On basic notions of the tropical geometry

Oleg Viro

January 14, 2010

The goal

Table of Contents

The goal

Tropical Geometry is related to the classical Algebraic Geometry.

The goal

Tropical Geometry is related to the classical Algebraic Geometry. The goal of this talk is to fill the gap between them.

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them:
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

The goal

Tropical Geometry is related to the classical Algebraic Geometry. The goal of this talk is to fill the gap between them: introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}.

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them:
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}. Instead, this is an Algebraic Geometry over a tropical version of \mathbb{C}.

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them:
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}. Instead, this is an Algebraic Geometry over a tropical version of \mathbb{C}. I introduce a new multivalued addition of complex numbers.

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them:
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}. Instead, this is an Algebraic Geometry over a tropical version of \mathbb{C}. I introduce a new multivalued addition of complex numbers.

Together with the usual multiplication, this addition satisfies axioms which generalize the usual field axioms.

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them:
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}. Instead, this is an Algebraic Geometry over a tropical version of \mathbb{C}. I introduce a new multivalued addition of complex numbers.

Together with the usual multiplication, this addition satisfies axioms which generalize the usual field axioms.

Non-singular varieties defined over this degenerated field of complex numbers are topological manifolds

The goal

Tropical Geometry is related to the classical Algebraic Geometry.
The goal of this talk is to fill the gap between them :
introduce Complex Tropical Geometry, Real Tropical Geometry, etc. bridging the space between Tropical Geometry and the corresponding part of Algebraic Geometry.

Complex Tropical Geometry is not Tropical Geometry over \mathbb{C}. Instead, this is an Algebraic Geometry over a tropical version of \mathbb{C}. I introduce a new multivalued addition of complex numbers.

Together with the usual multiplication, this addition satisfies axioms which generalize the usual field axioms.

Non-singular varieties defined over this degenerated field of complex numbers are topological manifolds
and have amoebas which are tropical varieties.

- The goal

Tropical Geometry

- Tropical algebra
- Tropical polynomials
- Bridges

Multi-valued algebra
Dequantizataion
Equations and varieties

Tropical Geometry

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max },+}$ called tropical algebra.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\max ,+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\max ,+}$ is a semi-ring.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\text {max },+}$ is a semi-ring. Everything is as in a ring, but no subtraction.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\text {max },+}$ is a semi-ring. Everything is as in a ring, but no subtraction, no 0 .

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\text {max },+}$ is a semi-ring. Everything is as in a ring, but no subtraction, no 0 . Adjoin $-\infty$ as 0 .

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\text {max },+}$ is a semi-ring. Everything is as in a ring, but no subtraction, no 0 . Adjoin $-\infty$ as 0 , denote by \mathbb{T}.

Tropical algebra

The set \mathbb{R} with operations $(a, b) \mapsto \max \{a, b\}$ and $(a, b) \mapsto a+b$ denoted by $\mathbb{R}_{\text {max, }+}$ called tropical algebra.

The adjective tropical was coined by French mathematicians in the honor of Imre Simon, who resides in São Paolo, Brazil and was one of the pioneers in algebra of $\mathbb{R}_{\text {max, }+}$.

$\mathbb{R}_{\text {max },+}$ is a semi-ring. Everything is as in a ring, but no subtraction, no 0 . Adjoin $-\infty$ as 0 , denote by \mathbb{T}.

This is a semi-field.
Still, no subtraction.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$. A polynomial is a finite sum of monomials.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL-function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials,
that is the maximum of finite collection of linear functions.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL-function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}. Any algebraic geometry is a geometry based on polynomials.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes.
Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}.
Any algebraic geometry is a geometry based on polynomials.
Tropical geometry is based on convex PL-functions with integral slopes.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}.
Any algebraic geometry is a geometry based on polynomials.
Tropical geometry is based on convex PL-functions with integral slopes.
Tropical polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ defines a hypersurface

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}.
Any algebraic geometry is a geometry based on polynomials.
Tropical geometry is based on convex PL-functions with integral slopes.
Tropical polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ defines a hypersurface, the set of points, at which the maximum is attained by at least two of the linear functions.

Tropical polynomials

A polynomial over \mathbb{T} is a convex PL -function with integral slopes. Indeed, a monomial $a x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is $a+k_{1} x_{1}+\cdots+k_{n} x_{n}$, that is, a linear function $a+\langle k, x\rangle$.
A polynomial is a finite sum of monomials, that is the maximum of finite collection of linear functions.

