
INTRODUCTION TO TOPOLOGY OF REAL

ALGEBRAIC VARIETIES

OLEG VIRO

1. The Early Topological Study of Real Algebraic

Plane Curves

1.1. Basic Definitions and Problems. A curve (at least, an alge-
braic curve) is something more than just the set of points which belong
to it. There are many ways to introduce algebraic curves. In the ele-
mentary situation of real plane projective curves the simplest and most
convenient is the following definition, which at first glance seems to be
overly algebraic.

By a real projective algebraic plane curve1 of degree m we mean a
homogeneous real polynomial of degree m in three variables, considered
up to constant factors. If a is such a polynomial, then the equation
a(x0, x1, x2) = 0 defines the set of real points of the curve in the real
projective plane RP 2. We let RA denote the set of real points of the
curve A. Following tradition, we shall also call this set a curve, avoiding
this terminology only in cases where confusion could result.

A point (x0 : x1 : x2) ∈ RP 2 is called a (real) singular point of the
curve A if (x0, x1, x2) ∈ R

3 is a critical point of the polynomial a which
defines the curve. The curve A is said to be (real) nonsingular if it
has no real singular points. The set of real points of a nonsingular real
projective plane curve is a smooth closed one-dimensional submanifold
of the projective plane.

In the topology of nonsingular real projective algebraic plane curves,
as in other similar areas, the first natural questions that arise are clas-
sification problems.

1.1.A (Topological Classification Problem). Up to homeomorphism,

what are the possible sets of real points of a nonsingular real projec-

tive algebraic plane curve of degree m?

1Of course, the full designation is used only in formal situations. One normally

adopts an abbreviated terminology. We shall say simply a curve in contexts where

this will not lead to confusion.
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1.1.B (Isotopy Classification Problem). Up to homeomorphism, what

are the possible pairs (RP 2, RA) where A is a nonsingular real projec-

tive algebraic plane curve of degree m?

It is well known that the components of a closed one-dimensional
manifold are homeomorphic to a circle, and the topological type of the
manifold is determined by the number of components; thus, the first
problem reduces to asking about the number of components of a curve
of degree m. The answer to this question, which was found by Harnack
[Har-76] in 1876, is described in Sections 1.6 and 1.8 below.

The second problem has a more naive formulation as the question
of how a nonsingular curve of degree m can be situated in RP 2. Here
we are really talking about the isotopy classification, since any home-
omorphism RP 2 → RP 2 is isotopic to the identity map. At present
the second problem has been solved only for m ≤ 7. The solution is
completely elementary when m ≤ 5: it was known in the last century,
and we shall give the result in this section. But before proceeding to an
exposition of these earliest achievements in the study of the topology of
real algebraic curves, we shall recall the isotopy classification of closed
one-dimensional submanifolds of the projective plane.

1.2. Digression: the Topology of Closed One-Dimensional Sub-

manifolds of the Projective Plane. For brevity, we shall refer to
closed one-dimensional submanifolds of the projective plane as topologi-

cal plane curves, or simply curves when there is no danger of confusion.
A connected curve can be situated in RP 2 in two topologically dis-

tinct ways: two-sidedly , i.e., as the boundary of a disc in RP 2, and
one-sidedly , i.e., as a projective line. A two-sided connected curve is
called an oval . The complement of an oval in RP 2 has two components,
one of which is homeomorphic to a disc and the other homeomorphic
to a Möbius strip. The first is called the inside and the second is
called the outside. The complement of a connected one-sided curve is
homeomorphic to a disc.

Any two one-sided connected curves intersect, since each of them re-
alizes the nonzero element of the group H1(RP 2; Z2), which has nonzero
self-intersection. Hence, a topological plane curve has at most one one-
sided component. The existence of such a component can be expressed
in terms of homology: it exists if and only if the curve represents a
nonzero element of H1(RP 2; Z2). If it exists, then we say that the
whole curve is one-sided ; otherwise, we say that the curve is two-sided .

Two disjoint ovals can be situated in two topologically distinct ways:
each may lie outside the other one—i.e., each is in the outside compo-
nent of the complement of the other—or else they may form an injective
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Figure 1

pair , i.e., one of them is in the inside component of the complement of
the other—in that case, we say that the first is the inner oval of the
pair and the second is the outer oval. In the latter case we also say
that the outer oval of the pair envelopes the inner oval.

A set of h ovals of a curve any two of which form an injective pair is
called a nest of depth h.

The pair (RP 2, X), where X is a topological plane curve, is deter-
mined up to homeomorphism by whether or not X has a one-sided
component and by the relative location of each pair of ovals. We shall
adopt the following notation to describe this. A curve consisting of a
single oval will be denoted by the symbol 〈1〉. The empty curve will
be denoted by 〈0〉. A one-sided connected curve will be denoted by
〈J〉. If 〈A〉 is the symbol for a certain two-sided curve, then the curve
obtained by adding a new oval which envelopes all of the other ovals
will be denoted by 〈1〈A〉〉. A curve which is a union of two disjoint
curves 〈A〉 and 〈B〉 having the property that none of the ovals in one
curve is contained in an oval of the other is denoted by 〈A ∐ B〉. In
addition, we use the following abbreviations: if 〈A〉 denotes a certain
curve, and if a part of another curve has the form A ∐ A ∐ · · · ∐ A,
where A occurs n times, then we let n × A denote A ∐ · · · ∐ A. We
further write n × 1 simply as n.

When depicting a topological plane curve one usually represents the
projective plane either as a disc with opposite points of the boundary
identified, or else as the compactification of R

2, i.e., one visualizes the
curve as its preimage under either the projection D2 → RP 2 or the
inclusion R

2 → RP 2. In this book we shall use the second method.
For example, 1.2 shows a curve corresponding to the symbol 〈J ∐ 1 ∐
2〈1〉 ∐ 1〈2〉 ∐ 1〈3 ∐ 1〈2〉〉〉.
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1.3. Bézout’s Prohibitions and the Harnack Inequality. The
most elementary prohibitions, it seems, are the topological consequences
of Bézout’s theorem. In any case, these were the first prohibitions to
be discovered.

1.3.A (Bézout’s Theorem (see, for example, [Wal-50], [Sha-77])). Let

A1 and A2 be nonsingular curves of degree m1 and m2. If the set

RA1 ∩ RA2 is finite, then this set contains at most m1m2 points. If,

in addition, RA1 and RA2 are transversal to one another, then the

number of points in the intersection RA1 ∩ RA2 is congruent to m1m2

modulo 2.

1.3.B . Corollary (1). A nonsingular plane curve of degree m is one-

sided if and only if m is odd. In particular, a curve of odd degree is

nonempty.

