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3. The Topological Point of View on Prohibitions

3.1. Flexible Curves. In Section 1 all prohibitions were deduced from
the Bézout Theorem. In Section 2 many proofs were purely topological.
A straightforward analysis shows that the proofs of all prohibitions are
based on a small number of basic properties of the complexification of
a nonsingular plane projective algebraic curve. It is not difficult to list
all these properties of such a curve A:

(1) Bézout’s theorem;
(2) CA realizes the class m[CP 1] ∈ H2(CP 2);
(3) CA is homeomorphic to a sphere with (m−1)(m−2)/2 handles;
(4) conj(CA) = conj;
(5) the tangent plane to CA at a point x ∈ RA is the complexifi-

cation of the tangent line of RA at x.

The last four are rough topological properties. Bézout’s theorem oc-
cupies a special position. If we assume that some surface smoothly
embedded into CP 2 intersects the complex point set of any algebraic
curve as, according to Bézout’s theorem, the complex point set of an
algebraic curve, then this surface is the complex point set of an alge-
braic curve. Thus the Bézout theorem is completely responsible for
the whole set of properties of algebraic curves. On the other hand,
its usage in obtaining prohibitions involves a construction of auxiliary
curves, which may be very subtle.

Therefore, along with algebraic curves, it is useful to consider objects
which imitate them topologically.

An oriented smooth closed connected two-dimensional submanifold
S of the complex projective plane CP 2 is called a flexible curve of degree
m if:

(i) S realizes m[CP 1] ∈ H2(CP 2);
(ii) the genus of S is equal to (m − 1)(m − 2)/2;
(iii) conj(S) = S;
(iv) the field of planes tangent to S on S ∩RP 2 can be deformed in

the class of planes invariant under conj into the field of (com-
plex) lines in CP 2 which are tangent to S ∩ RP 2.

A flexible curve S intersects RP 2 in a smooth one-dimensional sub-
manifold, which is called the real part of S and denoted by RS. Ob-
viously, the set of complex points of a nonsingular algebraic curve of
degree m is a flexible curve of degree m. Everything said in Section
2.1 about algebraic curves and their (real and complex) schemes car-
ries over without any changes to the case of flexible curves. We say
that a prohibition on the schemes of curves of degree m comes from
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topology if it can be proved for the schemes of flexible curves of degree
m. The known classification of schemes of degree ≤ 6 can be obtained
using only the prohibitions that come from topology. In other words,
for m ≤ 6 all prohibitions come from topology.

3.2. The Most Elementary Prohibitions on Real Topology of

a Flexible Curve. The simplest prohibitions are not related to the
position of RS in RP 2, but deal with the following purely topological
situation: a surface S, which is homeomorphic to a sphere with g
(= (m − 1)(m − 2)/2) handles, and an involution c (= conj) of S
reversing orientation with fixed point set F (= RS).

The most important of these prohibitions is Harnack’s inequality.
Recall that it is

L ≤
(m − 1)(m − 2)

2
+ 1,

where L is the number of connected components of the real part a curve
and m is its degree. Certainly, this formulation given in Section 1.3
can be better adapted to the context of flexible curves. The number
(m−1)(m−2)

2
is nothing but the genus. Therefore the Harnack inequality

follows from the following theorem.

3.2.A. For a reversing orientation involution c : S → S of a sphere
S with g handles, the number L of connected components of the fixed
point set F is at most g + 1.

In turn, 3.2.A can be deduced from the following purely topological
theorem on involutions:

3.2.B (Smith-Floyd Theorem). For any involution i of a topological
space X,

dimZ2
H∗(fix(i); Z2) ≤ dimZ2

H∗(X; Z2).

This theorem is one of the most famous results of the Smith theory. It
is deduced from the basic facts on equivariant homology of involution,
see, e. g., [Bre-72, Chapter 3].

Theorem 3.2.A follows from 3.2.B , since

dimZ2
H∗(S; Z2) = 2 + 2g,

and
dimZ2

H∗(F ; Z2) = 2L.