Tropical geometry is an algebraic geometry over \mathbb{T}.
Any algebraic geometry is a geometry based on polynomials.
Tropical geometry is based on convex PL-functions with integral slopes.
Tropical polynomial $\max _{k=\left(k_{1}, \ldots, k_{n}\right)}\left(a_{k}+k_{1} x_{1}+\cdots+k_{n} x_{n}\right)$ defines a hypersurface, the set of points, at which the maximum is attained by at least two of the linear functions. Tropical line defined by $\max (x, y, 1)$:

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log: $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log: $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log: $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log : $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$ shrinks to tropical line

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log : $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$ shrinks to tropical line

Tropical Geometry is a piecewise linear spine of Algebraic Geometry.

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$ shrinks to tropical line

Tropical Geometry is a piecewise linear spine of Algebraic Geometry.
Another bridge: Algebraic Geometry over the field of Piuseux series, and non-Archimedean amoebas. Instead of $\log |z|$, take $e^{-v a l(z)}$.

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map Log : $(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$ shrinks to tropical line

Tropical Geometry is a piecewise linear spine of Algebraic Geometry.
Another bridge: Algebraic Geometry over the field of Piuseux series, and non-Archimedean amoebas. Instead of $\log |z|$, take $e^{-v a l(z)}$.
A non-Archimedean amoeba = tropical variety.

Bridges

The amoeba of a variety $V \subset(\mathbb{C} \backslash 0)^{n}$ is the image of V under the map $\log :(\mathbb{C} \backslash 0)^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Dequantization shrinks amoebas to tropical varieties.
Amoeba of line $x+y+1=0$ shrinks to tropical line

Tropical Geometry is a piecewise linear spine of Algebraic Geometry.
Another bridge: Algebraic Geometry over the field of Piuseux series, and non-Archimedean amoebas. Instead of $\log |z|$, take $e^{-v a l(z)}$.
A non-Archimedean amoeba = tropical variety.
What are the bridges good for?

- The goal

Tropical Geometry
Multi-valued algebra

- Tropical addition of
complex numbers
- Tropical groups
- Operation induced on
a subset
- Tropical addition of
real numbers
- Homomorphisms
- Tropical rings and

Multi-valued algebra

fields

- Leading term

Dequantizataion
Equations and varieties

Tropical addition of complex numbers

Tropical groups

A binary multi-valued operation in X :

Table of Contents

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if
1.
2.
3.
4.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if

1. T is commutative;
2.
3.
4.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3.
4.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3.
4.

A binary multi-valued operation $f: X \times X \rightarrow 2^{X}$ naturally extends to

$$
2^{X} \times 2^{X} \rightarrow 2^{X}:(A, B) \mapsto \cup_{a \in A, b \in B} f(a, b) .
$$

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \mathrm{~T} b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3.
4.

A binary multi-valued operation $f: X \times X \rightarrow 2^{X}$ naturally extends to $2^{X} \times 2^{X} \rightarrow 2^{X}:(A, B) \mapsto \cup_{a \in A, b \in B} f(a, b)$.
$f: X \times X \rightarrow 2^{X}$ is associative

$$
\text { if } f(f(a, b), c)=f(a, f(b, c)) \text { for any } a, b, c \in X \text {. }
$$

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3. X contains 0 such that 0 т $a=a$ for any $a \in X$; 4.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \top b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3. X contains 0 such that 0 T $a=a$ for any $a \in X$;
4. for each $a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top(-a)$.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \mathrm{~T} b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3. X contains 0 such that 0 T $a=a$ for any $a \in X$;
4. for each $a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top(-a)$.

Any abelian group is a tropical group.

Tropical groups

A binary multi-valued operation in $X:$ a map $X \times X \rightarrow 2^{X} \backslash\{\varnothing\}$. A set X with a multi-valued operation $(a, b) \mapsto a \mathrm{~T} b$ is a commutative tropical group if

1. T is commutative;
2. T is associative;
3. X contains 0 such that 0 T $a=a$ for any $a \in X$;
4. for each $a \in X$ there exists a unique $-a \in X$ such that $0 \in a \top(-a)$.

