Y). \]

\[[\infty] \text{ is the preimage of a generic projective line under} \]

\[\mathbb{C}Y \to \mathbb{C}P^2. \]
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y) . \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_*(\beta) \]

Homology classes \([\infty], [\mathcal{R}Y], [\mathcal{C}A] \in H_2(\mathbb{C}Y) . \)

\[[\mathcal{C}A] \circ_\tau \xi \equiv \xi \circ_\tau \xi \mod 2 \] for any \(\xi . \)
In homology

\[\pi_1(\mathbb{C}Y) = 0 \] . This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \text{our scene of algebraic action;} \]

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_{\tau} \beta = \alpha \circ \tau_*(\beta) \]

Homology classes \([\infty], [\mathbb{R}Y], [\mathbb{C}A] \in H_2(\mathbb{C}Y).\]

\[[\mathbb{C}A] \circ_{\tau} \xi \equiv \xi \circ_{\tau} \xi \mod 2 \text{ for any } \xi. \]

Because \(X \cap \tau(X) \)
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2-6k+4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_* (\beta) \]

Homology classes \([\infty], [\mathbb{R}Y], [\mathbb{C}A] \in H_2(\mathbb{C}Y).\)

\[[\mathbb{C}A] \circ_\tau \xi \equiv \xi \circ_\tau \xi \mod 2 \] for any \(\xi. \)

Because \(X \cap \tau(X) \)

\[= (X \cap \mathbb{C}A) \cup (\text{even number of points}). \]
\[\pi_1(\mathbb{CY}) = 0 \]. This simplifies algebra, makes it commutative.

\[H_0(\mathbb{CY}) = H_4(\mathbb{CY}) = \mathbb{Z}, \quad H_1(\mathbb{CY}) = H_3(\mathbb{CY}) = 0. \]

\[H_2(\mathbb{CY}) = \mathbb{Z}^{4k^2 - 6k + 4} , \text{our scene of algebraic action;} \]

decorations: Intersection form

\[H_2(\mathbb{CY}) \times H_2(\mathbb{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{CY}) \to H_2(\mathbb{CY}) \).

Form of involution \(\tau \)

\[H_2(\mathbb{CY}) \times H_2(\mathbb{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_*(\beta) \]

Homology classes [\(\infty \)], [\(\mathbb{R}Y \)], [\(\mathbb{CA} \)] \(\in H_2(\mathbb{CY}) \).

\[[\mathbb{CA}] \circ_\tau \xi \equiv \xi \circ_\tau \xi \mod 2 \text{ for any } \xi. \]

\[[\mathbb{CA}] = k[\infty] \]
In homology

\[\pi_1(\mathcal{CY}) = 0 . \] This simplifies algebra, makes it commutative.

\[H_0(\mathcal{CY}) = H_4(\mathcal{CY}) = \mathbb{Z}, \quad H_1(\mathcal{CY}) = H_3(\mathcal{CY}) = 0. \]

\[H_2(\mathcal{CY}) = \mathbb{Z}^{4k^2 - 6k + 4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathcal{CY}) \times H_2(\mathcal{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta . \]

Involution \(\tau_* : H_2(\mathcal{CY}) \to H_2(\mathcal{CY}) . \)

Form of involution \(\tau \)

\[H_2(\mathcal{CY}) \times H_2(\mathcal{CY}) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_\tau \beta = \alpha \circ \tau_*(\beta) \]

Homology classes \([\infty], [\mathbb{R}Y], [\mathcal{C}A] \in H_2(\mathcal{CY}) . \)

\[[\mathcal{C}A] \circ_\tau \xi \equiv \xi \circ_\tau \xi \mod 2 \] for any \(\xi . \)

\[[\mathcal{C}A] = k[\infty] ; \ k[\infty] \equiv [\mathbb{R}Y] \mod 2 , \] if \(R \) divides \(\mathcal{C}A . \)
In homology

\[\pi_1(\mathbb{C}Y) = 0. \] This simplifies algebra, makes it commutative.

