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2. A Real Algebraic Curve from the Complex Point of

View

2.1. Complex Topological Characteristics of a Real Curve. Ac-
cording to a tradition going back to Hilbert, for a long time the main
question concerning the topology of real algebraic curves was consid-
ered to be the determination of which isotopy types are realized by
nonsingular real projective algebraic plane curves of a given degree
(i.e., Problem 1.1.B above). However, as early as in 1876 F. Klein
[Kle-22] posed the question more broadly. He was also interested in
how the isotopy type of a curve is connected to the way the set RA of
its real points is positioned in the set CA of its complex points (i.e.,
the set of points of the complex projective plane whose homogeneous
coordinates satisfy the equation defining the curve).

The set CA is an oriented smooth two-dimensional submanifold of
the complex projective plane CP 2. Its topology depends only on the
degree of A (in the case of nonsingular A). If the degree is m, then CA
is a sphere with 1

2
(m− 1)(m− 2) handles. (It will be shown in Section

2.3.) Thus the literal complex analogue of Topological Classification
Problem 1.1.A is trivial.

The complex analogue of Isotopy Classification Problem 1.1.B leads
also to a trivial classification: the topology of the pair (CP 2, CA) de-
pends only on the degree of A, too. The reason for this is that the
complex analogue of a more refined Rigid Isotopy Classification prob-
lem 1.7.A has a trivial solution: nonsingular complex projective curves
of degree m form a space CNCm similar to RNCm (see Section 1.7)
and this space is connected, since it is the complement of the space
CSCm of singular curves in the space CCm(= CP

1

2
m(m+3)) of all curves

of degree m, and CSCm has real codimension 2 in CCm (its complex
codimension is 1).

The set CA of complex points of a real curve A is invariant under the
complex conjugation involution conj : CP 2 → CP 2 : (z0 : z1 : z2) 7→
(z0 : z1 : z2). The curve RA is the fixed point set of the restriction of
this involution to CA.

The real curve RA may divide or not divide CA. In the first case we
say that A is a dividing curve or a curve of type I, in the second case we
say that it is a nondividing curve or a curve of type II. In the first case
RA divides CA into two connected pieces.3 The natural orientations
of these two halves determine two opposite orientations on RA (which

3Proof: the closure of tne union of a connected component of CA r RA with its

image under conj is open and close in CA, but CA is connected.
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is their common boundary); these orientations of RA are called the
complex orientations of the curve.

A pair of orientations opposite to each other is called a semiorien-
tation. Thus the complex orientations of a curve of type I comprise a
semiorientation. Naturally, the latter is called a complex semiorienta-
tion.

The scheme of relative location of the ovals of a curve is called the
real scheme of the curve. The real scheme enhanced by the type of the
curve, and, in the case of type I, also by the complex orientations, is
called the complex scheme of the curve.

We say that the real scheme of a curve of degree m is of type I (type
II) if any curve of degree m having this real scheme is a curve of type
I (type II). Otherwise (i.e., if there exist curves of both types with the
given real scheme), we say that the real scheme is of indeterminate
type.

The division of curves into types is due to Klein [Kle-22]. It was
Rokhlin [Rok-74] who introduced the complex orientations. He intro-
duced also the notion of complex scheme and its type [Rok-78]. In
the eighties the point of view on the problems in the topology of real
algebraic varieties was broadened so that the role of the main object
passed from the set of real points, to this set together with its position
in the complexification. This viewpoint was also promoted by Rokhlin.

As we will see, the notion of complex scheme is useful even from the
point of view of purely real problems. In particular, the complex scheme
of a curve is preserved under a rigid isotopy. Therefore if two curves
have the same real scheme, but distinct complex schemes, the curves
are not rigidly isotopic. The simplest example of this sort is provided
by the curves of degree 5 shown in Figure 8, which are isotopic but not
rigidly isotopic.

2.2. The First Examples. A complex projective line is homeomor-
phic to the two-dimensional sphere.4 The set of real points of a real
projective line is homeomorphic to a circle; by the Jordan theorem it
divides the complexification. Therefore a real projective line is of type
I. It has a pair of complex orientations, but they do not add anything,
since the real line is connected and admits only one pair of orientations
opposite to each other.