Any abelian group is a tropical group.
Theorem. (\mathbb{C}, T) is a tropical group.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.
g exists iff $f(a, b) \cap Y \neq \varnothing$ for any $a, b \in Y$

Operation induced on a subset

Let $Y \subset X$ and $f: X \times X \rightarrow 2^{X}$ be a binary multivalued operation.
A binary multivalued operation $g: Y \times Y \rightarrow 2^{Y}$ is induced by f if $g(a, b)=f(a, b) \cap Y$ for any $a, b \in Y$.
g is determined by f.
g exists iff $f(a, b) \cap Y \neq \varnothing$ for any $a, b \in Y$
Recall that the definition of multivalued binary operation prohibits $g(a, b)$ to be empty.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \rightarrow b= \begin{cases}\{a\}, & \text { if } \quad|a|>|b|, \\ \{b\}, & \text { if } \quad|a|<|b|, \\ \{a\}, & \text { if } a=b, \\ {[-|a|,|a|],} & \text { if } \quad a=-b .\end{cases}$

Tropical addition of real numbers

The tropical addition in \mathbb{C} induces a tropical addition in \mathbb{R}.

For $a, b \in \mathbb{R}$
$a \subset b=\left\{\begin{array}{lll}\{a\}, & \text { if } & |a|>|b|, \\ \{b\}, & \text { if } & |a|<|b|, \\ \{a\}, & \text { if } & a=b, \\ {[-|a|,|a|],} & \text { if } \quad a=-b .\end{array}\right.$
Theorem. (\mathbb{R}, T) is a tropical group.

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \subset b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \subset b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Example. A non-archimedean norm $K \rightarrow \mathbb{R}$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K
$$

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \subset b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Example. A non-archimedean norm $K \rightarrow \mathbb{R}$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K
$$

This is a homomorphism from K to a tropical group (\mathbb{R}, T).

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Example. A non-archimedean norm $K \rightarrow \mathbb{R}$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K
$$

This is a homomorphism from K to a tropical group (\mathbb{R}, T).
Let (X, \top) be a tropical group and $Y \subset X$

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Example. A non-archimedean norm $K \rightarrow \mathbb{R}$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K
$$

This is a homomorphism from K to a tropical group (\mathbb{R}, T).
Let (X, \top) be a tropical group and $Y \subset X$
If $Y \cap(a \top b) \neq \varnothing$ for any $a, b \in Y, \top_{Y}$ is induced on Y by T , $0 \in Y$ and $a \in Y \Longrightarrow-a \in Y$,

Homomorphisms

A map $f: X \rightarrow Y$ is called a (tropical group) homomorphism if $f(a \top b) \subset f(a) \top f(b)$ for any $a, b \in X$.

Example. A non-archimedean norm $K \rightarrow \mathbb{R}$ satisfies the ultra-metric triangle inequality

$$
|a+b| \leq \max (a, b) \text { for any } a, b \in K
$$

This is a homomorphism from K to a tropical group (\mathbb{R}, T).
Let (X, \top) be a tropical group and $Y \subset X$
If $Y \cap(a \top b) \neq \varnothing$ for any $a, b \in Y, \top_{Y}$ is induced on Y by T , $0 \in Y$ and $a \in Y \Longrightarrow-a \in Y$,
then $\left(Y, T_{Y}\right)$ is a tropical group (tropical subgroup of X) and $Y \hookrightarrow X$ is a homomorphism.

Tropical rings and fields

A set X with a binary multi-valued addition T and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

Tropical rings and fields

A set X with a binary multi-valued addition T and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.

Tropical rings and fields

A set X with a binary multi-valued addition T and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, T) with the usual multiplication are tropical fields.

Tropical rings and fields

A set X with a binary multi-valued addition τ and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, τ) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.

Tropical rings and fields

A set X with a binary multi-valued addition τ and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, T) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.
T induces max.

Tropical rings and fields

A set X with a binary multi-valued addition τ and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, T) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.
T induces max.
$\mathbb{R}_{\geq 0, \max , \times}$ is a subsemifield of $\mathbb{R}_{T, \times} \subset \mathbb{C}_{T, \times}$.

Tropical rings and fields

A set X with a binary multi-valued addition τ and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, \top) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.
T induces max.
$\mathbb{R}_{\geq 0, \max , \times}$ is a subsemifield of $\mathbb{R}_{T, \times} \subset \mathbb{C}_{T, \times}$.
Recall: $\log : \mathbb{R}_{\top, \times} \rightarrow \mathbb{T}=\mathbb{R}_{\text {max },+} \cup-\infty$ is an isomorphism.

