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INTRODUCTION iii

Introduction

This preprint is a translation of the first chapter of my dissertation ! which
was defended 1n 1983. 1T do not take here an attempt of updating. The whole
text essentially updated will be published as a book by American Mathematical
Society.

The results of the dissertation were obtained in 1978-80, announced in [Vir79a,
Vir79b, Vir80], a short fragment was published in detail in [Vir83a] and a con-
siderable part was published in paper [Vir83b]. The later publication appeared,
however, in almost inaccessible edition and has not been translated into English.

In [Vir89] T presented almost all constructions of plane curves contained in
the dissertation, but in a simplified version: without description of the main
underlying patchwork construction of algebraic hypersurfaces. Now I regard the
latter as the most important result of the dissertation with potential range of
application much wider than topology of real algebraic varieties. It was the
subject of the first chapter of the dissertation, and it is this chapter that is
presented in this preprint.

In the dissertation the patchwork construction was applied only in the case of
plane curves. It is developed in considerably higher generality. This is motivated
not only by a hope on future applications, but mainly internal logic of the sub-
ject. In particular, the proof of Main Patchwork Theorem in the two-dimensional
situation is based on results related to the three-dimensional situation and anal-
ogous to the two-dimensional results which are involved into formulation of the
two-dimensional Patchwork Theorem. Thus, it is natural to formulate and prove
these results once for all dimensions, but then it 1s not natural to confine Patch-
work Theorem itself to the two-dimensional case. The exposition becomes heav-
ier because of high degree of generality. Therefore the main text prefaced with
a section with visualizable presentation of results. The other sections formally
are not based on the first one and contain the most general formulations and
complete proofs.

In the last section another, more elementary, approach is expounded. It gives
more detailed information about the constructed manifolds, having not only
topological but also metric character. There, in particular, Main Patchwork
Theorem 1s proved once again.

I am grateful to Julia Drobotukhina who translated this text and typed it. I
made some corrections, but realize that still the text is not well prepared and
apologize for numerous defects. Both Julia and I are not native English speaking
persons.

Tt is not a Ph D., but a dissertation for the degree of Doctor of Physico-Mathematical
Sciences. In Russia there are two degrees in mathematics. The lower, degree corresponding
approximately to Ph D., is called Candidate of Physico-Mathematical Sciences. The high
degree dissertation is supposed to be devoted to a subject distinct from the subject of the Can-
didate dissertation. My Candidate dissertation was on interpretation of signature invariants of
knots in terms of intersection form of branched covering spaces of the 4-ball. It was defended
in 1974.
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PATCHWORKING REAL ALGEBRAIC VARIETIES 1

1. Patchworking plane real algebraic curves

This Section 1s introductory. I explain the character of results staying in the
framework of plane curves. A real exposition begins in Section 2. It does not
depend on Section 1. To a reader who is motivated enough and does not like
informal texts without proofs, I would recommend to skip this Section.

1.1. The case of smallest patches. We start with the special case of the
patchworking. In this case the patches are so simple that they do not demand a
special care. It purifies the construction and makes it a straight bridge between
combinatorial geometry and real algebraic geometry.

1.1.A INITIAL DATA. Let m be a positive integer number [it is the degree of
the curve under construction]. Let A be the triangle in R? with vertices (0,0),
(m,0), (0,m) [it is a would-be Newton diagram of the equation]. Let T be a
triangulation of A whose vertices have integer coordinates. Let the vertices of T
be equipped with signs; the sign (plus or minus) at the verter with coordinates
(4,7) ts denoted by o ;.

See Figure 1.1.
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FIGURE 1.1

For €,6 = 41 denote the reflection R* — R? : (z,y) — (sz,dy) by S:s.
For a set A C R? denote S. 5(A) by A. s (see Figure 1.2). Denote a quadrant
{(z,y) € R?|ex > 0,8y > 0} by Q- .

A A
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FIGURE 1.2
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The following construction associates with Initial Data 1.1.A above a piecewise
linear curve in the projective plane.

1.1.B COMBINATORIAL PATCHWORKING. Tuke the square A, made of A and
its marror images Ay, A_4 and A__. FEzxlend the triangulation T of A to a
triangulation T, of Ay symmetric with respect to the coordinate ares. FExtend the
dustribution of signs o5 ; to a distribution of signs on the vertices of the extended
triangulation which satisfies the following condition: Uiyjaaiygjaiéj =1 for any
verter (i,7) of T and €,6 = +1. (In other words, passing from a vertex to its
mirror image with respect to an axis we preserve its sign if the distance from the
vertex to the axis is even, and change the sign if the distance is odd.)?

If a triangle of the triangulation T. has vertices of different signs, draw the
midline separating the vertices of different signs. Denote by L the union of these
midlines. It 1s a collection of polygonal lines contained in A,. Glue by S__ the
opposite sides of A.. The resulting space A is homeomorphic to the projective

plane RP?. Denote by L the image of L in A.

A

+

Ficure 1.3. Combinatorial patchworking of the initial data
shown in Figure 1.1

Let us introduce a supplementary assumption: the triangulation 7 of A is
convez. It means that there exists a convex piecewise linear function v: A — R
which is linear on each triangle of 7 and not linear on the union of any two
triangles of 7. A function v with this property 1s said to convezify T .

'More sophisticated description: the new distribution should satisfy the modular property:
g (o z'y) = o4&y’ for g = Ses (in other words, the sign at a vertex is the sign of the
corresponding monomial in the quadrant containing the vertex).
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In fact, to stay in the frameworks of algebraic geometry we need to accept an
additional assumption: a function v convexifying 7 should take integer value on
each vertex of 7. Such a function is said to convezify T over Z. However this
additional restriction is easy to satisfy. A function v : A — R convexifying 7T is
characterized by its values on vertices of 7. It is easy to see that this provides a
natural identification of the set of functions convexifying 7 with an open convex
cone of R where N is the number of vertices of 7. Therefore if this set is not
empty, then it contains a point with rational coordinates, and hence a point with
integer coordinates.

1.1.C POLYNOMIAL PATCHWORKING. Gwen Imtial Data m, A, T and o;; as
above and a function v convexifying T over Z. Take the polynomial

b(x,y,t) — Z O_iyjl,iyjtu(i,j).
(¢,4) runs over

vertices of T

and consider it as a one-parameter family of polynomials: set by (x,y) = b(z,y,1).
Denote by By the corresponding homogeneous polynomials: Bi(xg, %1, 22) =

et (21 /w0, a2/ 20).

1.1.D PATCHWORK THEOREM. Let m, A, T and o;; be an initial data as
above and v a function convexifying T over Z. Denote by by and B; the non-
homogeneous and homogeneous polynomials obtained by the polynomial patch-
working of these initial data and by L and L the piecewise linear curves in the
square A, and its quotient space A respectively obtained from the same initial
data by the combinatorial patchworking.

Then there exists tg > 0 such that for any t € (0,tg] the equation by(x,y) =0
defines in the plane R? a curve ¢ such that the pair (R? c;) is homeomorphic to
the pair (A., L) and the equation B(xo, 1, 22) = 0 defines in the real projective
plane a curve Cy such that the pair (R P2 C,) is homeomorphic to the pair (A, L).

1.1.E Ezample. Construction of a curve of degree 2 is shown in Figure 1.3. The
broken line corresponds to an ellipse. More complicated examples with a curves
of degree 6 are shown in Figures 1.4, 1.5.

For more general version of the patchworking we have to prepare patches.
Roughly speaking, the role of patches was played above by lines. The general-
1zation below is a transition from lines to curves. Therefore we proceed with a
preliminary study of curves.

1.2. Logarithmic asymptotes of a curve. As is known since Newton’s
works (see [New67]), behavior of a curve {(z,y) € R?|a(x,y) = 0} near the
coordinate axes and at infinity depends, as a rule, on the coefficients of a cor-
responding to the boundary points of its Newton polygon A(a). We need more
specific formulations, but prior to that we have to introduce several notations
and discuss some notions.

For a set I' C R? and a polynomial a(z,y) = EMEZQ a,r¥1y“2, denote the
polynomial ZwanZQ aux¥1y¥? by a'. It is called the T-truncation of a.
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/

FIGURE 1.4. Harnack’s curve of degree 6.

For a set I/ C R? and a real polynomial a in two variables, denote the curve
{(2,5) € U | alz, y) = 0} by Vis(a).

The complement of the coordinate axes in R? i.e. aset {(z,y) € R?|zy # 0},
is denoted? by RIRZ.

Denote by I the map RIR? — R? defined by formula l(z, y) = (In|z|,In|y]). Tt
is clear that the restriction of [ to each quadrant is a diffeomorphism.

A polynomial in two variables 1s said to be quasi-homogeneous if its Newton
polygon is a segment. The simplest real quasi-homogeneous polynomials are
binomials of the form ax? + SBy? where p and ¢ are relatively prime. A curve
Vire (@), where a is a binomial, is called quasiline. The map { transforms quasi-
lines to lines. In that way any line with rational slope can be obtained. The
image [(Vggz (@) of the quasiline Vgge(a) is orthogonal to the segment A(a).

It 1s clear that any real quasi-homogeneous polynomial in 2 variables is decom-
posable into a product of binomials of the type described above and trinomials
without zeros in RI®?. Thus if a is a real quasi-homogeneous polynomial then
the curve Vgge(q) 15 decomposable into a union of several quasilines which are
transformed by [ to lines orthogonal to A(a).

A real polynomial a in two variables 1s said to be peripherally nondegenerate
if for any side I' of its Newton polygon the curve Vigg:(a) is nonsingular (it
is a union of quasilines transformed by [ to parallel lines, so the condition that
it is nonsingular means absence of multiple components). Being peripherally
nondegenerate is typical in the sense that among polynomials with the same
Newton polygons the peripherally nondegenerate ones form nonempty set open
in the Zarisky topology.

2This notation is motivated in Section 2.3 below.
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F1GurE 1.5. Gudkov’s curve of degree 6.

For a side T' of a polygon A, denote by DC(I') a ray consisting of vectors
orthogonal to T and directed outside A with respect to T' (see Figure 1.6 and
Section 2.2).

The assertion in the beginning of this Section about behavior of a curve nearby
the coordinate axes and at infinity can be made now more precise in the following
way.

1.2.A. Let A € BRR? be a convex polygon with nonempty interior and sides 'y,
..., I'n. Let a be a peripherally nondegenerate real polynomial in 2 variables with
A(a) = A. Then for any quadrant U € RR? each line contained in |(Vir(a')
withi =1, ... ,nis an asymptote of [(Vir(a)), and [(Viy (a)) goes to infinity only
along these asymptotes in the directions defined by rays DC{ (T;).

Theorem generalizing this proposition is formulated in Section 6.3 and proved
in Section 6.4. Here we restrict ourselves to the following elementary example
illustrating 1.2.A.
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A A

FIGURE 1.6
A

Y

FIGURE 1.7

1.2.B Erample. Consider the polynomial a(z,y) = 823 — x? 4+ 4y*. Its Newton
polygon is shown in Figure 1.6. In Figure 1.7 the curve Vg2(a) is shown. In
Figure 1.8 the rays DC 1 (I';) and the images of Viy(a) and Vi (at'i) under diffeo-
morphisms |y : U — R? are shown, where U runs over the set of components
of RR? (i.e. quadrants). In Figure 1.9 the images of DO} (T;) under [ and the
curves Vgz(a) and ViZ(a) are shown.

1.3. Charts of polynomials. The notion of a chart of a polynomial is fun-
damental for what follows. It is introduced naturally via the theory of toric
varieties (see Section 3). Another definition, which is less natural and applicable
to a narrower class of polynomials, but more elementary, can be extracted from
the results generalizing Theorem 1.2.A (see Section 6). In this Section, first, I
try to give a rough idea about the definition related with toric varieties, and
then T give the definitions related with Theorem 1.2.A with all details.

To any convex closed polygon A C R? with vertices whose coordinates are
integers, a real algebraic surface RA 1s associated. This surface 1s a completion of
RR? (= (R~ 0)?). The complement RA ~ RR? consists of lines corresponding to
sides of A. From the topological viewpoint RA can be obtained from four copies
of A by pairwise gluing of their sides. For a real polynomial a in two variables
we denote the closure of Vggz(a) in RA by Vga(a). Let a be a real polynomial
in two variables which is not quasi-homogeneous. (The latter assumption is not
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\ A

FIGURE 1.8

necessary, it is made for the sake of simplicity.) Cut the surface RA(a) along
lines of RA(a) \ RIR? (i.e. replace each of these lines by two lines). The result
is four copies of A(a) and a curve lying in them obtained from Vga(q)(a). The
pair consisting of these four polygons and this curve is a chart of a.

Recall that for €,8 = £1 we denote the reflection R? — R?: (z,y) — (cx,dy)
by S. 5. For a set A C R? we denote S 5(A4) by A. 5 (see Figure 1.2). Denote a
quadrant {(z,y) € R?|ex > 0,8y > 0} by Q. 5.

Now define the charts for two classes of real polynomials separately.

First, consider the case of quasi-homogeneous polynomials. Let a be a quasi-
homogeneous polynomial defining a nonsingular curve Vgg2(a). Let (w1, wa) be
a vector orthogonal to A = A(a) with integer relatively prime coordinates. Tt

FIGURE 1.9
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A A

Ficure 1.10

is clear that in this case Vgz(a) is invariant under S(_jjwi (—1)w2. A pair (A,
v) consisting of A, and a finite set v C A, is called a chart of a, if the number
of points of v N A, 5 is equal to the number of components of Vo, ;(a) and v is
invariant under S(_jjwi (—1)w> (remind that Vig=(a) is invariant under the same
reflection).