Smith - Floyd Theorem can be applied to high-dimensional situation,
too. See Sections 5.3 and ??. In the one-dimensional case, which we
deal with here, Theorem 3.2.B is easy to prove without any homology
tool, like the Smith theory. Namely, consider the orbit space S/c of the
involution. It is a connected surface with boundary. The boundary is
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the image of the fixed point set. The Euler characteristic of the orbit
space is equal to the half of the Euler characteristic of S, i.e. it is 2−2g

2
=

1 − g. Cap each boundary circle with a disk. The result is a closed
connected surface with Euler characteristic 1 − g + L. On the other
hand, as it is well known, the Euler characteristic of a connected closed
surface is at most 2. (Remind that such a surface is homeomorphic
either to the sphere, which has Euler characteristic 2, or the sphere
with h handles, whose Euler characteristic is 2 − 2h, or sphere with h
Möbius strips having Euler characteristic 2−h.) Therefore 1−g+L ≤ 2,
and L ≤ g + 1. �

These arguments contain more than just a proof of 2.3.A. In partic-
ular, they imply that

3.2.C . In the case of an M-curve (i.e., if L = g + 1) and only in this
case, the orbit space is a sphere with holes.

Similarly, in the case of an (M − 1)-curve, the orbit space is homeo-
morphic to the projective plane with holes.

If F separates S (i.e., S r F is not connected), the involution c is
said to be of type I, otherwise it is said to be of type II. The types
correspond to the types of real algebraic curves (see Section 2.1).

Note that F separates S at most into two pieces. To prove this, we
can use the same arguments as in a footnote in Section 2.1: the closure
of tne union of a connected component of S r F with its image under
c is open and close in S, but S is connected.

3.2.D . The orbit space S/c is orientable if and only if F separates S.

Proof. Assume that F separates S. Then the halves are homeomorphic,
since the involution maps each of them homeomorphically onto the
other one. Therefore, each of the halves is homeomorphic to the orbit
space. The halves are orientable since the whole surface is.

On the other hand, if F does not separate S, then one can connect
a point of S r F to its image under the involution by a path in the
complement SrF . Such a path covers a loop in the orbit space. This is
an orientation reversing loop, since the involution reverses orientation.

�

3.2.E ( (Cf. 2.6.C )). If the curve is of type I, then L ≡
[

m+1
2

]

mod 2.

Proof. This theorem follows from 3.2.C and the calculation of the Euler
characteristic of S/c made in the proof of the Harnack inequality above.
Namely, χ(S/c) = 1− g, but for any orientable connected surface with
Euler characteristic χ and L boundary components χ + L ≡ 0 mod 2.
Therefore 1− g + L ≡ 0 mod 2. Since g = (m− 1)(m− 2)/2 ≡

[

m−1
2

]
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mod 2, we obtain 1−
[

m−1
2

]

+L ≡ 0 mod 2 which is equivalent to the
desired congruence. �

3.2.F ( (Cf. 2.6.B)). Any M-curve is of type I.

Proof. By 3.2.C , in the case of M-curve the orbit space S/c is home-
omorphic to a sphere with holes. In particular, it is orientable. By
3.2.D , this implies that F separates S. �

Now consider the simplest prohibition involving the placement of the
real part of the flexible curve in the projective plane.

3.2.G. The real part of a flexible curve is one-sided if and only if the
degree is odd.

Proof. The proof of 3.2.G coincides basically with the proof of the same
statement for algebraic curves. One has to consider a real projective
line transversal to the flexible curve and calculate the intersection num-
ber of the complexification of this line and the lfexible curve. On one
hand, it is equal to the degree of the flexible curve. On the other hand,
the intersection points in CP 2 r RP 2 give rise to an even contribution
to the intersection number. �

Rokhlin’s complex orientation formula also comes from topology.
The proof presented in Section 2.7 works for a flexible curve.

At this point I want to break a textbook style exposition. Escaping
a detailed exposition of prohibitions, I switch to a survey.

