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5. Introduction to Topological Study of Real Algebraic

Spatial Surfaces

5.1. Basic Definitions and Problems. Our consideration of real
algebraic surfaces will be based on definitions similar to the definitions
that we used in the case of curves. In particular, by a real algebraic
surface of degree m in the 3-dimensional projective space we shall mean
a real homogeneous polynomial of degree m in four variables considered
up to a constant factor.

Obvious changes adapt definitions of sets of real and complex points,
singular points, singular and nonsingular curves and rigid isotopy to the
case of surfaces in RP 3. Exactly as in the case of curves one formulates
the topological classification problem (cf. 1.1.A above):

5.1.A (Topological Classification Problem). Up to homeomorphism,
what are the possible sets of real points of a nonsingular real projec-
tive algebraic surface of degree m in RP 3?

However, the isotopy classification problem 1.1.B splits into two
problems:

5.1.B (Ambient Topological Classification Problem). Classify up to
homeomorphism the pairs (RP 3, RA) where A is a nonsingular real
projective algebraic surface of degree m in RP 3?

5.1.C (Isotopy Classification Problem). Up to ambient isotopy, what
are the possible sets of real points of a nonsingular a nonsingular real
projective algebraic surface of degree m in RP 3?

The reason for this splitting is that, contrary to the case of projec-
tive plane, there exists a homeomorphism of RP 3 non-isotopic to the
identity. Indeed, 3-dimensional projective space is orientable, and the
mirror reflection of this space in a plane reverses orientation. Thus the
reflection is not isotopic to the identity. However, there are only two
isotopy classes of homeomorphisms of RP 3. It means that the differ-
ence between 5.1.B and 5.1.C is not really big. Although the isotopy
classification problem is finer, to resolve it, one should add to a solu-
tion of the ambient topological classification problem an answer to the
following question:

5.1.D (Amphichirality Problem). Which nonsingular real algebraic sur-
faces of degree m in RP 3 are isotopic to its own mirror image?

Each of these problems has been solved only for m ≤ 4. The differ-
ence between 5.1.B and 5.1.C does not appear: the solutions of 5.1.B
and 5.1.C coincide with each other for m ≤ 4. (Thus Problem 5.1.D
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has a simple answer for m ≤ 4: any nonsingular real algebraic surface
of degree ≤ 4 is isotopic to its mirror image.) For m ≤ 3 solutions of
5.1.A and 5.1.B also coincide, but for m = 4 they are different: there
exist nonsingular surfaces of degree 4 in RP 3 which are homeomorphic,
but embedded in RP 3 in a such a way that there is no homeomorphism
of RP 3 mapping one of them to another. The simplest example is pro-
vided by torus defined by equation
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and the union of one-sheeted hyperboloid and an imaginary quadric
(perturbed, if you wish to have a surface without singular points even
in the complex domain)

Similar splitting happens with the rigid isotopy classification prob-
lem. Certainly, it may be transferred literally:

5.1.E (Rigid Isotopy Classification Problem). Classify up to rigid iso-
topy the nonsingular surfaces of degree m.

However, since there exists a projective transformation of RP 3, which
is not isotopic to the identity (e.g., the mirror reflection in a plane) and
a real algebraic surface can be nonisotopic rigidly to its mirror image,
one may consider the following rougher problem:

5.1.F (Rough Projective Classification Problem). Classify up to rigid
isotopy and projective transformation the nonsingular surfaces of degree
m.

Again, as in the case of topological isotopy and homeomorphism
problem, the difference between these two problems is an amphichiral-
ity problem:

5.1.G (Rigid Amphichirality Problem). Which nonsingular real alge-
braic
surfaces of degree m in RP 3 are rigidly isotopic to its mirror image?