In fact, in order for a nonsingular plane curve to be two-sided, i.e.,
to be homologous to zero mod 2, it is necessary and sufficient that
its intersection number with the projective line be zero mod 2. By
Bézout’s theorem, this is equivalent to the degree being even. �

1.3.C . Corollary (2). The number of ovals in the union of two nests

of a nonsingular plane curve of degree m does not exceed m/2. In

particular, a nest of a curve of degree m has depth at most m/2, and

if a curve of degree m has a nest of depth [m/2], then it does not have

any ovals not in the nest.

To prove Corollary 2 it suffices to apply Bézout’s theorem to the
curve and to a line which passes through the insides of the smallest
ovals in the nests. �

1.3.D . Corollary (3). There can be no more than m ovals in a set of

ovals which is contained in a union of ≤ 5 nests of a nonsingular plane

curve of degree m and which does not contain an oval enveloping all of

the other ovals of the set.

To prove Corollary 3 it suffices to apply Bézout’s theorem to the
curve and to a conic which passes through the insides of the smallest
ovals in the nests. �

One can give corollaries whose proofs use curves of higher degree
than lines and conics (see Section 3.8). The most important of such
results is Harnack’s inequality.

1.3.E . Corollary (4 (Harnack Inequality [Har-76])). The number of

components of a nonsingular plane curve of degree m is at most
(m−1)(m−2)

2
+

1.
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The derivation of Harnack Inequality from Bézout’s theorem can be
found in [Har-76], and also [Gud-74]. However, it is possible to prove
Harnack Inequality without using Bézout’s theorem; see, for example,
[Gud-74], [Wil-78] and Section 3.2 below.

1.4. Curves of Degree ≤ 5. If m ≤ 5, then it is easy to see that
the prohibitions in the previous subsection are satisfied only by the
following isotopy types.

Table 1

m Isotopy types of nonsingular plane curves of degree m

1 〈J〉

2 〈0〉, 〈1〉

3 〈J〉, 〈J ∐ 1〉

4 〈0〉, 〈1〉, 〈2〉, 〈1〈1〉〉, 〈3〉, 〈4〉

5 〈J〉, 〈J ∐ 1〉, 〈J ∐ 2〉, 〈J ∐ 1〈1〉〉, 〈J ∐ 3〉, 〈J ∐ 4〉, 〈J ∐ 5〉, 〈J ∐ 6〉

For m ≤ 3 the absence of other types follows from 1.3.B and 1.3.C ;
for m = 4 it follows from 1.3.B , 1.3.C and 1.3.D , or else from 1.3.B ,
1.3.C and 1.3.E ; and for m = 5 it follows from 1.3.B , 1.3.C and
1.3.E . It turns out that it is possible to realize all of the types in Table
1; hence, we have the following theorem.

1.4.A. Isotopy Classification of Nonsingular Real Plane

Projective Curves of Degree ≤ 5. An isotopy class of topological

plane curves contains a nonsingular curve of degree m ≤ 5 if and only

if it occurs in the m-th row of Table 1.

The curves of degree ≤ 2 are known to everyone. Both of the isotopy
types of nonsingular curves of degree 3 can be realized by small per-
turbations of the union of a line and a conic which intersect in two real
points (Figure 2). One can construct these perturbations by replacing
the left side of the equation cl = 0 defining the union of the conic C and
the line L by the polynomial cl + εl1l2l3, where li = 0, i = 1, 2, 3, are
the equations of the lines shown in 2, and ε is a nonzero real number
which is sufficiently small in absolute value.

It will be left to the reader to prove that one in fact obtains the
curves in Figure 2 as a result; alternatively, the reader can deduce this
fact from the theorem in the next subsection.



6 OLEG VIRO

R
R

R R R R
R

R

Figure 2

Figure 3

The isotopy types of nonempty nonsingular curves of degree 4 can
be realized in a similar way by small perturbations of a union of two
conics which intersect in four real points (Figure 3). An empty curve of
degree 4 can be defined, for example, by the equation x4

0 +x4
1 +x4

2 = 0.
All of the isotopy types of nonsingular curves of degree 5 can be

realized by small perturbations of the union of two conics and a line,
shown in Figure 4. �

For the isotopy classification of nonsingular curves of degree 6 it
is no longer sufficient to use this type of construction, or even the
prohibitions in the previous subsection. See Section 1.13 and ??.

1.5. The Classical Method of Constructing Nonsingular Plane

Curves. All of the classical constructions of the topology of nonsin-
gular plane curves are based on a single construction, which I will call
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Figure 4

classical small perturbation. Some special cases were given in the previ-
ous subsection. Here I will give a detailed description of the conditions
under which it can be applied and the results.

We say that a real singular point ξ = (ξ0 : ξ1 : ξ2) of the curve A is
an intersection point of two real transversal branches, or, more briefly,
a crossing ,2 if the polynomial a defining the curve has matrix of second
partial derivatives at the point (ξ0, ξ1, ξ2) with both a positive and a
negative eigenvalue, or, equivalently, if the point ξ is a nondegenerate
critical point of index 1 of the functions {x ∈ RP 2|xi 6= 0} → R x 7→
a(x)/xi deg a for i with ξi 6= 0. By Morse lemma (see, e.g. [Mil-69]) in
a neighborhood of such a point the curve looks like a union of two real
lines. Conversely, if RA1, . . . , RAk are nonsingular mutually transverse
curves no three of which pass through the same point, then all of the
singular points of the union RA1 ∪ · · · ∪ RAk (this is precisely the
pairwise intersection points) are crossings.

1.5.A (Classical Small Perturbation Theorem (see Figure 5)). Let A be

a plane curve of degree m all of whose singular points are crossings,

and let B be a plane curve of degree m which does not pass through

the singular points of A. Let U be a regular neighborhood of the curve

RA in RP 2, represented as the union of a neighborhood U0 of the set of

singular points of A and a tubular neighborhood U1 of the submanifold

RA r U0 in RP 2
r U0.

Then there exists a nonsingular plane curve X of degree m such that :

2Sometimes other names are used. For example: a node, a point of type A1 with

two real branches, a nonisolated nondegenerate double point.
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(1) RX ⊂ U .

(2) For each component V of U0 there exists a homeomorphism hV →
D1 × D1 such that h(RA ∩ V ) = D1 × 0 ∪ 0 × D1 and h(RX ∩ V ) =
{(x, y) ∈ D1 × D1|xy = 1/2}.

(3) RX r U0 is a section of the tubular fibration U1 → RA r U0.

(4) RX ⊂ {(x0 : x1 : x2) ∈ RP 2|a(x0, x1, x2)b(x0, x1, x2) ≤ 0}, where

a and b are polynomials defining the curves A and B.

(5) RX ∩ RA = RX ∩ RB = RA ∩ RB.

(6) If p ∈ RA∩RB is a nonsingular point of B and RB is transversal

to RA at this point, then RX is also transversal to RA at the point.