In the next two sections, the current state of prohibitions on the
topology of a flexible curve of a given degree is outlined. (Recall that
all formulations of this sort are automatically valid for real projective
algebraic plane curves of the same degree.) After the survey a light
outline of some proofs is proposed. It is included just to convey a gen-
eral impression, rather than for more serious purposes. For complete
proofs, see the surveys [Wil-78], [Rok-78], [Arn-79], [Kha-78], [Kha-86],
[Vir-86] and the papers cited there.

3.3. A Survey of Prohibitions on the Real Schemes Which

Come from Topology. In this section I list all prohibitions on the
real scheme of a flexible curve of degree m that I am aware of, including
the ones already referred to above, but excluding prohibitions which
follow from the other prohibitions given here or from the prohibitions
on the complex schemes which are given in the next section.

3.3.A. A curve is one-sided if and only if it has odd degree.
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This fact was given before as a corollary of Bézout’s theorem (see
Section 1.3) and proved for flexible curves in Section 3.2 (Theorem
3.2.G).

3.3.B ( Harnack’s Inequality). The number of components of the set of

real points of a curve of degree m is at most (m−1)(m−2)
2

+ 1.

Harnack’s inequality is undoubtedly the best known and most im-
portant prohibition. It can also be deduced from Bézout’s theorem (cf.
Section 1.3) and was proved for flexible curves in Section 3.2 (Theorem
3.2.A).

In prohibitions 3.3.C –3.3.P the degree m of the curve is even: m =
2k.

Extremal Properties of Harnack’s Inequality

3.3.C (Gudkov-Rokhlin Congruence). In the case of an M-curve (i.e.,
if p + n = (m − 1)(m − 2)/2 + 1),

p − n ≡ k2 mod 8.

3.3.D (Gudkov-Krakhnov-Kharlamov Congruence). In the case of an

(M − 1)-curve (i.e., if p + n = (m−1)(m−2)
2

),

p − n ≡ k2 ± 1 mod 8.

The Euler characteristic of a component of the complement of a
curve in RP 2 is called the characteristic of the oval which bounds the
component from outside. An oval with a positive characteristic is said
to be elliptic, an oval with the zero characteristic is said to be parabolic
and an oval with a negative characteristic is said to be hyperbolic.

3.3.E (Fiedler’s Congruence). If the curve is an M-curve, m ≡ 4
mod 8, and every even oval has an even characteristic, then

p − n ≡ −4 mod 16.

3.3.F (Nikulin’s Congruence). If the curve is an M-curve, m ≡ 0
mod 8, and the characteristic of every even oval is divisible by 2r, then

either p − n ≡0 mod 2r+3,(3)

or else p − n =4qχ,(4)

where q ≥ 2 and χ ≡ 1 mod 2.

3.3.G (Nikulin’s Congruence). If the curve is an M-curve, m ≡ 2
mod 4 and the characteristic of every odd oval is divisible by 2r, then

p − n ≡ 1 mod 2r+3.
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Denote the number of even ovals with positive characteristic by p+,
the number of even ovals with zero characteristic by p0, and the number
of even ovals with negative characteristic by p−. Similarly define n+, n0

and n− for the odd ovals; and let l+, l0 and l− be the corresponding
numbers for both even and odd ovals together.

Refined Petrovsky Inequalities

3.3.H . p − n− ≤ 3k(k−1)
2

+ 1.

3.3.I . n − p− ≤ 3k(k−1)
2

.

Refined Arnold Inequalities

3.3.J . p− + p0 ≤ (k−1)(k−2)
2

+ 1+(−1)k

2
.

3.3.K . n− + n0 ≤ (k−1)(k−2)
2

.

Extremal Properties of the Refined Arnold Inequalities

3.3.L. If k is even and p− + p0 = (k−1)(k−2)
2

+ 1, then p− = p+ = 0.

3.3.M . If k is odd and n− + n0 = (k−1)(k−2)
2

, then n− = n+ = 0 and
there is only one outer oval at all.