Problems 5.1.E , 5.1.F and 5.1.G have been solved also for m ≤
4. For m ≤ 3 the solutions of 5.1.E and 5.1.F coincide with each
other and with the solutions of 5.1.A, 5.1.B and 5.1.C . For m ≤ 2
all these problems belong to the traditional analytic geometry. The
solutions are well-known and can be found in traditional textbooks on
analytic geometry. The case m = 3 is also elementary. It was studied
in the nineteenth century. The solution is associated with names of
Schläfli and Klein. The case m = 4 is really difficult. Although the
first attempts of a serious attack were undertaken in the nineteenth
century, too, and among the attackers we see D. Hilbert and K. Rohn,
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the complete solutions of all classification problems listed above were
obtained only in the seventies and eighties. Below, in Subsection ??, I
will discuss the results and methods. In higher degrees even the most
rough problems, like the Harnack problem on the maximal number of
components of a surface of degree m are still open.

5.2. Digression: Topology of Closed Two-Dimensional Sub-

manifolds of RP 3. For brevity, we shall refer to closed two-dimensional
submanifolds of RP 3 as topological spatial surfaces, or simply surfaces
when there is no danger of confusion.

Since the homology group H2(RP 3; Z2) is Z2, a connected surface
can be situated in RP 3 in two ways: zero-homologous, and realizing
the nontrivial homology class.

In the first case it divides the projective space into two domains
being the boundary for both domains. Hence, the surface divides its
tubular neighborhood, i. e. it is two-sided.

In the second case the complement of the surface in the projective
space is connected. (If it was not connected, the surface would bound
and thereby realize the zero homology class.) Moreover, it is one-sided.

The latter can be proved in many ways. For example, if the surface
was two-sided and its complement was connected, there would exist a
nontrivial infinite cyclic covering of RP 3, which would contradict the
fact that π1(RP 3) = Z2. The infinite cyclic covering could be con-
structed by gluing an infinite sequence of copies of RP 3 cut along the
surface: each copy has to be glued along one of the sides of the cut to
the other side of the cut in the next copy.

Another proof: take a projective plane, make it transversal to the
surface, and consider the curve which is their intersection. Its homology
class in RP 2 is the image of the nontrivial element of H2(RP 3; Z2) un-
der the inverse Hopf homomorphism in! : H2(RP 3; Z2) → H1(RP 2; Z2).
This is an isomorphism, as one can see taking the same construction
in the case when the surface is another projective plane. Thus the in-
tersection is a one-sided curve in RP 2. Hence the normal fibration of
the original surface in RP 3 is not trivial. This means that the surface
is one-sided.

A connected surface two-sidedly embedded in RP 3 is orientable, since
it bounds a part of the ambient space which is orientable. Therefore,
such a surface is homeomorphic to sphere or to sphere with handles.
There is no restriction to the number of handles: one can take an
embedded sphere bounding a small ball, and adjoin to it any number
of handles.
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A one-sidedly embedded surface is nonorientable. Indeed, its normal
bundle is nonorientable, while the restriction of the tangent bundle of
RP 3 to the surface is orientable (since RP 3 is). The restriction of the
tangent bundle of RP 3 to the surface is the Whitney sum of the normal
and tangent bundles of the surface. Therefore it cannot happen that
only one of these three bundles is not orientable.

Contrary to the case of two-sided surfaces, in the case of one-sided
surfaces there is an additional restriction on their topological types.

5.2.A. The Euler characteristic of a connected surface one-sidedly em-
bedded to RP 3 is odd.

In particular, it is impossible to embed a Klein bottle to RP 3. (The
Euler characteristic of a connected surface two-sidedly embedded into
RP 3 is even, but it follows from orientability: the Euler characteristic
of any closed oriented surface is even.) By topological classification
of closed surfaces, a nonorientable connected surface with odd Euler
characteristic is homeomorphic to the projective plane or to the pro-
jective plane with handles. Any surface of this sort can be embedded
into RP 3: for the projective plane RP 3 is the native ambient space,
and one can adjoin to it in RP 3 any number of handles. We denote a
sphere with g handles by Sg and a projective plane with g handles by
Pg.

