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Yet where do we get this impression? In daily life we never
come across anything that really resembles a straight line.
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Is it possible to weave together disjoint lines?
At first glance this may seem not to be possible.
Yet where do we get this impression? In daily life we never
come across anything that really resembles a straight line.
Any set of disjoint line segments can be moved around to any
other relative location in such a way that they remain disjoint.
Thus, disjoint line segments cannot be linked.

Can a set of disjoint lines be rearranged
by a continuous movement during which they stay disjoint?
Any two sets of parallel lines with the same number of lines in
each set can be transformed to each other in this sense.
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Can an arbitrary set of lines be moved (“combed”) into
a set of parallel lines?
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Choose two parallel planes which are not parallel to any of the
lines in our set.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines,
by fastening the lines at those points.
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Also fix the intersection of the lines with the second plane.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines.
Also fix the intersection of the lines with the second plane,
but only as a point on that plane, which we allow to slide along
the lines.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines.
Also fix the intersection of the lines with the second plane.
In other words, drill small holes in the second plane where it
intersects with the lines.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines.
Also fix the intersection of the lines with the second plane
Move the second plane away from the first one in the direction
perpendicular to both planes.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines.
Also fix the intersection of the lines with the second plane
Move the second plane away from the first one in the direction
perpendicular to both planes.
The lines are pulled through the holes, their angles with the
planes increase.
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to one another.
Another description: expand the space away from the first
plane in a direction perpendicular to it, driving the expansion
factor rapidly to infinity in a finite length of time.
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Choose two parallel planes which are not parallel to any of the
lines in our set.
Fix the points of intersection of the first plane with the lines.
Also fix the intersection of the lines with the second plane
Move the second plane away from the first one in the direction
perpendicular to both planes.
The lines are pulled through the holes, their angles with the
planes increase.
Move the second plane to infinity in a finite amount of time,
then these angles all reach 90◦, i.e., the lines become parallel
to one another.
Another description: expand the space away from the first
plane in a direction perpendicular to it, driving the expansion
factor rapidly to infinity in a finite length of time. The lines
rotate around their points of intersection with the first plane,
and in the limit become perpendicular to the planes.
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Thus, one cannot link disjoint lines:
all sets of disjoint lines are arranged in the same way.
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Thus, one cannot link disjoint lines:
all sets of disjoint lines are arranged in the same way.

However, there are serious reasons for disqualifying this result.

First, it was too easy.
Second, parallel lines are very close to being intersecting: one
can rotate one of two parallel lines by an arbitrarily small angle
to make them intersect. This is not the case for skew lines.
Third, parallel lines intersect in the projective space.

Let us decide not to allow parallel lines anymore!
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We say that the linking of a set of lines remains the same
if it is moved in such a way that the lines are always skew,
never intersect and never parallel.
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We say that the linking of a set of lines remains the same
if it is moved in such a way that the lines are always skew.
Such movements of lines is called an isotopy .
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We say that the linking of a set of lines remains the same
if it is moved in such a way that the lines are always skew.
Such movements of lines is called an isotopy .
If one set of lines can be obtained from another by an isotopy,
then the two sets are isotopic.
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Theorem. Any two pairs of skew lines are isotopic.
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Theorem. Any two pairs of skew lines are isotopic.

Proof. Move any pair of skew lines to a standard pair,
in which the lines are perpendicular and their common
perpendicular is of length 1.



Pair of lines

• Can lines be linked?

• Combing lines

• No parallel lines

• Equivalence of links
made of skew lines

• Pair of lines
• Orientations and
Semi-Orientations

• Linking number

• Triples of lines

• Parallelipiped

• Deforming
parallelipiped

• Linking number of a
triple

Amphicheiral and
Nonamphicheiral

6 / 19

Theorem. Any two pairs of skew lines are isotopic.

Proof. Move any pair of skew lines to a standard pair,
in which the lines are perpendicular and their common
perpendicular is of length 1.

To achieve this:
1. find the common perpendicular
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Theorem. Any two pairs of skew lines are isotopic.