4I believe that this may be assumed well-known. A short explanation is that a

projective line is a one-point compactification of an affine line, which, in the complex

case, is homeomorphic to R2. A one-point compactification of R2 is unique up to

homeomorphism and homeomorphic to S2.
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The action of conj on the set of complex points of a real projective
line is determined from this picture by rough topological arguments.
Indeed, it is not difficult to prove that any smooth involution of a two-
dimensional sphere with one-dimensional (and non-empty) fixed point
set is conjugate in the group of autohomeomorphisms of the sphere to
the symmetry in a plane. (1)

The set of complex points of a nonsingular plane projective conic is
homeomorphic to S2, because the stereographic projection from any
point of a conic to a projective line is a homeomorphism. Certainly, an
empty conic, as any real algebraic curve with empty set of real points, is
of type II. The empty set cannot divide the set of complex points. For
the same reasons as a line (i.e. by Jordan theorem), a real nonsingular
curve of degree 2 with non-empty set of real points is of type I. Thus
the real scheme 〈1〉 of degree 2 is of type I, while the scheme 〈0〉 is of
type II for any degree.

2.3. Classical Small Perturbations from the Complex Point of

View. To consider further examples, it would be useful to understand
what is going on in the complex domain, when one makes a classical
small perturbation (see Section 1.5).

First, consider the simplest special case: a small perturbation of the
union of two real lines. Denote the lines by L1 and L2 and the result
by C. As we saw above, CLi and CC are homeomorphic to S2. The
spheres CL1 and CL2 intersect each other at a single point. By the
complex version of the implicit function theorem, CC approximates
CL1 ∪ CL2 outside a neighborhood U0 of this point in the sense that
CCrU0 is a section of a tulubular neighborhood U1 of (CL1∪CL1)rU0,
cf. 1.5.A. Thus CC may be presented as the union of two discs and a
part contained in a small neighborhood of CL1 ∩CL2. Since the whole
CC is homeomorphic to S2 and the complement of two disjoint discs
embedded into S2 is homeomorphic to the annulus, the third part of
CC is an annulus. The discs are the complements of a neighborhood
of CL1 ∩CL2 in CL1 and CL2, respectively, slightly perturbed in CP 2,
and the annulus connects the discs through the neighborhood U0 of
CL1 ∩ CL2.

This is the complex view of the picture. Up to this point it does not
matter whether the curves are defined by real equations or not.

To relate this to the real view presented in Section 1.5, one needs
to describe the position of the real parts of the curves in their com-
plexifications and the action of conj. It can be recovered by rough
topological agruments. The whole complex picture above is invariant
under conj. This means that the intersection point of CL1 and CL2
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CL1

CL2

The common point

CC

of the lines

Figure 15

is real, its neighborhood U0 can be chosen to be invariant under conj.
Thus each half of CC is presented as the union of two half-discs and a
half of the annulus: the half-discs approximate the halves of CL1 and
CL2 and a half of annulus is contained in U0. See Figure 15.

This is almost complete description. It misses only one point: one
has to specify which half-discs are connected with each other by a half-
annulus.

First, observe, that the halves of the complex point set of any curve of
type I can be distinguished by the orientations of the real part. Each of
the halves has the canonical orientation defined by the complex struc-
ture, and this orientation induces an orientation on the boundary of
the half. This is one of the complex orientations. The other complex
orientation comes from the other half. Hence the halves of the complex-
ification are in one-to-one correspondence to the complex orientations.

Now we have an easy answer to the question above. The halves
of CLi which are connected with each other after the perturbation
correspond to the complex orientations of RLi which agree with some
orientation of RC. Indeed, the perturbed union C of the lines Li is a
curve of type I (since this is a nonempty conic, see Section 2.2). Each
orientation of its real part RC is a complex orientation. Choose one
of the orientations. It is induced by the canonical orientation of a half
of the complex point set CC. Its restriction to the part of the RC
obtained from RLi is induced by the orientation of the corresponding
part of this half.

The union of two lines can be perturbed in two different ways. On
the other hand, there are two ways to connect the halves of their com-
plexifications. It is easy to see that different connections correspond to
different perturbations. See Figure 16.
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Figure 16

The special classical small perturbation considered above is a key
for understanding what happens in the complex domain at an arbi-
trary classical small perturbation. First, look at the complex picture,
forgetting about the real part. Take a plane projective curve, which has
only nondegenerate double points. Near such a point it is organized as
a union of two lines intersecting at the point. This means that there
are a neighborhood U of the point in CP 2 and a diffeomorphism of
U onto C2 mapping the intersection of U and the curve onto a union
of two complex lines, which meet each other in 0. This follows from
the complex version of the Morse lemma. By the same Morse lemma,
near each double point the classical small perturbation is organized
as a small perturbation of the union of two lines: the union of two
transversal disks is replaced by an annulus.