Viro-Zvonilov Inequalities

Besides Harnack’s inequality, we know only one family of prohibition
coming from topology which extends to real schemes of both even and
odd degree. For proofs see [VZ-92].

3.3.N (Bound of the Number of Hyperbolic Ovals). The number of
components of the complement of a curve of odd degree m that have a

negative Euler characteristic does not exceed (m−3)2

4
. In particular, for

any odd m

l− ≤
(m − 3)2

4
.

The latter inequality also holds true for even m 6= 4, but it follows
from Arnold inequalities 3.3.J and 3.3.K .

3.3.O (Bound of the Number of Nonempty Ovals). If h is a divisor of
m and a power of an odd prime, and if m 6= 4, then

l− + l0 ≤
(m − 3)2

4
+

m2 − h2

4h2
.

If m is even, this inequality follows from 3.3.J–3.3.L.
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3.3.P (Extremal Property of the Viro-Zvonilov Inequality). If

l− + l0 =
(m − 3)2

4
+

m2 − h2

4h2
,

where h is a divisor of m and a power of an odd prime p, then there
exist α1, . . . , αr ∈ Zp and components B1, . . . , Br of the complement
RP 2 \ RA with χ(B1) = · · · = χ(Br) = 0, such that the boundary of
the chain

∑r

i=1 αi[Bi] ∈ C2(RP 2; Zp) is [RA] ∈ C1(RP 2; Zp).

3.4. Survey of Prohibitions on the Complex Schemes Which

Come From Topology. Recall that l denotes the total number of
ovals on the curve. The following theorem is a reformulation of 3.2.E .

3.4.A (See 2.6.A). A curve with empty real point set is of type II.

3.4.B ((See 2.6.C )). If the curve is of type I, then

l ≡
[m

2

]

mod 2.

3.4.C (Rokhlin Complex Orientation Formula (see 2.7.C )). Let A be
a nonsingular curve of type I and degree m. Then

∫

(iRA(x))2 dχ(x) =
m2

4

Extremal Properties of Harnack’s Inequality

3.4.D ((Cf. 2.6.B)). Any M-curve is of type I.

3.4.E (Kharlamov-Marin Congruence). Any (M −2)-curve of even de-
gree m = 2k with

p − n ≡ k2 + 4 mod 8

is of type I.

Extremal Properties of the Refined Arnold Inequalities

3.4.F . If m ≡ 0 mod 4 and p− + p0 = (m−2)(m−4)
8

+ 1, then the curve
is of type I.

3.4.G. If m ≡ 0 mod 4 and n− + n0 = (m−2)(m−4)
8

, then the curve is
of type I.

Extremal Properties of the Viro-Zvonilov Inequality

3.4.H . Under the hypothesis of 3.3.P, the curve is of type I.

Congruences
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3.4.I (Nikulin-Fiedler Congruence). If m ≡ 0 mod 4, the curve is of
type I, and every even oval has even characteristic, then p − n ≡ 0
mod 8.

The next two congruences are included violating a general promise
given at the beginning of the previous section. There I promised ex-
clude prohibitions which follow from other prohibitions given here. The
following two congruences are consequences of Rokhlin’s formula 3.4.C .
The first of them was discovered long before 3.4.C . The second was
overlooked by Rokhlin in [Rok-74], where he even mistakenly proved
that such a result cannot exist. Namely, Rokhlin proved that the com-
plex orientation formula does not imply any result which would not
follow from the prohibitions known by that time and could be formu-
lated solely in terms of the real scheme. Slepian congruence 3.4.K
for M-curves is the only counter-example to this Rokhlin’s statement.
Slepian was Rokhlin’s student, he discovered a gap in Rokhlin’s argu-
ments and deduced 3.4.K .

3.4.J (Arnold Congruence (see 2.7.D)). If m is even and the curve is
of type I, then

p − n ≡
m2

4
mod 4.