There exists ε > 0 such that for any t ∈ (0, ε] the curve given by the

polynomial a + tb satisfies all of the above requirements imposed on X.

It follows from (1)–(3) that for fixed A the isotopy type of the curve
RX depends on which of two possible ways it behaves in a neighbor-
hood of each of the crossings of the curve A, and this is determined by
condition (4). Thus, conditions (1)–(4) characterize the isotopy type
of the curve RX. Conditions (4)–(6) characterize its position relative
to RA.

We say that the curves defined by the polynomials a + tb with t ∈
(0, ε] are obtained by small perturbations of A directed to the curve

B. It should be noted that the curves A and B do not determine the
isotopy type of the perturbed curves: since both of the polynomials b
and −b determine the curve B, it follows that the polynomials a − tb
with small t > 0 also give small perturbations of A directed to B. But
these curves are not isotopic to the curves given by a + tb (at least not
in U), if the curve A actually has singularities.
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Proof. Proof of Theorem 1.5.A We set xt = a + tb. It is clear that for
any t 6= 0 the curve Xt given by the polynomial xt satisfies conditions
(5) and (6), and if t > 0 it satisfies (4). For small |t| we obviously have
RXt ⊂ U . Furthermore, if |t| is small, the curve RXt is nonsingular at
the points of intersection RXt ∩RB = RA∩RB, since the gradient of
xt differs very little from the gradient of a when |t| is small, and the
latter gradient is nonzero on RA ∩ RB (this is because, by assump-
tion, B does not pass through the singular points of A). Outside RB
the curve RXt is a level curve of the function a/b. On RA r RB this
level curve has critical points only at the singular points of RA, and
these critical points are nondegenerate. Hence, for small t the behavior
of RXt outside RB is described by the implicit function theorem and
Morse Lemma (see, for example, [Mil-69]); in particular, for small t 6= 0
this curve is nonsingular and satisfies conditions (2) and (3). Conse-
quently, there exists ε > 0 such that for any t ∈ (0, ε] the curve RXt is
nonsingular and satisfies (1)–(6). �

1.6. Harnack Curves. In 1876, Harnack [Har-76] not only proved
the inequality 1.3.E in Section 1.3, but also completed the topologi-
cal classification of nonsingular plane curves by proving the following
theorem.

1.6.A (Harnack Theorem). For any natural number m and any integer

c satisfying the inequalities

(1)
1 − (−1)m

2
≤ c ≤

m2 − 3m + 4

2
,

there exists a nonsingular plane curve of degree m consisting of c com-

ponents.

The inequality on the right in 1 is Harnack Inequality. The inequality
on the left is part of Corollary 1 of Bézout’s theorem (see Section
1.3.B). Thus, Harnack Theorem together with theorems 1.3.B and
1.3.E actually give a complete characterization of the set of topological
types of nonsingular plane curves of degree m, i.e., they solve problem
1.1.A.

Curves with the maximum number of components (i.e., with (m2 −
3m + 4)/2 components, where m is the degree) are called M-curves.
Curves of degree m which have (m2 − 3m + 4)/2 − a components are
called (M − a)-curves. We begin the proof of Theorem 1.6.A by estab-
lishing that the Harnack Inequality 1.3.B is best possible.

1.6.B . For any natural number m there exists an M-curve of degree m.
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Proof. We shall actually construct a sequence of M-curves. At each
step of the construction we add a line to the M-curve just constructed,
and then give a slight perturbation to the union. We can begin the
construction with a line or, as in Harnack’s proof in [Har-76], with a
circle. However, since we have already treated curves of degree ≤ 5
and constructed M-curves for those degrees (see Section 1.4), we shall
begin by taking the M-curve of degree 5 that was constructed in Section
1.4, so that we can immediately proceed to curves that we have not
encountered before.

Recall that we obtained a degree 5 M-curve by perturbing the union
of two conics and a line L. This perturbation can be done using various
curves. For what follows it is essential that the auxiliary curve intersect
L in five points which are outside the two conics. For example, let the
auxiliary curve be a union of five lines which satisfies this condition
(Figure 6). We let B5 denote this union, and we let A5 denote the
M-curve of degree 5 that is obtained using B5.

We now construct a sequence of auxiliary curves Bm for m > 5. We
take Bm to be a union of m lines which intersect L in m distinct points
lying, for even m, in an arbitrary component of the set RLrRBm−1 and
for odd m in the component of RL r RBm−1 containing RL ∩ RBm−2.

We construct the M-curve Am of degree m using small perturbation
of the union Am−1∪L directed to Bm. Suppose that the M-curve Am−1

of degree m−1 has already been constructed, and suppose that RAm−1

intersects RL transversally in the m−1 points of the intersection RL∩
RBm−1 which lie in the same component of the curve RAm−1 and in
the same order as on RL. It is not hard to see that, for one of the
two possible directions of a small perturbation of Am−1 ∪L directed to
Bm, the line RL and the component of RAm−1 that it intersects give
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m − 1 components, while the other components of RAm−1, of which,
by assumption, there are

((m − 1)2 − 3(m − 1) + 4)/2 − 1 = (m2 − 5m + 6)/2,

are only slightly deformed—so that the number of components of RAm

remains equal to (m2 − 5m + 6)/2 + m − 1 = (m2 − 3m + 4)/2. We
have thus obtained an M-curve of degree m. This curve is transversal
to RL, it intersects RL in RL∩RBm (see 1.5.A), and, since RL∩RBm

is contained in one of the components of the set RLrRBm−1, it follows
that the intersection points of our curve with RL are all in the same
component of the curve and are in the same order as on RL (Figure
7). �

The proof that the left inequality in 1 is best possible, i.e., that
there is a curve with the minimum number of components, is much
simpler. For example, we can take the curve given by the equation
xm

0 + xm
1 + xm

2 = 0. Its set of real points is obviously empty when m
is even, and when m is odd the set of real points is homeomorphic to
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RP 1 (we can get such a homeomorphism onto RP 1, for example, by
projection from the point (0 : 0 : 1)).

By choosing the auxiliary curves Bm in different ways in the construc-
tion of M-curves in the proof of Theorem 1.6.B , we can obtain curves
with any intermediate number of components. However, to complete
the proof of Theorem 1.6.A in this way would be rather tedious, even
though it would not require any new ideas. We shall instead turn to a
less explicit, but simpler and more conceptual method of proof, which
is based on objects and phenomena not encountered above.