For example, take the union of m projective lines, no three of which
have a common point. Its complex point set is the union of m copies
of S2 such that any two of them have exactly one common point. A
perturbation can be thought of as removal from each sphere m− 1 dis-

joint discs and insertion m(m−1)
2

tubes connecting the boundary circles
of the disks removed. The result is orientable (since it is a complex

manifold). It is easy to realize that this is a sphere with (m−1)(m−2)
2

handles. One may prove this counting the Euler characteristic, but it
may be seen directly: first, by inserting the tubes which join one of
the lines with all other lines we get a sphere, then each additional tube
gives rise to a handle. The number of these handles is

(

m − 1
2

)

=
(m − 1)(m − 2)

2
.
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By the way, this description shows that the complex point set of
a nonsingular plane projective curve of degree m realizes the same
homology class as the union of m complex projective lines: the m-fold
generator of H2(CP 2)(= Z).

Now let us try to figure out what happens with the complex schemes
in an arbitrary classical small perturbation of real algebraic curves. The
general case requirs some technique. Therefore we restrict ourselves to
the following intermediate assertion.

2.3.A. (Fiedler [Rok-78, Section 3.7] and Marin [Mar-80].) Let A1, . . . , As

be nonsingular curves of degrees m1, . . . , ms such that no three of them
pass through the same point and Ai intersects transversally Aj in mimj

real points for any i, j. Let A be a nonsingular curve obtained by a
classical small perturbation of the union A1 ∪ . . . As. Then A is of type
I if and only if all Ai are of type I and there exists an orientation of RA
which agrees with some complex orientations of A1, . . . , As (it means
that the deformation turning A1 ∪ . . . As into A brings the complex ori-
entations of Ai to the orientations of the corresponding pieces of RA
induced by a single orientation of the whole RA).

If it takes place, then the orientation of RA is one of the complex
orientations of A.

Proof. If some of Ai is of type II, then it has a pair of complex conjugate
imaginary points which can be connected by a path in CAi r RAi.
Under the perturbation this pair of points and the path survive (being
only slightly shifted), since they are far from the intersection where the
real changes happen. Therefore A in this case is also of type II.

Assume now that all Ai are of type I. If A is also of type I then a half
of CA is obtained from halves of CAi as in the case considered above.
The orientation induced on RA by the orientation of the half agrees
with orientations induced from the halves of the corresponding pieces.
Thus a complex orietation of A agrees with complex orientations of
Ai’s.

Again assume that all Ai are of type I. Let some complex orientations
of Ai agree with a single orientation of RA. As it follows from the
Morse Lemma, at each intersection point the perturbation is organized
as the model perturbation considered above. Thus the halves of CAi’s
defining the complex orientations are connected. It cannot happen that
some of the halves will be connected by a chain of halves to its image
under conj. But that would be the only chance to get a curve of type
II, since in a curve of type II each imaginary point can be connected
with its image under conj by a path disjoint from the real part. �
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Curve of type ICurve of type II

Figure 17. Construction of nonsingular cubic curves.
Cf. Figure 2.

Curves of type ICurves of type II

Figure 18. Construction of nonsingular quartic curves.
Cf. Figure 3.

2.4. Further Examples. Although Theorem 2.3.A describes only a
very special class of classical small perturbations (namely perturbations
of unions of nonsingular curves intersecting only in real points), it is
enough for all constructions considered in Section 1. In Figures 17, 18,
19, 20, 21, 22 and 23 I reproduce the constructions of Figures 2, 3, 4,
6, 7, 10 and 11, enhancing them with complex orientations if the curve
is of type I.

2.5. Digression: Oriented Topological Plane Curves. Consider
an oriented topological plane curve, i. e. an oriented closed one-dimensional
submanifold of the projective plane, cf. 1.2.

A pair of its ovals is said to be injective if one of the ovals is enveloped
by the other.



36 OLEG VIRO

Curves of type II Curves of type I

Figure 19. Construction of nonsingular quintic curves.
Cf. Figure 4.

RB5 RB5

RA5

RLL

Figure 20. Construction of a quintic M-curve with its
complex orientation. Cf. Figure 6.