1.3.A Ezample. In Figure 1.10 it is shown a curve Vgz(a) with a(z,y) = 225y —
ety? — 2273 + ¥t = (22 — y)(2? + y)(22% — y)y, and a chart of a. Now con-
sider the case of peripherally nondegenerate polynomials with Newton polygons
having nonempty interiors. Let A, T'y,..., [, and a be as in 1.2.A. Then,
as it follows from 1.2.A, there exist a disk D C R? with center at the origin
and neighborhoods Dy, ..., D, of rays DCL(I'1),...,DCL(T,) such that the
curve Vggz(a) lies in [=}(D U Dy U---U D,) and for i = 1,...,n the curve
Vi-1(p,~p)(a) is approximated by ‘/l—l(Dl\D)(aFl) and can be contracted (in
itself) to Vi-1(p,nap)(a).

A pair (A, v) consisting of A, and a curve v C A, is called a chart of a if

(1) for i = 1,...,n the pair (I';x, [y« Nv) is a chart of a''# and

(2) for ¢, 6 = +£1 there exists a homeomorphism k. s : D — A such that
v N Agyé = 5575 o hgy(; o l(‘/l_l(D)an)s(a)) and hgyé(@D N Dl) C TI'; for
1=1,...,n.

It follows from 1.2.A that any peripherally nondegenerate real polynomial a
with Int A(a) # @ has a chart. It is easy to see that the chart is unique up to
a homeomorphism A, — A, preserving the polygons A, s, their sides and their
vertices.

1.3.B Ezample. In Figure 1.11 it is shown a chart of 823 — % + 4y which was
considered in 1.2.B.

1.3.C (GENERALIZATION OF EXAMPLE 1.3.B. Let
a(z,y) = aray" + asa’?y’? 4 aza’ey’?

be a non-quasi-homogeneous real polynomial (i. e., a real trinomial whose the
Newton polygon has nonempty interior). For ¢, = +1 set

. Z y
Oein,55x = sign(age’®d’*).
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A

Ficure 1.11

Then the pair consisting of A, and the mudlines of A, 5 separating the vertices
(€ig, 0jr) with opposite signs 0., 55, is a chart of a.

Proor. Consider the restriction of a to the quadrant Q). 5. If all signs o5, 55,
are the same, then aQ). 5 is a sum of three monomials taking values of the same
sign on Q. 5. In this case Vo, ;(a) is empty. Otherwise, consider the side I' of the
triangle A on whose end points the signs coincide. Take a vector (wy, wq) orthog-
onal to T'. Consider the curve defined by parametric equation ¢ — (2ot yot*'?).
It is easy to see that the ratio of the monomials corresponding to the end points
of I' does not change along this curve, and hence the sum of them is monotone.
The ratio of each of these two monomials with the third one changes from 0 to
—oo monotonically. Therefore the trinomial divided by the monomial which does
not sit on I' changes from —oo to 1 continuously and monotonically. Therefore
it takes the zero value once. Curves t — (2ot"*, yot"?) are disjoint and fill Q. 5.
Therefore, the curve Vg, ; (@) is isotopic to the preimage under S: 5 0 he 50( of
the midline of the triangle A, ; separating the vertices with opposite signs. [

1.3.D. Ifa is a peripherally nondegenerate real polynomial in two variables then
the topology of a curve Vggz(a) (i.e. the topological type of pair (RIR% Vyg:(a)))
and the topology of its closure in R?, R P? and other toric extensions of RIR? can
be recovered from a chart of a.

The part of this proposition concerning to Vgge(a) follows from 1.2.A. See
below Sections 2 and 3 about toric extensions of RIR? and closures of Vgge(a) in
them. In the next Subsection algorithms recovering the topology of closures of
Vrrz(a) in R? and R P? from a chart of a are described.

1.4. Recovering the topology of a curve from a chart of the polyno-
mial. First, I shall describe an auxiliary algorithm which is a block of two main
algorithms of this Section.

1.4.A ALGORITHM. ADJOINING A SIDE WITH NORMAL VECTOR («, f). Initial
data: a chart (As, v) of a polynomial.

If A (= Ayy) has a side T with (o, 8) € DCL(T) then the algorithm does not
change (A, v). Otherwise:

1. Drawn the lines of support of A orthogonal to (a, 3).
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FIGURE 1.12

2. Take the point belonging to A on each of the two lines of support, and join
these points with a segment.

3. Clut the polygon A along this segment.

4. Move the pieces obtained aside from each other by parallel translations
defined by vectors whose difference is orthogonal to («, 3).

§. Fill the space obtained between the pieces with a parallelogram whose op-
posite sides are the edges of the cut.

6. Extend the operations applied above to A to A, using symmetries S; 5.

7. Connect the points of edges of the cut obtained from points of v with
segments which are parallel to the other pairs of the sides of the parallelograms
mserted, and adjoin these segments to what is obtained from v. The result and
the polygon obtained from A, constitute the chart produced by the algorithm.

1.4.B Ezample. In Figure 1.12 the steps of Algorithm 1.4.A are shown. It is
applied to («, 3) = (=1,0) and the chart of 822 — z? +4y? shown in Figure 1.11.

Application of Algorithm 1.4.A to a chart of a polynomial a (in the case when
it does change the chart) gives rise a chart of polynomial

(xﬁy—oc + x—ﬁyoe)xlﬁlylocla(x’ y).

If A is a segment (i.e. the initial polynomial is quasi-homogeneous) and this
segment is not orthogonal to the vector (o, f) then Algorithm 1.4.A gives rise to
a chart consisting of four parallelograms, each of which contains as many parallel
segments as components of the curve are contained in corresponding quadrant.
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A
A

FIiGUrE 1.13

1.4.C ALGORITHM. RECOVERING THE TOPOLOGY OF AN AFFINE CURVE FROM
A CHART OF THE POLYNOMIAL. Initial data: a chart (A, v) of a polynomial.

1. Apply Algorithm 1.4.A with (o, 8) = (0, —1) to (A, v). Assign the former
notation («, §) to the result obtained.

2. Apply Algorithm 1.4.A with (o, 8) = (0, —1) to (AL, v). Assign the former
notation («, §) to the result obtained.

3. Glue by Sy _ the sides of Ay s, A_ s which are faced to each other and
parallel to (0,1) (unless the sides coincide).

4. Glue by S_ 1 the sides of A, 1, A. _ which are faced to each other and
parallel to (1,0) (unless the sides coincide).

4. Contract to a point all sides obtained from the sides of A whose normals
are directed into quadrant P_ _.

6. Remove the sides which are not touched on in blocks 3, | and 5.

Algorithm 1.4.C turns the polygon A, to a space A’ which is homeomorphic
to R? and the set v to a set v/ C A’ such that the pair (A’, v') is homeomorphic
to (R?, ClVggz(a)), where C1 denotes closure and a is a polynomial whose chart
is (As, v).
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1.4.D FEzample. In Figure 1.13 the steps of Algorithm 1.4.C applying to a chart
of polynomial 823y — 22y + 4y are shown.

1.4.E ALGORITHM. RECOVERING THE TOPOLOGY OF A PROJECTIVE CURVE
FROM A CHART OF THE POLYNOMIAL.  Initial data: a chart (A., v) of a
polynomial.

1. Block 1 of Algorithm 1.4.C.

2. Block 2 of Algorithm 1.4.C.

3. Apply Algorithm 1.4.A with (o, 8) = (1,1) to (A, v). Assign the former
notation (A., v) to the result obtained.

4. Block 3 of Algorithm 1.4.C.

4. Block 4 of Algorithm 1.4.C.

6. Glue by S_ _ the sides of Ay and A__ which are faced to each other and
orthogonal to (1,1).

7. Glue by S_ _ the sides of Ay_ and A_, which are faced to each other and
orthogonal to (1,—1).

8. Block 5 of Algorithm 1.4.C.

9. Contract to a point all sides obtained from the sides of A with normals
directed into the angle {(z,y) € R?|z < 0,y+x > 0}.

10. Contract to a point all sides obtained from the sides of A with normals
directed into the angle {(z, y) e R?|y <0, y+ 2 > 0}.

Algorithm 1.4.E turns polygon A, to a space A’ which is homeomorphic to
projective plane R P? and the set v to a set v/ such that the pair (A’ v/) is
homeomorphic to (R P? Vggz(a)), where a is the polynomial whose chart is the
initial pair (As, v).

1.5. Patchworking charts. Let ay,...,as; be peripherally nondegenerate
real polynomials in two variables with Int A(a;) N Int A(a;) = @ for i # j. A
pair (A., v) is said to be obtained by patchworking if A = |J;_; A(a;) and there
exist charts (A(a;)«, v;) of ay, ..., as such that v = [J;_, v;.

1.5.A Ezample. In Figure 1.11 and Figure 1.14 charts of polynomials 82% — 22 +
4y? and 4y? — 2% + 1 are shown. In Figure 1.15 the result of patchworking these
charts is shown.

A A

FiGUrE 1.14 FicUure 1.15
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1.6. Patchworking polynomials. Let ay, ..., a5 be real polynomialsin two
variables with Int A(a;)NInt A(a;) = @ for ¢ # j and a?(a’)rm(aj) = ajA(a’)nA(aj)
for any 7, j. Suppose the set A = [J{_, A(a;) is convex. Then, obviously, there
exists the unique polynomial a with A(a) = A and a®@) =g fori=1,...,s.

Let v : A — R be a convex function such that:

(1) restrictions v|a(q;) are linear;
(2) if the restriction of v to an open set is linear then the set is contained
in one of A(a;);

(3) v(ANZ?) CZ.
Then v is said to convexify the partition A(ay),..., A(as) of A.
If a(z,y) = ) cp2 @wr“ty*? then we put

o) = 3 gy
wEZ?

and say that polynomials b; are obtained by patchworking a1, ...,a; by v.

1.6.A Ezample. Let aj(z,y) = 823 — 22 + 4y?, as(z,y) = 4y* — 2> + 1 and

( ) 0, if wl—i—szQ
v(wg,ws) = .
e 2—wy —wy, if witw<2

Then b;(z,y) = 8z — x? + 4y + 1.

1.7. The Main Patchwork Theorem. A real polynomial ¢ in two variables
is said to be completely nondegenerate if it is peripherally nondegenerate (i.e. for
any side T' of its Newton polygon the curve Vgge(a') is nonsingular) and the
curve Vggz(a) is nonsingular.

1.7.A. Ifay,...,as are completely nondegenerate polynomials satisfying all con-
ditions of Section 1.6, and by are obtained from them by patchworking by some
nonnegative conver function v convexifying A(ai), ..., A(as), then there erists
to > 0 such that for any t € (0,1q] the polynomial by is completely nondegenerate
and its chart is obtained by patchworking charts of ay, ..., as.

By 1.3.C, Theorem 1.7.A generalizes Theorem 1.1.D. Theorem generalizing
Theorem 1.7.A is proven in Section 4.3. Here we restrict ourselves to several
examples.

1.7.B Ezample. Polynomial 823 — 22 + 4y? 4+ ¢% with ¢ > 0 small enough has
the chart shown in Figure 1.15. See examples 1.5.A and 1.6.A.

In the next Section there are a number of considerably more complicated
examples demonstrating efficiency of Theorem 1.7.A in the topology of real al-
gebraic curves.



14 PATCHWORKING REAL ALGEBRAIC VARIETIES

° o0
0 o 0
O QO oo O
)0 B s
OO o0 5 OO
S0
(a) (b) (c)

FIGURE 1.16

FiGUure 1.17

1.8. Construction of M-curves of degree 6. One of central points of the
well known 16th Hilbert’s problem [Hil01] is the problem of isotopy classification
of curves of degree 6 consisting of 11 components (by the Harnack inequality
[Har76] the number of components of a curve of degree 6 is at most 11). Hilbert
conjectured that there exist only two isotopy types of such curves. Namely,
the types shown in Figure 1.16 (a) and (b). His conjecture was disproved by
Gudkov [GUG9] in 1969. Gudkov constructed a curve of degree 6 with ovals’
disposition shown in Figure 1.16 (c) and completed solution of the problem of
1sotopy classification of nonsingular curves of degree 6. In particular, he proved,
that any curve of degree 6 with 11 components is isotopic to one of the curves
of Figure 1.16.

Gudkov proposed twice — in [Gud73] and [Gud71] — simplified proofs of
realizability of the third isotopy type. His constructions, however, are essentially
more complicated than the construction described below, which is based on
1.7.A and besides gives rise to realization of the other two types, and, after
a small modification, realization of almost all isotopy types of nonsingular plane
projective real algebraic curves of degree 6 (see [Vir89]).

Construction In Figure 1.17 two curves of degree 6 are shown. FEach of
them has one singular point at which three nonsingular branches are second
order tangent to each other (i.e. this singularity belongs to type Jig in the
Arnold classification [AVGZ82]). The curves of Figure 1.17 (a) and (b) are
easily constructed by the Hilbert method [Hil91], see in [Vir89], Section 4.2.
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Choosing in the projective plane various affine coordinate systems, one obtains
various polynomials defining these curves. In Figures 1.18 and 1.19 charts of
four polynomials appeared in this way are shown. In Figure 1.20 the results of
patchworking charts of Figures 1.18 and 1.19 are shown. All constructions can
be done in such a way that Theorem 1.7.A (see [Vir89], Section 4.2) may be
applied to the corresponding polynomials. It ensures existence of polynomials
with charts shown in Figure 1.20.

1.9. Behavior of curve Vggz(b:) ast — 0. Let a1,...,a5, A and v be asin
Section 1.6. Suppose that polynomials aq, ..., as are completely nondegenerate
and v|a(a,) = 0. According to Theorem 1.7.A, the polynomial b; with sufficiently
small ¢ > 0 has a chart obtained by patchworking charts of ay, ..., as. Obviously,
bo = a; since v|a(q,) = 0. Thus when ¢ comes to zero the chart of a; stays only,
the other charts disappear.

How do the domains containing the pieces of Vggz(b:) homeomorphic to
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Virz(a1), ..., Vkrz(as) behave when ¢ approaches zero? They are moving to
the coordinate axes and infinity. The closer ¢ to zero, the more place is occupied
by the domain, where Vggz(b;) is organized as Vggz(a1) and is approximated by
t (cf. Section 6.7).

