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4. The Comlexification of a Curve from a Real Viewpoint

In the previous two sections we discovered that a knowledge on topol-
ogy of the complexification gives restriction on topology of real part of
the curve under consideration. More detailed topological information
on complexification can be obtained using geometric constructions in-
volving auxiliary curves. They use Bézout theorem. Therefore they
cannot be applied to flexible curves. Here we consider first the sim-
plest of arguments of that sort, and then obtain some special results
on curves of low degrees (up to 8) which, together with forthcoming
constructions will be useful in solution of some classification problems.

We will use the simplest auxiliary curves: lines. Consideration of
a pencil of lines (the set of all lines passing through a point) and in-
tersection of a curve with lines of this pencil can be thought of as a
study of the curve by looking at it from the common point of the lines.
However, since imaginary lines of the pencil can be included into this
study and even real lines may intersect the curve in imaginary points,
we have a chance to find out something on the complex part of the
curve.

4.1. Curves with Maximal Nest Revised. To begin with, I present
another proof of Theorem 2.6.D . It gives slightly more: not only that
a curve with maximal nest has type I, but that its complex orientation
is unique. This is not difficult to obtain from the complex orientation
formula. The real cause for including this proof is that it is the simplest
application of the technique, which will work in this section in more
complicated situations. Another reason: I like it.

4.1.A. If a nonsingular real plane projective curve A of degree m has
a nest of ovals of depth [m/2] then A is of type I and all ovals (except
for the exterior one, which is not provided with a sign in the case of
even m) are negative.

Recall that by Corollary 1.3.C of the Bézout theorem a nest of a
curve of degree m has depth at most m/2, and if a curve of degree m
has a nest of depth [m/2], then it does not have any ovals not in the
nest. Thus the real scheme of a curve of 4.1.A is 〈1〈1 . . . 〈1〉 . . . 〉〉, if m
is even, and 〈J〈1〈. . . 1〈1〉 . . . 〉〉 if m is odd. Theorem 4.1.A says that
the complex scheme in this case is defined by the real one and it is

〈1〈1− . . . 〈1−〉 . . . 〉〉mI

for even m and
〈J〈1−〈. . . 1−〈1−〉 . . . 〉〉mI

if m is odd.
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Proof of 4.1.A. Take a point P inside the smallest oval in the nest.
Project the complexification CA of the curve A from P to a real pro-
jective line CL not containing P . The preimage of RL under the projec-
tion is RA. Indeed, the preimage of a point x ∈ RL is the intersection
of CA with the line connecting P with x. But since P is inside all ovals
of the nest, any real line passing through it intersects CA only in real
points.

The real part RL of L divides CL into two halves. The preimage
of RL divides CA into the preimages of the halves of RL. Thus RA
divides CA.

The projection CA → CL is a holomorphic map. In particular, it is
a branched covering of positive degree. Its restriction to a half of CA
is a branched covering of a half of CL. Therefore the restriction of the
projection to RA preserves local orientations defined by the complex
orientations which come from the halves of CA and CL. �

4.2. Fiedler’s Alternation of Orientations. Consider the pencil of
real lines passing through the intersection point of real lines L0, L1. It
is divided by L0 and L1 into two segments. Each of the segments can be
described as {Lt}t∈[0,1], where Lt is defined by equation (1− t)λ0(x) +
tλ1(x) = 0} under an appropriate choice of equations λ0(x) = 0 and
λ1(x) = 0 defining L0 and L1, respectively. Such a family {Lt}t∈[0,1] is
called a segment of the line pencil connecting L0 with L1.

A point of tangency of two oriented curves is said to be positive if the
orientations of the curves define the same orientation of the common
tangent line at the point, and negative otherwise.

The following theorem is a special case of the main theorem of
Fiedler’s paper [Fie-82].

4.2.A (Fiedler’s Theorem). Let A be a nonsingular curve of type I.
Let L0, L1 be real lines tangent to RA at real points x0, x1, which
are not points of inflection of A. Let {Lt}t∈I is a segment of the line
pencil, connecting L0 with L1. Orient the lines RL0, RL1 in such a
way that the orientations turn to one another under the isotopy RLt.
If there exists a path s : I → CA connecting the points x0, x1 such
that for t ∈ (0, 1) the point s(t) belongs to CA r RA and is a point
of transversal intersection of CA with CLt, then the points x0, x1 are
either both positive or both negative points of tangency of RA with RL0

and RL1 respectively.