An injective pair of ovals is said to be positive if the orientations of
the ovals determined by the orientation of the entire curve are induced
by an orientation of the annulus bounded by the ovals. Otherwise,
the injective pair of ovals is said to be negative. See Figure 24. It is
clear that the division of pairs of ovals into positive and negative pairs
does not change if the orientation of the entire curve is reversed; thus,
the injective pairs of ovals of a semioriented curve (and, in particular,
a curve of type I) are divided into positive and negative. We let Π+

denote the number of positive pairs, and Π− denote the number of
negative pairs.
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RB7

RA5

RA5

RA6

RA7

RA7

Figure 21. Harnack’s construction with complex orien-
tations. Cf. Figure 7.

The ovals of an oriented curve one-sidedly embedded into RP 2 can
be divided into positive and negative. Namely, consider the Möbius
strip which is obtained when the disk bounded by an oval is removed
from RP 2. If the integral homology classes which are realized in this
strip by the oval and by the doubled one-sided component with the
orientations determined by the orientation of the entire curve coincide,
we say that the oval is negative, otherwise we say that the oval is
positive. See Figure 25. In the case of a two-sided oriented curve, only
the non-outer ovals can be divided into positive and negative. Namely,
a non-outer oval is said to be positive if it forms a positive pair with
the outer oval which envelops it; otherwise, it is said to be negative.
As in the case of pairs, if the orientation of the curve is reversed, the
division of ovals into positive and negative ones does not change. Let
Λ+ denote the number of positive ovals on a curve, and let Λ− denote
the number of negative ones.
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Figure 22. Construction of even degree curves by
Hilbert’s method. Degrees 4 and 6. Cf. Figure 10.

Figure 23. Construction of odd degree curves by
Hilbert’s method. Degrees 3 and 5. Cf. Figure 11.

To describe a semioriented topological plane curve (up to homeo-
morphism of the projective plane) we need to enhance the coding sys-
tem introduced in 1.2. The symbols representing positive ovals will
be equipped with a superscript +, the symbols representing negative
ovals, with a superscript −. This kind of code of a semioriented curve
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positive injective pair negative injective pair

Figure 24

positive oval negative oval

one-sided component

Figure 25

is complete in the following sense: for any two semioriented curves with
the same code there exists a homeomorphism of RP 2, which maps one
of them to the other preserving semiorientations.

To describe the complex scheme of a curve of degree m we will use,
in the case of type I, the scheme of the kind described here, for its
complex semiorientation, equipped with subscript I and superscript m
and, in the case of type II, the notation used for the real scheme, but
equipped with subscript II and superscript m.

It is easy to check, that the coding of this kind of the complex scheme
of a plane projective real algebraic curve describes the union of RP 2 and
the complex point set of the curve up to a homeomorphism mapping
RP 2 to itself.

In these notations, the complex schemes of cubic curves shown in
Figure 17 are 〈J〉3II and 〈J ∐ 1−〉3I .

The complex schemes of quartic curves realized in Figure 18 are 〈0〉4II ,
〈1〉4II , 〈2〉4II , 〈1〈1−〉〉4I , 〈3〉4II , 〈4〉4I .

The complex schemes of quintic curves realized in Figure 19 are 〈J〉5II ,
〈J ∐ 1〉5II , 〈J ∐ 2〉5II , 〈J ∐ 1−〈1−〉〉5I , 〈J ∐ 3〉5II , 〈J ∐ 4〉5II , 〈J ∐ 1+ ∐ 3−〉5I
〈J ∐ 5〉5II , 〈J ∐ 3+∐−〉5I .

In fact, these lists of complex schemes contain all schemes of nonsin-
gular algebraic curves for degrees 3 and 5 and all nonempty schemes
for degree 4. To prove this, we need not only constructions, but also
restrictions on complex schemes. In the next two sections restrictions
sufficient for this will be provided.

2.6. The Simplest Restrictions on a Complex Scheme. To begin
with, recall the following obvious restriction, which was used in Section
2.2.
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2.6.A. A curve with empty real point set is of type II. �

The next theorem is in a sense dual to 2.6.A.

2.6.B . An M-curve is of type I.

Proof. Let A be an M-curve of degree m. Then RA is the union of

(m − 1)(m − 2)

2
+ 1

disjoint circles lying on CA, which is a sphere with (m−1)(m−2)
2

handles.