It is curious that the family b; can be changed by a simple geometric trans-
formation in such a way that the role of a; passes to any one of as,...,as or
even to al, where T is a side of A(ag), k=1,...,s. Indeed, let A : R? - R be a
linear function, A(z,y) = ax + By +v. Let v/ = v — A. Denote by b, the result
of patchworking ay,...,as by v. Denote by gh(ap): the linear transformation
RR? — RR?: (z,y) — (zt%, yt°). Then

V]R]R2(b ) V]R]Rz(bt o] qh( —8),t ) = qh(ayﬁ)ytVRR2(bt).

Indeed,
b;(l‘, y) — Z awxwlywztu(wl,wz)—awl—ﬁwz—v
=177 ag (wt ) (gt e )
=17y (xt =yt~ ﬁ)
=t""b 0 qh(—a,—@),t(l‘, y).

Thus the curves Vggz(b;) and Vggz(b:) are transformed to each other by a
linear transformation. However the polynomial b} does not tend to ay as t — 0.
For example, if A[a(a,) = V|a(ay) then v/[a@,) = 0 and b; — ax. In this case
as t — 0, the domains containing parts of Vggz(b;), which are homeomorphic
to Vrrz(a;), with ¢ # k, run away and the domain in which Vggz(b}) looks like
Virz(ar) occupies more and more place. If the set, where v coincides with A (or
differs from A by a constant), is a side T' of A(ay), then the curve Vgg=(b;) turns
to Vegz(al) (i.e. collection of quasilines) as ¢ — 0 similarly.

The whole picture of evolution of Vggz(b:) when ¢ — 0 is the following. The
fragments which look as Vggz(a;) with i = 1,... s become more and more ex-
plicit, but these fragments are not staying. Each of them is moving away from
the others. The only fragment that is growing without moving corresponds to
the set where v is constant. The other fragments are moving away from it. From
the metric viewpoint some of them (namely, ones going to the origin and axes)
are contracting, while the others are growing. But in the logarithmic coordi-
nates, i.e. being transformed by [ : (z,y) — (In|z|,In]y|), all the fragments are
growing (see Section 6.7). Changing v we are applying linear transformation,
which distinguishes one fragment and casts away the others. The transformation
turns our attention to a new piece of the curve. It 1s as if we would transfer a
magnifying lens from one fragment of the curve to another. Naturally, under
such a magnification the other fragments disappear at the moment ¢ = 0.

1.10. Patchworking as smoothing of singularities. In the projective
plane the passage from curves defined by b; with ¢ > 0 to the curve defined by
by looks quite differently. Here, the domains, in which the curve defined by b;
looks like curves defined by ay, ..., as are not running away, but pressing more
closely to the points (1:0:0), (0:1:0), (0:0:1) and to the axes joining them.
At t = 0, they are pressed into the points and axes. It means that under the
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inverse passage (from ¢ = 0 to ¢ > 0) the full or partial smoothing of singularities
concentrated at the points (1:0:0), (0:1:0), (0:0:1) and along coordinate
axes happens.

1.10.A FEzample. Let ay, as be polynomials of degree 6 with alA(al)nA((“) =

aZA(al)nA((M) and charts shown in Figure 1.18 (a) and 1.19 (b). Let vy, vo and
v3 be defined by the following formulas:

( ) 0, ifw1—|—2w2§6
vi(wi,ws) = .
P 2(wy + 2we — 6), ifwy+ 2wy > 6

( ) 6—(.«)1—2(.«)2, ifw1—|—2w2§6
vo(wy,ws) = .
E w1 + 2we — 6, if wi + 2wy > 6

{2(6 —wy — 2wy), ifwy + 2wy <6

V3(w1,w2) = .

0, ifwi + 2wy > 6

(note, that v, vo and vs differ from each other by a linear function). Let b}, b?
and b3 be the results of patchworking ay, as by vy, vs and v3. By Theorem 1.7.A
for sufficiently small ¢ > 0 the polynomials b}, b? and b? have the same chart
shown in Figure 1.20 (ab), but as ¢ — 0 they go to different polynomials, namely,
a, alA(al)nA(GQ) and as.The closure of Vgg2(b) with i = 1, 2, 3 in the projective
plane (they are transformed to one another by projective transformations) are
shown in Figure 1.21. The limiting projective curves, i.e. the projective closures

of Vigz(a1), Vmgz(af(al)nA(GQ)), Vkrz(az2) are shown in Figure ??. The curve
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shown in Figure ?? (b) is the union of three nonsingular conics which are
tangent to each other in two points.

Curves of degree 6 with eleven components of all three isotopy types can be
obtained from this curve by small perturbations of the type under consideration
(cf. Section 1.8). Moreover, as it is proven in [Vir89], Section 5.1, nonsingular
curves of degree 6 of almost all isotopy types can be obtained.

1.11. Evolvings of singularities. Let f be a real polynomial in two vari-
ables. (See Section 5, where more general situation with an analytic function
playing the role of f is considered.) Suppose its Newton polygon A(f) inter-
sects both coordinate axes (this assumption is equivalent to the assumption that
Vkz2(f) is the closure of Vgge(f)). Let the distance from the origin to A(f) be
more than 1 or, equivalently, the curve Vg2(f) has a singularity at the origin.
Let this singularity be isolated. Denote by B a disk with the center at the origin
having sufficiently small radius such that the pair (B, Vg(f)) is homeomorphic
to the cone over its boundary (9B, Vap(f)) and the curve Vg=(f) is transversal
to OB (see [Mil68], Theorem 2.10).

Let f be included into a continuous family f; of polynomialsin two variables:
f = fo. Such a family is called a perturbation of f. We shall be interested mainly
in perturbations for which curves Vg=(f:) have no singular points in B when ¢ is
in some segment of type (0, £]. One says about such a perturbation that it evolves
the singularity of Vgz(f;) at zero. If perturbation f; evolves the singularity of
Vk2(f) at zero then one can find t; > 0 such that for t € (0,%] the curve
Vkz2(f:) has no singularities in B and, moreover, is transversal to dB. Obviously,
there exists an isotopy h: : B — B with t; € (0,%] such that hy, = id and
h:(Va(fo)) = VB(f:), so all pairs (B, Vp(f:)) with ¢ € (0,%] are homeomorphic
to each other. A family (B, Vgz(f:)) of pairs with ¢ € (0,%¢] is called an evolving
of singularity of Vg2(f) at zero, or an evolving of germ of Vg=(f).

Denote by Ty, ..., Ty the sides of Newton polygon A(f) of the polynomial f,
faced to the origin. Their union I'(f) = [J/_, ['; is called the Newton diagram of
I

Suppose the curves Vggz(f17) with i = 1,...,n are nonsingular. Then, ac-
cording to Newton [New67], the curve Vg=(f) is approximated by the union of
ClVgge(f') with i = 1,..., n in a sufficiently small neighborhood of the origin.
(This is a local version of Theorem 1.2.A; it is, as well as 1.2.A, a corollary of The-
orem 6.3.A.) Disk B can be taken so small that Vg (f) is close to d BNVgg2(f 1),
so the number and disposition of these points are defined by charts (T';., v;) of
fF. The union (T(f)«, v) = (Ui Tix, Ur—; vi) of these charts is called a chart
of germ of Vg=(f) at zero. It is a pair consisting of a simple closed polygon
T'(f+), which is symmetric with respect to the axes and encloses the origin, and
finite set v lying on it. There is a natural bijection of this set to Vap(f), which
is extendable to a homeomorphism (T'(f)., v) = (0B, Vap(f)). Denote this
homeomorphism by g.

Let f; be a perturbation of f, which evolves the singularity at the origin. Let
B, tg and h; be as above. It is not difficult to choose an isotopy h; : B — B,
t € (0,%0] such that its restriction to 9B can be extended to an isotopy hj :
IB — 0B with t € [0,t0] and hf(Vep(fi,)) = Vap(f). A pair (II, ) consisting
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of the polygon II bounded by T'(f). and an 1-dimensional subvariety = of II is
called a chart of evolving (B, Vg (f:)), t € [0,tg] if there exists a homeomorphism
IT — B, mapping 7 to Vap(ft, )+, whose restriction 911 — JII is the composition

T'(f)« 4 0B i) IB. Tt is clear that the boundary (911, 97) of a chart of germ’s
evolving is a chart of the germ. Also it is clear that if polynomial f is completely
nondegenerate and polygons A(f;) are obtained from A(f) by adjoining the
region restricted by the axes and TI(f), then charts of f; with ¢ € (0,%g] can
be obtained by patchworking a chart of f and chart of evolving (B, Vg(f:)),
t € [0,%0].

The patchworking construction for polynomials gives a wide class of evolvings
whose charts can be created by the modification of Theorem 1.7.A formulated
below.

Let aq, ..., as; be completely nondegenerate polynomials in two variables with

Aa;)NA(ay) Aa;)NA(aj)

Int A(a;) NInt A(a;) = @ and a; = qj for i # j. Let

U;_; A(a;) be a polygon bounded by the axes and I'(f). Let a?(a’)rm(f) =
fAEINA) for i =a,...,s. Let v :R? — R be a nonnegative convex function
which is equal to zero on A(f) and whose restriction on [ J;_; A(a;) satisfies the
conditions 1, 2 and 3 of Section 1.6 with respect to ay,...,as. Then a result f;
of patchworking f, a1,...,as by v is a perturbation of f.

Theorem 1.7.A cannot be applied in this situation because the polynomial f
is not supposed to be completely nondegenerate. This weakening of assumption
implies a weakening of conclusion.

1.11.A LocAL VERSION OF THEOREM 1.7.A. Under the conditions above per-
turbation f; of f evolves a singularity of Vg=(f) at the origin. A chart of the
evolving can be obtained by patchworking charts of a1, ..., a;.

An evolving of a germ, constructed along the scheme above, is called a patch-
work evolving.

If T(f) consists of one segment and the curve Vgg=(f"f)) is nonsingular then
the germ of Vg=(f) at zero is said to be semi-quasi-homogeneous. In this case
for construction of evolving of the germ of Vg2(f) according the scheme above
we need only one polynomial; by 1.11.A, its chart is a chart of evolving. In this
case geometric structure of Vp(f;) is especially simple, too: the curve Vg (f:) is
approximated by ¢hy +(Vg2(a1)), where w is a vector orthogonal to I'(f), that
is by the curve Vgz(a1) contracted by the quasihomothety ghy, ;. Such evolvings
were described in my paper [Vir80]. It is clear that any patchwork evolving of
semi-quasi-homogeneous germ can be replaced, without changing its topological
models, by a patchwork evolving, in which only one polynomial is involved (i.e.
s=1).
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2. Toric varieties and their hypersurfaces

2.1. Algebraic tori KR™. In the rest of this chapter K denotes the main
field, which 1s either the real number field R or the complex number field C.

For w = (w1,...,wyn) € Z" and ordered collection z of variables z1,..., 2,
the product z{*...z%" is denoted by z“. A linear combination of products
of this sort with coefficients from A is called a Laurent polynomial or, briefly,
L-polynomial over K. Laurent polynomials over K in n variables form a ring
Kz, l‘l_l, ..., n, z; '] naturally isomorphic to the ring of regular functions of
the variety (K ~ 0)".

Below this variety, side by side with the affine space K™ and the projective
space K P”, is one of the main places of action. It is an algebraic torus over K.
Denote 1t by KIR™.

Denote by [ the map KIR"™ — R" defined by formula l(z1,...,2,) = (In|zy],
cooy Indzal).

Put Ux = {z € K ||z| = 1},s0 Ug = S° and Ug = S*. Denote by ar the map

KR? 5 UL (=Ug x -+ x Ug) defined by ar(z1,...,2,) = (|::—1|”|i—n|)

Denote by la the map
z— ([(z),ar(z)) : KR® 5> R” x Ug.

It is clear that this is a diffeomorphism.

KRR™ is a group with respect to the coordinate-wise multiplication, and I, ar,
la are group homomorphisms; la is an isomorphism of KTR” to the direct product
of (additive) group R”™ and (multiplicative) group U} .

Being Abelian group, KIR”™ acts on itself by translations. Let us fix notations
for some of the translations involved into this action.

For w € R™ and ¢t > 0 denote by ¢hy ; and call a quasi-homothety with
weights w = (w1,...,wy,) and coefficient ¢ the transformation KR” — KR”
defined by formula ghy ¢(21,...,2,) = (¥ @1,...,t"2y), le. the translation
by (t¥r,...,t¥*). Ifw = (1,..., 1) then it is the usual homothety with coefficient
t. 1t is clear that qhy ¢ = ghy-1,; for A > 0. Denote by gh,, a quasi-homothety
qhuy e, where e is the base of natural logarithms. 1t is clear, ghy ¢ = ¢h(n¢)w-

For w = (w1,...,w,) € U denote by S, the translation KR"” — KR"
defined by formula

Swl®y, .. en) = (Wizy, ..., wpky),

1. e. the translation by w.
For w € R™ denote by T, the translation z — z +w : R™ — R” by the vector
w.

2.1.A. Diffeomorphism la : KR"™ — R"x Uy transforms qhy ¢ to Tiin t)w xidUﬁ,
and S, to idg= X(Sw|U;\z,), ie.

laoqhy ;o la=' = Tan tyw X idU}é and

la o Sw o la_l = ld]Rn X(S’LU|U£,)~
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In particular, {¢ o ghy ola™t =T, x id.
A hypersurface of KR"™ defined by a(z) = 0, where a is a Laurent polynomial
over K in n variables is denoted by Vkg~(a).

Ifa(z) =), czn awr” is a Laurent polynomial, then by its Newton polyhedron
A(a) is the convex hull of {w € R"|a, # 0}.

2.1.B. Let a be a Laurent polynomial over K. If A(a) lies in an affine subspace
T of R" then for any vector w € R™ orthogonal to T', a hypersurface Vggn(a) is
nvariant under qhy ¢.