Proof of 5.2.A. Let S be a connected surface one-sidedly embedded
into RP 3. By a small shift it can be made transversal to the projective
plane RP 2 standardly embedded into RP 3. Since both surfaces are
embedded one-sidedly, they realize the same homology class in RP 3.
Therefore their union bounds in RP 3: one can color the complement
RP 3 r (S ∪ RP 2) into two colors in such a way that the components
adjacent from the different sides to the same (two-dimensional) piece
of S ∪ RP 2 would be of different colors. It is a kind of checkerboard
coloring.

Consider the disjoint sum Q of the closures of those components
of RP 3 r (S ∪ RP 2) which are colored with the same color. It is a
compact 3-manifold. It is oriented since each of the components inherits
orientation from RP 3. The boundary of this 3-manifold is composed of
pieces of S and RP 2. It can be thought of as the result of cutting both
surfaces along their intersection curve and regluing. The intersection
curve is replaced by its two copies, while the rest part of S and RP 2 does
not change. Since the intersection curve consists of circles, its Euler
characteristic is zero. Therefore χ(∂Q) = χ(S) + χ(RP 2) = χ(S) + 1.
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Figure 32

On the other hand, χ(∂Q) is even since ∂Q is a closed oriented surface
(∂Q inherits orientation from Q). Thus χ(S) is odd. �

A one-sided connected surface in RP 3 contains a loop which is not
contractible in RP 3. Such a loop can be detected in the following way:
Consider the intersection of the surface with any one-sided transversal
surface (e. g., RP 2 or a surface obtained from the original one by a
small shift). The homology class of the intersection curve is the self-
intersection of the nonzero element of H2(RP 3 ; Z2). Since the self-
intersection is the nonzero element of H1(RP 3 ; Z2), the intersection
curve contains a component noncontractible in RP 3.

A two-sided connected surface in RP 3 can contain no loops noncon-
tractible in RP 3 (this happens, for instance, if the surface lies in an
affine part of RP 3). Of course, if a surface contains a loop noncon-
tractible in RP 3, it is not contractible in RP 3 itself. Moreover, then it
meets any one-sided surface, since the noncontractible loop realizes the
nonzero element of H1(RP 3 ; Z2) and this element has nonzero inter-
section number with the homology class realized by a one-sided surface.

If any loop on a connected surface S embedded in RP 3 is con-
tractible in RP 3 (which means that the embedding homomorphism
π1(S) → π1(RP 3) is trivial), then there is no obstruction to contract
the embedding, i. e., to construct a homotopy between the embedding
S → RP 3 and a constant map. One can take a cell decomposition
of S, contract the 1-skeleton (extending the homotopy to the whole
S), and then contract the map of the 2-cell, which is possible, since
π2(RP 3) = 0. A surface of this sort is called contractible (in RP 3).

It may happen, however, that there is no isotopy relating the em-
bedding of a contractible surface with a map to an affine part of RP 3.
The simplest example of a contractible torus which cannot be moved
by an isotopy to an affine part of RP 3 is shown in Figure 32.
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As it was stated above, the complement RP 3 rS of a connected sur-
face S two-sidedly embedded in RP 3 consists of two connected com-
ponents. If S is not contractible in RP 3 then both of them are not
contractible, since a loop on S noncontractible in RP 3 can be pushed
to each of the components. They may be positioned in RP 3 in the
same way.

The simplest example of this situation is provided by a one-sheeted
hyperboloid. It is homeomorphic to torus and its complement consists
of two solid tori. So, this is a Heegaard decomposition of RP 3. There
exists an isotopy of RP 3 made of projective transformation exchanging
the components. (3)

A connected surface decomposing RP 3 into two handlebodies is called
a Heegaard surface. Heegaard surfaces are the most unknotted sur-
faces among two-sided noncontractible connected surfaces. They may
be thought of as unknotted noncontractible surfaces.