That many disjoint circles necessarily divide a sphere with (m−1)(m−2)
2

handles. Indeed, cut CA along RA. The Euler characteristic of a
surface has not changed. It equals

2 − 2

(

(m − 1)(m − 2)

2

)

= 2 − (m − 1)(m − 2).

Then cap each boundary circle with a disk. Each component of RA
gives rise to 2 boundary circles. Therefore the number of the boundary
circles is (m− 1)(m− 2) + 2. The surface which is obtained has Euler
characteristic 2− (m− 1)(m− 2) + (m− 1)(m− 2) + 2 = 4. However,
there is no connected closed surface with Euler characteristic 4. (A
connected closed oriented surface is a sphere with g handles for some
g ≥ 0; it has Euler characteristic 2 − 2g ≤ 2.) �

2.6.C (Klein’s Congruence (see [Kle-22, page 172])). If A is a curve of
type I of degree m with l ovals, then l ≡ [m

2
] mod 2.

Proof. Consider a half of CA bounded by RA. Its Euler characteristic

equals the half of the Euler characteristic of CA, i.e. 1 − (m−1)(m−2)
2

.
Cap the boundary components of the half with disjoint disks. This
increases the Euler characteristics by the number of components of
RA. In the case of even degree m = 2k, the Euler characteristic of
the result is 1 − (2k − 1)(k − 1) + l ≡ k + l mod 2. In the case of
odd degree m = 2k + 1, it is 1 − k(2k − 1) + l ≡ k + l mod 2. In
both cases the Euler characteristic should be even, since the surface
is closed orientable and connected (i.e. sphere with handles). Thus in
both cases k ≡ l mod 2, where k = [m/2]. �

2.6.D (A Nest of the Maximal Depth (see [Rok-78, 3.6])). A real scheme
of degree m containing a nest of depth k = [m/2] is of type I.

Such a scheme exists and is unique for any m (for even m it is just the
nest, for odd m it consists of the nest and the one-sided component).
To realize the scheme, perturb the union of k concentric circles and, in
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the case of odd m, a line disjoint from the circles. The uniqueness was
proved in 1.3, see 1.3.C .

I preface the proof of 2.6.D with a construction interesting for its
own. It provides a kind of window through which one can take a look
at the imaginary part of CP 2.

As we know (see Section 2.2), the complex point set of a real line is
divided by its real point set into two halves, which are in a natural one-
to-one correspondence with the orientations of the real line. The set
of all real lines on the projective plane is the real point set of the dual
projective plane. The halves of lines comprise a two-dimensional sphere
covering this projective plane. An especially clear picture of these
identifications appears, if one identifies real lines on the projective plane
with real planes in R3 containing 0. A half of a line is interpreted as the
corresponding plane with orientation. An oriented plane corresponds to
its positive unit normal vector, which is nothing but a point of S2. The
complex conjugation conj maps a half of a real line to the other half of
the same line. It corresponds to the reversing of the orientation, which,
in turn, corresponds to the antipodal involution S2 → S2 : x 7→ −x.

There is a unique real line passing through any imaginary point of
CP 2. To construct such a line, connect the point with the conjugate
one. The connecting line is unique since a pair of distinct points de-
termines a line, and this line is real, since it coincides with its image
under conj.

Consequently, there is a unique half of a real line containing an
imaginary point of CP 2. This construction determines a fibration
p : CP 2 r RP 2 → S2. The fibres of p are the halves of real lines.
Note that conjugate points of CP 2 r RP 2 are mapped to antipodal
points of S2.

Proof of 2.6.D. Let A be a real projective curve of degree m with a nest
of depth [m/2]. Choose a point P ∈ RP 2 from the domain encircled by
the interior oval of the nest. Consider the great circle of S2 consisting
of halves of real lines which pass through P . Since each line passing
through P intersects RA in m points, it cannot intersect CA r RA.
Therefore the great circle has no common point with the image of
CArRA under p : CP 2rRP 2 → S2. But the image contains, together
with any of its points, the antipodal point. Therefore it cannot be
connected, and CA r RA cannot be connected, too. �

2.7. Rokhlin’s Complex Orientation Formula. Now we shall con-
sider a powerful restriction on a complex orientation of a curve of type
I. It is powerful enough to imply restrictions even on real schemes of
type I. The first version of this restriction was published in 1974, see
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[Rok-74]. There Rokhlin considered only the case of an algebraic M-
curve of even degree. In [Mis-75] Mishachev considered the case of an
algebraic M-curve of odd degree. For an arbitrary nonsingular alge-
braic curve of type I, it was formulated by Rokhlin [Rok-78] in 1978.
The proofs from [Rok-74] and [Mis-75] work in this general case. The
only reason to restrict the main formulations in these early papers to
M-curves was the traditional viewpoint on the subject of the topology
of real plane algebraic curves.