ProoF. Since A(a) C T and T' L w, then for w € A(a) the scalar product
ww does not depend on w. Hence

a(qh;}t(x)) = Z ay(t™Ye) =7 Z age” =t""a(x),

weA(a) weA(a)
and therefore
qhw +(Vkrn(a)) = Vgrn(a o qh;}t) = Vkg=(t""%a) = Vkg~(a).
O

Proposition 2.1.B is equivalent, as it follows from 2.1.A, to the assertion that
under hypothesis of 2.1.B the set la(Vkg=(a)) contains together with each point
(z,y) € R" x Ug all points (2/,y) € R® x Ug with 2’ — 2 L T'. In other words,
in the case A(a) C T the intersections of la(Vgg~(a)) with fibers R™ x y are
cylinders, whose generators are affine spaces of dimension n — dimI' orthogonal
to I'.

The following proposition can be proven similarly to 2.1.B.

2.1.C. Under the hypothesis of 2.1.B a hypersurface Vggr(a) is invariant under
transformations Seniwy | omiway, where w LT,

", if K =1
w e :
R? if K =C.

O

In other words, under the hypothesis of 2.1.B the hypersurface Vgg~(a) con-
tains together with each its point (z1,..., 2y,):

(1) points ((=1)¥'z1,...,(=1)¥ x,) with w e Z", w LT if K = R,
(2) points (e™1zy, ... e¥rp,) with w € R" w LT, if K =C.
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2.2. Polyhedra and cones. Below by a polyhedron we mean closed convex
polyhedron lying in R”, which are not necessarily bounded, but have a finite
number of faces. A polyhedron is said to be integer if on each of its faces there
are enough points with integer coordinates to define the minimal affine space
containing this face. All polyhedra considered below are assumed to be integer,
unless the contrary is stated.

The set of faces of a polyhedron A is denoted by G(A), the set of its k-
dimensional faces by G (A), the set of all its proper faces by G'(A).

By a halfspace of vector space V' we will mean the preimage of the closed
halfline R4 (= {# € R : & > 0}) under a non-zero linear functional V" — R (so
the boundary hyperplane of a halfspace passes necessarily through the origin).
By a cone it is called an intersection of a finite collection of halfspaces of R”. A
cone is a polyhedron (not necessarily integer), hence all notions and notations
concerning polyhedra are applicable to cones.

The minimal face of a cone is the maximal vector subspace contained in the
cone. It 1s called a ridge of the cone.

For vy, ..., vx € R™denote by (v1, ..., v;) the minimal cone containing vy, .. . ,
vg; 1t 1s called the cone generated by vy, ...,vg. A cone is said to be simplicial
if 1t is generated by a collection of linear independent vectors, and simple if it is
generated by a collection of integer vectors, which is a basis of the free Abelian
group of integer vectors lying in the minimal vector space which contains the
cone.

Let A C R™ be a polyhedron and T its face. Denote by Ca(T) the cone
Ureﬂhr - (A — y), where y is a point of T' ~. 9. The cone Ca(A) is clearly
the vector subspace of R™ which corresponds to the minimal affine subspace
containing A. The cone Cp(T') is the ridge of Ca(T'). If T is a face of A with
dimT = dimA — 1, then Ca(T) is a halfspace of Ca(A) with boundary parallel
to I'.

For cone C' C R™ we put

DYC ={zeR"|Vae C az >0},
D=C={zeR"|VaeC ar<0}.

These are cones, which are said to be dual to C'. The cones DTC and D~C
are symmetric to each other with respect to 0. The cone D~ C' permits also the
following more geometric description. Each hyperplane of support of C defines
a ray consisting of vectors orthogonal to this hyperplane and directed to that of
two open halfspaces bounded by it, which does not intersect C'. The union of all
such rays is D~ C.

It is clear that DY DTC =C =D"D~C. If v1,...,v, is a basis of R then

the cone DT {vy,...,v,) is generated by dual basis vy, ..., v (which is defined
by conditions v; - vi* = A;;).

2.3. Affine toric variety. Let A C R” be an (integer) cone. Consider the
semigroup K-algebra K[ANZ"] of the semigroup ANZ". Tt consists of Laurent
polynomials of the form 3" Anz»@w®”. According to the well known Gordan
Lemma (see, for example, [Dan78], 1.3), the semigroup A NZ" is generated by
a finite number of elements and therefore the algebra K[A N 7Z"] is generated



2. TORIC VARIETIES AND THEIR HYPERSURFACES 23

FIGURE 2.1

by a finite number of monomials. If this number is greater than the dimension
of A, then there are nontrivial relations among the generators; the number of
relations of minimal generated collection is equal to the difference between the
number of generators and the dimension of A.

An affine toric variety KA is the affine scheme Spec K[A NZ"]. Tts less
invariant, but more elementary definition looks as follows. Let

P P

P P
{a1a~~~aap| E UL, Q5 = g vi,laia~~~a§ Up—n i = g vp—n,iai}
i=1 i=1

i=1 i=1

be a presentation of A N Z"™ by generators and relations (here w;; and v;; are
nonnegative); then the variety K'A is isomorphic to the affine subvariety of K?
defined by the system

Up—
pr n,p.

For example, if A = R” then KA = Spec K[z1, 27", ..., &n, 2] can be pre-
sented as the subvariety of K2" defined by the system

YilYn41 = 1

YnYon =1

Projection K?* — K" induces an isomorphism of this subvariety to (K ~ 0)" =
KIR™. This explains the notation KR” introduced above.

If A is the positive orthant A” = {x € R |2y > 0,...,2, > 0}, then KA is
isomorphic to the affine space K”. The same takes place for any simple cone. If
cone is not simple, then corresponding toric variety is necessarily singular. For
example, the angle shown in Figure 2.1 corresponds to the cone defined in K3

by zy = z°.
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Let a cone Aq lie in a cone A,. Then the inclusion in : Ay — A, defines an
inclusion K[A; NZ" — K[A; NZ"] which, in turn, defines a regular map

in® : Spec K[Az NZ"] — Spec K[A1 NZ"],

i.e. a regular map in* : KAs — KA;. The latter can be described in terms
of subvarieties of affine spaces in the following way. The formulas, defining co-
ordinates of point in*(y) as functions of coordinates of y, are the multiplicative
versions of formulas, defining generators of semigroup Ay N Z"” as linear combi-
nations of generators of the ambient semigroup A, NZ™.

In particular, for any A there is a regular map of KCa(A) = KRAmA 4
KA. Tt is not difficult to prove that it is an open embedding with dense image,
thus KA can be considered as a completion of KRIMA

An action of algebraic torus KCa(A) in itself by translations is extended to
its action in KA. This extension can be obtained, for example, in the following
way. Note first, that for defining an action in KA it is sufficient to define an
action in the ring K[A N Z"]. Define an action of KR™ on monomials z¥ €
K[6 NZ"] by formula (ay,...,an)zY = of*...a%» and extend it to the whole
ring K[A N Z"] by linearity. Further, note that if V' C R" is a vector space,
then the map in* : KR” — KV is a group homomorphism. Elements of kernel
of in* : KR™ —» KCa(A) act identically in K[A N Z"]. Tt allows to extract
from the action of KR™ in KA an action of KC2(A) in KA, which extends the
action of KCa(A) in itself by translations.

With each face T of a cone A one associates (as with a smaller cone) a variety
KT and a map in* : KA — KT. On the other hand there exists a map in, :
KT — KA for which in* o in, is the identity map KT' — KT'. Therefore, in, is an
embedding whose image 1s a retract of KA. From the viewpoint of schemes the
map in, should be defined by the homomorphism K[ANZ" — K[TI'NZ"] which
maps a Laurent polynomial ) canzn» @ to its I-truncation ) cpnzn Gwe.
In terms of subvarieties of affine space, KT is the intersection of KA with the
subspace y;, = yi, = --- = . = 0, where y;,,...,¥y;, are the coordinates
corresponding to generators of semigroup A NZ"™ which do not lie in T'.

Varieties in.(KT) with I' € Ggim a—1(A) cover KA ~in*(KCa(A)). Images
of algebraic tori KCp(T') with T' € G(A) under the composition

KCOp(T) 25 KT 25 kA

of embeddings form a partition of KA, which is a smooth stratification of KA.
Closure of the stratum in, in*(KCp(T)) in KA is in.(KT). Below in the cases
when it does not lead to confusion we shall identify KT with in. KT and KCr(T)
with in, in* KCp(T) (i.e. we shall consider KT and KCp(T) as lying in KA).

2.4. Quasi-projective toric variety. Let A C R” be a polyhedron. If T
is its face and X is a face of T', then Cr(X) is a face of Ca(T') parallel to T,
and Co,(x)(Cr(X)) = Ca(l), see Figure 2.2. In particular, Ca(X) C Ca(T')
and, hence, the map in* : KCA(I') = KCa(X) is defined. Tt is easy to see that
this is an open embedding. Let us glue all KCa(T') with T € G(A) together
by these embeddings. The result is denoted by KA and called the toric variety
associated with A. This definition agrees with the corresponding definition from
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FIGURE 2.2

the previous Section: if A is a cone and ¥ is its ridge then Ca(X) = A and,
since the ridge is the minimal face, all KCA(T) with T' € G(A) are embedded in
KCaA(X) and the gluing gives KCa(X) = KA.

For any polyhedron A the toric variety KA is quasi-projective. If A is
bounded, it is projective (see [GK73] and [Dan78]).

A polyhedron A C R” is said to be permissible if dim A = n, each face
of A has a vertex and for any vertex T' € Go(A) the cone Ca(T') is simple.
If polyhedron A is permissible then variety KA is nonsingular and it can be
obtained by gluing affine spaces KCa(T') with T € Go(A). The gluing allows the
following description. Let us associate with each cone Ca (T') where T' € Go(A) an
automorphism fr : KR™ — KR™ if CA(T) = (vy, ..., vp) and v; = (v1, ..., Un)

for ¢ = 1,...,n, then we put fr(zy,...,2n) = (x{™ .. 20, o 2i™ o xlmm).

The variety KA is obtained by gluing to KIR™ copies of K™ by maps KIR" £>
KR™ — K™ for all vertices T' of A. (Cf. Khovansky [Kho77].)

The variety KA is defined by A, but does not define it. Indeed, if A; and
Ay are polyhedra such that there exists a bijection G(A1) — G(As), preserving
dimensions and inclusions and assigning to each face of A; a parallel face of Ay,
then [{Al = [{Az

Denote by P™ the simplex of dimension n with vertices
(0,0,...,0),(1,0,...,0),(0,1,0,...,0),...,(0,0,...,1).

It is permissible polyhedron. K P" is the n-dimensional projective space (this
agrees with its usual notation).

Evidently, K(A; x As) = KA; x KA, In particular, if A C R? is a square
with vertices (0,0), (1,0), (0,1) and (1,1), i.e. if A = P! x Pl then KA 'is a
surface isomorphic to nonsingular projective surface of degree 2 (to hyperboloid
in the case of K = R?).

Polyhedra shown in Figure 2.3 define the following surfaces: KAy is the affine
plane with a point blown up; KAs is projective plane with a point blown up
(RA, is the Klein bottle); KAz is the linear surface over K P!, defined by sheaf
O+ O(-2) (RAj is homeomorphic to torus).
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F1GURE 2.3
The variety KCa(A) is isomorphic to KR4mA " open and dense in KA, so
KA can be considered as a completion of KRU™A - Actions of KCaA(A) in affine
parts KCa(T) of KA correspond to each other and define an action in KA which
is an extension of the action of K Ca(A) in itself by translations. Transformations
of KA extending gh,, ; and S, are denoted by the same symbols qhy, ; and Sy, .

The complement KA ~ KCa(A) is covered by KX with ¥ € G(Ca(T)),
I' € G'(A) or, equivalently, by varieties KCp(X) with ¥ € G(T'), T € G'(A).
They comprise varieties KT with T' € G’'(A), which also cover KA ~ KCa(A).
The varieties KT are situated with respect to each other in the same manner as
the corresponding faces in the polyhedron: K(I'y NT2) = KT NKT5. Algebraic
tori KCp(T) = KT ~ UEeg’(F) KX form partition of KA, which is a smooth
stratification; they are orbits of the action of KCa(A) in KA.

We shall say that a polyhedron As is richer than a polyhedron A; if for any
face T'y € G(Ag) there exists a face Ty € G(A;) such that Ca,(T2) D Ca, (1)
(such a face T'; is automatically unique), and for each face Ty € G(A;) the
cone Ca, (T'1) can be presented as the intersection of several cones Ca,(I'y) with
Iy € G(Ajy). This definition allows a convenient reformulation in terms of dual
cones: a polyhedron A, is richer than polyhedron A; iff the cones Dt Ca,(T5)
with Ty € G(A») cover the set, which is covered by Dt Cx, (T'1) with Ty € G(Aq),
and the first covering is a refinement of the second.

Let a polyhedron Aj be richer than Aj. Then the inclusions Ca,(T1) —

Ca,(T'2) define for any T's € G(A3) a regular map KCa,(T'2) i) KCa,(T1) =
KA;. Obviously, these maps commute with the embeddings, by which K A, and
KA are glued from affine pieces, thus a regular map KA, — KA; appears.

One can show (see, for example, [GK73]) that for any polyhedron A; there
exists a richer polyhedron As, defining a nonsingular toric variety K A,. Such a
polyhedron is called a resolution of Ay (because it gives a resolution of singular-
ities of KAy). If dim A = n (= the dimension of the ambient space R™), then a
resolution of A can be found among permissible polyhedra.