Proof. Move any pair of skew lines to a standard pair,
in which the lines are perpendicular and their common
perpendicular is of length 1.

To achieve this:
1. find the common perpendicular,
2. rotate one of the lines around it to make the lines
perpendicular
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Theorem. Any two pairs of skew lines are isotopic.

Proof. Move any pair of skew lines to a standard pair,
in which the lines are perpendicular and their common
perpendicular is of length 1.

To achieve this:
1. find the common perpendicular,
2. rotate one of the lines around it to make the lines
perpendicular,
3. adjust the length of the common perpendicular.
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To orient a set of lines means to give a direction to each line
in the set.
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To orient a set of lines means to give a direction to each line
in the set. There are 2n orientations of a set of n lines.
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To orient a set of lines means to give a direction to each line
in the set. There are 2n orientations of a set of n lines.
A semi-orientation of a set of lines is a pair of opposite
orientations.
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To orient a set of lines means to give a direction to each line
in the set. There are 2n orientations of a set of n lines.
A semi-orientation of a set of lines is a pair of opposite
orientations. A semi-orientation of a pair of lines:
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 .
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
The linking number is preserved under isotopies.
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this:
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .

Exercise: Prove that the look does not depend on the
point of view using only arguments of Elementary Geometry!
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if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .

Changing the orientation of one of the lines of the pair
changes the linking number.
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The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .

Changing the orientation of one of the lines of the pair
changes the linking number. If the orientation of the pair
reverses (i.e., the orientation reverses on both lines)
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The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .

Changing the orientation of one of the lines of the pair
changes the linking number. If the orientation of the pair
reverses, then the linking number does not change.
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An oriented pair of lines has a characteristic which takes the
value +1 or −1 . It is called the linking number .
The linking number is preserved under isotopies, and so
if two oriented pairs of lines have different linking numbers,
then they are not isotopic.

The linking number is +1 if the lines look like this: ,

the linking number is −1 if the lines look like that: .

Changing the orientation of one of the lines of the pair
changes the linking number. If the orientation of the pair
reverses, then the linking number does not change.
Hence, the linking number depends only on semi-orientation.
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the linking number:
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When we studied pairs of lines, an important role was played
by the common perpendicular to the two skew lines.
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by the common perpendicular to the two skew lines. It would
be good to find something equally natural for a triple of skew
lines.
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be good to find something equally natural for a triple of skew
lines. There are two objects that are capable of playing this
role.
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When we studied pairs of lines, an important role was played
by the common perpendicular to the two skew lines. It would
be good to find something equally natural for a triple of skew
lines. There are two objects that are capable of playing this
role. We shall discuss one of them now, and postpone
consideration of the second one.
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When we studied pairs of lines, an important role was played
by the common perpendicular to the two skew lines. It would
be good to find something equally natural for a triple of skew
lines. There are two objects that are capable of playing this
role. We shall discuss one of them now, and postpone
consideration of the second one. Jumping ahead: the second
object is a hyperboloid.
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Consider an arbitrary triple of pairwise skew lines
which do not lie in three parallel planes.
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Consider an arbitrary triple of pairwise skew lines
which do not lie in three parallel planes.
For each line draw two planes containing the line,
each parallel to one of the other two lines.
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Consider an arbitrary triple of pairwise skew lines
which do not lie in three parallel planes.
For each line draw two planes containing the line,
each parallel to one of the other two lines.
Overall six planes, i.e., three pairs of parallel planes.
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Consider an arbitrary triple of pairwise skew lines
which do not lie in three parallel planes.
For each line draw two planes containing the line,
each parallel to one of the other two lines.
Overall six planes, i.e., three pairs of parallel planes.
These planes form a parallelepiped.
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Consider an arbitrary triple of pairwise skew lines
which do not lie in three parallel planes.
For each line draw two planes containing the line,
each parallel to one of the other two lines.
Overall six planes, i.e., three pairs of parallel planes.
These planes form a parallelepiped.
Our lines are the extensions of three of its skew edges:
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.