\[H_0(\mathbb{C}Y) = H_4(\mathbb{C}Y) = \mathbb{Z}, \quad H_1(\mathbb{C}Y) = H_3(\mathbb{C}Y) = 0. \]

\[H_2(\mathbb{C}Y) = \mathbb{Z}^{4k^2 - 6k + 4}, \] our scene of algebraic action;

decorations: Intersection form

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ \beta. \]

Involution \(\tau_* : H_2(\mathbb{C}Y) \to H_2(\mathbb{C}Y). \)

Form of involution \(\tau \)

\[H_2(\mathbb{C}Y) \times H_2(\mathbb{C}Y) \to \mathbb{Z} : (\alpha, \beta) \mapsto \alpha \circ_{\tau} \beta = \alpha \circ \tau_*(\beta) \]

Homology classes \([\infty], [\mathbb{R}Y], [\mathbb{C}A] \in H_2(\mathbb{C}Y). \)

\[[\mathbb{C}A] \circ_{\tau} \xi \equiv \xi \circ_{\tau} \xi \mod 2 \] for any \(\xi. \)

\[[\mathbb{C}A] = k[\infty]; k[\infty] \equiv [\mathbb{R}Y] \mod 2, \text{ if } RA \text{ divides } CA. \]

Hence

\[[\mathbb{R}Y] \circ_{\tau} \xi \equiv \xi \circ_{\tau} \xi \mod 2 \] for any \(\xi, \) if \(RA \) divides \(CA. \)
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Any unimodular symmetric bilinear form has a characteristic class.
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Any unimodular symmetric bilinear form has a characteristic class. Any two characteristic classes are congruent modulo 2.
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$
Proof of Arnold’s congruence

Arithmetics digression.
Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\[
\Phi(w', w') \equiv \Phi(w, w) \mod 8
\]

Proof. \(w' = w + 2x \) for some \(x \in \mathbb{Z}^r \).
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Proof. $w' = w + 2x$ for some $x \in \mathbb{Z}^r$.

Hence $\Phi(w', w') = \Phi(w, w) + 4\Phi(x, w) + 4\Phi(x, x)$
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \),
if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)
\(\Phi(w', w') \equiv \Phi(w, w) \mod 8 \)

Proof. \(w' = w + 2x \) for some \(x \in \mathbb{Z}^r \).
Hence \(\Phi(w', w') = \Phi(w, w) + 4\Phi(x, w) + 4\Phi(x, x) \),
but \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \).
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\(\Phi(w', w') \equiv \Phi(w, w) \mod 8 \)

Proof. \(w' = w + 2x \) for some \(x \in \mathbb{Z}^r \).

Hence \(\Phi(w', w') = \Phi(w, w) + 4\Phi(x, w) + 4\Phi(x, x) \),

but \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \).

Therefore \(\Phi(w', w') \equiv \Phi(w, w) + 8\Phi(x, x) \mod 8 \). \(\square \)
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

Let $w \in \mathbb{Z}^r$ be a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ,

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Back to CY:
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

Let $w \in \mathbb{Z}^r$ be a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ $\Phi(w', w') \equiv \Phi(w, w) \mod 8$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_τ, if RA divides CA.

Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ,

if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$\Phi(w', w') \equiv \Phi(w, w) \mod 8$

Back to CY : As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_τ, if RA divides CA.

Therefore $[CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8$.
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\[
\Phi(w', w') \equiv \Phi(w, w) \mod 8
\]

Back to CY: As we have seen \([CA]\) and \([RY]\) are characteristic for \(\circ_{\tau} \), if \(RA \) divides \(CA \).

Therefore \([CA] \circ_{\tau} [CA] \equiv [RY] \circ_{\tau} [RY] \mod 8\).

\([CA] \circ_{\tau} [CA] = [CA] \circ [CA]\)
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_{τ}, if RA divides CA.