I give here a proof, which is less general than Fiedler’s original one.
I hope though that it is more visualizable.
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Roughly speaking, the main idea of this proof is that, looking at a
curve, it is useful to move slightly the viewpoint. When one looks at the
intersection of the complexification of a real curve with complexification
of real lines of some pencil, besides the real part of the curve only some
arcs are observable. These arcs connect ovals of the curve, but they do
not allow to realize behavior of the complexification around. However,
when the veiwpoint (= the center of the pencil) is moving, the arcs
are moving too sweeping ribbons in the complexification. The ribbons
bear orientation inherited from the complexification and thereby they
allow to trace relation between the induced orientation of the ovals
connected by the arcs. See Figure 26

Proof of 4.2.A. The whole situation described in the 4.2.A is stable
under small moves of the point P = L0∩L1. It means that there exists
a neighbourhood U of P such that for each point P ′ ∈ U there are real
lines L′

0, L′

1 passing through P ′ which are close to L0, L1, and tangent to
A at points x′

0, x′

1; the latter are close to x0, x1; there exists a segment
{L′

t}t∈I of the line pencil connecting L′

0 with L′

1 which consists of lines
close to Lt, and, finally, there exists a path s′ : I → CA connecting the
points x′

0 and x′

1, which is close to s, such that s′(t) ∈ CA ∩ CL′

t.
Choose a point P ′ ∈ U r

⋃

t∈I RLt. Since, obviously, RA is tangent
to the boundary of the angle

⋃

t∈I Lt from outside at x0, x1, the new
points x′

0, x′

1 of tangency are obtained from the old ones by moves, one
of which is in the direction of the orientation of RLt, the other – in the
opposite direction (see Figure 26). Since P ′ /∈

⋃

t∈I Lt, it follows that
no line of the family {Lt}t∈I belongs to the family {L′

t}t∈I and thus

s(Int I) ∩ s′(Int I) ⊂ (
⋃

t∈I

(CLt − RLt) ∩ (
⋃

t∈I

(CL′]t − RL′

t)) = ∅.
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Thus the arcs s(I) and s′(I) are disjoint, and bound in CA, together
with the arcs [x0, x

′

0] and [x′

1, x1] of RA, a ribbon connecting arcs
[x0, x

′

0], [x1, , x
′

1]. This ribbon lies in one of the halves, into which RA
divides CA (see Figure 26). Orientation, induced on the arcs [x0, x

′

0],
[x1, x

′

1] by an orientation of this ribbon, coincides with a complex ori-
entation. It proves, obviously, 4.2.A �

The next thing to do is to obtain prohibitions on complex schemes
using Fiedler’s theorem. It takes some efforts because we want to de-
duce topological results from a geometric theorem. In the theorem it
is crucial how the curve is positioned with respect to lines, while in
any theorem on topology of a real algebraic curve, the hypothesis can
imply some particular position with respect to lines only implicitely.

Let A be a nonsingular curve of type I and P ∈ RP 2 rRA. Let Z =
{Lt}t∈I be a segment of the pencil of lines passing through P , which
contains neither a line tangent to RA at a point of inflection of RA
nor a line, whose complexifications is tangent to CA at an imaginary
point. Denote

⋃

t∈I RLt by C.
Fix a complex orientations of A and orientations of the lines RLt,

t ∈ I, which turn to one another under the natural isotopy. Orient
the part C of the projective plane in such a way that this orientation
induces on RL0, as on a part of its boundary, the orientation selected
above. An oval of A, lying in C is said to be positive with respect
to Z if its complex orientation and orientation of C induce the same
orientation of its interior; otherwise the oval is said to be negative with
respect to Z.

A point of tangency of A and a line from Z is a nondegenerate critical
point of the function A ∩ C → I which assigns to x the real number
t ∈ I such that x ∈ Lt. By index of the point of tangency we shall call
the Morse index of this function at that point (zero, if it is minimum,
one, if it is maximum). A pair of points of tangency of RA with lines
from Z is said to be switching , if the points of the pair has distinct
indices and one of the points is positive while the other one is negative;
otherwise the pair is said to be inessential . See Figure 27.

If A is a nonsingular conic with RA 6= ∅ and RA ⊂ C then the
tangency points make a switching pair. The same is true for any convex
oval. When an oval is deforming and loses its convexity, new points
of tangency may appear. If the deformation is generic, the points of
tangency appear and disappear pairwise. Each time appearing pair
is an inessential pair of points with distinct indices. Any oval can be
deformed (topologically) into a convex one. Tracing the births and
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deaths of points of tangency it is not difficult to prove the following
lemma.