This parallelepiped is the first object which we associate to the
triple of lines.
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.

This parallelepiped is the first object which we associate to the
triple of lines. What is special about it?
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.

This parallelipiped is unique.
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.

This parallelipiped is unique.
Indeed, there is a unique plane parallel to a given line that
contains a second skew line.
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Any three pair-wise skew lines which do not lie in three parallel
planes are extensions of the edges of a parallelepiped.

This parallelipiped is unique.
Indeed, there is a unique plane parallel to a given line that
contains a second skew line.
Hence, the six planes are uniquely determined by the original
triple of lines.
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A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles.
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A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles. By a continuous deformation,
make all of the angles into right angles (obtaining a rectangular
parallelepiped),



Deforming parallelipiped

• Can lines be linked?

• Combing lines

• No parallel lines

• Equivalence of links
made of skew lines

• Pair of lines
• Orientations and
Semi-Orientations

• Linking number

• Triples of lines

• Parallelipiped

• Deforming
parallelipiped

• Linking number of a
triple

Amphicheiral and
Nonamphicheiral

11 / 19

A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles. By a continuous deformation,
make all of the angles into right angles , then make the length
of all edges equal to one (obtaining a cube).
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A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles. By a continuous deformation,
make all of the angles into right angles , then make the length
of all edges equal to one

This induces an isotopy of the triple of lines.
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A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles. By a continuous deformation,
make all of the angles into right angles , then make the length
of all edges equal to one

This induces an isotopy of the triple of lines.
The lines have been placed along pairwise skew edges of a
unit cube. By a rotation of the cube, one can take any edge of
the cube to any other edge.
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A parallelepiped is determined (up to isometry) by the lengths
of its edges and the angles. By a continuous deformation,
make all of the angles into right angles , then make the length
of all edges equal to one

This induces an isotopy of the triple of lines.
The lines have been placed along pairwise skew edges of a
unit cube. By a rotation of the cube, one can take any edge of
the cube to any other edge.

This reduces the number
of possible nonisotopic
configurations to two.
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of possible nonisotopic
configurations to two.
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These two triples of lines are mirror images of each other.
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These two triples of lines are mirror images of each other.
They are not isotopic.
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These two triples of lines are mirror images of each other.
They are not isotopic. Triples of (nonoriented) lines have an
invariant, also called the linking number,
which takes the value +1 or −1
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These two triples of lines are mirror images of each other.
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invariant, also called the linking number,
which takes the value +1 or −1 ,
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These two triples of lines are mirror images of each other.
They are not isotopic. Triples of (nonoriented) lines have an
invariant, also called the linking number,
which takes the value +1 or −1 ,
is preserved under isotopies,
and changes when one takes a mirror reflection of the triple of
lines.
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These two triples of lines are mirror images of each other.
They are not isotopic. Triples of (nonoriented) lines have an
invariant, also called the linking number,
which takes the value +1 or −1 ,
is preserved under isotopies,
and changes when one takes a mirror reflection of the triple of
lines. To define it, orient the tree lines arbitrarily.
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is preserved under isotopies,
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Multiply all three linking numbers.
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is preserved under isotopies,
and changes when one takes a mirror reflection of the triple of
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orientation of the lines, since if we reverse the orientation of
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A triple of skew lines is never isotopic to its mirror image.
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.



Amphicheirality problems

• Can lines be linked?

• Combing lines

• No parallel lines

• Equivalence of links
made of skew lines

• Pair of lines
• Orientations and
Semi-Orientations

• Linking number

• Triples of lines

• Parallelipiped

• Deforming
parallelipiped

• Linking number of a
triple

Amphicheiral and
Nonamphicheiral
• Amphicheirality
problems

• Nonamphicheiral
examples
• Amphicheiral
examples

• Amphicheiral
examples

• Four lines

• Five lines

14 / 19

A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.
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A set of pairwise skew lines is amphicheiral if it is isotopic to its
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Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
2. For what p is any link of p lines amphicheiral?
3. For what p does there exist a nonamphicheiral link of p
lines?
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
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3. For what p does there exist a nonamphicheiral link of p
lines?
4. For what p does there exist an amphicheiral link of p lines?
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
2. For what p is any link of p lines amphicheiral?
3. For what p does there exist a nonamphicheiral link of p
lines?
4. For what p does there exist an amphicheiral link of p lines?