Therefore $[CA] \circ_{\tau} [CA] \equiv [RY] \circ_{\tau} [RY] \mod 8$.

$$[CA] \circ_{\tau} [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty]$$
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\[\Phi(w', w') \equiv \Phi(w, w) \mod 8 \]

Back to CY: As we have seen \([CA]\) and \([RY]\) are characteristic for \(\circ_\tau \), if \(RA \) divides \(CA \).

Therefore \([CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8 \).

\[[CA] \circ_\tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2. \]
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\[\Phi(w', w') \equiv \Phi(w, w) \mod 8 \]

Back to CY: As we have seen \([CA]\) and \([RY]\) are characteristic for \(\circ_\tau \), if \(RA \) divides \(CA \).

Therefore \([CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8 \).

\[
[CA] \circ_\tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2.
\]

\[
[RY] \circ_\tau [RY] = -[RY] \circ [RY]
\]
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if

\(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\(\Phi(w', w') \equiv \Phi(w, w) \mod 8 \)

Back to CY: As we have seen \([CA]\) and \([RY]\) are characteristic for \(\circ_\tau \), if \(RA \) divides \(CA \).

Therefore

\([CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8 \).

\([CA] \circ_\tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2 \).

\([RY] \circ_\tau [RY] = -[RY] \circ [RY] = -(-\chi(\text{RY})) \)

Because multiplication by \(\sqrt{-1} \) is antiisomorphism between tangent and normal fibrations of \(RA \) + Poincaré-Hopf.
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_{τ}, if RA divides CA.

Therefore $[CA] \circ_{\tau} [CA] \equiv [RY] \circ_{\tau} [RY] \mod 8$.

$[CA] \circ_{\tau} [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2$.

$[RY] \circ_{\tau} [RY] = -[RY] \circ [RY] = -(-\chi(\mathbb{R}Y)) = \chi(\mathbb{R}Y) = 2\chi(\mathbb{R}P^2) = 2(p - n)$.
Proof of Arnold’s congruence

Arithmetics digression. Let \(\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z} \) be a unimodular symmetric bilinear form.

\(w \in \mathbb{Z}^r \) is a characteristic class of \(\Phi \), if \(\Phi(x, x) \equiv \Phi(x, w) \mod 2 \) for any \(x \in \mathbb{Z}^r \).

Lemma. For any two characteristic classes \(w, w' \) of a form \(\Phi \)

\[\Phi(w', w') \equiv \Phi(w, w) \mod 8 \]

Back to \(CY \): As we have seen \([CA]\) and \([RY]\) are characteristic for \(\circ \tau \), if \(RA \) divides \(CA \).

Therefore \([CA] \circ \tau [CA] \equiv [RY] \circ \tau [RY] \mod 8 \).

\([CA] \circ \tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2. \)

\([RY] \circ \tau [RY] = -[RY] \circ [RY] = -(-\chi(RY)) = \chi(RY) = 2\chi(\mathbb{R}P^2_+) = 2(p - n). \)

Finally, we get \(2k^2 \equiv 2(p - n) \mod 8 \)
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$\Phi(w', w') \equiv \Phi(w, w) \mod 8$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_{τ}, if RA divides CA.

Therefore $[CA] \circ_{\tau} [CA] \equiv [RY] \circ_{\tau} [RY] \mod 8$.

$[CA] \circ_{\tau} [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2$.

$[RY] \circ_{\tau} [RY] = -[RY] \circ [RY] = -(-\chi(\mathbb{R}P^2_+)) = \chi(\mathbb{R}Y) = 2\chi(\mathbb{R}P^2_+) = 2(p - n)$.

Finally, we get $2k^2 \equiv 2(p - n) \mod 8$, that is $p - n \equiv k^2 \mod 4$. □
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \rightarrow \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ,

If $\Phi(x,x) \equiv \Phi(x,w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_τ, if RA divides CA.

Therefore $[CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8$.

$[CA] \circ_\tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2$.