1.7. Digression: the Space of Real Projective Plane Curves.

By the definition of real projective algebraic plane curves of degree
m, they form a real projective space of dimension m(m + 3)/2. The
homogeneous coordinates in this projective space are the coefficients of
the polynomials defining the curves. We shall denote this space by the
symbol RCm. Its only difference with the standard space RP m(m+3)/2

is the unusual numbering of the homogeneous coordinates. The point
is that the coefficients of a homogeneous polynomial in three variables
have a natural double indexing by the exponents of the monomials:

a(x0, x1, x2) =
∑

i,j≥0
i+j≤maijx

m−i−j
0 xi

1x
j
2.

We let RNCm denote the subset of RCm corresponding to the real
nonsingular curves. It is obviously open in RCm. Moreover, any non-
singular curve of degree m has a neighborhood in RNCm consisting of
isotopic nonsingular curves. Namely, small changes in the coefficients
of the polynomial defining the curve lead to polynomials which give
smooth sections of a tubular fibration of the original curve. This is
an easy consequence of the implicit function theorem; compare with
1.5.A, condition (3).

Curves which belong to the same component of the space RNCm of
nonsingular degree m curves are isotopic—this follows from the fact
that nonsingular curves which are close to one another are isotopic. A
path in RNCm defines an isotopy in RP 2 of the set of real points of
a curve. An isotopy obained in this way is made of sets of real points
of of real points of curves of degree m. Such an isotopy is said to be
rigid . This definition naturally gives rise to the following classification
problem, which is every bit as classical as problems 1.1.Aand 1.1.B .

1.7.A (Rigid Isotopy Classification Problem). Classify the nonsingular

curves of degree m up to rigid isotopy, i.e., study the partition of the

space RNCm of nonsingular degree m curves into its components.
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Figure 8

If m ≤ 2, it is well known that the solution of this problem is identical
to that of problem 1.1.B . Isotopy also implies rigid isotopy for curves
of degree 3 and 4. This was known in the last century; however, we
shall not discuss this further here, since it has little relevance to what
follows. At present problem 1.7.A has been solved for m ≤ 6.

Although this section is devoted to the early stages of the theory, I
cannot resist commenting in some detail about a more recent result.
In 1978, V. A. Rokhlin [Rok-78] discovered that for m ≥ 5 isotopy
of nonsingular curves of degree m no longer implies rigid isotopy. The
simplest example is given in Figure 8, which shows two curves of degree
5. They are obtained by slightly perturbing the very same curve in
Figure 4 which is made up of two conics and a line. Rokhlin’s original
proof uses argument on complexification, it will be presented below,
in Section ??? Here, to prove that these curves are not rigid isotopic,
we use more elementary arguements. Note that the first curve has
an oval lying inside a triangle which does not intersect the one-sided
component and which has its vertices inside the other three ovals, and
the second curve does not have such an oval—but under a rigid isotopy
the oval cannot leave the triangle, since that would entail a violation
of Bézout’s theorem.

We now examine the subset of RCm made up of real singular curves.
It is clear that a curve of degree m has a singularity at (1 : 0 : 0)

if and only if its polynomial has zero coefficients of the monomials
xm

0 , xm−1
0 x1, x

m−1
0 x2. Thus, the set of real projective plane curves of

degree m having a singularity at a particular point forms a subspace
of codimension 3 in RCm.

We now consider the space S of pairs of the form (p, C), where
p ∈ RP 2, C ∈ RCm, and p is a singular point of the curve C. S
is clearly an algebraic subvariety of the product RP 2 × RCm. The
restriction to S of the projection RP 2 × RCm → RP 2 is a locally
trivial fibration whose fiber is the space of curves of degree m with
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a singularity at the corresponding point, i.e., the fiber is a projective
space of dimension m(m + 3)/2 − 3. Thus, S is a smooth manifold of
dimension m(m+3)/2−1. The restriction S → RCm of the projection
RP 2×RCm → RCm has as its image precisely the set of all real singular
curves of degree m, i.e., RCmrRNCm. We let RSCm denote this image.
Since it is the image of a (m(m+3)/2−1)-dimensional manifold under
smooth map, its dimension is at most m(m + 3)/2 − 1. On the other
hand, its dimension is at least equal m(m+3)/2−1, since otherwise, as
a subspace of codimension ≥ 2, it would not separate the space RCm,
and all nonsingular curves of degree m would be isotopic.

Using an argument similar to the proof that dim RSCm ≤ m(m +
3)/2−1, one can show that the set of curves having at least two singular
points and the set of curves having a singular point where the matrix
of second derivatives of the corresponding polynomial has rank ≤ 1,
each has dimension at most m(m + 3)/2− 2. Thus, the set RSCm has
an open everywhere dense subset consisting of curves with only one
singular point, which is a nondegenerate double point (meaning that
at this point the matrix of second derivatives of the polynomial defining
the curve has rank 2). This subset is called the principal part of the set
RSCm. It is a smooth submanifold of codimension 1 in RCm. In fact,
its preimage under the natural map S → RCm is obviously an open
everywhere dense subset in the manifold S, and the restriction of this
map to the preimage is easily verified to be a one-to-one immersion,
and even a smooth imbedding.

There are two types of nondegenerate real points on a plane curve.
We say that a nondegenerate real double point (ξ0 : ξ1 : ξ2) on a curve A
is solitary if the matrix of second partial derivatives of the polynomial
defining A has either two nonnegative or two nonpositive eigenvalues
at the point (ξ0, ξ1, ξ2). A solitary nondegenerate double point of A
is an isolated point of the set RA. In general, a singular point of A
which is an isolated point of the set RA will be called a solitary real
singular point. The other type of nondegenerate real double point is a
crossing; crossings were discussed in Section 1.5 above. Corresponding
to this division of the nondegenerate real double points into solitary
points and crossings, we have a partition of the principal part of the
set of real singular curves of degree m into two open sets.

If a curve of degree m moves as a point of RCm along an arc which
has a transversal intersection with the half of the principal part of the
set of real singular curves consisting of curves with a solitary singular
point, then the set of real points on this curve undergoes a Morse mod-
ification of index 0 or 2 (i.e., either the curve acquires a solitary double
point, which then becomes a new oval, or else one of the ovals contracts
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to a point (a solitary nondegenerate double point) and disappears). In
the case of a transversal intersection with the other half of the principal
part of the set of real singular curves one has a Morse modification of
index 1 (i.e., two arcs of the curve approach one another and merge,
with a crossing at the point where they come together, and then imme-
diately diverge in their modified form, as happens, for example, with
the hyperbola in the family of affine curves of degree 2 given by the
equation xy = t at the moment when t = 0).

A line in RCm is called a (real) pencil of curves of degree m. If a
and b are polynomials defining two curves of the pencil, then the other
curves of the pencil are given by polynomials of the form λa + µb with
λ, µ ∈ R r 0.

By the transversality theorem, the pencils which intersect the set
of real singular curves only at points of the principal part and only
transversally form an open everywhere dense subset of the set of all
real pencils of curves of degree m.