Tropical rings and fields

A set X with a binary multi-valued addition T and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, \top) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.
T induces max.
$\mathbb{R}_{\geq 0, \max , \times}$ is a subsemifield of $\mathbb{R}_{T, \times} \subset \mathbb{C}_{T, \times}$.
Recall: $\log : \mathbb{R}_{T, \times} \rightarrow \mathbb{T}=\mathbb{R}_{\text {max },+} \cup-\infty$ is an isomorphism.
Warning: a natural map in the opposite direction,
$\mathbb{R}_{\top} \rightarrow \mathbb{R}_{\geq 0, \text { max }}: x \mapsto|x|$, is not a homomorphism.

Tropical rings and fields

A set X with a binary multi-valued addition τ and a (uni-valent) multiplication is called a tropical ring if

- $(X, \mathrm{~T})$ is a commutative tropical group,
- the multiplication is associative and commutative and
- distributivity holds true for the multiplication and T.

An tropical ring X is a tropical field if $X \backslash 0$ is a multiplicative group.
Tropical groups (\mathbb{R}, \top) and (\mathbb{C}, \top) with the usual multiplication are tropical fields.
$\mathbb{R}_{\geq 0}$ is closed under the tropical field operations in \mathbb{R}.
T induces max.
$\mathbb{R}_{\geq 0, \text { max }, \times}$ is a subsemifield of $\mathbb{R}_{T, \times} \subset \mathbb{C}_{T, \times}$.
Tropical semifield \mathbb{T} is a subsemifield of the tropical fields \mathbb{C} and \mathbb{R}.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.
Substitution $q=e^{h}$ transforms $\sum_{n} a_{n} q^{r_{n}}$ to $\sum_{n} a_{n} e^{h r_{n}}$ and provides an interpretation as functions $\mathbb{C} \rightarrow \mathbb{C}$.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.
Substitution $q=e^{h}$ transforms $\sum_{n} a_{n} q^{r_{n}}$ to $\sum_{n} a_{n} e^{h r_{n}}$ and provides an interpretation as functions $\mathbb{C} \rightarrow \mathbb{C}$.
Let $a_{M} q^{r_{M}}$ be the summand of $\sum_{n} a_{n} q^{r_{n}}$ with the greatest r_{n}.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.
Substitution $q=e^{h}$ transforms $\sum_{n} a_{n} q^{r_{n}}$ to $\sum_{n} a_{n} e^{h r_{n}}$ and provides an interpretation as functions $\mathbb{C} \rightarrow \mathbb{C}$.
Let $a_{M} q^{r_{M}}$ be the summand of $\sum_{n} a_{n} q^{r_{n}}$ with the greatest r_{n}.
Define a map $\mathbb{C}[\mathbb{R}] \rightarrow \mathbb{C}$ which takes $\sum_{n} a_{n} q^{r_{n}}$ to $\frac{a_{M}}{\left|a_{M}\right|} e^{r_{M}}$.

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.
Substitution $q=e^{h}$ transforms $\sum_{n} a_{n} q^{r_{n}}$ to $\sum_{n} a_{n} e^{h r_{n}}$ and provides an interpretation as functions $\mathbb{C} \rightarrow \mathbb{C}$.
Let $a_{M} q^{r_{M}}$ be the summand of $\sum_{n} a_{n} q^{r_{n}}$ with the greatest r_{n}.
Define a map $\mathbb{C}[\mathbb{R}] \rightarrow \mathbb{C}$ which takes $\sum_{n} a_{n} q^{r_{n}}$ to $\frac{a_{M}}{\left|a_{M}\right|} e^{r_{M}}$.
This is a homomorphism $f: \mathbb{C}[\mathbb{R}] \rightarrow \mathbb{C}_{\mathrm{T}, \times}$:

Leading term

An element of $\mathbb{C}[\mathbb{R}]$ is a formal linear combination $\sum_{n} a_{n} q^{r_{n}}$, where $a_{n} \in \mathbb{C}$ and $r_{n} \in \mathbb{R}$.

A formal variable q symbolizes conversion from additive notation in \mathbb{R} to multiplicative notation in $\mathbb{C}[\mathbb{R}]$.
Substitution $q=e^{h}$ transforms $\sum_{n} a_{n} q^{r_{n}}$ to $\sum_{n} a_{n} e^{h r_{n}}$ and provides an interpretation as functions $\mathbb{C} \rightarrow \mathbb{C}$.
Let $a_{M} q^{r_{M}}$ be the summand of $\sum_{n} a_{n} q^{r_{n}}$ with the greatest r_{n}.
Define a map $\mathbb{C}[\mathbb{R}] \rightarrow \mathbb{C}$ which takes $\sum_{n} a_{n} q^{r_{n}}$ to $\frac{a_{M}}{\left|a_{M}\right|} e^{r_{M}}$.
This is a homomorphism $f: \mathbb{C}[\mathbb{R}] \rightarrow \mathbb{C}_{\mathrm{T}, \times}$:
$f(a+b) \in f(a) \top f(b)$ and $f(a b)=f(a) f(b)$.

- The goal

Tropical Geometry
Multi-valued algebra
Dequantizataion

- Deformation of \mathbb{C}
- A look of the limit
- Properties of +0
- Upper Vietoris
topology
- Continuity of tropical
addition
Equations and varieties

Dequantizataion

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{n}} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

These are multiplicative isomorphisms.

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

But they do not respect the addition.

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 ; \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

$\mathbb{C}_{h}=\mathbb{C}_{+_{h}, \times}$ is a copy of \mathbb{C} and $S_{h}: \mathbb{C}_{h} \rightarrow \mathbb{C}$ is an isomorphism.

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

Deformation of \mathbb{C}

For $h>0$ consider a map $S_{h}: \mathbb{C} \rightarrow \mathbb{C}$

$$
z \mapsto \begin{cases}|z|^{\frac{1}{h}} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

the inverse map:

$$
S_{h}^{-1}: z \mapsto \begin{cases}|z|^{h} \frac{z}{|z|}, & \text { if } z \neq 0 \\ 0, & \text { if } z=0\end{cases}
$$

Induce an operation in the source via S_{h} :

$$
z+_{h} w=S_{h}^{-1}\left(S_{h}(z)+S_{h}(w)\right)
$$

A look of the limit

A look of the limit

\longrightarrow

Properties of $+_{0}$

Good properties of $+{ }_{0}$:

- commutative,
- distributive (with the standard multiplication)
- $0 \in \mathbb{C}$ is its neutral element.
- Each element has a unique inverse.

Properties of $+_{0}$

Good properties of $+_{0}$:

- commutative,
- distributive (with the standard multiplication)
- $0 \in \mathbb{C}$ is its neutral element.
- Each element has a unique inverse.

Bad properties:

- discontinuous,
- not associative.

Properties of $+_{0}$

Good properties of $+_{0}$:

- commutative,
- distributive (with the standard multiplication)
- $0 \in \mathbb{C}$ is its neutral element.
- Each element has a unique inverse.

Bad properties:

- discontinuous,
- not associative.

Need a wiser limit.

Properties of $+_{0}$

Good properties of $+_{0}$:

- commutative,
- distributive (with the standard multiplication)
- $0 \in \mathbb{C}$ is its neutral element.
- Each element has a unique inverse.

Bad properties:

- discontinuous,
- not associative.

Need a wiser limit.
There is one that
fixes all the defects, but gives a multivalued T !

Upper Vietoris topology

Let X be a topological space.

Upper Vietoris topology

Let X be a topological space.
Upper Vietoris topology in the set 2^{X} of all subsets of X
is generated by sets $2^{U} \subset 2^{X}$ with U open in X.

Upper Vietoris topology

Let X be a topological space.
Upper Vietoris topology in the set 2^{X} of all subsets of X is generated by sets $2^{U} \subset 2^{X}$ with U open in X. A multivalued map $X \rightarrow Y$ is called upper semi-continuous if the corresponding univalued map $X \rightarrow 2^{Y}$ is continuous with respect to the upper Vietoris topology of 2^{Y} and the topology of X.

Upper Vietoris topology

Let X be a topological space.
Upper Vietoris topology in the set 2^{X} of all subsets of X is generated by sets $2^{U} \subset 2^{X}$ with U open in X.
A multivalued map $X \rightarrow Y$ is called upper semi-continuous if the corresponding univalued map $X \rightarrow 2^{Y}$ is continuous with respect to the upper Vietoris topology of 2^{Y} and the topology of X.
If the images of points are connected and the map is upper semi-continuous, then the image of a connected set is connected.