If a connected surface S is contractible in RP 3, then the components
C1 and C2 can be distinguished in the following way: for one of them,
say C1, the inclusion homomorphism π1(C1) → π1(RP 3) is trivial, while
for the other one the inclusion homomorphism π1(C2) → π1(RP 3) is
surjective. This follows from the van Kampen theorem. The compo-
nent with trivial homomorphism is called the interior of the surface.
It is contractible in RP 3 (in the same sense as the surface is).

A contractible connected surface S in RP 3 is said to be unknotted,
if it is contained in some ball B embedded into RP 3 and divides this
ball into a ball with handles (which is the interior of S) and a ball with
handles with an open ball deleted. Any two unknotted contractible sur-
faces of the same genus are ambiently isotopic in RP 3. Indeed, first the
balls containing them can be identified by an ambient isotopy (see, e.
g., Hirsch [Hir-76], Section 8.3), then it follows from uniqueness of Hee-
gaard decomposition of sphere that there is an orientation preserving
homeomorphism of the ball mapping one of the surfaces to the other.
Any orientation preserving homeomorphism of a 3-ball is isotopic to
the identity.

At most one component of a (closed) surface embedded in RP 3

may be one-sided. Indeed, a one-sided closed surface cannot be zero-
homologous in RP 3 and the self-intersection of its homology class (which
is the only nontrivial element of H2(RP 3 ; Z2)) is the nonzero element
of H1(RP 3 ; Z2). Therefore any two one-sided surfaces in RP 3 inter-
sect.

Moreover, if an embedded surface has a one-sided component, then
all other components are contractible. The contractible components are
naturally ordered: a contractible component of a surface can contain
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other contractible component in its interior and this gives rise to a
partial order in the set of contractible components. If the interior
of contractible surface A contains a surface B, then one says that A
envelopes B.

The connected components of a surface embedded in RP 3 divide
RP 3 into connected regions. Let us construct a graph of adjacency
of these regions: assign a vertex to each of the regions and connect
two regions with an edge if the corresponding regions are adjacent to
the same connected two-sided component of the surface. Since the
projective space is connected and its fundamental group is finite, the
graph is contractible, i. e., it is a tree. It is called region tree of the
surface.

Consider now a (closed) surface without one-sided components. It
may contain several noncontractible components. They decompose the
projective space into connected domains, each of which is not con-
tractible in RP 3. Let us construct a graph of adjacency of these do-
mains: assign a vertex to each of the domains and connect two vertices
with an edge if the corresponding domains are adjacent. Edges of the
graph correspond to noncontractible components of the surface. For
the same reasons as above, this graph is contractible, i. e. it is a tree.
This tree is called the domain tree of the surface.

Contractible components of the surface are distributed in the do-
mains. Contractible components which are contained in different do-
mains cannot envelope one another. Contractible components of the
surface which lie in the same domain are partially ordered by envelop-
ing. They divide the domain into regions. Each domain contains only
one region which is not contractible in RP 3. If the domain does not
coincide with the whole RP 3 (i.e., the surface does contain noncon-
tractible components), then this region can be characterized also as
the only region which is adjacent to all the noncontractible compo-
nents of the surface comprising the boundary of the domain. Indeed,
contractible components of the surface cannot separate noncontractible
ones.

The region tree of a surface contains a subtree isomorphic to the
domain tree, since one can assign to each domain the unique noncon-
tractible region contained in the domain and two domains are adjacent
iff the noncontractible regions contained in them are adjacent. The
complement of the noncontractible domains tree is a union of adjacency
trees for contractible subdomains contained in each of the domains.