1.8. End of the Proof of Theorem 1.6.A. In Section 1.6 it was
shown that for any m there exist nonsingular curves of degree m with
the minimum number (1 − (−1)m)/2 or with the maximum number
(m2−3m+4)/2 of components. Nonsingular curves which are isotopic
to one another form an open set in the space RCm of real projective
plane curves of degree m (see Section 1.7). Hence, there exists a real
pencil of curves of degree m which connects a curve with minimum
number of components to a curve with maximum number of compo-
nents and which intersects the set of real singular curves only in its
principal part and only transversally. As we move along this pen-
cil from the curve with minimum number of components to the curve
with maximum number of components, the curve only undergoes Morse
modifications, each of which changes the number of components by at
most 1. Consequently, this pencil includes nonsingular curves with an
arbitrary intermediate number of components. �

1.9. Isotopy Types of Harnack M-Curves. Harnack’s construction
of M-curves in [Har-76] differs from the construction in the proof of
Theorem 1.6.B in that a conic, rather than a curve of degree 5, is
used as the original curve. Figure 9 shows that the M-curves of degree
≤ 5 which are used in Harnack’s construction [Har-76]. For m ≥ 6
Harnack’s construction gives M-curves with the same isotopy types as
in the construction in Section 1.6.

In these constructions one obtains different isotopy types of M-curves
depending on the choice of auxiliary curves (more precisely, depending
on the relative location of the intersections RBm ∩RL). Recall that in
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Figure 9

order to obtain M-curves it is necessary for the intersection RBm∩RL to
consist of m points and lie in a single component of the set RLrRBm−1,
where for odd m this component must contain RBm−2 ∩ RL. It is
easy to see that the isotopy type of the resulting M-curve of degree
m depends only on the choice of the components of RL r RBr−1 for
even r < m where the intersections RL ∩ RBr are to be found. If we
take the components containing RL ∩ RBr−2 for even r as well, then
the degree m M-curve obtained from the construction has isotopy type
〈J∐(m2−3m+2)/2〉 for odd m and 〈(3m2−6m)/8∐1〈(m2−6m+8)/8〉〉
for even m. In Table 2 we have listed the isotopy types of M-curves of
degree ≤ 10 which one obtains from Harnack’s construction using all
possible Bm.

In conclusion, we mention two curious properties of Harnack M-
curves, for which the reader can easily furnish a proof.

1.9.A. The depth of a nest in a Harnack M-curve is at most 2.

1.9.B . Any Harnack M-curve of even degree m has (3m2 − 6m + 8)/8
outer ovals and (m2 − 6m + 8)/8 inner ovals.

1.10. Hilbert Curves. In 1891 Hilbert [Hil-91] seems to have been
the first to clearly state the isotopy classification problem for nonsin-
gular curves. As we saw, the isotopy types of Harnack M-curves are
very special. Hilbert suggested that from the topological viewpoints
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Table 2

m Isotopy types of the Harnack M-curves of degree m

2 〈1〉

3 〈J ∐ 1〉

4 〈4〉

5 〈J ∐ 6〉

6 〈9 ∐ 1〈1〉〉

7 〈J ∐ 15〉 〈J ∐ 13 ∐ 1〈1〉〉

8 〈18 ∐ 1〈3〉〉 〈17 ∐ 1〈1〉 ∐ 1〈2〉〉

9 〈J ∐ 28〉 〈J ∐ 24 ∐ 1〈3〉〉 〈J ∐ 26 ∐ 1〈1〉〉 〈J ∐ 23 ∐ 1〈1〉 ∐ 1〈2〉〉

10 〈30 ∐ 1〈6〉〉 〈29 ∐ 2〈3〉〉 〈29 ∐ 1〈1〉 ∐ 1〈5〉〉 〈28 ∐ 1〈1〉 ∐ 1〈2〉 ∐ 1〈3〉〉

Figure 10. Construction of even degree curves by
Hilbert’s method. Degrees 4 and 6.

M-curves are the most interesting. This Hilbert’s guess was strongly
confirmed by the whole subsequent development of the field.

There is a big gap between property 1.9.A of Harnack M-curves and
the corresponding prohibition in 1.3.C . Hilbert [Hil-91] showed that
this gap is explained by the peculiarities of the construction and not
by the intrinsic properties of M-curves. He proposed a new method of
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Figure 11. Construction of odd degree curves by
Hilbert’s method. Degrees 3 and 5.

Table 3

m Isotopy types of the Hilbert M-curves of degree m

4 〈1〉

6 〈9 ∐ 1〈1〉〉 〈1 ∐ 1〈9〉〉

8 〈5 ∐ 1〈14 ∐ 1〈1〉〉〉 〈17 ∐ 1〈2 ∐ 1〈1〉〉〉 〈18 ∐ 1〈3〉〉

〈1 ∐ 1〈2 ∐ 1〈17〉〉〉 〈1 ∐ 1〈14 ∐ 1〈5〉〉〉

5 〈J ∐ 6〉

7 〈J ∐ 15〉 〈J ∐ 12 ∐ 1〈2〉〉 〈J ∐ 13 ∐ 1〈3〉〉 〈J ∐ 2 ∐ 1〈12〉〉 〈J ∐ 1 ∐ 1〈13〉〉

constructing M-curves which was close to Harnack’s method, but which
gives M-curves with nests of any depth allowed by Theorem 1.3.C . In
his method the role a line plays in Harnack’s method is played instead
by a nonsingular conic, and a line or a conic is used for the starting
curve. Figures 10–11 show how to construct M-curves by Hilbert’s
method.

In Table 3 we list the isotopy types of M-curves of degree ≤ 8 which
are obtained by Hilbert’s construction.

The first difficult special problems that Hilbert met were related with
curves of degree 6. Hilbert succeeded to construct M-curves of degree
≥ 6 with mutual position of components different from the scheme
〈9∐ 1〈1〉〉 realized by Harnack. However he realized only one new real
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scheme of degree 6, namely 〈1 ∐ 1〈9〉〉. Hilbert conjectured that these
are the only real schemes realizable by M-curves of degree 6 and for a
long time affirmed that he had a (long) proof of this conjecture. Even
being false (it was disproved by D. A. Gudkov in 1969, who constructed
a curve with the scheme 〈5 ∐ 1〈5〉〉) this conjecture caught the things
that became in 30-th and 70-th the core of the theory.

In fact, Hilbert invented a method which allows to answer to all ques-
tions on topology of curves of degree 6. It involves a detailed analysis
of singular curves which could be obtained from a given nonsingular
one. The method required complicated fragments of singularity theory,
which had not been elaborated at the time of Hilbert. Completely this
project was realized only in the sixties by D. A. Gudkov. It was Gud-
kov who obtained a complete table of real schemes of curves of degree
6.