Here are Rokhlin’s formulations from [Rok-78].

2.7.A (Rokhlin Formula). If the degree m is even and the curve is of
type I, then

2(Π+ − Π−) = l − m2

4
.

2.7.B (Rokhlin-Mishachev Formula). If m is odd and the curve is of
type I, then

Λ+ − Λ− + 2(Π+ − Π−) = l − m2 − 1

4
.

Theorems 2.7.A and 2.7.B can be united into a single formulation.
This requires, however, two preliminary definitions.

First, given an oriented topological curve C on RP 2, for any point
x of its complement, there is the index iC(x) of the point with respect
to the curve. It is a nonnegative integer defined as follows. Draw a
line L on RP 2 through x transversal to C. Equip it with a normal
vector field vanishing only at x. For such a vector field, one may
take the velocity field of a rotation of the line around x. At each
intersection point of L and C there are two directions transversal to
L: the direction of the vector belonging to the normal vector field and
the direction defined by the local orientation of C at the point. Denote
the number of intersection points where the directions are faced to
the same side of L by i+ and the number of intersection points where
the directions are faced to the opposite sides of L by i−. Then put
iC(x) = |i+ − i−|/2.5 It is easy to check that iC(x) is well defined: it
depends neither on the choice of L, nor on the choice of the normal
vector field. It does not change under reversing of the orientation of

5Division by 2 appears here to make this notion closer to the well-known notion

for an affine plane curve. In the definition for affine situation one uses a ray instead

of entire line. In the projective situation there is no natural way to divide a line

into two rays, but we still have an opportunity to divide the result by 2. Another

distinction from the affine situation is that there the index may be negative. It is

related to the fact that the affine plane is orientable, while the projective plane is

not.
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C. Thus for any nonsingular curve A of type I on the complement
RP 2 r RA, one has well defined function iRA.

The second prerequisite notion is a sort of unusual integration: an
integration with respect to the Euler characteristic, in which the Eu-
ler characteristic plays the role of a measure. It is well known that
the Euler characteristic shares an important property of measures: it
is additive in the sense that for any sets A, B such that the Euler
characteristics χA, χB, χ(A ∩ B) and χ(A ∪ B) are defined,

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B).

However, the Euler characteristic is neither σ-additive, nor positive.
Thus the usual theory of integral cannot be applied to it. This can be
done though if one restricts to a very narrow class of functions. Namely,
to functions which are finite linear combinations of characteristic func-
tions of sets belonging to some algebra of subsets of a topological space
such that each element of the algebra has a well defined Euler charac-
teristic. For a function f =

∑r

i=1 λi1ISi
set

∫

f(x) dχ(x) =
r

∑

i=1

λiχ(Si).

For details and applications of that notion, see [Vir-88].
Now we can unite 2.7.A and 2.7.B :

2.7.C (Rokhlin Complex Orientation Formula). If A is a nonsingular
real plane projective curve of type I and degree m then

∫

(iRA(x))2 dχ(x) =
m2

4
.

Here I give a proof of 2.7.C , skipping the most complicated details.
Take a curve A of degree m and type I. Let CA+ be its half bounded
by RA. It may be considered as a chain with integral coefficients.
The boundary of this chain (which is RA equipped with the complex
orientation) bounds in RP 2 a chain c with rational coefficients, since
H1(RP 2; Q) = 0. In fact, in the case of even degree the chain can
be taken with integral coefficients, but in the case of odd degree the
coefficients are necessarily half-integers. The explicit form of c may
be given in terms of function iRA: it is a linear combination of the
fundamental cycles of the components of RP 2 r RA with coefficients
equal to the values of iRA on the components (taken with appropriate
orientations).