2.5. Hypersurfaces of toric varieties. Let A C R™ be a polyhedron and
a be a Laurent polynomial over K in n variables. Let Ca(q)(A(a)) C Ca(A).
Then there exists a monomial 2% such that A(z*a) C Ca(A). The hypersur-
face Vikc,(a) does not depend on the choice of z* and is denoted simply by
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Vicaay(a). Its closure in KA is denoted by Via(a). ! Thus, to any Laurent
polynomial a over K with Ca(q)(A(a)) C Ca(A), a hypersurface Viga(a) of
KA is related. For Laurent polynomial a(x) = Zweznawx“’ and a set I' C R"
a Laurent polynomial a(z) = > .1z @wz” is denoted by a' and called the
I-truncation of a.

2.5.A. Let A C R"™ be a polyhedron and a be a Laurent polynomial over K with
CA(G)(A(G)) C CA(A) IfTy € Q’(A(a)), I's e G’(A) and CA(a)(Fl) C CA(FQ)
then KI's N Via (a) = Vkr, (aFl).

Proor. Consider KCA(I'z). It is a dense subset of KT's. Since Ca(q)(I'1) C
Ca(T'2), there exists a monomial % such that A(z¥a) lies in Ca(T'3) and inter-
sects its ridge exactly in the face obtained from T'y. Since on KToNKCa(T2) all
monomials, whose exponents do not lie on ridge Cr,(T'2) of Ca(T'2), equal zero,
it follows that the intersection {& € KCa(T'2)|2“a(x) = 0} N KTy coincides
with {# € KCa(T3) |[¢¥a]¢T=(T2) (z) = 0} N KT5. Note finally, that the latter
coincides with Vgr,(e1). O

2.5.B. Let A and a be as in 2.5.A and 'y be a proper face of the polyhedron A.
If there is no face I'y € G'(A(a)) with Caq)(I't) C Ca(l'2) then KT's C Via(a).

The proof 1s analogous to the proof of the previous statement. [

Denote by SVkg~(a) the set of singular points of Vggr(a), i.e. aset Vgga(a)N
Mizy Vicrn(£2).

A Laurent polynomial a is said to be completely nondegenerate (over K) if, for
any face I of its Newton polyhedron, SVig«(a') is empty and, hence, Vig«(a®)
is a nonsingular hypersurface. A Laurent polynomial a is said to be peripherally
nondegenerate if for any proper face I of its Newton polyhedron SVigg«(al) = @.

It is not difficult to prove that completely nondegenerate L-polynomials form
Zarisky open subset of the space of L-polynomials over K with a given New-
ton polyhedron, and the same holds true also for peripherally nondegenerate
L-polynomials.

2.5.C. If a Laurent polynomial a over K is completely nondegenerate and A C
R™ is a resolution of its Newton polyhedron A(a) then the variety Vga(a) is
nonsingular and transversal to all KT with T € G'(A). See, for example,
[Kho77]. O

Theorem 2.5.C allows various generalizations related with possibilities to con-
sider singular KA or only some faces of A(a) (instead of all of them). For
example, one can show that if under the hypothesis of 2.5.A a truncation a'
of a is completely nondegenerate then under an appropriate understanding of
transversality (in the sense of stratified space theory) Vi a(a) is transversal to
KT'». Without going into discussion of transversality in this situation, I formu-
late a special case of this proposition, generalizing Theorem 2.5.C.

1Here it is meant the closure of KA in the Zarisky topology; in the case of K = C the
classic topology gives the same result, but in the case of K = IR the usual closure may be a
nonalgebraic set.
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2.5.D. Let T be a face of a polyhedron A C R™ with nonempty Go(T') and with
simple cones Ca(X) for all ¥ € Go(T'). Let a be a Laurent polynomial over K in
n variables and 'y be a face of A(a) with Caqy(T'1) C Ca(T). If ab is completely
nondegenerate, then the set of singular points of Vi a(a) does not intersect KT
and Vi a(a) is transversal to KT.

The proof of this proposition is a fragment of the proof of Theorem 2.5.C. O

2.5.E (CoROLLARY OF 2.1.B AND 2.1.C). Let A and a be as in 2.5.A. Then
for any vector w € Ca(A) orthogonal to Caay(A(a)), a hypersurface Via(a)
is wnvariant under transformations qhyy @ KA = KA and Sgrivy | emiwn)
KA — KA (the latter in the case of K = R is defined only if w € Z™). 0O
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3. Charts

3.1. Space R A, The aim of this Subsection is to distinguish in KA an
important subspace which looks like A. More precisely, it is defined a stratified
real semialgebraic variety R4 A, which is embedded in KA and homeomorphic,
as a stratified space, to the polyhedron A stratified by its faces. Briefly R4 A
can be described as the set of points with nonnegative real coordinates.

If A'is a cone then R4 A is defined as a subset of K'A consisting of the points
in which values of all monomials ¥ with w € ANZ" are real and nonnegative.
It is clear that for T € G'(A) the set R.T coincides with RyA N KT and for
cones Ay C Az a preimage of R1A; under in* : KA — KA (see Section 2.3)
1s R+A2.

Now let A be an arbitrary polyhedron. Embeddings, by which KA is glued
form KCa(T') with T' € G(A), embed the sets R Ca(T) in one another; a space
obtained by gluing from R;Ca(T) with T' € G(A) is RyA. Tt is clear that if
I'e G then Ry I'=R;ANKT.

R4R™ is the open positive orthant {# € RR" |21 > 0,...,2, > 0}. It can be
identified with the subgroup of quasi-homotheties of KIR"™: one assigns ¢hy(;) to
a point z € R R".

If A" = {o € R™"x; > 0,...,2, > 0} then KA™ = K" (cf. Section 2.3) and
RyA™ = A™.

If P" is the n-simplex with vertexes (0,0,...,0), (1,0,...,0), (0,1,0,...,0),
..., (0,0,...,1), then KP™ is the n-simplex consisting of points of projective
space with nonnegative real homogeneous coordinates.

The set R4 A is invariant under quasi-homotheties. Orbits of action in R4 A
of the group of quasi-homotheties of R R" are sets R, Cr(T) with T' € G(A).
Orbit R Cp(T) is homeomorphic to RAMI o1 equivalently, to the interior of
I'. Closures R4T" of R Cr(T') intersect one another in the same manner as the
corresponding faces: RiT'y NR Ty =R (T'; NT'2). From this and from the fact
that R, T is locally conic (see [Loj64]) it follows that R4 A is homeomorphic,
as a stratified space, to A. However, there is an explicitly constructed homeo-
morphism. It is provided by the Atiyah moment map [Ati81] and in the case of
bounded A can be described in the following way.

Choose a collection of points wq, . ..,wg with integer coordinates, whose con-
vex hull is A. Then for T' € G(A) and wyg € T ~ IT cone Ca(T) is (w1 —
wo, ..., wi —wp). For y € KCA(T) denote by y* a value of monomial 2% where

w € Ca(T') N Z™ at this point. Put

k Wi—Wo |, .
Zi:l |y ‘ |wl
k o
Zi:l |ywl |
Obviously M (y) lies in A, does non depend on the choice of wy and for y €
KCA(T1) N KCa(T2) does not depend on what face, T'y or I's, is used for the

definition of M (y). Thus a map M : KA — A is well defined. Tt is not difficult
to show that Mg A : RyA — Ais a stratified homeomorphism.

M(y) = cRrR™

3.2. Charts of KA. The space KR" can be presented as R4 R" x UR. In
this Section an analogous representation of KA is described.
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FIGURE 3.1

R4A is a fundamental domain for the natural action of UZ in KA, ie. its
intersection with each orbit of the action consists of one point.

For a point # € RCrI" where T' € G(A), the stationary subgroup of action
of U consists of transformations Sicriwi  cwiwn), Where vector (wy,...,wy) is
orthogonal to Cr(T'). In particular, if dimT = n then the stationary subgroup is
trivial. If dimI' = n — » then it is isomorphic to Uf. Denote by Ur a subgroup
of UR consisting of elements (™% ... e™%¥r) with (wy,...,w,) L Cp(T).

Define a map p: RLA x UR — KA by formula (x,y) — Sy(2). It is surjec-
tion and we know the partition of RyA x UZ into preimages of points. Since
p 1s proper and KA is locally compact and Hausdorff, it follows that KA is
homeomorphic to the quotientspace of Ry A x UZ with respect to the partition
into sets & X yUr with z € R, Cr(T), y € UR.

Consider as an example the case of K = IR and n = 2. Let a polyhedron A lies
in the open positive quadrant. We place A x UZ in R? identifying (z,y) € Ax U2
with Sy(z) € R% R 1A x UZ is homeomorphic A x UZ, so the surface RA can be
obtained by an appropriate gluing (namely, by transformations taken from Ur)
sides of four polygons consisting A x UZ. Figure 3.1 shows what gluings ought
to be done in three special cases.

3.3. Charts of L-polynomials. Let ¢ be a Laurent polynomial over K
in n variables and A be its Newton polyhedron. Let h be a homeomorphism
A — R4 A mapping each face to the corresponding subspace, and such that for
any € G(A),z €T, yeUp, z € Ur

h($aya Z) = (er+Fh(xay)a Zp?”U;h(l‘,y))

For h one can take, for example, (Mg a)~.

A pair consisting of A x U and its subset v which is the preimage of Vi (a)
under

n hxid n P o5
AxUp — RIAXxUg = KA

is called a (nonreduced) K-chart of L-polynomial a.

It is clear that the set v 1s invariant under transformations id x.S with S € Ua
and its intersection with T' x U}, where T' € G’(A) is invariant under transfor-
mations id x5 with S € Ur.
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As it follows from 2.5.A,if T' is a face of A, and (A x Uf, v) is a nonreduced
K-chart of L-polynomial a, then (T x U, vN (T x U} )) is a nonreduced K-chart
of L-polynomial a'.

A nonreduced K-chart of Laurent polynomial a is unique up to homeomor-
phism A x U — A x Ug, satisfying the following two conditions:

(1) it map I' x y with ' € G(A) and y € UE to itself and
(2) its restriction to I' x UR with g € G(A) commutes with transformations
idxS:I'xUg =T x Ug where S € Ur.

In the case when a is a usual polynomial, it is convenient to place its K-
chart into K. For this, consider a map A” x Up — K" : (z,y) — Sy(z).
Denote by Ag(a) the image of A(a) x UR under this map. Call by a (reduced)
K-chart of a the image of a nonreduced K-chart of ¢ under this map. The
charts of peripherally nondegenerate real polynomial in two variables introduced
in Section 1.3 are R-charts in the sense of this definition.

3.3.A. Let a be a Laurent polynomial over K in n wvartables, I' a face of its
Newton polyhedron, p : RiA(a) x Ug — KA(a) a natural projection. If the
truncation a' is completely nondegenerate then the set of singular points of hy-
persurface p_viA(a)(a) of RyA(a) x U does not intersect RyT' x UL, and
p_viA(a)(a) is transversal to Ry’ x Ug.

PrOOF. Let A be a resolution of polyhedron A(a). Then a commutative
diagram

i

(RyA < UR, p~Y(Vikala)) —S— (KA Vga(a)

(R+8Xid)l sl
(B4A(a) x UR, p7 (Via() (@) —— (KA(a), Viag())

appears. Here s is the natural regular map resolving singularities of KA(a),
p and p' are natural projections and Rys is a map R;A — R;A(a) defined
by s. The preimage of KT under p is the union of KX with ¥ € G'(A) and
Ca(X) D Caa)(l'). By 2.5.D, the set of singular points of Via(a) does not
intersect KX, and Viga(a) is transversal to KX.

If ¥ € G'(A), Ca(¥) D Cae)(l') and dim¥ = dim[I', then R s defines an
isomorphism R Cx(¥) — R, Cp(I'), and if ¥ € G'(A), Ca(X) D Ca(q)(I') and
dimX > dimT, then R s defines a map R Cx () — R4 Cp(T') which is a factor-
ization by the action of quasi-homotheties gh,, + with w € Cx(X), w L Cr(T). By
2.5.E, in the latter case variety Vs (a') coinciding, by 2.5.A, with Vi a (a)N KX
is invariant under the same quasi-homotheties. Hence Via(a) = s_viA(a)(a)
and hypersurface p~1Vka (@), being the image of p'~'Vika(a) under R, x id,
appears to be nonsingular along its intersection with R, I' x UZ and transversal
to R4 x UR. [
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4. Patchworking

4.1. Patchworking L-polynomials. Let A, Ay, ... Ay CR”™ be (convex
integer) polyhedra with A = [J{_; A; and Int A; NInt A; = @ for i # j. Let v :
A — R be a nonnegative convex function satisfying to the following conditions:

(1) all the restrictions v|a, are linear;
(2) if the restriction of v to an open set is linear then this set is contained
in one of Ay;

(3) (ANZ") C Z.

4.1.A Remark. Existence of such a function v 1s a restriction on a collection
Ay, ..., A;. For example, the collection of convex polygons shown in Figure 4.1
does not admit such a function.

FiGure 4.1
Let ay,...,as be Laurent polynomials over K in n variables with A(a;) = A.
Let aiA’nAj = ajA’nAj for any ¢, j. Then, obviously, there exists an unique L-

polynomial @ with A(a) = A and a®' = a; for i = 1,...,s. If a(xy,...,2,) =
Y owenn G, we put b(z,t) = Zweznawxwt”(w). This L-polynomial in n + 1
variables is considered below also as a one-parameter family of L-polynomials
in n variables. Therefore let me introduce the corresponding notation: put
be(1,...,2n) = b(21,...,2n,t). L-polynomials b; are said to be obtained by
patchworking L-polynomials aq,...,as by v or, briefly, b; is a patchwork of L-
polynomials ay,...,as by v.

4.2. Patchworking charts. Let ay,...,as; be Laurent polynomials over K
in n variables with Int A(a;) NInt A(a;) = @ for ¢ # j. A pair (A x UR, v) is
said to be obtained by patchworking K-charts of Laurent polynomials aq, ..., as
and it is a patchwork of K-charts of L-polynomials ay, ..., a, if A ={J_; A(a;)
and one can choose K-charts (A(a;) x U, v;) of Laurent polynomials a1, .. ., as
such that v = |JI_; vi.