Coming back to Hilbert, we have to mention his famous problem list
[Hil-01]. He included into the list, as a part of the sixteenth problem, a
general question on topology of real algebraic varieties and more special
questions like the problem on mutual position of components of a plane
curve of degree 6.

The most mysterious in this problem seems to be its number. The
number sixteen plays a very special role in topology of real algebraic
varieties. It is difficult to believe that Hilbert was aware of that. It be-
came clear only in the beginning of seventies (see Rokhlin’s paper “Con-
gruences modulo sixteen in the sixteenth Hilbert’s problem” [Rok-72]).
Nonetheless, sixteen was the number assigned by Hilbert to the prob-
lem.

1.11. Analysis of the Results of the Constructions. Ragsdale.

In 1906, V. Ragsdale [Rag-06] made a remarkable attempt to guess new
prohibitions, based on the results of the constructions by Harnack’s
and Hilbert’s methods. She concentrated her attention on the case of
curves of even degree, motivated by the following special properties of
such curves. Since a curve of an even degree is two-sided, it divides
RP 2 into two parts, which have the curve as their common boundary.
One of the parts contains a nonorientable component; it is denoted by
RP 2

−. The other part, which is orientable, is denoted by RP 2
+. The

ovals of a curve of even degree are divided into inner and outer ovals
with respect to RP 2

+ (i.e., into ovals which bound a component of RP 2
+

from the inside and from the outside). Following Petrovsky [Pet-38],
one says that the outer ovals with respect to RP 2

+ are the even ovals
(since such an oval lies inside an even number of other ovals), and the
rest of the ovals are called odd ovals. The number of even ovals is
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denoted by p, and the number of odd ovals is denoted by n. These
numbers contain very important information about the topology of the
sets RP 2

+ and RP 2
−. Namely, the set RP 2

+ has p components, the set
RP 2

− has n + 1 components, and the Euler characteristics are given by
χ(RP 2

+) = p−n and χ(RP 2
−) = n−p+1. Hence, one should pay special

attention to the numbers p and n. (It is amazing that essentially these
considerations were stated in a paper in 1906!)

By analyzing the constructions, Ragsdale [Rag-06] made the follow-
ing observations.

1.11.A ((compare with 1.9.A and 1.9.B)). For any Harnack M-curve

of even degree m,

p = (3m2 − 6m + 8)/8, n = (m2 − 6m + 8)/8.

1.11.B . For any Hilbert M-curve of even degree m,

(m2 − 6m + 16)/8 ≤ p ≤ (3m2 − 6m + 8)/8,

(m2 − 6m + 8)/8 ≤ n ≤ (3m2 − 6m)/8.

This gave her evidence for the following conjecture.

1.11.C (Ragsdale Conjecture). For any curve of even degree m,

p ≤ (3m2 − 6m + 8)/8, n ≤ (3m2 − 6m)/8.

The most mysterious in this problem seems to be its number. The
number sixteen plays a very special role in topology of real algebraic
varieties. It is difficult to believe that Hilbert was aware of that. It be-
came clear only in the beginning of seventies (see Rokhlin’s paper “Con-
gruences modulo sixteen in the sixteenth Hilbert’s problem” [Rok-72]).
Nonetheless, sixteen was the number assigned by Hilbert to the prob-
lem.

Writing cautiously, Ragsdale formulated also weaker conjectures.
About thirty years later I. G. Petrovsky [Pet-33], [Pet-38] proved one
of these weaker conjectures. See below Subsection 1.13.

Petrovsky also formulated conjectures about the upper bounds for p
and n. His conjecture about n was more cautious (by 1).

Both Ragsdale Conjecture formulated above and its version stated
by Petrovsky [Pet-38] are wrong. However they stayed for rather long
time: Ragsdale Conjecture on n was disproved by the author of this
book [Vir-80] in 1979. However the disproof looked rather like improve-

ment of the conjecture, since in the counterexamples n = 3k(k−1)
2

+ 1.
Drastically Ragsdale-Petrovsky bounds were disproved by I. V. Iten-
berg [Ite-93] in 1993: in Itenberg’s counterexamples the difference be-

tween p (or n) and 3k(k−1)
2

+ 1 is a quadratic function of k.
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In Section ?? we shall return to this very first conjecture of a general
nature on the topology of real algebraic curves. At this point we shall
only mention that several weaker assertions have been proved and ex-
amples have been constructed which made it necessary to weaken the
second inequality by 1. In the weaker form the Ragsdale conjecture
has not yet been either proved or disproved.

The numbers p and n introduced by Ragsdale occur in many of of the
prohibitions that were subsequently discovered. While giving full credit
to Ragsdale for her insight, we must also say that, if she had looked
more carefully at the experimental data available to her, she should
have been able to find some of these prohibitions. For example, it is
not clear what stopped her from making the conjecture which was made
by Gudkov [GU-69] in the late 1960’s. In particular, the experimental
data could suggest the formulation of the Gudkov-Rokhlin congruence
proved in [Rok-72]: for any M-curve of even degree m = 2k

p − n ≡ k2 mod 8

Maybe mathematicians trying to conjecture restrictions on some in-
teger should keep this case in mind as an evidence that restrictions can
have not only the shape of inequality, but congruence. Proof of these
Gudkov’s conjectures initiated by Arnold [Arn-71] and completed by
Rokhlin [Rok-72], Kharlamov [Kha-73], Gudkov and Krakhnov [GK-73]
had marked the beginning of the most recent stage in the development
of the topology of real algebraic curves. We shall come to this story at
the end of this Section.

1.12. Generalizations of Harnack’s and Hilbert’s Methods. Bru-

sotti. Wiman. Ragsdale’s work [Rag-06] was partly inspired by the
erroneous paper of Hulbrut, containing a proof of the false assertion
that an M-curve can be obtained by means of a classical small perturba-
tion (see Section 1.5) from only two M-curves, one of which must have
degree ≤ 2. If this had been true, it would have meant that an inductive
construction of M-curves by classical small perturbations starting with
curves of small degree must essentially be either Harnack’s method or
Hilbert’s method.

In 1910–1917, L. Brusotti showed that this is not the case. He found
inductive constructions of M-curves based on classical small perturba-
tion which were different from the methods of Harnack and Hilbert.

Before describing Brusotti’s constructions, we need some definitions.
A simple arc X in the set of real points of a curve A of degree m is
said to be a base of rank ρ if there exists a curve of degree ρ which
intersects the arc in ρm (distinct) points. A base of rank ρ is clearly
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also a base of rank any multiple of ρ (for example, one can obtain the
intersecting curve of the corresponding degree as the union of several
copies of the degree ρ curve, each copy shifted slightly).