Now take the cycle [CA+]−c and its image under conj, and calculate
their intersection number in two ways.
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First, it is easy to see that the homology class ξ of [CA+]−c is equal to
1
2
[CA] = m

2
[CP 1] ∈ H2(CP 2; Q). Indeed, [CA+]−c−conj([CA+]−c) =

[CA] + c − conj(c) = [CA], and therefore ξ − conj∗(ξ) = [CA] =
m[CP 1] ∈ H2(CP 2). On the other hand, conj acts in H2(CP 2) as mul-
tiplication by −1, and hence ξ − conj∗(ξ) = 2ξ = m[CP 1]. Therefore
ξ ◦ conj∗(ξ) = −(m

2
)2.

Second, one may calculate the same intersection number geometri-
cally: moving the cycles into a general position and counting the local
intersection numbers. I will perturb the cycle [CA+]− c. First, choose
a smooth tangent vector field V on RP 2 such that it has only nonde-
generate singular points, the singular points are outside RA, and on
RA the field is tangent to RA and directed according to the complex
orientation of A which comes from CA+. The latter means that at any
point x ∈ RA the vector

√
−1V (x) is directed inside CA+ (the mul-

tiplication by
√
−1 makes a real vector normal to the real plane and

lieves any vector tangent to RA tangent to CA). Now shift RA inside
CA+ along

√
−1V and extend this shift to a shift of the whole chain c

along
√
−1V . Let c′ denote the result of the shift of c and h denote the

part of CA+ which was not swept during the shift. The cycle [h] − c′

represents the same homology class ξ as [CA+] − c, and we can use it
to calculate the intersection number ξ ◦ conj∗(ξ). The cycles [h] − c′

and conj([CA+]− c) intersect only at singular points of V . At a singu-
lar point x they are smooth transversal two-dimensional submanifolds,
each taken with multiplicity −iRA(x). The local intersection number
at x is equal to (iRA(x))2 multiplied by the local intersection number
of the submanifolds supporting the cycles. The latter is equal to the
index of the vector field V at x multiplied by −1.

I omit the proof of the latter statement. It is nothing but a straight-
forward checking that multiplication by

√
−1 induces isomorphism be-

tween tangent and normal fibrations of RA in CA reversing orientation.
Now recall that the sum of indices of a vector field tangent to the

boundary of a compact manifold is equal to the Euler characteristic
of the manifold. Therefore the input of singular points lying in a con-
nected component of RP 2 r RA is equal to the Euler characteristic of
the component multiplied by −(iRA(x))2 for any point x of the com-
ponent. Summation over all connected components of RP 2 r RA gives
−

∫

(iRA(x))2 dχ(x). Its equality to the result of the first calculation is
the statement of 2.7.C . �

2.7.D (Corollary 1. Arnold Congruence). For a curve of an even degree
m = 2k and type I

p − n ≡ k2 mod 4.
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Proof. Observe that in the case of an even degree iRA(x) is even, iff
x ∈ RP 2

+. Therefore

(iRA(x))2 ≡
{

0 mod 4, if x ∈ RP 2
+

1 mod 4, if x ∈ RP 2
−
.

Thus
∫

RP 2

(iRA(x))2 dχ(x) ≡ χ(RP 2
+) mod 4.

Recall that χ(RP 2
+) = p − n, see 1.11. Hence the left hand side of

Rokhlin’s formula is p − n modulo 4. The right hand side is k2. �

Denote the number of all injective pairs of ovals for a curve under
consideration by Π.

2.7.E (Corollary 2). For any curve of an even degree m = 2k and type
I with l ovals

Π ≥ 1

2
|l − k2|.

Proof. By 2.7.A Π+ − Π− = 1
2
(l − k2). On the other hand, Π =

Π+ + Π− ≥ |Π+ − Π−|. �

2.7.F (Corollary 3). For any curve of an odd degree m = 2k + 1 and
type I with l ovals

Π + l ≥ 1

2
k(k + 1).

Proof. Since l = Λ+ + Λ−, the Rokhlin - Mishachev formula 2.7.B can
be rewritten as follows:

Λ− + Π− − Π+ =
1

2
k(k + 1).

On the other hand, Π ≥ Π− − Π+ and l ≥ Λ−. �

2.8. Complex Schemes of Degree ≤ 5. As it was promised in Sec-
tion 2.5, we can prove now that only schemes realized in Figures 17, 18
and 19 are realizable by curves of degree 3, 4 and 5, respectively. For
reader’s convinience, I present here a list of all these complex schemes
in Table 5.