Upper Vietoris topology

Let X be a topological space.
Upper Vietoris topology in the set 2^{X} of all subsets of X is generated by sets $2^{U} \subset 2^{X}$ with U open in X. A multivalued map $X \rightarrow Y$ is called upper semi-continuous if the corresponding univalued map $X \rightarrow 2^{Y}$ is continuous with respect to the upper Vietoris topology of 2^{Y} and the topology of X. If the images of points are connected and the map is upper
semi-continuous, then the image of a connected set is connected.
If the images of points are compact and the map is upper
semi-continuous, then the image of a compact set is compact.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\}
$$

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.
If $z_{n}+{ }_{h_{n}} w_{n} \rightarrow l$, then $l \in z \top w$.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.
If $z_{n}+_{h_{n}} w_{n} \rightarrow l$, then $l \in z \top w$.
Any $l \in z \top w$ can be represented as such a limit.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.
If $z_{n}+h_{n} w_{n} \rightarrow l$, then $l \in z \top w$.
Any $l \in z \top w$ can be represented as such a limit.
$z \top w$ is either a point, or a closed arc, or a closed disk.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.
If $z_{n}+h_{n} w_{n} \rightarrow l$, then $l \in z \top w$.
Any $l \in z \top w$ can be represented as such a limit.
$z \top w$ is either a point, or a closed arc, or a closed disk.
Theorem. The tropical addition T is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.

Continuity of tropical addition

Let $\Gamma_{h} \subset \mathbb{C}^{3}$ be a graph of $+_{h}$ for $h>0$:

$$
\Gamma_{h}=\left\{(a, b, c) \in \mathbb{C}^{3} \mid a+_{h} b=c\right\} .
$$

Let z_{n} and w_{n} be sequences of complex numbers, $z_{n} \rightarrow z, w_{n} \rightarrow w$ and h_{n} a sequence of positive real numbers, $h_{n} \rightarrow 0$.
If $z_{n}+_{h_{n}} w_{n} \rightarrow l$, then $l \in z \top w$.
Any $l \in z \top w$ can be represented as such a limit.
$z \top w$ is either a point, or a closed arc, or a closed disk.
Theorem. The tropical addition T is upper semi-continuous and maps a connected set to a connected set and a compact set to a compact set.
Corollary. The multivalued map defined by a complex tropical polynomial is upper semi-continuous. It preserves connectedness and compactness.

- The goal

Tropical Geometry
Multi-valued algebra
Dequantizataion
Equations and varieties

- Good and bad
polynomials
- Exercise in tropical
addition
- Amoebas: relation to
tropics
- Patchworking of
hypersurfaces
- Complex tropical
geometry

Equations and varieties

Good and bad polynomials

$$
\text { Is } x=x \top 1 \top-1 ?
$$

Good and bad polynomials

Is $x=x \uparrow 1 \top-1$? Somewhere yes, somewhere no.

Good and bad polynomials

Is $x=x$ T1 T-1? Somewhere yes, somewhere no.

Good and bad polynomials

Is $x=x$ T1 T-1? Somewhere yes, somewhere no.

A polynomial is said to be pure if it has no two monomials with the same exponents.

Good and bad polynomials

A polynomial is said to be pure if it has no two monomials with the same exponents.

Good and bad polynomials

$$
\text { Is } \left.x^{2} \top-1=(x\rceil 1\right)(x \top-1) ?
$$

Good and bad polynomials

$$
\text { Is } x^{2} \top-1=(x \top 1)(x \top-1) ? \text { Yes, } x^{2} \top-1=x^{2} \top x \top-x \top-1 .
$$

Good and bad polynomials

$$
\text { Is } x^{2} \top-1=(x \top 1)(x \top-1) ? \text { Yes, } x^{2} \top-1=x^{2} \top x \top-x \top-1 .
$$

The graph of a polynomial is connected.

Good and bad polynomials

$$
\text { Is } x^{2} \top-1=(x \top 1)(x \top-1) ? \text { Yes, } x^{2} \top-1=x^{2} \top x \top-x \top-1 .
$$

The graph of a polynomial is connected.
Because a polynomial is upper semi-continuous and has connected values.

Exercise in tropical addition

Exercise in tropical addition

How do several complex numbers with the same absolute values give zero?

Exercise in tropical addition

How do several complex numbers with the same absolute values give zero?
$0 \in a \top b \top c \top \ldots T x \quad$ iff $\quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.

Exercise in tropical addition

How do several complex numbers with the same absolute values give zero?
$0 \in a \top b \top c T \ldots T x \quad$ iff $\quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.
What if they have different absolute values?

Exercise in tropical addition

How do several complex numbers with the same absolute values give zero?
$0 \in a \top b \top c T \ldots \top x \quad$ iff $\quad 0 \in \operatorname{Conv}(a, b, c, \ldots, x)$.
What if they have different absolute values?
Then only those with the greatest one matter!

Amoebas: relation to tropics

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.
Let

$$
p\left(z_{1}, \ldots, z_{n}\right)=\underset{k=\left(k_{1}, \ldots k_{n}\right) \in I}{\top} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}
$$

be a pure T-polynomial.

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.
Let

$$
p\left(z_{1}, \ldots, z_{n}\right)=\underset{k=\left(k_{1}, \ldots k_{n}\right) \in I}{\top} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}
$$

be a pure т-polynomial. Let

$$
\begin{array}{r}
q\left(x_{1}, \ldots, x_{n}\right)=\max \left\{\log \left|a_{k}\right|+k_{1} \log \left|x_{1}\right|+\cdots+k_{n} \log \left|x_{n}\right| \mid k \in I\right\} \\
\text { be its tropical version (in a sense, } \log (p)) .
\end{array}
$$

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.
Let

$$
\left.p\left(z_{1}, \ldots, z_{n}\right)=\right\rceil_{k=\left(k_{1}, \ldots k_{n}\right) \in I} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}
$$

be a pure т-polynomial. Let

$$
\begin{array}{r}
q\left(x_{1}, \ldots, x_{n}\right)=\max \left\{\log \left|a_{k}\right|+k_{1} \log \left|x_{1}\right|+\cdots+k_{n} \log \left|x_{n}\right| \mid k \in I\right\} \\
\text { be its tropical version (in a sense, } \log (p)) .
\end{array}
$$

Let $V_{p}=\left\{z \in(\mathbb{C} \backslash 0)^{n} \mid 0 \in p(z)\right\}$ and
$T_{q} \subset \mathbb{R}^{n}$ be a tropical hypersurface defined by q.

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.
Let

$$
p\left(z_{1}, \ldots, z_{n}\right)=\top_{k=\left(k_{1}, \ldots k_{n}\right) \in I} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}
$$

be a pure т-polynomial. Let

$$
\begin{gathered}
q\left(x_{1}, \ldots, x_{n}\right)=\max \left\{\log \left|a_{k}\right|+k_{1} \log \left|x_{1}\right|+\cdots+k_{n} \log \left|x_{n}\right| \mid k \in I\right\} \\
\text { be its tropical version (in a sense, } \log (p)) .
\end{gathered}
$$

Let $V_{p}=\left\{z \in(\mathbb{C} \backslash 0)^{n} \mid 0 \in p(z)\right\}$ and
$T_{q} \subset \mathbb{R}^{n}$ be a tropical hypersurface defined by q.

Then $\log \left(V_{p}\right)=T_{q}$.

Amoebas: relation to tropics

$(\mathbb{C} \backslash 0)^{n}$ is convenient to consider fibred over \mathbb{R}^{n} via the map
$\log :(\mathbb{C} \backslash\{0\})^{n} \rightarrow \mathbb{R}^{n}:\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{n}\right|\right)$.
Let

$$
p\left(z_{1}, \ldots, z_{n}\right)=\underset{k=\left(k_{1}, \ldots k_{n}\right) \in I}{\top} a_{k} z_{1}^{k_{1}} \ldots z_{n}^{k_{n}}
$$

be a pure т-polynomial. Let

$$
\begin{gathered}
q\left(x_{1}, \ldots, x_{n}\right)=\max \left\{\log \left|a_{k}\right|+k_{1} \log \left|x_{1}\right|+\cdots+k_{n} \log \left|x_{n}\right| \mid k \in I\right\} \\
\text { be its tropical version (in a sense, } \log (p)) .
\end{gathered}
$$

Let $V_{p}=\left\{z \in(\mathbb{C} \backslash 0)^{n} \mid 0 \in p(z)\right\}$ and
$T_{q} \subset \mathbb{R}^{n}$ be a tropical hypersurface defined by q.

Then $\log \left(V_{p}\right)=T_{q}$.
The amoeba of a complex tropical hypersurface is the tropical hypersurface (defined by the same polynomial).

Patchworking of hypersurfaces

Let p be a polynomial in n variables.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}. Replace in p each + with T and denote the result by p_{T}.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}.
Replace in p each + with T and denote the result by p_{T}.
Then for sufficiently small $h>0$ the set
$V\left(p_{h}\right)=\left\{x \in \mathbb{C}^{n} \mid p_{h}(x)=0\right\}$ is a non-singular hypersurface

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}.
Replace in p each + with T and denote the result by p_{T}.
Then for sufficiently small $h>0$ the set
$V\left(p_{h}\right)=\left\{x \in \mathbb{C}^{n} \mid p_{h}(x)=0\right\}$ is a non-singular hypersurface isotopic to $V\left(p_{\top}\right)=\left\{x \in \mathbb{C}^{n} \mid 0 \in p_{\top}(x)\right\}$.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}.
Replace in p each + with T and denote the result by p_{T}.
Then for sufficiently small $h>0$ the set
$V\left(p_{h}\right)=\left\{x \in \mathbb{C}^{n} \mid p_{h}(x)=0\right\}$ is a non-singular hypersurface isotopic to $V\left(p_{\top}\right)=\left\{x \in \mathbb{C}^{n} \mid 0 \in p_{\top}(x)\right\}$.
In particular, $V\left(p_{\top}\right)$ is a topological manifold of dimension $2 n-2$.

Patchworking of hypersurfaces

Let p be a polynomial in n variables, generic in the sense that at each point $x \in \mathbb{C}^{n}$ the Newton polyhedron of its leading terms is a simplex of the minimal volume.

Replace in p each + with $+_{h}$ and denote the result by p_{h}.
Replace in p each + with T and denote the result by p_{T}.
Then for sufficiently small $h>0$ the set
$V\left(p_{h}\right)=\left\{x \in \mathbb{C}^{n} \mid p_{h}(x)=0\right\}$ is a non-singular hypersurface isotopic to $V\left(p_{\top}\right)=\left\{x \in \mathbb{C}^{n} \mid 0 \in p_{\top}(x)\right\}$.
In particular, $V\left(p_{\top}\right)$ is a topological manifold of dimension $2 n-2$.
There is a real version of this statement.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry
over the tropical field of real numbers.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry
over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?

Conjecture. (Itenberg, Mikhalkin, Zharkov) Let X be a complex tropical variety, $X_{q}=\log ^{-1}(q$-skeleton $(\log (X)))$,
$H_{n}^{q}(X)=\operatorname{Im}\left(\mathrm{in}_{*}: H_{n}\left(X_{q}\right) \rightarrow H_{n}(X)\right)$,
$H_{p, q}(X)=H_{p+q}^{q}(X) / H_{p+q}^{q-1}(X)$. Then $H_{p, q}(X) \otimes \mathbb{C}$ is isomorphic to $H^{p, q}\left(X_{h}\right)$.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other tropical fields responsible for the fate of higher germs of complex varieties in the tropical deformation?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other tropical fields responsible for the fate of higher germs of complex varieties in the tropical deformation?
There is a tropical addition of quaternions.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other tropical fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?
There is a tropical addition of p-adic numbers.

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other tropical fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?
Fourth, what are complex tropical abstract varieties?

Complex tropical geometry

I suggest to call complex tropical geometry the algebraic geometry over the tropical field of complex numbers.
real tropical geometry the algebraic geometry over the tropical field of real numbers.
There are lots of open questions.
First, what are infinitesimal structures
in the complex and real tropical varieties.?
Tangent bundles?
Differential forms?
Second, what happens at singular points?
Does the tropical deformation smash them completely?
Third, is there other tropical fields responsible for the fate of
higher germs of complex varieties in the tropical deformation?
Fourth, what are complex tropical abstract varieties?
This is a work in progress started 2 months ago.

Table of Contents

Tropical Geometry

Tropical algebra
Tropical polynomials
Bridges
Multi-valued algebra

Dequantizataion

Deformation of \mathbb{C}
A look of the limit
Properties of $+_{0}$
Upper Vietoris topology
Tropical addition of complex numbers Continuity of tropical addition
Tropical groups
Operation induced on a subset
Tropical addition of real numbers
Homomorphisms
Tropical rings and fields
Leading term

Equations and varieties

Good and bad polynomials
Exercise in tropical addition
Amoebas: relation to tropics
Patchworking of hypersurfaces
Complex tropical geometry