An M-curve A is called a generating curve if it has disjoint bases X
and Y whose ranks divide twice the degree of the curve. An M-curve
A0 of degree m0 is called an auxiliary curve for the generating curve A
of degree m with bases X and Y if the following conditions hold:

a) The intersection RA∩RA0 consist of mm0 distinct points and lies
in a single component K of RA and in a single component K of RA0.

b) The cyclic orders determined on the intersection RA ∩ RA0 by
how it is situated in K and in K0 are the same.

c) X ⊂ RA r RA0.
d) If K is a one-sided curve and m0 ≡ mod 2, then the base X lies

outside the oval K0.
e) The rank of the base X is a divisor of the numbers m + m0 and

2m, and the rank of Y is a divisor of 2m + m0 and 2m.
An auxiliary curve can be the empty curve of degree 0. In this case

the rank of X must be a divisor of the degree of the generating curve.
Let A be a generating curve of degree m, and let A0 be a curve

of degree m0 which is an auxiliary curve with respect to A and the
bases X and Y . Since the rank of X divides m + m0, we may assume
that the rank is equal to m + m0. Let C be a real curve of degree
m + m0 which intersects X in m(m + m0) distinct points. It is not
hard to verify that a classical small perturbation of the curve A ∪ A0

directed to L will give an M-curve of degree m + m0, and that this
M-curve will be an auxiliary curve with respect to A and the bases
obtained from Y and X (the bases must change places). We can now
repeat this construction, with A0 replaced by the curve that has just
been constructed. Proceeding in this way, we obtain a sequence of M-
curves whose degree forms an arithmetic progression: km + m0 with
k = 1, 2, . . . . This is called the construction by Brusotti’s method, and
the sequence of M-curves is called a Brusotti series.

Any simple arc of a curve of degree ≤ 2 is a base of rank 1 (and
hence of any rank). This is no longer the case for curves of degree ≤ 3.
For example, an arc of a curve of degree 3 is a base of rank 1 if and
only if it contains a point of inflection. (We note that a base of rank 2
on a curve of degree 3 might not contain a point of inflection: it might
be on the oval rather than on the one-sided component where all of the
points of inflection obviously lie. A curve of degree 3 with this type of
base of rank 2 can be constructed by a classical small perturbation of
a union of three lines.)
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Figure 12

If the generating curve has degree 1 and the auxiliary curve has
degree 2, then the Brusotti construction turns out to be Harnack’s
construction. The same happens if we take an auxiliary curve of degree
1 or 0. If the generating curve has degree 2 and the auxiliary curve
has degree 1 or 2 (or 0), then the Brusotti construction is the same as
Hilbert’s construction.

In general, not all Harnack and Hilbert constructions are included
in Brusotti’s scheme; however, the Brusotti construction can easily be
extended in such a way as to be a true generalization of the Harnack and
Hilbert constructions. This extension involves allowing the use of an
arbitrary number of bases of the generating curve. Such an extension
is particularly worthwhile when the generating curve has degree ≤ 2,
in which case there are arbitrarily many bases.

It can be shown that Brusotti’s construction with generating curve
of degree 1 and auxiliary curve of degree ≤ 4 gives the same types of
M-curves as Harnack’s construction. But as soon as one uses auxiliary
curves of degree 5, one can obtain new isotopy types from Brusotti’s
construction. It was only in 1971 that Gudkov [Gud-71] found an aux-
iliary curve of degree 5 that did this. His construction was rather com-
plicated, and so I shall only give some references [Gud-71], [Gud-74],
[A’C-79] and present Figure 12, which illustrates the location of the
degree 5 curve relative to the generating line.

Even with the first stage of Brusotti’s construction, i.e., the classical
small perturbation of the union of the curve and the line, one obtains an
M-curve (of degree 6) which has isotopy type 〈5∐1〈5〉〉, an isotopy type
not obtained using the constructions of Harnack and Hilbert. Such an
M-curve of degree 6 was first constructed in a much more complicated
way by Gudkov [GU-69], [Gud-73] in the late 1960’s.

In Figures 13 and 14 we show the construction of two curves of degree
6 which are auxiliary curves with respect to a line. In this case the
Brusotti construction gives new isotopy types beginning with degree 8.

In the Hilbert construction we keep track of the location relative to
a fixed line A. The union of two conics is perturbed in direction to a
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Figure 13

quadruple of lines. One obtains a curve of degree 4. To this curve one
then adds one of the original conics, and the union is perturbed.

In numerous papers by Brusotti and his students, many series of
Brusotti M-curves were found. Generally, new isotopy types appear
in them beginning with degree 9 or 10. In these constructions they
paid much attention to combinations of nests of different depths—a
theme which no longer seems to be very interesting. An idea of the
nature of the results in these papers can be obtained from Gudkov’s
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RA RA

RA

Figure 14. In the construction by Hilbert’s method, we
keep track of the locations relative to a fixed line A. The
union of two conics is perturbed in direction to a 4-tuple
of lines. A curve of degree 4 is obtained. We add one of
the original conics to this curve, and then perturb the
union.

survey [Gud-74]; for more details, see Brusotti’s survey [Bru-56] and
the papers cited there.

An important variant of the classical constructions of M-curves, of
which we shall need to make use in the next section, is not subsumed
under Brusotti’s scheme even in its extended form. This variant, pro-
posed by Wiman [Wim-23], consists in the following. We take an M-
curve A of degree k having base X of rank dividing k; near this curve
we construct a curve A′ transversally intersecting A in k2 points of X,
after which we can subject the union A ∪ A′ to a classical small per-
turbation, giving an M-curve of degree 2k (for example, a perturbation
in direction to an empty curve of degree 2k). The resulting M-curve
has the following topological structure: each of the components of the
curve A except for one (i.e., except for the component containing X)
is doubled, i.e., is replaced by a pair of ovals which are each close to
an oval of the original curve, and the component containing X gives a
chain of k2 ovals. This new curve does not necessarily have a base, so
that in general one cannot construct a series of M-curves in this way.
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1.13. The First Prohibitions not Obtained from Bézout’s The-

orem. The techniques discussed above are, in essence, completely el-
ementary. As we saw (Section 1.4), they are sufficient to solve the iso-
topy classification problem for nonsingular projective curves of degree
≤ 5. However, even in the case of curves of degree 6 one needs subtler
considerations. Not all of the failed attempts to construct new isotopy
types of M-curves of degree 6 (after Hilbert’s 1891 paper [Hil-91], there
were two that had not been realized: 〈9 ∐ 1〈1〉〉 and 〈1 ∐ 1〈9〉〉) could
be explained on the basis of Bézout’s theorem. Hilbert undertook an
attack on M-curves of degree 6. He was able to grope his way toward a
proof that isotopy types cannot be realized by curves of degree 6, but
the proof required a very involved investigation of the natural stratifi-
cation of the space RC6 of real curves of degree 6. In [Roh-13], Rohn,
developing Hilbert’s approach, proved (while stating without proof sev-
eral valid technical claims which he needed) that the types 〈11〉 and
〈1〈10〉〉 cannot be realized by curves of degree 6. It was not until the
1960’s that the potential of this approach was fully developed by Gud-
kov. By going directly from Rohn’s 1913 paper [Roh-13] to the work
of Gudkov, I would violate the chronological order of my presentation
of the history of prohibitions. But in fact I would only be omitting
one important episode, to be sure a very remarkable one: the famous
work of I. G. Petrovsky [Pet-33], [Pet-38] in which he proved the first
prohibition relating to curves of arbitrary even degree and not a direct
consequence of Bézout’s theorem.