Let us summarize what can be said about topology of a spatial sur-
face in the terms described above.
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If a surface is one-sided (i. e., contains a one-sided component), then
it is a disjoint sum of a projective plane with handles and several
(maybe none) spheres with handles. Thus, it is homeomorphic to

Pg ∐ Sg1
∐ . . . Sgk

,

where ∐ denotes disjoint sum.
All two-sided components are contractible and ordered by envelop-

ing. The order is easy to incorporate into the notation of the topological
type above. Namely, place notations for components enveloped by a
component A immediately after A inside brackets 〈 〉. For example,

P0 ∐ S1 ∐ S1 ∐ S0〈S1 ∐ S0 ∐ S2〈S1 ∐ S0〉 ∐ S2〈S1 ∐ S0〉〉

denotes a surface consisting of a projective plane, two tori, which do not
envelope any other component, a sphere, which envelopes a torus and
a sphere without components inside them and a two spheres with two
handles each of which envelopes empty sphere and torus. To make the
notations shorter, let us agree to skip index 0, i. e. denote projective
plane P0 by P and sphere S0 by S, and denote the disjoint sum of k
fragments identical to each other by k followed by the notation of the
fragment. These agreements shorten the notation above to

P ∐ 2S1 ∐ S〈S1 ∐ S ∐ 2S2〈S1 ∐ S〉〉.

If a surface is two-sided (i. e. does not contain a one-sided compo-
nent), then it is a disjoint sum Sg1

∐ . . . Sgk
, of spheres with handles.

To distinguish in notations the components noncontractible in RP 3,
we equip the corresponding symbols with upper index 1. Although we
do not make any difference between two components of the comple-
ment of noncontractible connected surface (and there are cases when
they cannot be distinguished), in notations we proceed as if one of
the components is interior: the symbols denoting components of the
surface which lie in one of the components of the complement of the
noncontractible component A are placed immediately after the nota-
tion of A inside braces { }. Our choice is the matter of convenience. It
correspond to the well-known fact that usually, to describe a tree, one
introduces a partial order on the set of its vertices.

In these notations,

S1 ∐ S〈3S〉 ∐ S1
1{S3 ∐ 2S1

2{3S ∐ S1}}

denotes a two-sided surface containing three noncontractible compo-
nents. One of them is a torus, two others are spheres with two handles.
The torus bounds a domain containing a contractible empty torus and
a sphere enveloping three empty spheres. There is a domain bounded
by all three noncontractible components. It contains a contractible
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empty sphere with three handles. Each of the noncontractible spheres
with two handles bounds a domain containing empty contractible torus
and three empty spheres.

This notation system is similar to notations used above to described
isotopy types of curves in the projective plane. However, there is a
fundamental difference: the notations for curves describe the isotopy
type of a curve completely, while the notations for surfaces are far from
being complete in this sense. Although topological type of the surface
is described, knotting and linking of handles are completely ignored.
In the case when there is no handle, the notation above does provide
a complete description of isotopy type.

5.3. Restrictions on Topology of Real Algebraic Surfaces. As
in the case of real plane projective curves, the set of real points of a
nonsingular spatial surface of degree m is one-sided, if m is odd, and
two-sided, if m is even. Indeed, by the Bézout theorem a generic line
meets a surface of degree m in a number of points congruent to m
modulo 2. On the other hand, whether a topological surface embedded
in RP 3 is one-sided or two-sided, can be detected by its intersection
number modulo 2 with a generic line: a surface is one-sided, iff its
intersection number with a generic line is odd.

There are some other restrictions on topology of a nonsingular sur-
face of degree m which can be deduced from the Bézout theorem.

5.3.A (On Number of Cubic’s Components). The set of real points of a
nonsingular surface of degree three consists of at most two components.

Proof. Assume that there are at least three components. Only one of
them is one-sided, the other two are contractible. Connect with a line
two contractible components. Since they are zero-homologous, the line
should intersect each of them with even intersection number. Therefore
the total number of intersection points (counted with multiplicities) of
the line and the surface is at least four. This contradicts to the Bézout
theorem, according to which it should be at most three. �

5.3.B (On Two-Component Cubics). If the set of real points of a non-
singular surface of degree 3 consists of two components, then the com-
ponents are homeomorphic to the sphere and projective plane (i. e., this
is P ∐ S).

Proof. Choose a point inside the contractible component. Any line
passing through this point intersects the contractible component at
least in two points. These points are geometrically distinct, since the
line should intersect also the one-sided component. On the other hand,
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the total number of intersection points is at most three according to the
Bézout theorem. Therefore any line passing through the selected point
intersects one-sided component exactly in one point and two-sided com-
ponent exactly in two points. The set of all real lines passing through
the point is RP 2. Drawing a line through the selected point and a real
point of the surface defines a one-to-one map of the one-sided compo-
nent onto RP 2 and two-to-one map of the two-sided component onto
RP 2. Therefore the Euler characteristic of the one-sided component
is equal to χ(RP 2) = 1, and the Euler characteristic of the two-sided
component is 2χ(RP 2) = 2. This determines the topological types of
the components. �

5.3.C (Estimate for Diameter of Region Tree). The diameter of the
region tree6 of a nonsingular surface of degree m is at most [m/2].

Proof. Choose two vertices of the region tree the most distant from
each other. Choose a point in each of the coresponding regions and
connect the points by a line. �

5.3.D . The set of real points of a nonsingular surface of degree 4 has at
most two noncontractible components. If the number of noncontractible
components is 2, then there is no other component.

Proof. First, assume that there are at least three noncontractible com-
ponents. Consider the complement of the union of three noncon-
tractible components. It consists of three domains, and at least two of
them are not adjacent (cf. the previous subsection: the graph of adja-
cency of the domains should be a tree). Connect points of nonadjacent
domains with a line. It has to intersect each of the three noncontractible
components. Since they are zero-homologous, it intersects each of them
at least in two points. Thus, the total number intersection points is at
least 6, which contradicts to the Bézout theorem.

Now assume that there are two noncontractible components and
some contractible component. Choose a point p inside the contractible
component. The noncontractible components divide RP 3 into 3 do-
mains. One of the domains is adjacent to the both noncontractible
components, while each of the other two domains is bounded by a sin-
gle noncontractible component. If the contractible component lies in a
domain bounded by a single noncontractible component, then take a
point q in the other domain of the same sort, and connect p and q with

6Here by the diameter of a tree it is understood the maximal number of edges

in a simple chain of edges of the tree, i. e., the diameter of the tree in the internal

metric, with respect to which each edge has length 1.
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a line. This line meets each of the three components at least twice,
which contradicts to the Bézout theorem.

Otherwise (i. e. if the contractible component lies in the domain ad-
jacent to both noncontractible components), choose inside each of the
two other domains an embedded circle, which does not bound in RP 3.
Denote these circles by L1 and L2. Consider a surface Ci swept by
lines connecting p with points of Li. It realizes the nontrivial homol-
ogy class. Indeed, take any line L transversal to it. Each point of L∩Ci

corresponds to a point of the intersection of Li and the plane consist-
ing of lines joining p with L. Since Li realizes the nonzero homology
class, the intersection number of Li with a plane is odd. Therefore the
intersection number of L and Ci is odd. Since both C1 and C2 realizes
the nontrivial homology class, their intersection realizes the nontrivial
one-dimensional homology class. This may happen only if there is a
line passing through p and meeting L1 and L2. Such a line has to
intersect all three components of the quadric surface. Each of the com-
ponents has to be met at least twice. This contradicts to the Bézout
theorem. �

5.3.E . Remark. In fact, if a nonsingular quartic surface has two non-
contractible components then each of them is homeomorphic to torus.
It follows from an extremal property of the refined Arnold inequality
5.3.L. I do not know, if it can be deduced from the Bézout theorem.
However, if to assume that one can draw lines in the domains of the
complement which are not adjacent to both components, then it is not
difficult to find homeomorphisms between the components of the sur-
face and the torus, which is the product of these two lines. Cf. the
proof of 5.3.B .

5.3.F (Generalization of 5.3.D). Let A be a nonsingular real algebraic
surface of degree m in the 3-dimensional projective space. Then the
diameter of the adjacency tree of domains of the complement of RA is
at most [m/2]. If the degree is even and the diameter of the adjacency
tree of the connected components of the complement of the union of the
noncontractible components is exactly m/2, then there is no contractible
components.