Theorem. If p ≡ 3 mod 4 , then every link of p lines is
nonamphicheiral.
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
2. For what p is any link of p lines amphicheiral?
3. For what p does there exist a nonamphicheiral link of p
lines?
4. For what p does there exist an amphicheiral link of p lines?

Theorem. If p ≡ 3 mod 4 , then every link of p lines is
nonamphicheiral.
Proof. The number of triples in a link of p lines is equal to
p(p − 1)(p − 2)/6
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A triple of skew lines is never isotopic to its mirror image, while
a pair of lines is isotopic to its mirror image.
A set of pairwise skew lines is amphicheiral if it is isotopic to its
mirror image.
Thus, a triple is nonamphicheiral, and a pair is amphicheiral.

The following questions arise:
1. For what p is any link ofp lines nonamphicheiral?
2. For what p is any link of p lines amphicheiral?
3. For what p does there exist a nonamphicheiral link of p
lines?
4. For what p does there exist an amphicheiral link of p lines?

Theorem. If p ≡ 3 mod 4 , then every link of p lines is
nonamphicheiral.
Proof. The number of triples in a link of p lines is equal to
p(p − 1)(p − 2)/6 , and this is odd iff p ≡ 3 mod 4. •
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Theorem 1 gives an affirmative answer to the first of the four
questions above for p ≡ 3 mod 4 .
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Theorem 1 gives an affirmative answer to the first of the four
questions above for p ≡ 3 mod 4 .
The second question has a negative answer for any p ≥ 3 :
one can construct a nonamphicheiral link of p lines.



Nonamphicheiral examples

• Can lines be linked?

• Combing lines

• No parallel lines

• Equivalence of links
made of skew lines

• Pair of lines
• Orientations and
Semi-Orientations

• Linking number

• Triples of lines

• Parallelipiped

• Deforming
parallelipiped

• Linking number of a
triple

Amphicheiral and
Nonamphicheiral
• Amphicheirality
problems

• Nonamphicheiral
examples
• Amphicheiral
examples

• Amphicheiral
examples

• Four lines

• Five lines

15 / 19

Theorem 1 gives an affirmative answer to the first of the four
questions above for p ≡ 3 mod 4 .
The second question has a negative answer for any p ≥ 3 :
one can construct a nonamphicheiral link of p lines.
This also answers question 3.
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Theorem 1 gives an affirmative answer to the first of the four
questions above for p ≡ 3 mod 4 .
The second question has a negative answer for any p ≥ 3 :
one can construct a nonamphicheiral link of p lines.
This also answers question 3.
The simplest nonamphicheiral links for p = 4, 5 , and 6 :
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Theorem 1 gives an affirmative answer to the first of the four
questions above for p ≡ 3 mod 4 .
The second question has a negative answer for any p ≥ 3 :
one can construct a nonamphicheiral link of p lines.
This also answers question 3.
The simplest nonamphicheiral links for p = 4, 5 , and 6 :

The links are nonamphicheiral since all of the triples of lines in
them have the same linking number.
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 .
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):

To prove amphicheirality of he link, move the
upper two lines in such a way that the part
of its projection which contains all of the in-
tersections (in the projection) passes

over and above the projection of the other two lines:
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):

To prove amphicheirality of he link, move the
upper two lines in such a way that the part
of its projection which contains all of the in-
tersections (in the projection) passes

over and above the projection of the other two lines:

Rotate this picture by 90◦ clockwise, we ob-
tain the mirror image of the original picture.
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):

To prove amphicheirality of he link, move the
upper two lines in such a way that the part
of its projection which contains all of the in-
tersections (in the projection) passes

over and above the projection of the other two lines:

Rotate this picture by 90◦ clockwise, we ob-
tain the mirror image of the original picture.
For any even number p , take two sets of
p/2 lines, one behind the other.
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):

To prove amphicheirality of he link, move the
upper two lines in such a way that the part
of its projection which contains all of the in-
tersections (in the projection) passes

over and above the projection of the other two lines:

Rotate this picture by 90◦ clockwise, we ob-
tain the mirror image of the original picture.
For any even number p , take two sets of
p/2 lines, one behind the other.