4.3. The Main Patchwork Theorem. Let A, Ay, ..., A, v, aq, ..., as,
b and b; be as in Section 4.1 (b; is a patchwork of L-polynomials a;, ..., as by
v).
4.3.A. If L-polynomials ay,...,as are completely nondegenerate then there ex-

ists tg > 0 such that for any t € (0,t9] a K-chart of L-polynomial by is obtained
by patchworking K -charts of L-polynomials ay, ..., as.

ProoF. Denote by G the union Ule G(A;). For T € G denote by I the graph
of v|p. It is clear that A(b) is the convex hull of graph of v, so I' € G(A(b))
and thus there is an injection G — G(A(b)) : T' — T'. Restrictions I' = T of the
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natural projection pr : R?t! — R™ are homeomorphisms, they are denoted by

g.
Let p: A(b) x U}é"’l — KA(b) be the composition of the homeomorphism

A(b) x Uptt 229w A x Ut

and the natural projection p : R L A(b) x UI@‘H — KA(b) (cf. Section 3.3), so the
pair (A(b) X U}é"’l, p_viA(b)(b)) is a K-chart of b. By 2.5.A fori=1,... s
the pair

(A(a) x U+, " (Vieag () N Alas) x UR))
is a K-chart of L-polynomial bm.
The pair

(Z(\&Z»/) x Ug, p~ (Vkaw (b) N m X UI?))

which is cut out by this pair on A(a;)x U} is transformed by g xid : A(a;)xUR —

o

Afa;) x U} to a K-chart of a;. Indeed, g : A(a;) — A(a;) defines an isomor-

——

phism ¢g* : KA(a;) — KA(a;) and since b2 (zy, ... wn, 1) = a; (21, ..., ),

it follows that ¢* : VKA(a,)(ai) = VKEET)(I)A(G’)) and ¢ defines a homeomor-
phism of the pair (A(ai) x Ugk, p_l(VKA(b)(b) N Z—(\c;i/) X U}é)) to a K-chart of
L-polynomial a;.

Therefore the pair

K3

(U Aar) % U, p (Vieay () 0 | Aar) U}é))

5
=1

is a result of patchworking K-charts of a1, ..., a;.
Fort > 0 and T € G'(A) let us construct a ring homomorphism

K[Caw (A®) npr~ ' (T)) NZ" T = K[CA(T) N Z"]

. . w .
which maps a monomial x{* ... zg x, %" to t“~+127" . ¥~ This homomor-

phism corresponds to the embedding
KCA(T) = KCa@)(A(b) N pr~H(I))
extending the embedding
KR" 5 KR (2, 2) = (21, ..., 20, 1)

. The embeddings constructed in this way agree to each other and define an
embedding KA — KA(b). Denote the latter embedding by 4. It is clear that
Viea(be) =i 'Vga (b).

The sets p~ti; KA are smooth hypersurfaces of A(b) x U;‘H, comprising a
smooth isotopy. When ¢ — 0, the hypersurface p~1i; KA tends (in C'-sense) to

Alay) x Up.
1

5
1=
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By 3.3.A, p_viA(b)(b) is transversal to each of

o AT w U
and hence, the intersection p~!(i; KA) N p_l(VKA(b)(b)) for sufficiently small ¢
1s mapped to

Aa) x U
1

Vicawy(b) N

by some homeomorphism
P KA = | Adar) x U
i=1
Thus the pair
(p7h i KA, p7 i KA O p™ Vg awy (b))

is a result of patchworking K-charts of L-polynomials ay, ..., as if ¢ belongs to
a segment of the form (0,7¢]. On the other hand, since Viga(b:) = it_viA(b),

p_litKA N p_viA(b)(b) = p_litVKA (be)
and, hence, the pair
(p7h i KA, p7 i KA O p™ Vg awy (b))

1s homeomorphic to a K-chart of L-polynomial b;. O
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5. Perturbations smoothing a singularity of hypersurface

The construction of the previous Section can be interpreted as a purposeful
smoothing of an algebraic hypersurface with singularities, which results in replac-
ing of neighborhoods of singular points by new fragments of hypersurface, having
a prescribed topological structure (cf. Section 1.10). According to well known
theorems of theory of singularities; all theorems on singularities of algebraic
hypersurfaces are extended to singularities of significantly wider class of hyper-
surfaces. In particular, the construction of perturbation based on patchworking
is applicable in more general situation. For singularities of simplest types this
construction together with some results of topology of algebraic curves allows
to get a topological classification of perturbations which smooth singularities
completely.

The aim if this Section is to adapt patchworking to needs of singularity theory.

5.1. Singularities of hypersurfaces. Let G C K™ be an open set, and
let ¢ : G = K be an analytic function. For U C G denote by Vi (¢) the set
{x €U |p(x) = 0}.

By singularity of a hypersurface V() at the point xg € Vg(p) we mean the
class of germs of hypersurfaces which are diffeomorphic to the germ of V() at
zg. In other words, hypersurfaces V() and Vi (1) have the same singularity
at points zy and yp, if there exist neighborhoods M and N of zy and yy such
that the pairs (M, Var(y)), (N, Va(¢)) are diffecomorphic. When considering a
singularity of hypersurface at a point zg, to simplify the formulas we shall assume
that xo = 0.

The multiplicity or the Milnor number of a hypersurface Vg(p) at 0 is the
dimension

dimg K[[x1, ..., 2]/ (0fJOx1,...,0f/0xy)

of the quotient of the formal power series ring by the ideal generated by partial
derivatives 0f/0xy,...,0f/0x, of the Taylor series expansion f of the function
¢ at 0. This number is an invariant of the singularity (see [AVGZ82]). If it is
finite, then we say that the singularity is of finite multiplicity.

If the singularity of Vi (¢) at xg is of finite multiplicity, then this singularity is
isolated, i.e. there exists a neighborhood U C K" of g, which does not contain
singular points of Vg (p). If K = C then the converse is true: each isolated
singularity of a hypersurface is of finite multiplicity. In the case of isolated
singularity, the boundary of a ball B C K", centered at zg and small enough,
intersects V() only at nonsingular points and only transversely, and the pair
(B, VB(p)) is homeomorphic to the cone over its boundary (9B, Vsp(p)) (see
[Mil68], Theorem 2.10). In such a case the pair (0B, Vap(yp)) is called the link
of singularity of Vig(p) at zg.

The following Theorem shows that the class of singularities of finite multi-
plicity of analytic hypersurfaces coincides with the class of singularities of finite
multiplicity of algebraic hypersurfaces.

5.1.A TOUGERON’S THEOREM. (see, for example, [AVGZ82], Section 6.3). If
the singularity at zg of a hypersurface Vg (p) has finite Milnor number g, then
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there exist a neighborhood U of zy in K™ and a diffeomorphism h of this neigh-
borhood onto a neighborhood of o in K™ such that A(Vir()) = Vi) (fus1)),
where f(,41) is the Taylor polynomial of ¢ of degree yi+1 .

The notion of Newton polyhedron is extended over in a natural way to power
series. The Newton polyhedron A(f) of the series f(z) = > .znawz® (where
¥ =y 2% ... w¥) is the convex hull of the set {w € R"|a, # 0}. (Contrary
to the case of a polynomial, the Newton polyhedron A(f) of a power series may
have infinitely many faces.)

However in the singularity theory the notion of Newton diagram occurred to
be more important. The Newton diagram T'(f) of a power series f is the union
of the proper faces of the Newton polyhedron which face the origin, i.e. the
union of the faces I' € G'(A(f)) for which cones Dt Cay)(I') intersect the open
positive orthant Int A” = {# € R" |21 > 0,...,2, > 0}.

It follows from the definition of the Milnor number that, if the singularity of
V() at 0 is of finite multiplicity, the Newton diagram of the Taylor series of ¢
1s compact, and its distance from each of the coordinate axes is at most 1.

For a power series f(x) = > oy fur” and a set I' C R” the power series
> werazn Jwe” is called I'-truncation of f and denoted by fY (cf. Section 2.1).

Let the Newton diagram of the Taylor series f of a function ¢ be compact.
Then fT') is a polynomial. The pair (I'(f) x UR,~) is said to be a nonreduced
chart of germ of hypersurface Vg (p) at 0 if there exists a K-chart (A(f7) x
Uk, v) of fTU) such that v = v N (T(f) x UR). Tt is clear that a nonreduced
chart of germ of hypersurface is comprised of K-charts of f*, where I' runs over
the set of all faces of the Newton diagram.

A power series f is said to be nondegenerate if its Newton diagram is compact
and the distance between it and each of the coordinate axes is at most 1 and for
any its face I' polynomial fU is completely nondegenerate. In this case about
the germ of V() at zero we say that it is placed nondegenerately. Tt is not
difficult to prove that nondegenerately placed germ defines a singularity of finite
multiplicity. It is convenient to place the charts of germs of hypersurfaces in
K™ by a natural map A” x U} — K" : (z,y) — Sy(z) (like K-charts of an
L-polynomial, cf. Section 3.3). Denote by Xk (¢) the image of T'(f) x UX under
this map; the image of nonreduced chart of germ of hypersurface V() at zero
under this map is called a (reduced) chart of germ of Vg (p) at the origin. Tt
follows from Tougeron’s theorem that in this case adding a monomial of the
form «"* to ¢ with m; large enough does not change the singularity. Thus,
without changing the singularity, one can make the Newton diagram meeting
the coordinate axes.

In the case when this takes place and the Taylor series of ¢ is nondegenerate
there exists a ball U C K™ centered at 0 such that the pair (U, Vir(y)) is home-
omorphic to the cone over a chart of germ of V(). This follows from Theorem
5.1.A and from results of Section 2.5.

Thus if the Newton diagram meets all coordinate axes and the Taylor series
of ¢ is nondegenerate, then the chart of germ of Viz(¢) at zero is homeomorphic
to the link of the singularity.
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5.2. Evolving of a singularity. Now let the function ¢ : G — K be in-
cluded as ¢p in a family of analytic functions ¢; : G — K with ¢ € [0, g]. Suppose
that this is an analytic family in the sense that the function G x [0,1¢] — K :
(z,t) = @¢(x) which is determined by it is real analytic. If the hypersurface
V() has an isolated singularity at xg, and if there exists a neighborhood U of
zg such that the hypersurfaces Viz(p:) with ¢ € [0,10] have no singular points in
U, then the family of functions ¢; with ¢ € [0, 1] is said to evolve the singularity
of V() at xg.

If the family ¢, with ¢ € [0,t0] evolves the singularity of the hypersurface
V(o) at xp, then there exists a ball B C K™ centered at zg such that

(1) for t € [0,%0] the sphere 9B intersects Vi(¢p+) only in nonsingular points
of the hypersurface and only transversely,

(2) for t € (0,tg] the ball B contains no singular point of the hypersurface
Ve (o),

(3) the pair (B, Vg(pg)) is homeomorphic to the cone over its boundary
(0B, Vap(po)).

Then the family of pairs (B, Vg (¢:)) with t € [0,%p] is called an evolving of the
germ of V(o) in 2. (Following the standard terminology of the singularity
theory, it would be more correct to say not a on family of pairs, but rather
a family of germs or even germs of a family; however, from the topological
viewpoint, which is more natural in the context of the topology of real algebraic
varieties, the distinction between a family of pairs satisfying 1 and 2 and the
corresponding family of germs is of no importance, and so we shall ignore it.)

Conditions 1 and 2 imply existence of a smooth isotopy h; : B — B with
t € (0,%0], such that hy; = id and h:(Vp(et,)) = Ve(pt), so that the pairs
(B, Vp(pt)) with t € (0,19] are homeomorphic to each other.

Given germs determining the same singularity, a evolving of one of them
obviously corresponds to a diffeomorphic evolving of the other germ. Thus, one
may speak not only of evolvings of germs, but also of evolvings of singularities
of a hypersurface.

The following three topological classification questions on evolvings arise.

5.2.A. Up to homeomorphism, what manifolds can appear as Vg () in evolvings
of a given singularity?

5.2.B. Up to homeomorphism, what pairs can appear as (B, Vg (p:)) in evolvings
of a given singularity?

Smoothings (B, Vg (¢:)) with t € [0,0] and (B’, Vp/(¢})) with t € [0,1{] are
said to be topologically equivalent if there exists an isotopy h; : B — B’ with
t € [0, min(tg,t})], such that hg is a diffeomorphism and Vg: (¢}) = h: Vi (p) for
t € [0, min(tg, 5)]-

5.2.C. Up to topological equivalence, what are the evolvings of a gwen singular-
ity?

Obviously, 5.2.B 1s a refinement of 5.2.A. In turn, 5.2.C is more refined than
5.2.B, since in 5.2.C we are interested not only in the type of the pair obtained
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in result of the evolving, but also the manner in which the pair is attached to
the link of the singularity.

In the case K = IR these questions have been answered in literature only for
several simplest singularities.

In the case K = C a evolving of a given singularity is unique from each of
the three points of view, and there is an extensive literature (see, for example,
[GZ77]) devoted to its topology (i.e., questions 5.2.A and 5.2.B).

By the way, if we want to get questions for K = C which are truly analogous
to questions 5.2.A — 5.2.C for K = R, then we have to replace evolvings by
deformations with nonsingular fibers and one-dimensional complex bases, and
the variety Vp(¢:) and the pairs (B, Vp(p:)) have to be considered along with
the monodromy transformations. It is reasonable to suppose that there are
interesting connections between questions 5.2.A — 5.2.C for a real singularity
and their counter-parts for the complexification of the singularity.