The proof is a straightforward generalization of the proof of 5.3.D .
�

Surprisingly, Bézout theorem gave much less restrictions in the case
of surfaces than in the case of plane curves. In particular, it does not
give anything like Harnack Inequality. Most of restrictions on topol-
ogy of surfaces are analogous to the restrictions on flexible curves and
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were obtained using the same topological tools. Here is a list of the
restrictions, though it is non-complete in any sense.

The restrictions are formulated below for a nonsingular real algebraic
surface A of degree m in the 3-dimensional projective space. In these
formulations and in what follows we shall denote the i-th Betti number
of X over field Z2 (which is nothing but dimZ2

Hi(X ; Z2)) by bi(X).
In particular, b0(X) is the number of components of X. By b∗(X) we

denote the total Betti number, i. e.
∑infty

i=0
bi(X) = dimZ2

H∗(X ; Z2).

5.3.G (Generalized Harnack Inequality).

b∗(RA) ≤ m3 − 4m2 + 6m.

5.3.H . Remark. This is a special case of Smith-Floyd Theorem 3.2.B ,
which in the case of curves implies Harnack Inequality, see Subsections
3.2. It says that for any involution i of a topological space X

b∗(fix(i)) ≤ b∗(X).

Applying this to the complex conjugation involution of the complex-
ification CA of A and taking into account that dimZ2

H∗(CA ; Z2) =
m3 − 4m2 + 6m one gets 5.3.G . Applications to high-dimensional sit-
uation is discussed in Subsection ?? below.

5.3.I (Extremal Congruences of Generalized Harnack Inequality). If

b∗(RA) = m3 − 4m2 + 6m,

then
χ(RA) ≡ (4m − 3m2)/3 mod 16.

If b∗(RA) = m3 − 4m2 + 6m − 2, then

χ(RA) ≡ (4m − m3 ± 6)/3 mod 16.

5.3.J (Petrovsky - Oleinik Inequalities).

−(2m3 − 6m2 + 7m − 6)/3 ≤ χ(RA) ≤ (2m3 − 6m2 + 7m)/3.

Denote the numbers of orientable components of RA with positive,
zero and negative Euler characteristic by k+, k0 and k− respectively.

5.3.K (Refined Petrovsky - Oleinik Inequality). If m 6= 2 then

−(2m3 − 6m2 + 7m − 6)/3 ≤ χ(RA) − 2k+ − 2k0.

5.3.L (Refined Arnold Inequality). Either m is even, k+ = k− = 0 and

k0 = (m3 − 6m2 + 11m)/6,

or
k0 + k− ≤ (m3 − 6m2 + 11m − 6)/6.
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5.4. Surfaces of Low Degree. Surfaces of degree 1 and 2 are well-
known. Any surface of degree 1 is a projective plane. All of them are
transformed to each other by a rigid isotopy consisting of projective
transformations of the whole ambient space RP 3.

Nonsingular surfaces of degree 2 (nonsingular quadrics) are of three
types. It follows from the well-known classification of real nondegener-
ate quadratic forms in 4 variables up to linear transformation. Indeed,
by this classification any such a form can be turned to one of the fol-
lowing:

(1) +x2
0 + x2

1 + x2
2 + x2

3,
(2) +x2

0 + x2
1 + x2

2 − x2
3,

(3) +x2
0 + x2

1 − x2
2 − x2

3,
(4) +x2

0 − x2
1 − x2

2 − x2
3,

(5) −x2
0 − x2

1 − x2
2 − x2

3.

Multiplication by −1 identifies the first of them with the last and the
second with the fourth reducing the number of classes to three. Since
the reduction of a quadratic form to a canonical one can be done in
a continuous way, all quadrics belonging to the same type also can
be transformed to each other by a rigid isotopy made of projective
transformations.