$[RY] \circ_\tau [RY] = -[RY] \circ [RY] = -(-\chi(RY)) = \chi(RY) = 2\chi(\mathbb{RP}^2) = 2(p - n)$.

Finally, we get $2k^2 \equiv 2(p - n) \mod 8$,

that is $p - n \equiv k^2 \mod 4$. Provided RA bounds in CA. □
Proof of Arnold’s congruence

Arithmetics digression. Let $\Phi : \mathbb{Z}^r \times \mathbb{Z}^r \to \mathbb{Z}$ be a unimodular symmetric bilinear form.

$w \in \mathbb{Z}^r$ is a characteristic class of Φ, if $\Phi(x, x) \equiv \Phi(x, w) \mod 2$ for any $x \in \mathbb{Z}^r$.

Lemma. For any two characteristic classes w, w' of a form Φ

$$\Phi(w', w') \equiv \Phi(w, w) \mod 8$$

Back to CY: As we have seen $[CA]$ and $[RY]$ are characteristic for \circ_τ, if RA divides CA.

Therefore $[CA] \circ_\tau [CA] \equiv [RY] \circ_\tau [RY] \mod 8$.

$[CA] \circ_\tau [CA] = [CA] \circ [CA] = k[\infty] \circ k[\infty] = k^2[\infty] \circ [\infty] = 2k^2$.

$[RY] \circ_\tau [RY] = -[RY] \circ [RY] = -(-\chi(\mathbb{R}P^2_+)) = \chi(\mathbb{R}Y) = 2\chi(\mathbb{R}P^2_+) = 2(p-n)$.

Finally, we get $2k^2 \equiv 2(p-n) \mod 8$, that is $p-n \equiv k^2 \mod 4$. In particular, if $p+n = g+1$. \square
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”.
Gudkov-Rokhlin congruence

Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16
Gudkov-Rokhlin congruence

Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence.
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.
Gudkov-Rokhlin congruence

Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was **wrong**.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension.
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic variety of even dimension
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic variety of even dimension with
$$\dim_{\mathbb{Z}_2} H_*(\mathbb{R}A; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H_*(\mathbb{C}A; \mathbb{Z}_2).$$
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic variety of even dimension with
\[
\dim_{\mathbb{Z}_2} H_*(\mathbb{R}A; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H_*(\mathbb{C}A; \mathbb{Z}_2).
\]

\[
(\dim_{\mathbb{Z}_2} H_*(\mathbb{R}A; \mathbb{Z}_2) \leq \dim_{\mathbb{Z}_2} H_*(\mathbb{C}A; \mathbb{Z}_2) \text{ for any } A)
\]
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.

Rokhlin’s Theorem. Let \(A \) be a non-singular real algebraic variety of even dimension with
\[
\dim_{\mathbb{Z}_2} H_*(\mathbb{R}A; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H_*(\mathbb{C}A; \mathbb{Z}_2).
\]
Then \(\chi(\mathbb{R}A) \equiv \sigma(\mathbb{C}A) \mod 16. \)
Soon after Arnold’s paper, Rokhlin published a paper ”Proof of Gudkov’s conjecture”. He extended his famous topological theorem on divisibility of signature by 16, and deduced the Gudkov congruence. The deduction was wrong.

Few months later Rokhlin published a generalization of Gudkov conjecture to maximal varieties of any dimension with a simple and correct general proof.

Rokhlin’s Theorem. Let A be a non-singular real algebraic variety of even dimension with
\[\dim_{\mathbb{Z}_2} H_*(\mathbb{R}A; \mathbb{Z}_2) = \dim_{\mathbb{Z}_2} H_*(\mathbb{C}A; \mathbb{Z}_2). \]
Then $\chi(\mathbb{R}A) \equiv \sigma(\mathbb{C}A) \mod 16$.