Take the lines of the upper set from the sequence of
nonamphicheiral links constructed earlier.
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To answer Question 4, construct amphicheiral links of p lines
when p 6≡ 3 mod 4 . The simplest example (p = 4 ):

To prove amphicheirality of he link, move the
upper two lines in such a way that the part
of its projection which contains all of the in-
tersections (in the projection) passes

over and above the projection of the other two lines:

Rotate this picture by 90◦ clockwise, we ob-
tain the mirror image of the original picture.
For any even number p , take two sets of
p/2 lines, one behind the other.

Take the lines of the upper set from the sequence of
nonamphicheiral links constructed earlier. The other p/2 lines
is obtained from the first ones by rotating and then reflecting in
a mirror.
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Exercise. Construct similar examples for p ≡ 1 mod 4 , i.e.,
amphicheiral links of p = 4k + 1 lines.
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Exercise. Construct similar examples for p ≡ 1 mod 4 , i.e.,
amphicheiral links of p = 4k + 1 lines.

Here is the simplest link of this sort, with p = 5 :
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Exercise. Construct similar examples for p ≡ 1 mod 4 , i.e.,
amphicheiral links of p = 4k + 1 lines.

Here is the simplest link of this sort, with p = 5 :

Exercise. Prove, at least, that this link is amphicheiral.
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Links of four lines:

l m

nk
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. By moving it slightly,
if necessary, make three of the four lines (it makes no
difference which three) do not lie in parallel planes.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. By moving it slightly,
if necessary, make three of the four lines (it makes no
difference which three) do not lie in parallel planes. Construct
a hyperboloid through these three lines.
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Links of four lines:
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nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
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Links of four lines:
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Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
2. or intersect it in a single point,
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
2. or intersect it in a single point,
3. or intersect it in two points,
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
2. or intersect it in a single point,
3. or intersect it in two points,
4. or lies on the hyperboloid.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
2. or intersect it in a single point,
3. or intersect it in two points,
4. or lies on the hyperboloid.
In the last case the link is isotopic either to the left or the
center link.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
1. either does not intersect the hyperboloid
2. or intersect it in a single point,
3. or intersect it in two points,
If the fourth line does not intersect the hyperboloid, then it can
be brought in toward the hyperboloid until it is tangent to the
hyperboloid, i.e., the case 1 is reduced to case 2.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
2. or intersect it in a single point,
3. or intersect it in two points,
The case 2 reduces to 4 or 3:

Fouth line

l l’

Fouth line

l

a) b)
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
3. or intersect it in two points,
If the fourth line intersects the hyperboloid in two pints, then
everything depends on whether these points are in the same
part of the hyperboloid into which the first three lines divide it,
or are in different parts (the hyperboloid is divided into three
sections).
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Links of four lines:

l m
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Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
3. or intersect it in two points,
If the points are in the same part, then the fourth line can be
placed on the hyperboloid without the first three lines
interfering.
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Links of four lines:

l m

nk

Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
3. or intersect it in two points,
If the points are in the same part, then the fourth line can be
placed on the hyperboloid without the first three lines
interfering. Then the fourth line becomes a generatrix, and we
are in case 4.
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Links of four lines:
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Theorem. Any link of four lines is isotopic to one of these
links.

Proof. Take an arbitrary link of four lines. The fourth line:
3. or intersect it in two points,
If the fourth line intersects the hyperboloid in different parts,
then the link is isotopic to the rightmost one.
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