The first of the types consists of quadrics with empty set of real
points. In traditional analytic geometry these quadrics are called imag-
inary ellipsoids. A canonical representative of this class is defined by
equation x2

0 + x2
1 + x2

3 + x2
4 = 0.

The second type consists of quadrics with the set of real points home-
omorphic to sphere. In the notations of the previous section this is S.
The canonical equation is x2

0 + x2
1 + x2

2 − x2
3 = 0.

The third type consists of quadrics with the set of real points home-
omorphic to torus. They are known as one-sheeted hyperboloids. The
set of real points is not contractible (it contains a line), so in the no-
tations above it should be presented as S1

1 . The canonical equation is
x2

0 + x2
1 − x2

2 − x2
3 = 0.

Quadrics of the last two types (i. e., quadrics with nonempty real
part) can be obtained by small perturbations of a union of two real
planes. To obtain a quadric with real part homeomorphic to sphere, one
may perturb the union of two real planes in the following way. Let the
plane be defined by equations L1(x0, x1, x2, x3) = 0 and L2(x0, x1, x2, x3) =
0. Then the union is defined by equation L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) =
0. Perturb this equation adding a small positive definite quadratic
form. Say, take

L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) + ε(x2
0 + x2

1 + x2
2 + x2

3) = 0
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Figure 33. Two-sheeted hyperboloid as a result of
small perturbation of a pair of planes.

Figure 34. One-sheeted hyperboloid as a result of small
perturbation of a pair of planes.

with a small ε > 0. This equation defines a quadric. Its real part
does not meet plane L1(x0, x1, x2, x3) = L2(x0, x1, x2, x3), since on the
real part of the quadric the product L1(x0, x1, x2, x3)L2(x0, x1, x2, x3)
is negative. Therefore the real part of the quadric is contractible in
RP 3. Since it is obtained by a perturbation of the union of two planes,
it is not empty, provided ε > 0 is small enough. As easy to see, it is
not singular for small ε > 0. Cf. Subsection ??. Of course, this can be
proved explicitely, as an exercise in analytic geometry. See Figure 33

To obtain a noncontractible nonsingular quadric (one-sheeted hyper-
boloid), one can perturb the same equation L1(x0, x1, x2, x3)L2(x0, x1, x2, x3) =
0, but by a small form which takes both positive and negative values
on the intersection line of the planes. See Figure 34.

Nonsingular surfaces of degree 3 (nonsingular cubics) are of five
types. Here is the complete list of there topological types:

P, P ∐ S, P1, P2, P3.

Let us prove, first, that only topological types from this list can be
realized. Since the degree is odd, a nonsingular surface has to be one-
sided. By 5.3.D if it is not connected, then it is homeomorphic to
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Figure 35. Constructing cubic surfaces of types P ∐S,
P , P1 and P2.

Figure 36. Constructing a cubic surface of type P3.

P ∐ S. By the Generalized Harnack Inequality 5.3.G , the total Betti
number of the real part is at most 33 − 4 × 32 + 6 × 3 = 9. On the
other hand, the first Betti number of a projective plane with g handles
is 1 + 2g and the total Betti number b∗(Pg) is 3 + 2g. Therefore in the
case of a nonsingular cubic with connected real part, it is of the type
Pg with g ≤ 3.

All the five topological types are realized by small perturbations of
unions of a nonsingular quadric and a plane transversal to one another.
This is similar to the perturbations considered above, in the case of
spatial quadrics. See Figures 35 and 36.

An alternative way to construct nonsingular surfaces of degree 3 of all
the topological types is provided by a connection between nonsingular
spatial cubics and plane nonsingular quartics. More precisely, there is
a correspondence assigning a plane nonsingular quartic with a selected
real double tangent line to a nonsingular spatial cubic with a selected
real point on it. It goes as follows. Consider the projection of the cubic
from a point selected on it to a plane. The projection is similar to the
well-known stereographic projection of a sphere to plane.