Between the two papers by Rokhlin, there was a paper by Kharlamov with the upper bound (=10) for the number of connected components of a quartic surface.
The role of complexification

Hilbert’s puzzle had been solved!
The role of complexification

Hilbert’s puzzle had been solved!
The answer is in the complexification.
The role of complexification

Hilbert’s puzzle had been solved! The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven by Rokhlin explain all the phenomena which had struck Hilbert and motivated his sixteenth problem.
The role of complexification

Hilbert’s puzzle had been solved!
The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven by Rokhlin explain all the phenomena which had struck Hilbert and motivated his sixteenth problem.

They are real manifestations of fundamental topological phenomena located in the complex.
The role of complexification

Hilbert’s puzzle had been solved! The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven by Rokhlin explain all the phenomena which had struck Hilbert and motivated his sixteenth problem.

They are *real* manifestations of fundamental topological phenomena located in the *complex*.

Hilbert never showed a slightest sign that he had expected a progress via getting out of the real world into the realm of complex.
The role of complexification

Hilbert’s puzzle had been solved!
The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven by Rokhlin explain all the phenomena which had struck Hilbert and motivated his sixteenth problem.

They are real manifestations of fundamental topological phenomena located in the complex.

Hilbert never showed a slightest sign that he had expected a progress via getting out of the real world into the realm of complex. Felix Klein did.
The role of complexification

Hilbert’s puzzle had been solved! The answer is in the complexification.

Gudkov’s conjecture and its high-dimensional generalization proven by Rokhlin explain all the phenomena which had struck Hilbert and motivated his sixteenth problem. They are real manifestations of fundamental topological phenomena located in the complex.

Hilbert never showed a slightest sign that he had expected a progress via getting out of the real world into the realm of complex. Felix Klein consciously looked for interaction of real and complex pictures as early as in 1876.
Mystery of the 16th Hilbert problem

Read the Sixteenth Hilbert Problem

Breakthrough
- Isotopy classification of nonsingular sextics
- Gudkov’s M-curve
- Gudkov’s conjecture
- Arnold’s congruence
- Complexification
- In homology
- Proof of Arnold’s congruence
- Gudkov-Rokhlin congruence
- The role of complexification
- Mystery of the 16th Hilbert problem
- Second part
- Second part
- The first part success

Post Solution
Mystery of the 16th Hilbert problem

that emerged when the problem was solved.
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its **number**!
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its **number**!

The number **sixteen** plays a very special role in the topology of real algebraic varieties.
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its **number**!

The number **sixteen** plays a very special role in the topology of real algebraic varieties.

Rokhlin’s paper with his proof of Gudkov’s conjecture and its generalizations is entitled:
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its number!

The number sixteen plays a very special role in the topology of real algebraic varieties. Rokhlin’s paper with his proof of Gudkov’s conjecture and its generalizations is entitled: “Congruences modulo sixteen in the sixteenth Hilbert problem”.
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its number!

The number **sixteen** plays a very special role in the topology of real algebraic varieties. Rokhlin’s paper with his proof of Gudkov’s conjecture and its generalizations is entitled:

“Congruences modulo **sixteen**

in the **sixteenth** Hilbert problem”.

Many of subsequent results in this field have also the form of congruences modulo **16**.
Mystery of the 16th Hilbert problem

that emerged when the problem was solved. This is its number! The number sixteen plays a very special role in the topology of real algebraic varieties. Rokhlin’s paper with his proof of Gudkov’s conjecture and its generalizations is entitled: “Congruences modulo sixteen in the sixteenth Hilbert problem”.

Many of subsequent results in this field have also the form of congruences modulo 16.

It is difficult to believe that Hilbert was aware of phenomena that would not be discovered until some seventy years later.
that emerged when the problem was solved. This is its number!

The number *sixteen* plays a very special role in the topology of real algebraic varieties. Rokhlin’s paper with his proof of Gudkov’s conjecture and its generalizations is entitled: “Congruences modulo *sixteen* in the *sixteenth* Hilbert problem”.

Many of subsequent results in this field have also the form of congruences modulo *16*.

It is difficult to believe that Hilbert was aware of phenomena that would not be discovered until some seventy years later. Nonetheless, *16* was the number chosen by Hilbert.
Second part

Hilbert’s sixteenth problem does not stop where I stopped citation, it has the second half:
In connection with this purely algebraic problem, I wish to bring forward a question which, it seems to me, may be attacked by the same method of continuous variation of coefficients, and whose answer is of corresponding value for the topology of families of curves defined by differential equations. This is the question as to the maximum number and position of Poincaré’s boundary cycles (cycles limites) for a differential equation of the first order and degree of the form

$$\frac{dy}{dx} = \frac{Y}{X},$$

where X and Y are rational integral functions of the nth degree in x and y.
Second part

Written homogeneously, this is

\[
X \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) + Y \left(z \frac{dx}{dt} - x \frac{dz}{dt} \right) + \\
Z \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) = 0,
\]

where \(X, Y, \) and \(Z \) are rational integral homogeneous functions of the \(n \)th degree in \(x, y, z \), and the latter are to be determined as functions of the parameter \(t \).
Second part

Written homogeneously, this is

\[
X \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) + Y \left(z \frac{dx}{dt} - x \frac{dz}{dt} \right) + Z \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) = 0,
\]

where \(X \), \(Y \), and \(Z \) are rational integral homogeneous functions of the \(n \)th degree in \(x \), \(y \), \(z \), and the latter are to be determined as functions of the parameter \(t \).

There is still almost no progress in the second half of the sixteenth problem.
Second part

Written homogeneously, this is

\[X \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) + Y \left(z \frac{dx}{dt} - x \frac{dz}{dt} \right) + \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) = 0, \]

where \(X \), \(Y \), and \(Z \) are rational integral homogeneous functions of the \(n \)th degree in \(x, y, z \), and the latter are to be determined as functions of the parameter \(t \).

There is still almost no progress in the second half of the sixteenth problem. Hilbert’s hope for a similarity between the two halves has not realized.
Written homogeneously, this is

\[X \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) + Y \left(z \frac{dx}{dt} - x \frac{dz}{dt} \right) + \\
Z \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) = 0, \]

where \(X, Y, \) and \(Z \) are rational integral homogeneous functions of the \(n \) th degree in \(x, y, z, \) and the latter are to be determined as functions of the parameter \(t. \)

There is still almost no progress in the second half of the sixteenth problem. Hilbert’s hope for a similarity between the two halves has not realized.

Finiteness for the number of limit cycles for each individual equation has been proven.
Second part

Written homogeneously, this is

\[X \left(y \frac{dz}{dt} - z \frac{dy}{dt} \right) + Y \left(z \frac{dx}{dt} - x \frac{dz}{dt} \right) + Z \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) = 0, \]

where \(X \), \(Y \), and \(Z \) are rational integral homogeneous functions of the \(n \) th degree in \(x \), \(y \), \(z \), and the latter are to be determined as functions of the parameter \(t \).

There is still almost no progress in the second half of the sixteenth problem. Hilbert’s hope for a similarity between the two halves has not realized.

Finiteness for the number of limit cycles for each individual equation has been proven. But even for \(n = 2 \), the maximal number of limit cycles is still unknown.
The first part success

Contrary to this, the first half was extremely successful:
The first part success

Contrary to this, the first half was extremely successful:

It contained difficult concrete problems (maximal sextic curves, number of components of a quartic surface) which have been solved.
The first part success

Contrary to this, the first half was extremely successful:

It contained difficult concrete problems (maximal sextic curves, number of components of a quartic surface) which have been solved.

It attracted attention to a difficult field in the core of Mathematics.
Contrary to this, the first half was extremely successful:

It contained difficult concrete problems (maximal sextic curves, number of components of a quartic surface) which have been solved.

It attracted attention to a difficult field in the core of Mathematics.

Topological problems are the roughest and allow one to treat complicated objects unavailable for investigation from more refined viewpoints.
The first part success

Contrary to this, the first half was extremely successful:

It contained difficult concrete problems (maximal sextic curves, number of components of a quartic surface) which have been solved.

It attracted attention to a difficult field in the core of Mathematics.

Topological problems are the roughest and allow one to treat complicated objects unavailable for investigation from more refined viewpoints.

This direction has little chances to be completed. As a “thorough investigation”, the problem can hardly be solved.
<table>
<thead>
<tr>
<th>Post Solution</th>
<th>Breakthrough</th>
<th>Hilbert Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>What has happened since then?</td>
<td>To what degree?</td>
<td>Other objects</td>
</tr>
<tr>
<td>Open problems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties.
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals.
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals. He found several useful ways to translate geometric phenomena in the real domain to the complex domain and back.
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals. Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin proved congruences modulo various powers of 2 similar to the Gudkov-Rokhlin congruence.
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals.

Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin proved congruences modulo various powers of 2 similar to the Gudkov-Rokhlin congruence.

Rokhlin observed that a curve of type I brings a distinguished pair of orientations which come from the complexification...
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals. Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin proved congruences modulo various powers of 2 similar to the Gudkov-Rokhlin congruence. Rokhlin observed that a curve of type I brings a distinguished pair of orientations which come from the complexification and discovered a topological restriction on them.
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties. Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals. Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin proved congruences modulo various powers of 2 similar to the Gudkov-Rokhlin congruence. Rokhlin observed that a curve of type I brings a distinguished pair of orientations which come from the complexification and discovered a topological restriction on them. He suggested to change the main object of study:
What has happened since then?

Use of complexification made possible to find numerous restrictions on the topology of real algebraic varieties.

Besides the congruence modulo 4, Arnold proved in the same paper several inequalities on numerical characteristics of mutual position of ovals. Kharlamov, Gudkov, Krakhnov, Nikulin, Fiedler and Mikhalkin proved congruences modulo various powers of 2 similar to the Gudkov-Rokhlin congruence.

Rokhlin observed that a curve of type I brings a distinguished pair of orientations which come from the complexification and discovered a topological restriction on them. He suggested to change the main object of study: Add to topology of the real variety the topology of its position in the complexification.
To what degree?

Often people ask: To what degree the Hilbert problem has been solved?
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was not to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For $n \leq 5$ it was easy, solved in XIX century.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 7 \).

For \(n \leq 5 \) it was easy, solved in XIX century.

For \(n = 6 \) in 1969 by Gudkov.
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 7 \).

For \(n \leq 5 \) it was easy, solved in XIX century.

For \(n = 6 \) in 1969 by Gudkov.

For \(n = 7 \) in 1979 by Viro.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For $n \leq 5$ it was easy, solved in XIX century.

For $n = 6$ in 1969 by Gudkov.

For $n = 7$ in 1979 by Viro.

For maximal curves the isotopy classification has almost been done in degree 8.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For $n \leq 5$ it was easy, solved in XIX century.

For $n = 6$ in 1969 by Gudkov.

For $n = 7$ in 1979 by Viro.

For maximal curves the isotopy classification has almost been done in degree 8.

Only 6 isotopy types are questionable.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For **pseudoholomorphic M-curves** the isotopy classification has been done in degree 8 by Orevkov.
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For **pseudoholomorphic M-curves** the isotopy classification has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree n has been solved for $n \leq 6$.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For *pseudoholomorphic M-curves* the *isotopy* classification has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree n has been solved for $n \leq 6$.

For $n \leq 4$ in XIX century by Zeuthen, Klein.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For pseudoholomorphic M-curves the **isotopy classification** has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree n has been solved for $n \leq 6$.

For $n \leq 4$ in XIX century by Zeuthen, Klein.

For $n = 5$ in 1981 by Kharlamov.
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For **pseudoholomorphic M-curves** the **isotopy classification** has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree n has been solved for $n \leq 6$.

For $n \leq 4$ in XIX century by Zeuthen, Klein.

For $n = 5$ in 1981 by Kharlamov.