1.13.A (Petrovsky Theorem ([Pet-33], [Pet-38])). For any nonsingular

real projective algebraic plane curve of degree m = 2k

(2) −
3

2
k(k − 1) ≤ p − n ≤

3

2
k(k − 1) + 1.

(Recall that p denotes the number of even ovals on the curve (i.e.,
ovals each of which is enveloped by an even number of other ovals, see
Section 1.11), and n denotes the number of odd ovals.)

As it follows from [Pet-33] and [Pet-38], Petrovsky did not know
Ragsdale’s paper. But his proof runs along the lines indicated by Rags-
dale. He also reduced the problem to estimates of Euler characteristic
of the pencil curves, but he went further: he proved these estimates.
Petrovsky’s proof was based on a technique that was new in the study
of the topology of real curves: the Euler-Jacobi interpolation formula.
Petrovsky’s theorem was generalized by Petrovsky and Oleinik [PO-49]
to the case of varieties of arbitrary dimension, and by Olĕınik [Ole-51]
to the case of curves on a surface. More about the proof and the influ-
ence of Petrovsky’s work on the subsequent development of the subject
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can be found in Kharlamov’s survey [Kha-86] in Petrovsky’s collected
works. I will only comment that in application to nonsingular projec-
tive plane curves, the full potential of Petrovsky’s method, insofar as
we are able to judge, was immediately realized by Petrovsky himself.

We now turn to Gudkov’s work. In a series of papers in the 1950’s
and 1960’s, he completed the development of the techniques needed
to realize Hilbert’s approach to the problem of classifying curves of
degree 6 (these techniques were referred to as the Hilbert-Rohn method
by Gudkov), and he used the techniques to solve this problem (see
[GU-69]). The answer turned out to be elegant and stimulating.

1.13.B (Gudkov’s Theorem [GU-69]). The 56 isotopy types listed in

Table 4, and no others, can be realized by nonsingular real projective

algebraic plane curves of degree 6.

〈9 ∐ 1〈1〉〉 〈5 ∐ 1〈5〉〉 〈1 ∐ 1〈9〉〉

〈10〉 〈8 ∐ 1〈1〉〉 〈5 ∐ 1〈4〉〉 〈4 ∐ 1〈5〉〉 〈1 ∐ 1〈8〉〉 〈1〈9〉〉

〈9〉 〈7 ∐ 1〈1〉〉 〈6 ∐ 1〈2〉〉 〈5 ∐ 1〈3〉〉 〈4 ∐ 1〈4〉〉 〈3 ∐ 1〈5〉〉 〈2 ∐ 1〈6〉〉 〈1 ∐ 1〈7〉〉 〈1〈8〉〉

〈8〉 〈6 ∐ 1〈1〉〉 〈5 ∐ 1〈2〉〉 〈4 ∐ 1〈3〉〉 〈3 ∐ 1〈4〉〉 〈2 ∐ 1〈5〉〉 〈1 ∐ 1〈6〉〉 〈1〈7〉〉

〈7〉 〈5 ∐ 1〈1〉〉 〈4 ∐ 1〈2〉〉 〈3 ∐ 1〈3〉〉 〈2 ∐ 1〈4〉〉 〈1 ∐ 1〈5〉〉 〈1〈6〉〉

〈6〉 〈4 ∐ 1〈1〉〉 〈3 ∐ 1〈2〉〉 〈2 ∐ 1〈3〉〉 〈1 ∐ 1〈4〉〉 〈1〈5〉〉

〈5〉 〈3 ∐ 1〈1〉〉 〈2 ∐ 1〈2〉〉 〈1 ∐ 1〈3〉〉 〈1〈4〉〉

〈4〉 〈2 ∐ 1〈1〉〉 〈1 ∐ 1〈2〉〉 〈1〈3〉〉

〈3〉 〈1 ∐ 1〈1〉〉 〈1〈2〉〉 〈1〈1〈1〉〉〉

〈2〉 〈1〈1〉〉

〈1〉

〈0〉

Table 4. Isotopy types of nonsingular real projective
algebraic plane curves of degree 6.

This result, along with the available examples of curves of higher
degree, led Gudkov to the following conjectures.

1.13.C (Gudkov Conjectures [GU-69]). (i) For any M-curve of even

degree m = 2k

p − n ≡ k2 mod 8.

(ii) For any (M − 1)-curve of even degree m = 2k

p − n ≡ k2 ± 1 mod 8.
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While attempting to prove conjecture 1.13.C (i), V. I. Arnold [Arn-71]
discovered some striking connections between the topology of a real al-
gebraic plane curve and the topology of its complexification. Although
he was able to prove the conjecture itself only in a weaker form (modulo
4 rather than 8), the new point of view he introduced to the subject
opened up a remarkable perspective, and in fact immediately brought
fruit: in the same paper [Arn-71] Arnold proved several new prohibi-
tions (in particular, he strengthened Petrovsky’s inequalities 1.13.A).
The full conjecture 1.13.C (i) and its high-dimensional generalizations
were proved by Rokhlin [Rok-72], based on the connections discovered
by Arnold in [Arn-71].

I am recounting this story briefly here only to finish the preliminary
history exposition. At this point the technique aspects are getting too
complicated for a light exposition. After all, the prohibitions, which
were the main contents of the development at the time we come to, are
not the main subject of this book. Therefore I want to switch to more
selective exposition emphasizing the most profound ideas rather than
historical sequence of results.

A reader who prefare historic exposition can find it in Gudkov’s
survey article [Gud-74]. To learn about the many results obtained using
methods from the modern topology of manifolds and complex algebraic
geometry (the use of which was begun by Arnold in [Arn-71]), the
reader is referred to the surveys [Wil-78], [Rok-78], [Arn-79], [Kha-78],
[Kha-86], [Vir-86].

Exercises. 1.1 What is the maximal number p such that through any
p points of RP 2 one can trace a real algebraic curve of degree m?

1.2 Prove the Harnack inequality (the right hand side of (1)) de-
ducing it from the Bézout Theorem.