3.4.K (Slepian Congruence). If m is even, the curve is of type I, and
every odd oval has even characteristic, then

p − n ≡
m2

4
mod 8.

Rokhlin Inequalities

Denote by π and ν the number of even and odd nonempty ovals,
respectively, bounding from the outside those components of the com-
plement of the curve which have the property that each of the ovals
bounding them from the inside envelops an odd number of other ovals.

3.4.L. If the curve is of type I and m ≡ 0 mod 4, then

4ν + p − n ≤
(m − 2)(m − 4)

2
+ 4.

3.4.M . If the curve is of type I and m ≡ 2 mod 4, then

4π + n − p ≤
(m − 2)(m − 4)

2
+ 3.
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3.5. Ideas of Some Proofs. Theorems formulated in 3.3 and 3.4 are
very different in their profundity. The simplest of them were considered
in Subsection 3.2.

Congruences

There are two different approaches to proving congruences. The first
is due basically to Arnold [Arn-71] and Rokhlin [Rok-72]. It is based
on consideration of the intersection form of two-fold covering Y of CP 2

branched over the complex point set of the curve. The complex con-
jugation involution conj : CP 2 → CP 2 is lifted to Y in two different
ways, and the liftings induce involutions in H2(Y ), which are isometries
of the intersection form. One has to take an appropriate eigenspace of
one of the liftings and consider the restriction of the intersection form
to the eigenspace. The signature of this restriction can be calculated
in terms of p − n. On the other hand, it is involved into some congru-
ences of purely arithmetic nature relating it with the discriminant of
the form and the value of the form on some of characteristic vectors.
The latters can be calculated sometimes in terms of degree and the
difference between the number of ovals and the genus of curve. Re-
alizations of this scheme can be found in [Arn-71] for 3.4.J , [Rok-72]
for 3.3.C , [Kha-73] and [GK-73] for 3.3.D , [Nik-83] for 3.3.F , 3.3.G ,
3.4.I and a weakened form of 3.3.E . In survey [Wil-78] this method
was used for proving 3.3.C , 3.3.D and 3.4.J .

The second approach is due to Marin [Mar-80]. It is based on appli-
cation of the Rokhlin-Guillou-Marin congruence modulo 16 on charac-
teristic surface in a 4-manifold, see [GM-77]. It is applied either to the
surface in the quotient space CP 2/conj (diffeomorphic to S4) made of
the image of the flexible curve S and a half of RP 2 bounded by RS (as
it is the case for proofs of 3.3.C , 3.3.D and 3.4.E in [Mar-80]), or to
the surface in CP 2 made of a half of S and a half of RP 2 (as it is the
case for proofs of 3.3.E , 3.4.I and special cases of 3.3.F and 3.3.G in
[Fie-83]).

The first approach was applied also in high-dimensional situations.
The second approach worked better than the second one for curves on
surfaces distinct from projective plane, see [Mik-94]. Both were used
for singular curves [KV-88].

Inequalities

Inequalities 3.3.H , 3.3.I , 3.3.J , 3.3.K , 3.4.J and 3.4.K are proved
along the same scheme, originated by Arnold [Arn-71]. One constructs
an auxiliary manifold, which is the two-fold covering of CP 2 branched
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over S in the case of 3.3.H , 3.3.I , 3.3.J and 3.3.K and the two-fold
covering of CP 2/conj branched over the union of S/conj and a half of
RP 2 in the case of 3.4.J and 3.4.K . Then preimages of some of the
components of RP 2 r RS gives rise to cycles in this manifold. Those
cycles define homology classes with special properties formulated in
terms of their behavior with respect to the intersection form and the
complex conjugation involutions. On the other hand, the numbers of
homology classes with these properties are estimated. See [Arn-71],
[Gud-74], [Wil-78] and [Rok-80].

3.6. Flexible Curves of Degrees ≤ 5. In this subsection, I show
that for degrees ≤ 5 the prohibitions coming from topology allow the
same set of complex schemes as all prohibitions. The set of complex
schemes of algebraic curves of degrees ≤ 5 was described in 2.8. In fact
the same is true for degree 6 too. For degree greater than 6, it is not
known, but there is no reason to believe that it is the case.

Degrees ≤ 3. Theorems 3.3.A and the Harnack inequality 3.3.B
prohibit all non realizable real schemes for degree ≤ 3. To obtain the
complete set of prohibitions for complex schemes of degrees ≤ 3 one has
to add the Klein congruence 3.4.B , 3.4.D and the complex orientation
formula 3.4.C ; cf. Section 2.8.

Degree 4. By the Arnold inequlity 3.3.K , a flexible curve of degree
4 cannot have a nest of depth 3. By the Arnold inequality 3.3.J , it
has at most one nonempty positive oval, and if it has a nonempty oval
then, by the extremal property 3.3.L of this inequality, the real scheme
is 〈1〈1〉〉. Together with 3.3.A and the Harnack inequality 3.3.B , this
forms the complete set of prohibitions for real schemes of degree 4.

From the Klein congruence 3.4.B , it follows that the real schemes 〈1〉
and 〈3〉 are of type II. The empty real scheme 〈0〉 is of type II by 3.4.A.
By the extremal property 3.4.D of the Harnack inequality, 〈4〉 is of type
I. The real scheme 〈2〉 is of type II by the complex orientation formula
3.4.C , cf. Section 2.8. By 3.4.F , the scheme 〈1〈1〉〉 is of type I. By the
complex orientation formula, it admits only the complex orientation
〈1〈1−〉〉.

Degree 5. By the Viro-Zvonilov inequality 3.3.O , a flexible curve
of degree 5 can have at most one nonempty oval. By the extremal
property of this inequality 3.3.P , if a flexible curve of degree 5 has
a nonempty oval, then its real scheme is 〈J ∐ 1〈1〉〉. Together with
3.3.A and the Harnack inequality 3.3.B , this forms the complete set of
prohibitions for real schemes of degree 5.

From the Klein congruence 3.4.B , it follows that the real schemes
〈J∐1〉, 〈J∐3〉, and 〈J∐5〉 are of type II. From the complex orientation
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formula, one can deduce that the real schemes 〈J〉 and 〈J ∐ 2〉 are
of type II, cf. 2.8. By the extremal property 3.4.D of the Harnack
inequality, 〈J ∐ 6〉 is of type I. The complex orientation formula allows
only one complex semiorientation for this scheme, namely 〈J∐3−∐3+〉.
By the 3.4.H , the real scheme 〈J ∐ 1〈1〉〉 is of type I. The complex
orientation formula allows only one complex semiorientation for this
scheme, namely 〈J ∐ 1−〈1−〉〉, cf. 2.8. The real scheme 〈J ∐ 4〉 is of
indefinite type (even for algebraic curves, see 2.8). In the case of type
I, only one semiorientation is allowed by the the complex orientation
formula. It is 〈J ∐ 3− ∐ 1+〉.

3.7. Sharpness of the Inequalities. The arsenal of constructions in
Section 1 and the supply of curves constructed there, which are very
modest from the point of view of classification problems, turn out to
be quite rich if we are interested in the problem of sharpness of the
inequalities in Section 3.3.

The Harnack curves of even degree m with scheme

〈(3m2 − 6m)/8 ∐ 1〈m2 − 6m + 8)/8〉〉

which were constructed in Section 1.6 (see also Section 1.9) not only
show that Harnack’s inequality 3.3.B is the best possible, but also show
the same for the refined Petrovsky inequality 3.3.H .

One of the simplest variants of Hilbert’s construction (see Section
1.10) leads to the construction of a series of M-curves of degree m ≡ 2

mod 4 with scheme
〈

(m−2)(m−4)
8

∐ 1
〈

3m(m−2)
8

〉〉

. This proves that the

refined Petrovsky inequality 3.3.I for m ≡ 2 mod 4 is sharp. If m ≡ 0
mod 4, the methods of Section 1 do not show that this inequality is
the best possible. This fact will be proved below in ??.