Degree 3. By Harnack’s inequality, the number of components is
at most 2. By 1.3.B a curve of degree 3 is one-sided, thereby the
number of components is at least 1. In the case of 1 component the
real scheme is 〈J〉, and the type is II by Klein’s congruence 2.6.C . In
the case of 2 components the type is I by 2.6.B . The real scheme is
〈J ∐ 1〉. Thus we have 2 possible complex schemes: 〈J ∐ 1−〉3I (realized
above) and 〈J ∐ 1+〉3I . For the first one

∫

(iRA(x))2 dχ(x) = 9/4 and
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Table 5

m Complex schemes of nonsingular plane curves of degree m
1 〈J〉1I
2

〈1〉2I
〈0〉2II

3
〈J ∐ 1−〉3I

〈J〉3II

4

〈4〉4I
〈3〉4II

〈1〈1−〉〉4I 〈2〉4II

〈1〉4II

〈0〉4II

5

J ∐ 3+ ∐ 3−〉5I
〈J ∐ 5〉5II

〈J ∐ 1+ ∐ 3−〉5I 〈J ∐ 4〉5II

〈J ∐ 3〉5II

〈J ∐ 1−〈1−〉〉5I 〈J ∐ 2〉5II

〈J ∐ 1〉5II

〈J〉5II

for the second
∫

(iRA(x))2 dχ(x) = 1/4. Since the right hand side of
the complex orientation formula is m2/4 and m = 3, only the first
possibility is realizable. �

Degree 4. By Harnack’s inequality the number of components is at
most 4. We know (see 1.4) that only real schemes 〈0〉, 〈1〉, 〈2〉, 〈1〈1〉〉,
〈3〉 and 〈4〉 are realized by nonsingular algebraic curves of degree 4.
From Klein’s congruence 2.6.C it follows that the schemes 〈1〉 and 〈3〉
are of type II. The scheme 〈0〉 is of type II by 2.6.A. By 2.6.B 〈4〉 is
of type I.

The scheme 〈2〉 is of type II, since it admits no orientation satis-
fying the complex orientation formula. In fact, for any orientation
∫

(iRA(x))2 dχ(x) = 2 while the right hand side is m2/4 = 4.
By 2.6.D the scheme 〈1〈1〉〉 is of type I. A calculation similar to the

calculation above on the scheme 〈2〉, shows that only one of the two
semiorientations of the scheme 〈1〈1〉〉 satisfies the complex orientation
formula. Namely, 〈1〈1−〉〉. It was realized in Figure 18.

Degree 5. By Harnack’s inequality the number of components is at
most 7. We know (see 1.4) that only real schemes 〈J〉, 〈J ∐1〉, 〈J ∐2〉,
〈J ∐ 1〈1〉〉, 〈J ∐ 3〉, 〈J ∐ 4〉, 〈J ∐ 5〉, 〈J ∐ 6〉 are realized by nonsingular
algebraic curves of degree 5. From Klein’s congruence 2.6.C it follows
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that the schemes 〈J ∐ 1〉, 〈J ∐ 3〉, 〈J ∐ 5〉 are of type II. By 2.7.F 〈J〉
and 〈J ∐ 2〉 are of type II.

By 2.6.B 〈J ∐ 6〉 is of type I. The complex orientation formula gives
the value of Λ− (cf. Proof of 2.7.F ): Λ− = 1

2
k(k + 1) = 3. This

determines the complex scheme. It is 〈J ∐ 3− ∐ 3+〉5I .
By 2.6.D 〈J ∐ 1〈1〉〉 is of type I. The complex orientation formula

allows only the semiorientation with Λ− = 2. Cf. Figure 19.
The real scheme 〈J ∐ 4〉 is of indefinite type, as follows from the

construction shown in Figure 19. In the case of type I only one semior-
ientation is allowed by the the complex orientation formula. It is
〈J ∐ 3− ∐ 1+〉5I .

Exercises. 2.1 Prove that for any two semioriented curves with the
same code (of the kind introduced in 3.7) there exists a homeomorphism
of RP 2 which maps one of them to another preserving semiorientations.

2.2 Prove that for any two curves A1, A2 with the same code of their
complex schemes (see Subsection 2.5) there exists a homeomorphism
CA1 ∪ RP 2 → CA2 ∪ RP 2 commuting with conj.

2.3 Deduce 2.7.A and 2.7.B from 2.7.C and, vise versa, 2.7.C from
2.7.A and 2.7.B .