5.3. Charts of evolving. Let the Taylor series f of function ¢ : G — K
be nondegenerate and its Newton diagram meets all the coordinate axes. Let a
family of functions ¢; : G — K with ¢t € [0, ¢p] evolves the singularity of Vg (¢) at
0. Let (B, Vg(¢:)) be the corresponding evolving of the germ of this hypersurface
and hy : B — B with t € (0,tg] be an isotopy with hy, = id and h: (Ve (¢,)) =
Vi (p1)) existing by conditions 1 and 2 of the previous Section. Let (X (¢),7) be
a chart of germ of hypersurface Vg () at zero and g : (Xx(¢),7) = (9B, Vap(p))
be the natural homeomorphism of it to link of the singularity.

Denote by g (¢) a part of K™ bounded by Xg(¢). It can be presented as a
cone over Xk () with vertex at zero.

One can choose the isotopy hy : B = B, t € (0,1¢] such that its restriction to
B can be extended to an isotopy h} : 9B — 9B with t € [0,%g] (i.e., extended
for t = 0).

We shall call the pair (ITx (), 7) a chart of evolving (B, Vg (p:)), t € [0, 0],
if there exists a homeomorphism (TIx (¢), 7) — (B, Vi (to)), whose restriction

Y (p) — OB is the composition Tk (¢) 2 OB 20, 9B. One can see that the
boundary (91l (¢), d7) of a chart of evolving is a chart (X (¢), v) of the germ
of the hypersurface at zero, and a chart of evolving is a pair obtained by evolving
which is glued to (X (), ¥) in natural way. Thus that the chart of an evolving
describes the evolving up to topological equivalence.

5.4. Construction of evolvings by patchworking. Let the Taylor series
f of function ¢ : G — K be nondegenerate and its Newton diagram T'(f) meets
all the coordinate axes.
Let aq, ..., as; be completely nondegenerate polynomials over K in n variables
(a:)NA(aj) Afai)nA(ay)

with Int A(a;) N Int A(a;) = @ and aiA = aqj for ¢ # j. Let

Ui, A(a;) be the polyhedron bounded by the coordinate axes and Newton dia-
gram ['(f). Let aiA(a’)nA(f) = fA@INAY) for i =1,...,s. Let v: Ji_; Aa) =
R be a nonnegative convex function which is equal to zero on T'(f) and satisfies
conditions 1, 2, 3 of Section 4.1 with polyhedra A(ay), ..., A(as). Then poly-
nomials ay,...,as can be ”glued to ¢ by v” in the following way generalizing
patchworking L-polynomials of Section 4.1.
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Denote by a the polynomial defined by conditions a?(%) = q; fori=1,...,s

and aU::l Afas) =a. If a(x) = Z

w
wenn Gw® then we put

or(2) = o(2) + ( Z awxwt”(w)) —a" Wy,
wWEL™
5.4.A. Under the conditions above there exists o > 0 such that the family of
funetions ¢ : G — K with t € [0,tg] evolves the singularity of Vg (yp) at zero.
The chart of this evolving is patchworked from K-charts of ay, ..., as.

In the case when ¢ is a polynomial, Theorem 5.4.A is a slight modification
of a special case of Theorem 4.3.A. Proof of 4.3.A is easy to transform to the
proof of this version of 5.4.A. The general case can be reduced to it by Tougeron
Theorem, or one can prove it directly, following to scheme of proof of Theorem
43.A. O

We shall call the evolvings obtained by the scheme described in this Section
patchwork evolvings.
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6. Approximation of hypersurfaces of KR"

6.1. Sufficient truncations. Let M be a smooth submanifold of a smooth
manifold X. Remind that by a tubular neighborhood of M in X one calls a
submanifold N of X with M C Int N equipped with a tubular fibration, which
is a smooth retraction p : N — M such that for any point « € M the preimage
p~!(x) is a smooth submanifold of X diffeomorphic to DIimX—dimM —1f y jg
equipped with a metric and each fiber of the tubular fibration p : N — M 1is
contained in a ball of radius ¢ centered in the point of intersection of the fiber
with M, then N is called a tubular e-neighborhood of M in X.

We need tubular neighborhoods mainly for formalizing a notion of approxi-
mation of a submanifold by a submanifold. A manifold presented as the image
of a smooth section of the tubular fibration of a tubular e-neighborhood of M
can be considered as sufficiently close to M: it 1s naturally isotopic to M by an
1sotopy moving each point at most by ¢.

We shall consider the space R™ x UZ as a flat Riemannian manifold with
metric defined by the standard Euclidian metric of R™ in the case of K = R and
by the standard Euclidian metric of R™ and the standard flat metric of the torus
UZ = (SY)™ in the case of K = C.

An e-sufficiency of truncations of Laurent polynomial defined below and the
whole theory related with this notion presuppose that it has been chosen a class
of tubular neighborhoods of smooth submanifolds of IR” x U} invariant under
translations 7, x idU}é and that for any two tubular neighborhoods N and N’
of the same M, which belong to this class, restrictions of tubular fibrations
p: N = Mandp : NN = M to NN N’ coincide. One of such classes is the
collection of all normal tubular neighborhoods, i.e. tubular neighborhoods with
fibers consisting of segments of geodesics which start from the same point of
the submanifold in directions orthogonal to the submanifold. Another class, to
which we shall turn in Sections 6.7 and 6.8, 1s the class of tubular neighborhoods
whose fibers lie in fibers R =1 x ¢ x U}é_l x s of R" x UZ and consist of segments
of geodesics which are orthogonal to intersections of the corresponding manifolds
with these R?~1x ¢ x U}é_l x 5. The intersection of such a tubular neighborhood
of M with the fiber R?~1 x ¢ x U}é_l x s 18 a normal tubular neighborhood of
MO (R x ¢ x U}é_l x s) in R"™1x ¢ x U}é_l x s. Of course, only manifolds
transversal to R? ™1 x £ x U}é_l x s have tubular neighborhoods of this type.

Introduce a norm in vector space of Laurent polynomials over K on n vari-
ables:

137 el = max{la,||w € 2},
wWEL™

Let T’ be a subset of R™ and ¢ a positive number. Let a be a Laurent polyno-
mial over K in n variables and U a subset of KIR?. We shall say that in U the
truncation ab is e-sufficient for a (with respect to the chosen class of tubular
neighborhoods), if for any Laurent polynomial b over K satisfying the conditions
A(b) C A(a), b' = a and ||b — b'|| < ||a — a'|| (in particular, for b = a and
b = a') the following condition takes place:

(1) UNSVign(b) = @,
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(2) the set la(U N Vgg~(b)) lies in a tubular e-neighborhood N (from the
chosen class) of la(Vig~(al) ~ SVkg«(a')) and

(3) la(U N Vgg=(b)) can be extended to the image of a smooth section of
the tubular fibration N — la(Vig~(at) ~ SVir«(al)).

The e-sufficiency of I'-truncation of Laurent polynomial @ in U means, roughly
speaking, that monomials which are not in a!” have a small influence on Vg« (a)N

U.

6.1.A. Ifal is e-sufficient for a in open sets U; withi € J, then it is e-sufficient
fora in ;e ;7 Ui too. O

Standard arguments based on Implicit Function Theorem give the following
Theorem.

6.1.B. If a set U C KIR” 1s compact and contains no singular pownts of a hyper-
surface Viggn(a), then for any tubular neighborhood N of Vgg=(a) ~ SVikg~(a)
and any polyhedron A D A(a) there exists 6 > 0 such that for any Laurent
polynomial b with A(b) C A and ||b — al| < & the hypersurface Vgg=(b) has no
singularities in U, intersection U N Vggr»(b) is contained in N and can be ex-
tended to the image of a smooth section of a tubular fibration N — Vigg=(a) ~
SVK]Rn(a). O

From this the following proposition follows easily.

6.1.C. If U € KR" is compact and a' is e-sufficient truncation of a in U,
then for any polyhedron A D A(a) there exists § > 0 such that for any Laurent
polynomial b with A(b) C A, b'' = a¥ and ||b — a|| < § the truncation b is
e-sufficient in U. O

In the case of T' = A(a) proposition 6.1.C turns to the following proposition.

6.1.D. Ifa set U C KR"™ is compact and contains no singular points of Vign(a)
and la(Vigg~(a)) has a tubular neighborhood of the chosen type, then for any
£ > 0 and any polyhedron A D A(a) there exists § > 0 such that for any Laurent
polynomial b with A(b) C A, ||b—a|| < & and b2(®) = a the truncation b>(®) is
e-sufficient in U. [

The following proposition describes behavior of the e-sufficiency under quasi-
homotheties.

6.1.E. Let a be a Laurent polynomial over K in n variables. Let U C KR”,
I CR? we R” Lete andt be positive numbers. Then e-sufficiency of T'-
truncation a© of a in qhw +(U) is equivalent to e-sufficiency of T'-truncation of
aoqhy: inU.

The proof follows from comparison of the definition of ¢-sufficiency and the
following two facts. First, it is obvious that

qhw t(U) N Vig»(0) = ghw (U N ghy,(VEr= (b)) = qhw,t(U N Vi (bo qhy ),

and second, the transformation Ty ¢y, X 1dyp of R™ X Ug corresponding, by
2.1.A, to qhy ¢ preserves the chosen class of tubular eneighborhoods . [
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6.2. Domains of e-sufficiency of face-truncation. For A C R” and B C
KIR™ denote by gha(B) the union |, ¢ 4 ¢hw(B).

For A C R™ and p > 0 denote by 9,(A) the set {z € R*|dist(z, A) < p}.

For A,B C R"™ and A € R the sets {#+y|o € A,y € B} and { x|z € A} are
denoted, as usually, by A 4+ B and AA.

Let @ be a Laurent polynomial in n variables, ¢ a positive number and T' a
face of the Newton polyhedron A = A(a).

6.2.A. If in open set U C KIR™ the truncation a' is e-sufficient for a, then it is
e-sufficient for a in thlDCZ(F)(U)‘l

ProoOF. Let w € C1DCL(T) and ww = § for w € T'. By 6.1.E, e-sufficiency of
truncation a' for a in gh,, (U) is equivalent to e-sufficiency of truncation (aogqh,)t
for (a o gh,)! in U or, equivalently, to e-sufficiency of I'-truncation of Laurent
polynomial b = e=%a o qh,, in U. Since

e %ao qhy(z) = E e et = ar(x) + E R L
wEA weANT

and ww—9 < 0 when w € ANT and w € C1 DC} (T'), it follows that b satisfies the
conditions A(b) = A, 6" = a® and [|b—b"|| < ||a—a'||. Therefore the truncation
b' is e-sufficient for b in U and, hence, the truncation a' is e-sufficient for « in
qho (U). From this, by 6.1.A, the proposition follows. [

6.2.B. If the truncation a' is completely nondegenerate and laVig«(a') has a
tubular netghborhood of the chosen type, then for any compact sets C' C KR” and
Q C DO (L) there exists § such that in qghsq(C) the truncation a' is e-sufficient
for a.

Proor. For w € DCL (') denote by wI' a value taken by the scalar product
ww for w € T'. Since

t=“Tao qhe (z) = ar(x) + Z oWl 2%
weANT

for w € DCL(T) (cf. the previous proof) and ww — wI' < 0 when w € ANT
and w € DCL(T) it follows that the Laurent polynomial b, = t=—“Tqo qhu ¢
with w € DCK(T) turns to al as T — +oc. Tt is clear that this convergence is
uniform with respect to w on a compact set @ C DCL (I'). By 6.1.D it follows
from this that for a compact set U C KIR"™ there exists 5 such that for any w € Q
and ¢ > 5 the truncation bg,t of b, ; is e-sufficient in U for b, ;. By 6.1.E, the
latter is equivalent to e-sufficiency of truncation a' for a in qhe +(U).

Thus if U is the closure of a bounded neighborhood W of a set C' then there
exists n such that for w € Q and ¢ > 5 the truncation a' is e-sufficient for a in
qhw ¢(U). Therefore a® is the same in a smaller set ghy, (W) and, hence, (by
6.1.A) in the union Uth,wEﬂ ghe +(W) and, hence, in a smaller set Ut:nwaQ(C’).
Putting § = Inn we obtain the required result. [

1Here (as above) Cl denotes the closure.
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6.2.C. LetT is a face of another face X2 of the polyhedron A. Let Q is a compact
subset of the cone DCJ (). IfT-truncation al is e-sufficient for a™ in a compact
set C, then there exrists a number § such that a* is e-sufficient for a in qhsa(C).

This proposition is proved similarly to 6.2.B, but with the following difference:
the reference to Theorem 6.1.D is replaced by a reference to Theorem 6.1.C. O

6.2.D. Let C' C KIR” be a compact set and let T be a face of A such that for
any face ¥ of A with dim ¥ = dim A — 1 having a face I' the truncation a® is e-

sufficient for a® in C. Then there exists a real number § such that the truncation
r

a* is e-sufficient for a in thIDC;(F)\ngC;(A)(Int ).

Proor. By 6.2.C, for any face 2 of A with dim¥» =dimA —1 and I' C 9%
there exists a vector wy, € DCL (X) such that the truncation ab is e-sufficient
for a in ghy,.(C), and, hence, by 6.2.A, in qhwE_I_ClDCZ(F)(Int (). Choose such
wy for each ¥ with dim¥ = dimA — 1 and I' C 9%. Obviously, the sets
ws+ClDCK (T) cover the whole closure of the cone DC', (T') besides some neigh-
borhood of its top, i.e. the cone DCJ(A); in other words, there exists a number
d such that | Js(ws + C1DCK(T')) D CIDCK(T) ~ Ns DC{ (A). Hence, ab is e-
sufficient for a in thlDC;(F)\ngC;(A) (IntC) C Us ¢h,1a Do) (IntC). O

6.3. The main Theorem on logarithmic asymptotes of hypersurface.
Let A C R”™ be a convex closed polyhedron and ¢ : G(A) — R be a positive
function. Then for I' € G(A) denote by Da ,(T') the set

Ny (PCZ (M)~ | Nemy(DCF (D).
TEG(A)
reg(s)

It is clear that the sets Da o(I') with T' € (A) cover R”. Among these sets
only sets corresponding to faces of the same dimension can intersect each other.
In some cases (for example, if ¢! grows fast enough when dim T grows) they do
not intersect and then {Da (') }reg(a) is a partition of R™.