The refined Arnold inequality 3.3.J is best possible for any even m.
If m ≡ 2 mod 4, this can be proved using the Wiman M-curves (see
the end of Section 1.12). If m ≡ 0 mod 4, it follows using curves ob-
tained from a modification of Wiman’s construction: the construction
proceeds in exactly the same way, except that the opposite perturba-
tion is taken, as a result of which one obtains a curve that can serve as
the boundary of a tubular neighborhood of an M-curve of degree m/2.

The last construction (doubling), if applied to an M-curve of odd
degree, shows that the refined Arnold inequality 3.3.K is the best pos-
sible for m ≡ 2 mod 4. If m ≡ 0 mod 4, almost nothing is known
about sharpness of the inequality 3.3.K , except that for m = 8 the
right side can be lowered by 2.
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3.8. Prohibitions not Proven for Flexible Curves. In conclusion
of this section, let us come back to algebraic curves. We see that to a
great extent the topology of their real point sets is determined by the
properties which were included into the definition of flexible curves.
In fact, it has not been proved that it is not determined by these
properties completely. However some known prohibitions on topology
of real algebraic curves have not been deduced from them.

As a rule, these prohibitions are hard to summarize, in the sense
that it is difficult to state in full generality the results obtained by
some particular method. To one extent or another, all of them are
consequences of Bézout’s theorem.

Consider first the restrictions which follow directly from the Bézout
theorem. To state them, we introduce the following notations. De-
note by hr the maximum number of ovals occurring in a union of ≤ r
nestings. Denote by h′

r the maximum number of ovals in a set of ovals
contained in a union of ≤ r nests but not containing an oval which en-
velops all of the other ovals in the set. Under this notations Theorems
1.3.C and 1.3.D can be stated as follows:

3.8.A. h2 ≤ m/2; in particular, if h1 = [m/2], then l = [m/2].

3.8.B . h′

5 ≤ m; in particular, if h′

4 = m, then l = m.

These statements suggest a whole series of similar assertions. Denote
by c(q) the greatest number c such that there is a connected curve of
degree q passing through any c points of RP 2 in general position. It is
known that c(1) = 2, c(2) = 5, c(3) = 8, c(4) = 13

3.8.C ((Generalization of Theorem 3.8.A)). If r ≤ c(q) with q odd,
then

hr +
[

c(q) −
r

2

]

≤
qm

2
.

In particular, if hc(q)−1 =
[

qm

2

]

, then l =
[

qm

2

]

.

3.8.D ((Generalization of Theorem 3.8.B)). If r ≤ c(q) with q even,
then

h′

r + [(c(q) − r)/2] ≤ qm/2.

In particular, if h′

c(q)−1 = qm/2, then l = qm/2.

The following two restrictions on complex schemes are similar to
Theorems 3.8.A and 3.8.B . However, I do not know the corresponding
analogues of 3.8.C and 3.8.D .

3.8.E . If h1 =
[

m
2

]

, then the curve is of type I.

3.8.F . If h′

4 = m, then the curve is of type I.
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Here I will not even try to discuss the most general prohibitions
which do not come from topology. I will only give some statements of
results which have been obtained for curves of small degree.

3.8.G. There is no curve of degree 7 with the real scheme 〈J ∐ 1〈14〉〉.

3.8.H . If an M-curve of degree 8 has real scheme 〈α∐1〈β〉∐1〈γ〉∐1〈δ〉〉
with nonzero β, γ and δ, then β, γ and δ are odd.

3.8.I . If an (M − 2)-curve of degree 8 with p − n ≡ 4 mod 8 has real
scheme 〈α ∐ 1〈β〉 ∐ 1〈γ〉 ∐ 1〈δ〉〉 with nonzero β, γ and δ, then two of
the numbers β, γ, δ are odd and one is even.

Proofs of 3.8.G and 3.8.H are based on technique initiated by Fiedler
[Fie-82]. It will be developed in the next Section.