4.2.B ([Fie-82, Lemma 2] ). Let Γ be a component of RA∩C and M be
the set of its points of tangency with lines from Z. If Γ∩∂C = ∅, then
M can be divided into pairs, one of which is switching, and all others
are inessential. If Γ∩ ∂C 6= ∅, and Γ connects distinct boundary lines
of C then M can be decomposed into inessential pairs. If the end points
of Γ are on the same boundary lines of C then M with one point deleted
can be decomposed into inessential pairs. �

Denote the closure of (CA r RA) ∩ (
⋃

t∈I CLt) by S. Fix one of the
decomposions into pairs of the set of points of tangency of lines from
Z with each component of RA ∩ C existing by 4.2.B . By a chain of
points of tangency call a sequence of points of tangency, in which any
two consecutive points either belong to one of selected pairs or lie in
the same component of S. A sequence consisting of ovals, on which
the selected switching pairs of points of tangency from the chain lie, is
called a chain of ovals . Thus the set of ovals of A lying in C appeared to
be decomposed to chains of ovals. The next theorem follows obviously
from 4.2.A.

4.2.C . The signs of ovals with respect to Z in a chain alternate (i.e. an
oval positive with respect to Z follows by an oval negative with respect
to Z, the latter oval follows by an oval positive with respect to Z). �

The next theorem follows in an obvious way from 4.2.C . Contrary
to the previous one, it deals with the signs of ovals with respect to the
one-sided component in the case of odd degree and outer ovals in the
case of even degree.
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4.2.D ([Fie-82, Theorem 3]). If the degree of a curve A is odd and ovals
of a chain are placed in the same component of the set

C r (one-sided component of RA)

then the signs of these ovals alternate. If degree of A is even and ovals
of a chain are placed in the same component of intersection of Int C
with the interior of the outer oval enveloping these ovals, then the signs
of ovals of this chain alternate. �

4.3. Complex Orientations and Pencils of Lines. Alternative

Approach. In proofs of 3.8.G , 3.8.H and 3.8.I , the theory devel-
oped in the previous section can be replaced by the following Theorem
4.3.A. Although this theorem can be obtained as a corollary of The-
orem 4.2.C , it is derived here from Theorem 2.3.A and the complex
orientation formula, and in the proof no chain of ovals is used. The
idea of this approach to Fiedler’s alternation of orientations is due to
V. A. Rokhlin.

4.3.A. Let A be a non-singular dividing curve of degree m. Let L0, L1

be real lines, C be one of two components of RP 2 r (RL0 ∪ RL1). Let
RL0 and RL1 be oriented so that the projection RL0 → RL1 from a
point lying in RP 2 r (C ∪ RL0 ∪ RL1) preserves the orientations. Let
ovals u0, u1 of A lie in RP 2 − C and ui is tangent to Li at one point
(i = 1, 2). If the intersection RA∩C consists of m−2 components, each
of which is an arc connecting RL0 with RL1, then points of tangency
of u0 with L0 and u1 with L1 are positive with respect to one of the
complex orientations of A.

Proof. Assume the contrary: suppose that with respect to a complex
orientation of A the tangency of u0 with L0 is positive and the tangency
of u1 with L1 is negative. Rotate L0 and L1 around the point L0 ∩ L1

in the directions out of C by small angles in such a way that each of
the lines L′

0 and L′

1 obtained intersects transversally RA in m points.
Perturb the union A∪L′

0 and A∪L′

1 obeying the orientations. By 2.3.A,
the nonsingular curves B0 and B1 obtained are of type I. It is easy to
see that their complex schemes can be obtained one from another by
relocating the oval, appeared from u1 (see Figure 28). This operation
changes one of the numbers Π+ − Π− and Λ+ − Λ− by 1. Therefore
the left hand side of the complex orientation formula is changed. It
means that the complex schemes both of B0 and B1 can not satisfy the
complex orientation formula. This proves that the assumption is not
true. �
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4.4. Curves of Degree 7. In this section Theorem 3.8.G is proved,
i.e. it is proved that there is no nonsingular curve of degree 7 with real
scheme 〈J ∐ 1〈14〉〉.

Assume the contrary: suppose that there exists a nonsingular curve
X of degree 7 with real scheme 〈J ∐ 1〈14〉〉.

Being an M-curve, X is of type I (see 2.6.B) and, hence, has a
complex orientation.

4.4.A. Lemma. X cannot have a complex scheme distinct from 〈J ∐
1+〈6+ ∐ 8−〉〉7I .

Proof. Let ε be the sign of the outer oval, i.e.

ε =

{

+1, if the outer oval is positive

−1, otherwise.