For $n = 6$ in 1979 by Nikulin.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was not to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree n has been solved for $n \leq 7$.

For **pseudoholomorphic M-curves** the isotopy classification has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree n has been solved for $n \leq 6$.

For nonsingular **surfaces** in the projective 3-space all the problems have been solved for degree ≤ 4.
To what degree?

Often people ask: To what degree the Hilbert problem has been solved?

The problem was not to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 7 \).

For pseudoholomorphic M-curves the isotopy classification has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 6 \).

For nonsingular surfaces in the projective 3-space all the problems have been solved for degree \(\leq 4 \).

For \(n \leq 2 \) see textbooks on Analytic Geometry.
Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was *not* to give topological classification of real algebraic curves of some specific degree. However, one may ask: For what degrees the classification problems on topology of real algebraic varieties are solved?

Isotopy classification problem of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 7 \).

For **pseudoholomorphic M-curves** the isotopy classification has been done in degree \(8 \) by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 6 \).

For nonsingular **surfaces** in the projective 3-space all the problems have been solved for degree \(\leq 4 \).

For \(n = 3 \) by Klein.
To what degree?

Often people ask: **To what degree the Hilbert problem has been solved?**

The problem was **not** to give topological classification of real algebraic curves of some specific degree. However, one may ask: **For what degrees the classification problems on topology of real algebraic varieties are solved?**

Isotopy classification problem of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 7 \).

For **pseudoholomorphic M-curves** the **isotopy classification** has been done in degree 8 by Orevkov.

Rigid isotopy classification of nonsingular plane projective curves of degree \(n \) has been solved for \(n \leq 6 \).

For nonsingular **surfaces** in the projective 3-space all the problems have been solved for degree \(\leq 4 \).

For \(n = 3 \) by Klein.

For \(n = 4 \) in the seventies by Nikulin and Kharlamov.
Other objects

of real algebraic geometry also were studied:
Other objects

of real algebraic geometry also were studied: Curves on surfaces.
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries.
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces.
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques)
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces)
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties.
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials.
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials, real algebraic knots and links
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials, real algebraic knots and links, amoebas of real and complex algebraic varieties
of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials, real algebraic knots and links, amoebas of real and complex algebraic varieties, real pseudoholomorphic curves
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials, real algebraic knots and links, amoebas of real and complex algebraic varieties, real pseudoholomorphic curves, tropical varieties
Other objects

of real algebraic geometry also were studied: Curves on surfaces. Curves with symmetries. Degenerations of curves and surfaces. Surfaces of classical types (like rational, Abelian, Enriques and K3 surfaces), rational 3-varieties, singular points of real polynomial vector fields, critical points of real polynomials, real algebraic knots and links, amoebas of real and complex algebraic varieties, real pseudoholomorphic curves, tropical varieties, ...
Open problems

1. The **second half** of the sixteenth Hilbert problem!
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. **Algebraic expressions** for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. Algebraic expressions for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. Algebraic expressions for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
7. Real algebraic knot theories.
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. Algebraic expressions for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
7. Real algebraic knot theories.
8. Metric characteristics of real algebraic curves.
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. Algebraic expressions for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
7. Real algebraic knot theories.
8. Metric characteristics of real algebraic curves.
9. Formulate counter-parts of topological questions about real algebraic varieties for varieties over other non algebraically closed fields,
Open problems

1. The second half of the sixteenth Hilbert problem!
2. How many connected components can a surface of degree 5 in the real projective 3-space have?
4. Are all nonsingular real projective curves of a given odd degree with connected set of real points rigid isotopic to each other?
5. Algebraic expressions for basic topological invariants of a real algebraic curve (and, further, hypersurface, . . .) in terms of its equation.
7. Real algebraic knot theories.
8. Metric characteristics of real algebraic curves.
9. Formulate counter-parts of topological questions about real algebraic varieties for varieties over other non algebraically closed fields, and solve them!