Let a be a Laurent polynomial over K in n variables and £ be a positive
number. A function ¢ : G(A(a)) — R” is said to be describing domains of
e-sufficiency for a (with respect to the chosen class of tubular neighborhoods)
if for any proper face I' € G(A(a)), for which truncation a' is completely non-
degenerate and the hypersurface l(a(Vgg=(al)) has a tubular neighborhood of
the chosen class, the truncation a' is e-sufficient for ¢ in some neighborhood of

[T (DCaa) (1))

6.3.A. For any Laurent polynomial a over K in n variables and ¢ > 0 there
erists a function G(A(a)) — R describing domains of e-sufficiency for a with
respect to the chosen class of tubular neighborhoods.

In particular; if a is peripherally nondegenerate Laurent polynomial over K
in n variables and dim A(a) = n then for any ¢ > 0 there exists a compact set
C C KIR” such that KR™~ C is covered by regions in which truncations of a?2(®)
are e-sufficient for a with respect to class of normal tubular neighborhoods. In
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other words, under these conditions behavior of Vkg=(a) outside C' is defined by
monomials of a?2(®).

6.4. Proof of Theorem 6.3.A. Theorem 6.3.A is proved by induction on
dimension of polyhedron A(a).

If dimA(a) = 0 then a is monomial and Vgg»(a) = @. Thus for any ¢ > 0
any function ¢ : G(A(a)) — R describes domains of e-sufficiency for a.

Induction step follows obviously from the following Theorem.

6.4.A. Let a be a Laurent polynomial over K in n variables, A be its Newton
polyhedron, € a positive number. If for a function ¢ : G(A) N~ {A} = R and any
proper face I' of A the restriction p|gry describes domains of e-sufficiency for
al’, then ¢ can be extended to a function ¢ : G(A) — R describing regions of

e-sufficiency for a.

ProoF. It is sufficient to prove that for any face T' € G(A) ~ {A}, for which
the truncation a' is completely nondegenerate and hypersurface Vig(a) has
a tubular neighborhood of the chosen class, there exists an extension ¢r of ¢
such that truncation a® is e-sufficient for @ in a neighborhood of {=!(Da o (T)),
i.e. to prove that for any face I' # A there exists a number ¢r(A) such that the
' is e-sufficient for a in some neighborhood of

T Ny (DOR (D) N Pora)(DCR(A) [ Ny (DCF (D)),

truncation a

Seg(A)~{A}
reg(x)
Indeed, putting
s(A) = A
PO = g #r(d)

we obtain a required extension of .

First, consider the case of a face I' with dimI’ = dimA — 1. Apply propo-
sition 6.2.B to C' = l_l(Cl‘ﬂw(p)H(O) and any one-point set Q@ C DCL(T). It
implies that a! is e-sufficient for @ in gh, (C) = l_l(C’l‘ﬂw(p)H(w)) for some w €
DCK (T'). Now apply proposition 6.2.A to U = l_l(mw(r‘)+1(W)). It gives that a”
is e-sufficient for a in thc;(F)(l_l(mw(F)H(W» =171 N1 (w + DC(T)))
and, hence, in the smaller set l_l(‘ftw(p)+1(DC’£(F))) N M (DCR(A)). Tt is
remained to put ¢r(A) = |w|+ 1.

Now consider the case of face I' with dimI' < dim A — 1. Denote by £ the set

Nory(PCZM) N | Nemy(DCF (D).
Teg(a)~{Aa}
reg(x)
It is clear that there exists a ball B C R”™ with center at 0 such that F =
(ENB) + CIDCL(T). Denote the radius of this ball by 5.
If ¥ € G(A) is a face of dimension dimA — 1 with §% D T then, by the
hypothesis, the truncation a® is e-sufficient for @™ in some neighborhood of

@D M)~ | Moy (DC5 (0))

©eg(T)
reg(®)
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and, hence, in neighborhood of a smaller set

T M (DCE )~ [ Np(e)(DC3(O)):
0eg(D)
reg(e)
Therefore for any face ¥ with dim» = dimA — 1 and I' C 9% the trunca-
tion ab is e-sufficient for a* in some neighborhood of [=1(E). Denote by C a
compact neighborhood of I=!(E N B) contained in this neighborhood. Applying
proposition 6.2.A, one obtains that a' is e-sufficient for « in the set

¢heipes rymspos (a) (It C) =17 (Int{(C) + CLDC (T) ~ Ns DO (A))).
It is remained to put er(A) =6+ 5 O

6.5. Modification of Theorem 6.3.A. Below in Section 6.8 it will be more
convenient to use not Theorem 6.3.A but the following its modification, whose
formulation is more cumbrous, and whose proof is obtained by an obvious mod-

tfication of deduction of 6.3.A from 6.4.A.

6.5.A. For any Laurent polynomial a over K in n variables and any € > 0 and
¢ > 1 there exists a function ¢ : G(A(a)) = R such that for any proper face
[ € G(A(a)), for which ab is completely nondegenerate and la(Vig«(a')) has a
tubular neighborhood from the chosen class, the truncation a is e-sufficient for
a in some neighborhood of

T Mepm(DCR (M)~ | Ny (DC3 (X)),
ZEeG(A)
reg(®)
O

6.6. Charts of L-polynomials. Let a be a peripherally nondegenerate Lau-
rent polynomial over K in n variables, A be its Newton polyhedron. Let V be a
vector subspace of R” corresponding to the smallest affine subspace containing
A (ie. V= Ca(A)). Let ¢ : G(A) = R be the function, existing by 6.3.A,
describing for some ¢ regions of e-sufficiency for a with respect to class of normal
tubular neighborhoods.

The pair (A x Ug, v) consisting of the product A x Ug and its subset v is a
K-chart of a Laurent polynomial a if:

(1) there exists a homeomorphism h : (ClDa o(A)NV) x U — A x UR
such that A((Cl Da ,(A)YNV) x y) = A x y for y € Ug,

v = h(laVK]Rn(a) N (CIDAW(A) N V) X U}é

and for each face T' of A the set A((ClDa »,(A)NDao(T)NV) x Ug)
lies in the product of the star |J regzy X of I' to Ug;
Teg(a)~{A}
(2) for any vector w € R™ which is orthogonal to V' and, in the case of
K = R, is integer, the set v i1s invariant under transformation A x
Un — A x U defined by formula (z, (y1, ..., yn)) = (z, (e™“1y;, ...

eﬂ'iwnyn));

bl
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(3) for each face T' of A the pair (I' x UR, v N (T x UR)) is a K-chart of
Laurent polynomial a®.

The definition of the chart of a Laurent polynomial, which, as I believe, is
clearer than the description given here, but based on the notion of toric com-
pletion of KIR™ is given above in Section 3.3. I restrict myself to the following
commentary of conditions 1 — 3.

The set (ClDa o(A)NV) x Ug contains, by 6.3.A, a deformation retract of
laVkgn(a). Thus, condition 1 means that v is homeomorphic to a deformation
retract of Vggr(a). The position of v in A x UE contains, by 1 and 3, a complete
topological information about behavior of this hypersurface outside some com-
pact set. The meaning of 2 1s in that v has the same symmetries as, according

to 2.1.C, Vgg~(a) has.

6.7. Structure of Vgg«(b;) with small t. Denote by i, the embedding
KR™ — KR"+! defined by i(21,...,2,) = (21,...,2n, t). Obviously,

Vicrn(be) = iy ' Viggnar (b).

This allows to take advantage of results of the previous Section for study of
Vikgn(b:) as t = 0. For sufficiently small ¢ the image of embedding é; is covered
by regions of e-sufficiency of truncation b, where [ runs over the set of faces
of graph of v, and therefore the hypersurface Viggn(b;) turns to be composed of
pieces obtained from Vgg=(a;) by appropriate quasi-homotheties.

I preface the formulation describing in detail the behavior of Vkg=(b:) with
several notations.

Denote the Newton polyhedron A(b) of Laurent polynomial b by A. Tt is clear
that A is the convex hull of the graph of v. Denote by G the union Ule G(A;).
For I' € G denote by ' the graph v|p. Tt is clear that Ic Q(A) and hence an
injection I' — r:¢g— Q(A) 1s defined.

For t > 0 denote by j; the embedding R™ — R"*! defined by the formula
Je(er, .o &) = (21,...,2n, Int). Let ¢ : G — IR be a positive function, ¢ be a
number from interval (0, 1). For I' € G denote by & (T') the following subset of
R™: R R

Nyyir (DCFM) N [ Npwyii (DOR(T)).
Zeg
red(z)
6.7.A. If Laurent polynomaals ay, . ..,as are completely non-degenerate then for
any € > 0 there exist ty € (0,1) and function ¢ : G — R such that for any
t € (0,t0] and any face T' € G truncation b} is c-sufficient for b, with respect to
the class of normal tubular neighborhoods in some neighborhood of I=1(&; 4 (T)).

Denote the gradient of restriction of v on ' € G by V(T'). The truncation b},
obviously, equals a' o qhv(ry,¢. In particular, btA’ =a; o qhy(a,),: and, hence,
Vicrn (b)) = qhvay -1 (Vira(ai)).

In the domain, where b} is e-sufficient for b;, the hypersurfaces laVig«(b:)
and laVK]Rn(btA’) with A; D I lie in the same normal tubular e-neighborhood of
laVig=(bl) and, hence, are isotopic by an isotopy moving points at most on 2¢.
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Thus, according to 6.7.A for ¢ < 1y to the space KIR™ is covered by regions in
which Vig(b:) is approximated by ¢hy(a,) -1 (Vkr=(a;)).

6.8. Proof of Theorem 6.7.A. Put ¢ = max{y/1+ V(A;)%, i =1,... s}
Apply Theorem 6.5.A to the Laurent polynomial & and numbers ¢ and ¢, con-
sidering as the class of chosen tubular neighborhoods in R"*1 x UI@‘H tubular
neighborhoods, whose fibers lie in the fibers R"™ x ¢ x U x s of R"1 x UI@‘H
and consist of segments of geodesics which are orthogonal to intersections of
submanifold with R” x ¢t x U} x s. (Intersection of such a tubular neighborhood
of M C R x UI@‘H with the fiber R” x ¢ x U x s is a normal tubular neigh-
borhood of M N(R™x ¢t x U xs) in R" xt x U} x s.) Applying Theorem 6.5.A
one obtains a function ¢ : Q(A) — R. Denote by v the function G — R which
is the composition of embedding I' — r:¢— Q(A) (see Section 6.7) and the

1 ~
function —¢ : G(A) — R. This function has the required property. Indeed, as it
C ~

is easy to see, for 0 < t < e=#(8) & (T is contained, in

i My (PO M)~ [ My (DEF(R))),
Seg(A)
Teg (%)

and thus from e-sufficiency of BT for b in some neighborhood of

Seg(A)
reg(s)
with respect to the chosen class of tubular neighborhoods in R7*+1 x UI@‘H if

follows that for 0 < ¢ < ¢~#(&) the truncation b} is e-sufficient for b; in some
neighborhood of {71(&; ,(I')) with respect to the class of normal tubular neigh-
borhoods. O

6.9. An alternative proof of Theorem 4.3.A. Let V be a vector subspace
of R™ corresponding to the minimal affine subspace containing A. It is divided
for each t € (0, 1) onto the sets V' N jt_l(DCE(f)) with I' € G. Let us construct
cells Ty in V which are dual to the sets of this partition (barycentric stars). For
this mark a point in each V' N jt_l(DCE(f)):

ber €V N7 (DCK(T)).

Then for I' with dimI' = 0 put I'y = b; i and construct the others I'; inductively
on dimension dimI': if I'; for I' with dim I’ < » have been constructed then for
I' with dimT = # the cell T; is the (open) cone on UEeg(F)\{F} ¥, with the
vertex by r. (This is the usual construction of dual partition turning in the case
of triangulation to partition onto barycentric stars of simplices.)

By Theorem 6.7.A there exist ¢, € (0, 1) and function ¢ : G — R such that for
any t € (0,t] and any face ' € G the truncation bl is e-sufficient for b; in some
neighborhood of [=1(&; 4 (T)). Since cells I'; grow unboundedly when ¢ runs to
zero (if dimT # 0) it follows that there exists ¢y € (0, (] such that for ¢ € (0,7¢]
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for each face I' € G the set ‘ﬂwp)jt_l(DCg(F)), and together with it the set
& (), lie in the star of the cell Ty, ie. in UFeg(E) ¥;. Let us show that for
such ty the conclusion of Theorem 4.3.A takes place.

Indeed, it follows from 6.7.A that there exists a homeomorphism#b : I's xUg —
' x Ug with A(Ty x y) =T x y for y € Ug such that (T x U, h(la(Vggr=(bt)) N
[; x U%)) is K-chart of Laurent polynomial a'’. Therefore the pair

(Uregls x Uk, laVirn(be) N (Uregl's x Ug))

is obtained in result of patchworking K-charts of Laurent polynomials aq, ...,
as. The function ¢ : G(A) = R, existing by Theorem 6.3.A applied to b, can be
chosen, as it follows from 6.4.A, in such a way that it should majorate any given
in advance function G(A) — R. Choose ¢ in such a way that D, A (A) D UregTy
and Dy A(X) N 0D, a(A) D &y (E) N IDe aA(A) for T € G(A) N {A}. As it

follows from 6.7.A, there exists a homeomorphism

(6.1) (| T x Up, laVgge(b) 0 (| Tv x UR)) =
I'eg I'eg
(Dg,a(A) x Uk, laVigr=(be) N (Dy,a(A) x Ug))

turning & 4(X) N a(UFeg Ty x UR) to & 4(X) NOD, a(A) for € G(A) N {A}.
Therefore K-chart of Laurent polynomial b; is obtained by patchworking K-
charts of Laurent polynomials ay,...,as. O
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