It is clear that

Λ+ =

{

Π− + 1, if ε = +1

Π+, if ε = −1
, Λ− =

{

Π+, if ε = +1

Π− + 1, if ε = −1.
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Therefore, Λ+ − Λ− = ε(Π− + 1 − Π+). On the other hand, by 2.7.B ,
Λ+ − Λ− = 2(Π− − Π+) + 3. From these two equalities we have

ε = 2 +
1

Π− + 1 − Π+

and, since |ε| = 1, it follows that ε = +1 and Π− + 1 − Π+ = −1, i.e.
Π+ −Π− = 2. Finally, since Π+ + Π− = 14, it follows that Π+ = 8 and
Π− = 6. This gives the desired result. �

The next ingredient in the proof of Theorem 3.8.G is a kind of con-
vexity in disposition of interior ovals. Although we study a projective
problem, it is possible to speak about convexity, if it is applied to inte-
rior ovals. The exact sense of this convexity is provided in the following
statement.

4.4.B . Lemma. Let A be any nonsingular curve of degree 7 with real
scheme 〈J ∐ α ∐ 1〈β〉〉 and the number of ovals ≥ 6. Then for each
of β interior ovals there exists a pair of real lines L1, L2 intersecting
inside this oval such that the rest β−1 interior ovals lie in one of three
domains into which RL1 ∪ RL2 cut the disk bounded by the exterior
oval.

Proof. A line intersecting two interior ovals cannot intersect any other
interior oval. Furthermore, it intersects each of these two interior ovals
in two points, meets the nonempty oval in two points and the one-sided
component in one point. (This follows from the following elementary
arguments: the line intersects the one-sided component with odd mul-
tiplicity, it has to intersect the nonempty oval, since it intersects ovals
inside of it, it can intersect any oval with even multiplicty and by
Bézout theorem the total number of ontersection points is at most 7.)
The real point set of the line is divided by the intersection points with
the nonempty oval into two segments. One of these segments contains
the intersection point with the one-sided component, the other one is
inside the nonempty oval and contains the intersections with the in-
terior ovals. A smaller segment connects the interior ovals inside the
nonempty ovals. Thus any points inside two interior ovals can be con-
nected by a segment of a line inside the exterior nonemty oval. See
Figure 29.

Choose a point inside each interior oval and connect these points
by segments inside the exterior oval. If the lines guaranteed by 4.4.B
exist, then the segments comprise a convex polygon. Otherwise, there
exist interior ovals u0, u1, u2 and u3 such that u0 is contained inside
the triangle made of the segments connecting inside the exterior oval
the points q1, q2, q3 chosen inside u1, u2 and u3. See Figure 30.
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To prove that this is impossible, assume that this is the case and
construct a conic K through q1, q2, q3, the point q0 chosen inside u0

and a point q4 chosen inside some empty oval u4 distinct from u0, u1,
u2 and u3 (recall that the total number of ovals is at least 6, thereby
u4 exists). Since the space of conics is a 5-dimensional real projective
space and the conics containing a real point form a real hyperplane,
there exists a real conic passing through any 5 real points. If the
conic happened to be singular, we could make it nonsingular moving
the points. However it cannot happen, since then the conic would be
decomposed into two lines and at least one of the lines would intersect
with 3 empty ovals and with the nonempty oval, which would contradict
the Bézout theorem.

Now let us estimate the number of intersection points of the conic
and the original curve A of degree 7. The conic RK passes through the
vertices of the triangle q1q2q3 and through the point q0 inside it. The
component of the intersection of RK with the interior of the triangle
has to be an arc connecting two points of q1, q2, q3. Let they be q1

and q2. Then the segment [q0, q3] lies outside the disk bounded by
RK. This segment together with an arc q0, q1, q3 of RK is a one-sided
circle in RP 2, which has to intersect the one-sided component of RA.
Since neither the segment nor the arc q0, q1 intersect RA, the arc q1, q3

does intersect. The intersection point is outside the nonempty oval,
while both q1 and q3 are inside. Therefore the same arc has at least
2 common points with the nonempty oval. Similar arguments show
that the arc q2, q3 intersects the one-sided component of RA and has
at least 2 common points with the nonempty oval. Thus RK intersects
the one-sided component of A at least in 2 points and the nonempty
oval at least in 4 points. See Figure 31. Together with 10 intersection
points with ovals ui, i = 0, 1, . . . , 4 (2 points with each) it gives 16
points, which contradicts the Bézout theorem. (2)

�
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End of Proof of Theorem 3.8.G. Assume that a curve X prohibited by
Theorem 3.8.G does exist. According to Lemma 4.4.A, its complex
scheme is 〈J ∐ 1+〈6+ ∐ 8−〉〉7I . Take a point inside a positive interior
oval. Consider the segment of the pencil of line passing through this
point. The other interior ovals compose a chain. By Lemma 4.4.B
they lie in one connected component of the intersection of the domain
swept by the lines of the segment of the pencil with the interior domain
of the nonempty oval. By Theorem 4.2.C signs of ovals in this chain
alternate. Therefore the difference between the numbers of positive
and negative ovals is 1, while it has to be 3 by Lemma 4.4.A. �


