
Chapter III

Topological Properties

11. Connectedness

11◦1. Definitions of Connectedness and First Examples

A topological space X is connected if X has only two subsets that are
both open and closed: the empty set ∅ and the entire X. Otherwise, X is
disconnected .

A partition of a set is a cover of this set with pairwise disjoint subsets.
To partition a set means to construct such a cover.

11.A. A topological space is connected, iff it has no partition into two
nonempty open sets, iff it has no partition into two nonempty closed sets.

11.1. 1) Is an indiscrete space connected? The same question for 2) the arrow
and 3) RT1

.

11.2. Describe explicitly all connected discrete spaces.

11.3. Describe explicitly all disconnected two-point spaces.

11.4. 1) Is the set Q of rational numbers (with the relative topology induced from
R) connected? 2) The same question for the set of irrational numbers.

11.5. Let Ω1 and Ω2 be two topologies in a set X, and let Ω2 be finer than Ω1

(i.e., Ω1 ⊂ Ω2). 1) If (X, Ω1) is connected, is (X, Ω2) connected? 2) If (X, Ω2) is
connected, is (X, Ω1) connected?

11◦2. Connected Sets

When we say that a set A is connected, this means that A lies in some
topological space (which should be clear from the context) and, equipped
with the relative topology, A a connected space.
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82 III. Topological Properties

11.6. Characterize disconnected subsets without mentioning the relative topology.

11.7. Is the set {0, 1} connected 1) in R, 2) in the arrow, 3) in RT1
?

11.8. Describe explicitly all connected subsets 1) of the arrow, 2) of RT1
.

11.9. Show that the set [0, 1] ∪ (2, 3] is disconnected in R.

11.10. Prove that every nonconvex subset of the real line is disconnected. (In
other words, each connected subset of the real line is a singleton or an interval.)

11.11. Let A be a subset of a space X. Prove that A is disconnected iff A has
two nonempty subsets B and C such that A = B ∪ C, B ∩ ClX C = ∅, and
C ∩ ClX B = ∅.

11.12. Find a space X and a disconnected subset A ⊂ X such that if U and V

are any two open sets partitioning X, then we have either U ⊃ A, or V ⊃ A.

11.13. Prove that for every disconnected set A in Rn there are disjoint open sets
U, V ⊂ Rn such that A ⊂ U ∪ V , U ∩ A 6= ∅, and V ∩ A 6= ∅.

Compare 11.11–11.13 with 11.6.

11◦3. Properties of Connected Sets

11.14. Let X be a space. If a set M ⊂ X is connected and A ⊂ X is open-closed,
then either M ⊂ A, or M ⊂ X r A.

11.B. The closure of a connected set is connected.

11.15. Prove that if a set A is connected and A ⊂ B ⊂ Cl A, then B is connected.

11.C. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that any two sets in this family intersect. Then

⋃

λ∈Λ Aλ is connected. (In
other words: the union of pairwise intersecting connected sets is connected.)

11.D Special case. If A,B ⊂ X are two connected sets with A ∩ B 6= ∅,
then A ∪ B is also connected.

11.E. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that each set in this family intersects Aλ0 for some λ0 ∈ Λ. Then

⋃

λ∈Λ Aλ

is connected.

11.F. Let {Ak}k∈Z be a family of connected sets such that Ak ∩Ak+1 6= ∅

for any k ∈ Z. Prove that
⋃

k∈Z
Ak is connected.

11.16. Let A and B be two connected sets such that A ∩ Cl B 6= ∅. Prove that
A ∪ B is also connected.

11.17. Let A be a connected subset of a connected space X, and let B ⊂ X r A

be an open-closed set in the relative topology of X r A. Prove that A ∪ B is
connected.

11.18. Does the connectedness of A ∪ B and A ∩ B imply that of A and B?
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11.19. Let A and B be two sets such that both their union and intersection are
connected. Prove that A and B are connected if both of them are 1) open or 2)
closed.

. . .

. . .

11.20. Let A1 ⊃ A2 ⊃ · · · be an infinite decreasing sequence of closed connected
sets in the plane R2. Is

T

∞

k=1 Ak a connected set?

11◦4. Connected Components

A connected component of a space X is a maximal connected subset of
X, i.e., a connected subset that is not contained in any other (strictly) larger
connected subset of X.

11.G. Every point belongs to some connected component. Furthermore, this
component is unique. It is the union of all connected sets containing this
point.

11.H. Two connected components either are disjoint or coincide.

A connected component of a space X is also called just a component of X.
Theorems 11.G and 11.H mean that connected components constitute a
partition of the whole space. The next theorem describes the corresponding
equivalence relation.

11.I. Prove that two points lie in the same component iff they belong to the
same connected set.

11.J Corollary. A space is connected iff any two of its points belong to the
same connected set.

11.K. Connected components are closed.

11.21. If each point of a space X has a connected neighborhood, then each con-
nected component of X is open.

11.22. Let x and y belong to the same component. Prove that any open-closed
set contains either both x and y, or none of them (cf. 11.36).

11◦5. Totally Disconnected Spaces

A topological space is totally disconnected if all of its components are
singletons.

11.L Obvious Example. Any discrete space is totally disconnected.

11.M. The space Q (with the topology induced from R) is totally discon-
nected.

Note that Q is not discrete.
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11.23. Give an example of an uncountable closed totally disconnected subset of
the line.

11.24. Prove that Cantor set (see 2.Bx) is totally disconnected.

11◦6. Boundary and Connectedness

11.25. Prove that if A is a proper nonempty subset of a connected space, then
FrA 6= ∅.

11.26. Let F be a connected subset of a space X. Prove that if A ⊂ X and
neither F ∩ A, nor F ∩ (X r A) is empty, then F ∩ Fr A 6= ∅.

11.27. Let A be a subset of a connected space. Prove that if Fr A is connected,
then so is Cl A.

11◦7. Connectedness and Continuous Maps

A continuous image of a space is its image under a continuous map.

11.N. A continuous image of a connected space is connected. (In other
words, if f : X → Y is a continuous map and X is connected, then f(X) is
also connected.)

11.O Corollary. Connectedness is a topological property.

11.P Corollary. The number of connected components is a topological in-
variant.

11.Q. A space X is disconnected iff there is a continuous surjection X →
S0.

11.28. Theorem 11.Q often yields shorter proofs of various results concerning
connected sets. Apply it for proving, e.g., Theorems 11.B–11.F and Problems 11.D

and 11.16.

11.29. Let X be a connected space and f : X → R a continuous function. Then
f(X) is an interval of R.

11.30. Suppose a space X has a group structure and the multiplication by any
element of the group is a continuous map. Prove that the component of unity is
a normal subgroup.

11◦8. Connectedness on Line

11.R. The segment I = [0, 1] is connected.

There are several ways to prove Theorem 11.R. One of them is suggested
by 11.Q, but refers to a famous Intermediate Value Theorem from calculus,
see 12.A. However, when studying topology, it would be more natural to
find an independent proof and deduce Intermediate Value Theorem from The-
orems 11.R and 11.Q. Two problems below provide a sketch of basically the
same proof of 11.R. Cf. 2.Ax below.
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11.R.1 Bisection Method. Let U , V be subsets of I with V = I r U . Let
a ∈ U , b ∈ V , and a < b. Prove that there exists a nondecreasing sequence an

with a1 = a, an ∈ U , and a nonincreasing sequence bn with b1 = b, bn ∈ V ,
such that bn − an = b−a

2n−1 .

11.R.2. Under assumptions of 11.R.1, if U and V are closed in I, then which
of them contains c = sup{an} = inf{bn}?

11.31. Deduce 11.R from the result of Problem 2.Ax.

11.S. Prove that an open set in R has countably many connected compo-
nents.

11.T. Prove that R1 is connected.

11.U. Each convex set in Rn is connected. (In particular, so are Rn itself,
the ball Bn, and the disk Dn.)

11.V Corollary. Intervals in R1 are connected.

11.W. Every star-shaped set in Rn is connected.

11.X Connectedness on Line. A subset of a line is connected iff it is an
interval.

11.Y. Describe explicitly all nonempty connected subsets of the real line.

11.Z. Prove that the n-sphere Sn is connected. In particular, the circle S1

is connected.

11.32. Consider the union of spiral

r = exp

„

1

1 + ϕ2

«

, with ϕ ≥ 0

(r,ϕ are the polar coordinates) and circle S1. 1) Is this set connected? 2) Will the
answer change if we replace the entire circle by some of its subsets? (Cf. 11.15.)

11.33. Are the following subsets of the plane R2 connected:

(1) the set of points with both coordinates rational;
(2) the set of points with at least one rational coordinate;
(3) the set of points whose coordinates are either both irrational, or both

rational?

11.34. Prove that for any ε > 0 the ε-neighborhood of a connected subset of
Euclidean space is connected.

11.35. Prove that each neighborhood U of a connected subset A of Euclidean
space contains a connected neighborhood of A.

. . .
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11.36. Find a space X and two points belonging to distinct components of X

such that each simultaneously open and closed set contains either both points, or
neither of them. (Cf. 11.22.)
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12. Application of Connectedness

12◦1. Intermediate Value Theorem and Its Generalizations

The following theorem is usually included in Calculus. You can easily
deduce it from the material of this section. In fact, in a sense it is equivalent
to connectedness of the segment.

12.A Intermediate Value Theorem. A continuous function

f : [a, b] → R

takes every value between f(a) and f(b).

Many problems that can be solved by using Intermediate Value Theorem can
be found in Calculus textbooks. Here are few of them.

12.1. Prove that any polynomial of odd degree in one variable with real coefficients
has at least one real root.

12.B Generalization of 12.A. Let X be a connected space and f : X →
R a continuous function. Then f(X) is an interval of R.

12.C Corollary. Let J ⊂ R be an interval of the real line, f : X → R a
continuous function. Then f(J) is also an interval of R. (In other words,
continuous functions map intervals to intervals.)

12◦2. Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected
components is a topological invariant (see Section 10).

12.D. [0, 2] and [0, 1] ∪ [2, 3] are not homeomorphic.

Simple constructions assigning homeomorphic spaces to homeomorphic
ones (e.g., deleting one or several points), allow us to use connectedness for
proving that some connected spaces are not homeomorphic.

12.E. I, [0,∞), R1, and S1 are pairwise nonhomeomorphic.

12.2. Prove that a circle is not homeomorphic to a subspace of R1.

12.3. Give a topological classification of the letters of the alphabet: A, B, C, D,
. . . , regarded as subsets of the plane (the arcs comprising the letters are assumed
to have zero thickness).

12.4. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto square,
which are called Peano curves, see Section 9.

12.F. R1 and Rn are not homeomorphic if n > 1.
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Information. Rp and Rq are not homeomorphic unless p = q. This
follows, for instance, from the Lebesgue–Brouwer Theorem on the invariance
of dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension Theory ,
Princeton, NJ, 1941).

12.5. The statement “Rp is not homeomorphic to Rq unless p = q” implies that
Sp is not homeomorphic to Sq unless p = q.

12◦3x. Induction on Connectedness

A map f is locally constant if each point of its source space has a neighborhood
U such that the restriction of f to U is constant.

12.1x. Prove that any locally constant map is continuous.

12.2x. A locally constant map on a connected set is constant.

12.3x. Riddle. How are 11.26 and 12.2x related?

12.4x. Let G be a group equipped with a topology such that for any g ∈ G the
map G → G : x 7→ xgx−1 is continuous, and let G with this topology be connected.
Prove that if the topology induced in a normal subgroup H of G is discrete, then
H is contained in the center of G (i.e., hg = gh for any h ∈ H and g ∈ G).

12.5x Induction on Connectedness. Let E be a property of subsets of a topo-
logical space X such that the union of sets with nonempty pairwise intersections
inherits this property from the sets involved. Prove that if X is connected and
each point in X has a neighborhood with property E , then X also has property E .

12.6x. Prove 12.2x and solve 12.4x using 12.5x.

For more applications of induction on connectedness, see 13.T, 13.4x, 13.6x,
and 13.8x.

12◦4x. Dividing Pancakes

12.7x. Any irregularly shaped pancake can be cut in half by one stroke of the
knife made in any prescribed direction. In other words, if A is a bounded open
set in the plane and l is a line in the plane, then there exists a line L parallel to l

that divides A in half by area.

12.8x. If, under the assumptions of 12.7x, A is connected, then L is unique.

12.9x. Suppose two irregularly shaped pancakes lie on the same platter; show
that it is possible to cut both exactly in half by one stroke of the knife. In other
words: if A and B are two bounded regions in the plane, then there exists a line
in the plane that halves each region by area.

12.10x. Prove that a plane pancake of any shape can be divided to four pieces of
equal area by two straight cuts orthogonal to each other. In other words, if A is a
bounded connected open set in the plane, then there are two perpendicular lines
that divide A into four parts having equal areas.

12.11x. Riddle. What if the knife is curved and makes cuts of a shape different
from the straight line? For what shapes of the cuts can you formulate and solve
problems similar to 12.7x–12.10x?
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12.12x. Riddle. Formulate and solve counterparts of Problems 12.7x–12.10x for
regions in three-space. Can you increase the number of regions in the counterpart
of 12.7x and 12.9x?

12.13x. Riddle. What about pancakes in Rn?
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13. Path-Connectedness

13◦1. Paths

A path in a topological space X is a continuous map of the segment
I = [0, 1] to X. The point s(0) is the initial point of a path s : I → X,
while s(1) is the final point of s. We say that the path s connects s(0) with
s(1). This terminology is inspired by an image of a moving point: at the
moment t ∈ [0, 1], the point is at s(t). To tell the truth, this is more than
what is usually called a path, since besides information on the trajectory
of the point it contains a complete account on the movement: the schedule
saying when the point goes through each point.

13.1. If s : I → X is a path, then the image s(I) ⊂ X is connected.

13.2. Let s : I → X be a path connecting a point in a set A ⊂ X with a point in
X r A. Prove that s(I) ∩ Fr(A) 6= ∅.

s(1)
s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

13.3. Let A be a subset of a space X, inA : A → X the inclusion. Prove that
u : I → A is a path in A iff the composition inA ◦u : I → X is a path in X.

A constant map sa : I → X : x 7→ a is a stationary path. For a path s,
the inverse path is defined by t 7→ s(1 − t). It is denoted by s−1. Although,
strictly speaking, this notation is already used (for the inverse map), the
ambiguity of notation usually leads to no confusion: as a rule, inverse maps
do not appear in contexts involving paths.

Let u : I → X and v : I → X be paths such that u(1) = v(0). We define

uv : I → X : t 7→

{

u(2t) if t ∈ [0, 1
2 ],

v(2t − 1) if t ∈ [12 , 1].
(22)

u(0)

v(1)

u(1)=v(0)

13.A. Prove that the above map uv : I → X is continuous (i.e., it is a
path). Cf. 9.T and 9.V.

The path uv is the product of u and v. Recall that it is defined only if
the final point u(1) of u is the initial point v(0) of v.
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13◦2. Path-Connected Spaces

A topological space is path-connected (or arcwise connected) if any two
points can be connected in it by a path.

13.B. Prove that I is path-connected.

13.C. Prove that the Euclidean space of any dimension is path-connected.

13.D. Prove that the n-sphere Sn with n > 0 is path-connected.

13.E. Prove that the 0-sphere S0 is not path-connected.

13.4. Which of the following spaces are path-connected:

(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) RT1

;
(e) ?

13◦3. Path-Connected Sets

A path-connected set (or arcwise connected set) is a subset of a topological
space (which should be clear from the context) that is path-connected as a
space with the relative topology.

13.5. Prove that a subset A of a space X is path-connected iff any two points in
A are connected by a path s : I → X with s(I) ⊂ A.

13.6. Prove that a convex subset of Euclidean space is path-connected.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

13.7. Every star-shaped set in Rn is path-connected.

13.8. The image of a path is a path-connected set.

13.9. Prove that the set of plane convex polygons with topology generated by the
Hausdorff metric is path-connected. (What can you say about the set of convex
n-gons with fixed n?)

13.10. Riddle. What can you say about the assertion of Problem 13.9 in the
case of arbitrary (not necessarily convex) polygons?

13◦4. Properties of Path-Connected Sets

Path-connectedness is very similar to connectedness. Further, in some
important situations it is even equivalent to connectedness. However, some
properties of connectedness do not carry over to the path-connectedness
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(see 13.Q and 13.R). For the properties that do carry over, proofs are
usually easier in the case of path-connectedness.

13.F. The union of a family of pairwise intersecting path-connected sets is
path-connected.

13.11. Prove that if two sets A and B are both closed or both open and their
union and intersection are path-connected, then A and B are also path-connected.

13.12. 1) Prove that the interior and boundary of a path-connected set may not
be path-connected. 2) Connectedness shares this property.

13.13. Let A be a subset of Euclidean space. Prove that if FrA is path-connected,
then so is Cl A.

13.14. Prove that the same holds true for a subset of an arbitrary path-connected
space.

13◦5. Path-Connected Components

A path-connected component or arcwise connected component of a space
X is a path-connected subset of X that is not contained in any other path-
connected subset of X.

13.G. Every point belongs to a path-connected component.

13.H. Two path-connected components either coincide or are disjoint.

Theorems 13.G and 13.H mean that path-connected components con-
stitute a partition of the entire space. The next theorem describes the
corresponding equivalence relation.

13.I. Prove that two points belong to the same path-connected component
iff they can be connected by a path (cf. 11.I).

Unlike to the case of connectedness, path-connected components are not
necessarily closed. (See 13.Q, cf. 13.P and 13.R.)

13◦6. Path-Connectedness and Continuous Maps

13.J. A continuous image of a path-connected space is path-connected.

13.K Corollary. Path-connectedness is a topological property.

13.L Corollary. The number of path-connected components is a topological
invariant.

13◦7. Path-Connectedness Versus Connectedness

13.M. Any path-connected space is connected.

Put

A = { (x, y) ∈ R2 | x > 0, y = sin(1/x) }, X = A ∪ (0, 0).

13.15. Sketch A.
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13.N. Prove that A is path-connected and X is connected.

13.O. Prove that deleting any point from A makes A and X disconnected
(and hence, not path-connected).

13.P. X is not path-connected.

13.Q. Find an example of a path-connected set, whose closure is not path-
connected.

13.R. Find an example of a path-connected component that is not closed.

13.S. If each point of a space has a path-connected neighborhood, then each
path-connected component is open. (Cf. 11.21.)

13.T. Assume that each point of a space X has a path-connected neighbor-
hood. Then X is path-connected iff X is connected.

13.U. For open subsets of Euclidean space connectedness is equivalent to
path-connectedness.

13.16. For subsets of the real line path-connectedness and connectedness are
equivalent.

13.17. Prove that for any ε > 0 the ε-neighborhood of a connected subset of
Euclidean space is path-connected.

13.18. Prove that any neighborhood U of a connected subset A of Euclidean
space contains a path-connected neighborhood of A.

13◦8x. Polygon-Connectedness

A subset A of Euclidean space is polygon-connected if any two points of A are
connected by a finite polyline contained in A.

13.1x. Each polygon-connected set in Rn is path-connected, and thus also con-
nected.

13.2x. Each convex set in Rn is polygon-connected.

13.3x. Each star-shaped set in Rn is polygon-connected.

13.4x. Prove that for open subsets of Euclidean space connectedness is equivalent
to polygon-connectedness.

13.5x. Construct a path-connected subset A of Euclidean space such that A con-
sists of more than one point and no two distinct points of A can be connected by
a polygon in A.

13.6x. Let X ⊂ R2 be a countable set. Prove that then R2 r X is polygon-
connected.

13.7x. Let X ⊂ Rn be the union of a countable collection of affine subspaces with
dimensions not greater than n− 2. Prove that then Rn r X is polygon-connected.

13.8x. Let X ⊂ Cn be the union of a countable collection of algebraic subsets
(i.e., subsets defined by systems of algebraic equations in the standard coordinates
of Cn). Prove that then Cn r X is polygon-connected.
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13◦9x. Connectedness of Some Sets of Matrices

Recall that real n×n-matrices constitute a space, which differs from Rn2

only
in the way of enumerating its natural coordinates (they are numerated by pairs of
indices). The same relation holds true between the set of complex n × n-matrix

and Cn2

(homeomorphic to R2n2

).

13.9x. Find connected and path-connected components of the following subspaces
of the space of real n × n-matrices:

(1) GL(n; R) = {A | det A 6= 0};
(2) O(n; R) = {A | A · (tA) = E};
(3) Symm(n;R) = {A | tA = A};
(4) Symm(n;R) ∩ GL(n; R);
(5) {A | A2 = E}.

13.10x. Find connected and path-connected components of the following sub-
spaces of the space of complex n × n-matrices:

(1) GL(n; C) = {A | det A 6= 0};
(2) U(n; C) = {A | A · (tĀ) = E};
(3) Herm(n;C) = {A | tA = Ā};
(4) Herm(n;C) ∩ GL(n; C).
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14. Separation Axioms

The aim of this section is to consider natural restrictions on the topological
structure making the structure closer to being metrizable. A lot of sepa-
ration axioms are known. We restrict ourselves to the five most important
of them. They are numerated, and denoted by T0, T1, T2, T3, and T4,
respectively.1

14◦1. The Hausdorff Axiom

We start with the second axiom, which is most important. Besides
the notation T2, it has a name: the Hausdorff axiom. A topological space
satisfying T2 is a Hausdorff space. This axiom is stated as follows: any two
distinct points possess disjoint neighborhoods. We can state it more formally:
∀x, y ∈ X, x 6= y ∃Ux, Vy : Ux ∩ Vy = ∅.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

U V

14.A. Any metric space is Hausdorff.

14.1. Which of the following spaces are Hausdorff:

(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) RT1

;
(5) ?

If the next problem holds you up even for a minute, we advise you to
think over all definitions and solve all simple problems.

14.B. Is the segment [0, 1] with the topology induced from R a Hausdorff
space? Do the points 0 and 1 possess disjoint neighborhoods? Which if any?

14.C. A space X is Hausdorff iff for each x ∈ X we have {x} =
⋂

U∋x

ClU .

1Letter T in these notation originates from the German word Trennungsaxiom, which means
separation axiom.
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14◦2. Limits of Sequence

Let {an} be a sequence of points of a topological space X. A point
b ∈ X is the limit of the sequence if for any neighborhood U of b there exists
a number N such that an ∈ U for any n ≥ N .2 In this case, we say that the
sequence converges or tends to b as n tends to infinity.

14.2. Explain the meaning of the statement “b is not a limit of sequence an”,
using as few negations (i.e., the words no, not , none, etc.) as you can.

14.3. The limit of a sequence does not depend on the order of the terms. More
precisely, let an be a convergent sequence: an → b, and let φ : N → N be a
bijection. Then the sequence aφ(n) is also convergent and has the same limit:
aφ(n) → b. For example, if the terms in the sequence are pairwise distinct, then
the convergence and the limit depend only on the set of terms, which shows that
these notions actually belong to geometry.

14.D. In a Hausdorff space any sequence has at most one limit.

14.E. Prove that in the space RT1 each point is a limit of the sequence
an = n.

14◦3. Coincidence Set and Fixed Point Set

Let f, g : X → Y be maps. Then the set C(f, g) = {x ∈ X | f(x) = g(x)} is
the coincidence set of f and g.

14.4. Prove that the coincidence set of two continuous maps from an arbitrary
space to a Hausdorff space is closed.

14.5. Construct an example proving that the Hausdorff condition in 14.4 is es-
sential.

A point x ∈ X is a fixed point of a map f : X → X if f(x) = x. The set of all
fixed points of a map f is the fixed point set of f .

14.6. Prove that the fixed-point set of a continuous map from a Hausdorff space
to itself is closed.

14.7. Construct an example showing that the Hausdorff condition in 14.6 is es-
sential.

14.8. Prove that if f, g : X → Y are two continuous maps, Y is Hausdorff, A is
everywhere dense in X, and f |A = g|A, then f = g.

14.9. Riddle. How are problems 14.4, 14.6, and 14.8 related to each other?

14◦4. Hereditary Properties

A topological property is hereditary if it carries over from a space to its
subspaces, i.e., if a space X has this property, then each subspace of X also
has it.

2You can also rephrase this as follows: each neighborhood of b contains all members of the
sequence that have sufficiently large indices.
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14.10. Which of the following topological properties are hereditary:

(1) finiteness of the set of points;
(2) finiteness of the topological structure;
(3) infiniteness of the set of points;
(4) connectedness;
(5) path-connectedness?

14.F. The property of being a Hausdorff space is hereditary.

14◦5. The First Separation Axiom

A topological space X satisfies the first separation axiom T1 if each one
of any two points of X has a neighborhood that does not contain the other
point.3 More formally: ∀x, y ∈ X, x 6= y ∃Uy : x /∈ Uy.
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14.G. A space X satisfies the first separation axiom,

• iff all one-point sets in X are closed,

• iff all finite sets in X are closed.

14.11. Prove that a space X satisfies the first separation axiom iff every point of
X is the intersection of all of its neighborhoods.

14.12. Any Hausdorff space satisfies the first separation axiom.

14.H. In a Hausdorff space any finite set is closed.

14.I. A metric space satisfies the first separation axiom.

14.13. Find an example showing that the first separation axiom does not imply
the Hausdorff axiom.

14.J. Show that RT1 meets the first separation axiom, but is not a Hausdorff
space (cf. 14.13).

14.K. The first separation axiom is hereditary.

14.14. Suppose that for any two distinct points a and b of a space X there exists
a continuous map f from X to a space with the first separation axiom such that
f(a) 6= f(b). Prove that then X also satisfies the first separation axiom.

14.15. Prove that a continuous map of an indiscrete space to a space satisfying
axiom T1 is constant.

14.16. Prove that in every set there exists a coarsest topological structure satis-
fying the first separation axiom. Describe this structure.

3T1 is also called the Tikhonov axiom.
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14◦6. The Kolmogorov Axiom

The first separation axiom emerges as a weakened Hausdorff axiom.

14.L. Riddle. How can the first separation axiom be weakened?

A topological space satisfies the Kolmogorov axiom or the zeroth separa-

tion axiom T0 if at least one of any two distinct points of this space has a
neighborhood that does not contain the other of these points.

14.M. An indiscrete space containing at least two points does not satisfy
T0.

14.N. The following properties of a space X are equivalent:

(1) X satisfies the Kolmogorov axiom;

(2) any two different points of X has different closures;

(3) X contains no indiscrete subspace consisting of two points.

(4) X contains no indiscrete subspace consisting of more than one
point;

14.O. A topology is a poset topology iff it is a smallest neighborhood topology
satisfying the Kolmogorov axiom.

Thus, on the one hand, posets give rise to numerous examples of topo-
logical spaces, among which we see the most important spaces, like the line
with the standard topology. On the other hand, all posets are obtained from
topological spaces of a special kind, which are quite far away from the class
of metric spaces.

14◦7. The Third Separation Axiom

A topological space X satisfies the third separation axiom if every closed
set in X and every point of its complement have disjoint neighborhoods, i.e.,
for every closed set F ⊂ X and every point b ∈ X r F there exist open sets
U, V ⊂ X such that U ∩ V = ∅, F ⊂ U , and b ∈ V .
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A space is regular if it satisfies the first and third separation axioms.

14.P. A regular space is a Hausdorff space.
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14.Q. A space is regular iff it satisfies the second and third separation
axioms.

14.17. Find a Hausdorff space which is not regular.

14.18. Find a space satisfying the third, but not the second separation axiom.

14.19. Prove that a space X satisfies the third separation axiom iff every neigh-
borhood of every point x ∈ X contains the closure of a neighborhood of x.

14.20. Prove that the third separation axiom is hereditary.

14.R. Any metric space is regular.

14◦8. The Fourth Separation Axiom

A topological space X satisfies the fourth separation axiom if any two
disjoint closed sets in X have disjoint neighborhoods, i.e., for any two closed
sets A,B ⊂ X with A ∩ B = ∅ there exist open sets U, V ⊂ X such that
U ∩ V = ∅, A ⊂ U , and B ⊂ V .
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A space is normal if it satisfies the first and fourth separation axioms.

14.S. A normal space is regular (and hence Hausdorff).

14.T. A space is normal iff it satisfies the second and fourth separation
axioms.

14.21. Find a space which satisfies the fourth, but not second separation axiom.

14.22. Prove that a space X satisfies the fourth separation axiom iff every neigh-
borhood of every closed set F ⊂ X contains the closure of some neighborhood of
F .

14.23. Prove that any closed subspace of a normal space is normal.

14.24. Find two closed disjoint subsets A and B of some metric space such that
inf{ρ(a, b) | a ∈ A, b ∈ B} = 0.

14.U. Any metric space is normal.

14.25. Let f : X → Y be a continuous surjection such that the image of any
closed set is closed. Prove that if X is normal, then so is Y .
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14◦9x. Niemytski’s Space

Denote by H the open upper half-plane {(x, y) ∈ R2 | y > 0} equipped with
the topology generated by the Euclidean metric. Denote by N the union of H and
the boundary line R1: N = H ∪ R1, but equip it with the topology obtained by
adjoining to the Euclidean topology the sets of the form x∪D, where x ∈ R1 and
D is an open disk in H touching R1 at the point x. This is the Niemytski space.
It can be used to clarify properties of the fourth separation axiom.

14.1x. Prove that the Niemytski space is Hausdorff.

14.2x. Prove that the Niemytski space is regular.

14.3x. What topological structure is induced on R1 from N ?

14.4x. Prove that the Niemytski space is not normal.

14.5x Corollary. There exists a regular space which is not normal.

14.6x. Embed the Niemytski space into a normal space in such a way that the
complement of the image would be a single point.

14.7x Corollary. Theorem 14.23 does not extend to nonclosed subspaces, i.e.,
the property of being normal is not hereditary, is it?

14◦10x. Urysohn Lemma and Tietze Theorem

14.8x. Let A and B be two disjoint closed subsets of a metric space X. Then there
exists a continuous function f : X → I such that f−1(0) = A and f−1(1) = B.

14.9x. Let F be a closed subset of a metric space X. Then any continuous
function f : X → [−1, 1] can be extended over the whole X.

14.9x.1. Let F be a closed subset of a metric space X . For any contin-
uous function f : F → [−1, 1] there exists a function g : X →

[

− 1
3 , 1

3 ]

such that |f(x) − g(x)| ≤ 2
3 for each x ∈ F .

14.Ax Urysohn Lemma. Let A and B be two disjoint closed subsets of a
normal space X. Then there exists a continuous function f : X → I such
that f(A) = 0 and f(B) = 1.

14.Ax.1. Let A and B be two disjoint closed subsets of a normal space X .
Consider the set Λ =

{

k
2n

| k, n ∈ Z+, k ≤ 2n
}

. There exists a collection

{Up}p∈Λ of open subsets of X such that for any p, q ∈ Λ we have: 1) A ⊂ U0

and B ⊂ X r U1 and 2) if p < q then Cl Up ⊂ Uq.

14.Bx Tietze Extension Theorem. Let A be a closed subset of a normal
space X. Let f : A → [−1, 1] be a continuous function. Prove that there
exists a continuous function F : X → [−1, 1] such that F A = f .

14.Cx Corollary. Let A be a closed subset of a normal space X. Any
continuous function A → R can be extended to a function on the whole
space.
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14.10x. Will the statement of the Tietze theorem remain true if in the hypothesis
we replace the segment [−1, 1] by R, Rn, S1, or S2?

14.11x. Derive the Urysohn Lemma from the Tietze Extension Theorem.
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15. Countability Axioms

In this section, we continue to study topological properties that are addi-
tionally imposed on a topological structure to make the abstract situation
under consideration closer to special situations and hence richer in contents.
The restrictions studied in this section bound a topological structure from
above: they require that something be countable.

15◦1. Set-Theoretic Digression: Countability

Recall that two sets have equal cardinality if there exists a bijection of
one of them onto the other. A set of the same cardinality as a subset of the
set N of positive integers is countable.

15.1. A set X is countable iff there exists an injection X → N (or, more generally,
an injection of X into another countable set).

Sometimes this term is used only for infinite countable sets, i.e., for sets
of the cardinality of the whole set N of positive integers, while sets countable
in the above sense are said to be at most countable. This is less convenient.
In particular, if we adopted this terminology, this section would be called
“At Most Countability Axioms”. This would also lead to other more serious
inconveniences as well. Our terminology has the following advantageous
properties.

15.A. Any subset of a countable set is countable.

15.B. The image of a countable set under any map is countable.

15.C. Z is countable.

15.D. The set N2 = {(k, n) | k, n ∈ N} is countable.

15.E. The union of a countable family of countable sets is countable.

15.F. Q is countable.

15.G. R is not countable.

15.2. Prove that any set Σ of disjoint figure eight curves in the plane is countable.
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15◦2. Second Countability and Separability

In this section, we study three restrictions on the topological structure.
Two of them have numbers (one and two), the third one has no number. As
in the previous section, we start from the restriction having number two.

A topological space X satisfies the second axiom of countability or is
second countable if X has a countable base. A space is separable if it contains
a countable dense set. (This is the countability axiom without a number
that we mentioned above.)

15.H. The second axiom of countability implies separability.

15.I. The second axiom of countability is hereditary.

15.3. Are the arrow and RT1
second countable?

15.4. Are the arrow and RT1
separable?

15.5. Construct an example proving that separability is not hereditary.

15.J. A metric separable space is second countable.

15.K Corollary. For metrizable spaces, separability is equivalent to the
second axiom of countability.

15.L. (Cf. 15.5.) Prove that for metrizable spaces separability is hereditary.

15.M. Prove that Euclidean spaces and all their subspaces are separable
and second countable.

15.6. Construct a metric space which is not second countable.

15.7. Prove that in a separable space any collection of pairwise disjoint open sets
is countable.

15.8. Prove that the set of components of an open set A ⊂ Rn is countable.

15.N. A continuous image of a separable space is separable.

15.9. Construct an example proving that a continuous image of a second countable
space may be not second countable.

15.O Lindelöf Theorem. Any open cover of a second countable space
contains a countable part that also covers the space.

15.10. Prove that each base of a second countable space contains a countable
part which is also a base.

15.11 Brouwer Theorem*. Let {Kλ} be a family of closed sets of a second
countable space and assume that for every decreasing sequence K1 ⊃ K2 ⊃ . . .

of sets belonging to this family the intersection ∩∞

1 Kn also belongs to the family.
Then the family contains a minimal set A, i.e., a set such that no proper subset
of A belongs to the family.



104 III. Topological Properties

15◦3. Bases at a Point

Let X be a space, a a point of X. A neighborhood base at a or just
a base of X at a is a collection Σ of neighborhoods of a such that each
neighborhood of a contains a neighborhood from Σ.

15.P. If Σ is a base of a space X, then {U ∈ Σ | a ∈ U} is a base of X at
a.

15.12. In a metric space the following collections of balls are neighborhood bases
at a point a:

• the set of all open balls of center a;
• the set of all open balls of center a and rational radii;
• the set of all open balls of center a and radii rn, where {rn} is any

sequence of positive numbers converging to zero.

15.13. What are the minimal bases at a point in the discrete and indiscrete
spaces?

15◦4. First Countability

A topological space X satisfies the first axiom of countability or is a first

countable space if X has a countable neighborhood base at each point.

15.Q. Any metric space is first countable.

15.R. The second axiom of countability implies the first one.

15.S. Find a first countable space which is not second countable. (Cf. 15.6.)

15.14. Which of the following spaces are first countable:

(a) the arrow; (b) RT1
;

(c) a discrete space; (d) an indiscrete space?

15.15. Find a first countable separable space which is not second countable.

15.16. Prove that if X is a first countable space, then at each point it has a
decreasing countable neighborhood base: U1 ⊃ U2 ⊃ . . . .

15◦5. Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits.
Moreover, they like to talk about all topological notions relying on the no-
tions of sequence and its limit. This tradition has almost no mathematical
justification, except for a long history descending from the XIX century
studies on the foundations of analysis. In fact, almost always4 it is more
convenient to avoid sequences, provided you deal with topological notions,
except summing of series, where sequences are involved in the underlying

4The exceptions which one may find in the standard curriculum of a mathematical depart-
ment can be counted on two hands.
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definitions. Paying a tribute to this tradition, here we explain how and in
what situations topological notions can be described in terms of sequences.

Let A be a subset of a space X. The set SClA of limits of all sequences
an with an ∈ A is the sequential closure of A.

15.T. Prove that SClA ⊂ ClA.

15.U. If a space X is first countable, then the for any A ⊂ X the opposite
inclusion ClA ⊂ SClA also holds true, whence SClA = ClA.

Therefore, in a first countable space (in particular, any metric spaces)
we can recover (hence, define) the closure of a set provided it is known which
sequences are convergent and what the limits are. In turn, the knowledge
of closures allows one to determine which sets are closed. As a consequence,
knowledge of closed sets allows one to recover open sets and all other topo-
logical notions.

15.17. Let X be the set of real numbers equipped with the topology consisting
of ∅ and complements of all countable subsets. (Check that this is actually a
topology.) Describe convergent sequences, sequential closure and closure in X.
Prove that in X there exists a set A with SCl A 6= Cl A.

15◦6. Sequential Continuity

Now we consider the continuity of maps along the same lines. A map
f : X → Y is sequentially continuous if for each b ∈ X and each sequence
an ∈ X converging to b the sequence f(an) converges to f(b).

15.V. Any continuous map is sequentially continuous.

an b

a1

f(an) f(b)

V
f−1(V )

15.W. The preimage of a sequentially closed set under a sequentially con-
tinuous map is sequentially closed.

15.X. If X is a first countable space, then any sequentially continuous map
f : X → Y is continuous.

Thus for maps of a first countable space continuity and sequential con-
tinuity are equivalent.

15.18. Construct a sequentially continuous, but discontinuous map. (Cf. 15.17)
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15◦7x. Embedding and Metrization Theorems

15.Ax. Prove that the space l2 is separable and second countable.

15.Bx. Prove that a regular second countable space is normal.

15.Cx. Prove that a normal second countable space can be embedded into
l2. (Use the Urysohn Lemma 14.Ax.)

15.Dx. Prove that a second countable space is metrizable iff it is regular.
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16. Compactness

16◦1. Definition of Compactness

This section is devoted to a topological property playing a very special
role in topology and its applications. It is a sort of topological counterpart
for the property of being finite in the context of set theory. (It seems though
that this analogy has never been formalized.)

A topological space X is compact if each open cover of X contains a
finite part that also covers X.

If Γ is a cover of X and Σ ⊂ Γ is a cover of X, then Σ is a subcover

(or subcovering) of Γ. Thus, a space X is compact if every open cover of X
contains a finite subcovering.

16.A. Any finite space and indiscrete space are compact.

16.B. Which discrete spaces are compact?

16.1. Let Ω1 ⊂ Ω2 be two topological structures in X. 1) Does the compactness
of (X, Ω2) imply that of (X, Ω1)? 2) And vice versa?

16.C. The line R is not compact.

16.D. A space X is not compact iff it has an open cover containing no finite
subcovering.

16.2. Is the arrow compact? Is RT1
compact?

16◦2. Terminology Remarks

Originally the word compactness was used for the following weaker prop-
erty: any countable open cover contains a finite subcovering.

16.E. For a second countable space, the original definition of compactness
is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexandrov
(1896–1982) and P. S. Urysohn (1898–1924). They suggested for it the term
bicompactness. This notion appeared to be so successful that it has dis-
placed the original one and even took its name, i.e., compactness. The term
bicompactness is sometimes used (mainly by topologists of Alexandrov’s
school).

Another deviation from the terminology used here comes from Bourbaki:
we do not include the Hausdorff property into the definition of compactness,
which Bourbaki includes. According to our definition, RT1 is compact, ac-
cording to Bourbaki it is not.
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16◦3. Compactness in Terms of Closed Sets

A collection of subsets of a set is said to have the finite intersection

property if the intersection of any finite subcollection is nonempty.

16.F. A collection Σ of subsets of a set X has the finite intersection property
iff there exists no finite Σ1 ⊂ Σ such that the complements of the sets in Σ1

cover X.

16.G. A space is compact iff for every collection of its closed sets having
the finite intersection property its intersection is nonempty.

16◦4. Compact Sets

A compact set is a subset A of a topological space X (the latter must be
clear from the context) provided A is compact as a space with the relative
topology induced from X.

16.H. A subset A of a space X is compact iff each cover of A with sets open
in X contains a finite subcovering.

16.3. Is [1, 2) ⊂ R compact?

16.4. Is the same set [1, 2) compact in the arrow?

16.5. Find a necessary and sufficient condition (formulated not in topological
terms) for a subset of the arrow to be compact?

16.6. Prove that any subset of RT1
is compact.

16.7. Let A and B be two compact subsets of a space X. 1) Does it follow that
A ∪ B is compact? 2) Does it follow that A ∩ B is compact?

16.8. Prove that the set A = 0 ∪
˘

1
n

¯

∞

n=1
in R is compact.

16◦5. Compact Sets Versus Closed Sets

16.I. Is compactness hereditary?

16.J. Any closed subset of a compact space is compact.

16.K. Any compact subset of a Hausdorff space is closed.

A

b
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16.L Lemma to 16.K, but not only . . . . Let A be a compact subset of
a Hausdorff space X and b a point of X that does not belong to A. Then
there exist open sets U, V ⊂ X such that b ∈ V , A ⊂ U , and U ∩ V = ∅.

16.9. Construct a nonclosed compact subset of some topological space. What is
the minimal number of points needed?

16◦6. Compactness and Separation Axioms

16.M. A compact Hausdorff space is regular.

16.N. Prove that a compact Hausdorff space is normal.

16.O Lemma to 16.N. In a Hausdorff space, any two disjoint compact
subsets possess disjoint neighborhoods.

16.10. Prove that the intersection of any family of compact subsets of a Hausdorff
space is compact. (Cf. 16.7.)

16.11. Let X be a Hausdorff space, let {Kλ}λ∈Λ be a family of its compact
subsets, and let U be an open set containing

T

λ∈Λ Kλ. Prove that for some finite

A ⊂ Λ we have U ⊃
T

λ∈A
Kλ.

16.12. Let {Kn}
∞

1 be a decreasing sequence of nonempty compact connected
sets in a Hausdorff space. Prove that the intersection

T

∞

1 Kn is nonempty and
connected. (Cf. 11.20)

16◦7. Compactness in Euclidean Space

16.P. The segment I is compact.

Recall that n-dimensional cube is the set

In = {x ∈ Rn | xi ∈ [0, 1] for i = 1, . . . , n}.

16.Q. The cube In is compact.

16.R. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded
(see Theorems 14.A, 16.K, and 16.R).

16.S. Construct a closed and bounded, but noncompact set in a metric
space.

16.13. Are the metric spaces of Problem 4.A compact?

16.T. A subset of a Euclidean space is compact iff it is closed and bounded.

16.14. Which of the following sets are compact:

(a) [0, 1); (b) ray R+ = {x ∈ R | x ≥ 0}; (c) S1;
(d) Sn; (e) one-sheeted hyperboloid; (f) ellipsoid;
(g) [0, 1] ∩ Q?
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An (n×k)-matrix (aij) with real entries can be regarded as a point in Rnk. To
do this, we only need to enumerate somehow (e.g., lexicographically) the entries
of (aij) by numbers from 1 to nk. This identifies the set L(n, k) of all matrices

like that with Rnk and endows it with a topological structure. (Cf. Section 13.)

16.15. Which of the following subsets of L(n, n) are compact:

(1) GL(n) = {A ∈ L(n, n) | detA 6= 0};
(2) SL(n) = {A ∈ L(n, n) | detA = 1};
(3) O(n) = {A ∈ L(n, n) | A is an orthogonal matrix};
(4) {A ∈ L(n, n) | A2 = E}, where E is the unit matrix?

16◦8. Compactness and Continuous Maps

16.U. A continuous image of a compact space is compact. (In other words,
if X is a compact space and f : X → Y is a continuous map, then f(X) is
compact.)

16.V. A continuous numerical function on a compact space is bounded and
attains its maximal and minimal values. (In other words, if X is a compact
space and f : X → R is a continuous function, then there exist a, b ∈ X
such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.) Cf. 16.U and 16.T.

16.16. Prove that if f : I → R is a continuous function, then f(I) is a segment.

16.17. Let A be a subset of Rn. Prove that A is compact iff each continuous
numerical function on A is bounded.

16.18. Prove that if F and G are disjoint subsets of a metric space, F is closed,
and G is compact, then ρ(G, F ) = inf {ρ(x, y) | x ∈ F, y ∈ G} > 0.

16.19. Prove that any open set U containing a compact set A of a metric space
X contains an ε-neighborhood of A (i.e., the set {x ∈ X | ρ(x, A) < ε}) for some
ε > 0.

16.20. Let A be a closed connected subset of Rn and let V be the closed ε-

neighborhood of A (i.e., V = {x ∈ Rn | ρ(x,A) ≤ ε}). Prove that V is path-
connected.

16.21. Prove that if the closure of each open ball in a compact metric space is
the closed ball with the same center and radius, then any ball in this space is
connected.

16.22. Let X be a compact metric space, and let f : X → X be a map such that
ρ(f(x), f(y)) < ρ(x, y) for any x, y ∈ X with x 6= y. Prove that f has a unique
fixed point. (Recall that a fixed point of f is a point x such that f(x) = x, see
14.6.)

16.23. Prove that for any open cover of a compact metric space there exists a
(sufficiently small) number r > 0 such that each open ball of radius r is contained
in an element of the cover.

16.W Lebesgue Lemma. Let f : X → Y be a continuous map from a
compact metric space X to a topological space Y , and let Γ be an open cover
of Y . Then there exists a number δ > 0 such that for any set A ⊂ X with
diameter diam(A) < δ the image f(A) is contained in an element of Γ.
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16◦9. Closed Maps

A continuous map is closed if the image of each closed set under this
map is closed.

16.24. A continuous bijection is a homeomorphism iff it is closed.

16.X. A continuous map of a compact space to a Hausdorff space is closed.

Here are two important corollaries of this theorem.

16.Y. A continuous bijection of a compact space onto a Hausdorff space is
a homeomorphism.

16.Z. A continuous injection of a compact space into a Hausdorff space is
a topological embedding.

16.25. Show that none of the assumptions in 16.Y can be omitted without making
the statement false.

16.26. Does there exist a noncompact subspace A of the Euclidian space such that
any continuous map of A to a Hausdorff space is closed? (Cf. 16.V and 16.X.)

16.27. A restriction of a closed map to a closed subset is a also closed map.

16◦10x. Norms in Rn

16.1x. Prove that each norm Rn → R (see Section 4) is a continuous function
(with respect to the standard topology of Rn).

16.2x. Prove that any two norms in Rn are equivalent (i.e., determine the same
topological structure). See 4.27, cf. 4.31.

16.3x. Does the same hold true for metrics in Rn?

16◦11x. Induction on Compactness

A function f : X → R is locally bounded if for each point a ∈ X there exist a
neighborhood U and a number M > 0 such that |f(x)| ≤ M for x ∈ U (i.e., each
point has a neighborhood U such that the restriction of f to U is bounded).

16.4x. Prove that if a space X is compact and a function f : X → R is locally
bounded, then f is bounded.

This statement is a simplest application of a general principle formulated be-
low in 16.5x. This principle may be called induction on compactness (cf. induction
on connectedness, which was discussed in Section 11).

Let X be a topological space, C a property of subsets of X. We say that C is
additive if the union of any finite family of sets having C also has C. The space X

possesses C locally if each point of X has a neighborhood with property C.

16.5x. Prove that a compact space which locally possesses an additive property
has this property itself.

16.6x. Using induction on compactness, deduce the statements of Problems 16.R,
17.M, and 17.N.
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17. Sequential Compactness

17◦1. Sequential Compactness Versus Compactness

A topological space is sequentially compact if every sequence of its points
contains a convergent subsequence.

17.A. If a first countable space is compact, then it is sequentially compact.

A point b is an accumulation point of a set A if each neighborhood of b
contains infinitely many points of A.

17.A.1. Prove that in a space satisfying the first separation axiom a point is
an accumulation point iff it is a limit point.

17.A.2. In a compact space, any infinite set has an accumulation point.

17.A.3. A space in which each infinite set has an accumulation point is se-
quentially compact.

17.B. A sequentially compact second countable space is compact.

17.B.1. In a sequentially compact space a decreasing sequence of nonempty
closed sets has a nonempty intersection.

17.B.2. Prove that each nested sequence of nonempty closed sets in a space X
has nonempty intersection iff each countable collection of closed sets in Xthe
finite intersection property has nonempty intersection.

17.B.3. Derive Theorem 17.B from 17.B.1 and 17.B.2.

17.C. For second countable spaces, compactness and sequential compactness
are equivalent.

17◦2. In Metric Space

A subset A of a metric space X is an ε-net (where ε is a positive number)
if ρ(x,A) < ε for each point x ∈ X.

17.D. Prove that in any compact metric space for any ε > 0 there exists a
finite ε-net.

17.E. Prove that in any sequentially compact metric space for any ε > 0
there exists a finite ε-net.

17.F. Prove that a subset A of a metric space is everywhere dense iff A is
an ε-net for each ε > 0.

17.G. Any sequentially compact metric space is separable.

17.H. Any sequentially compact metric space is second countable.
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17.I. For metric spaces compactness and sequential compactness are equiv-
alent.

17.1. Prove that a sequentially compact metric space is bounded. (Cf. 17.E

and 17.I.)

17.2. Prove that in any metric space for any ε > 0 there exists

(1) a discrete ε-net and even
(2) an ε-net such that the distance between any two of its points is greater

than ε.

17◦3. Completeness and Compactness

A sequence {xn}n∈N of points of a metric space is a Cauchy sequence if
for every ε > 0 there exists a number N such that ρ(xn, xm) < ε for any
n,m ≥ N . A metric space X is complete if every Cauchy sequence in X
converges.

17.J. A Cauchy sequence containing a convergent subsequence converges.

17.K. Prove that a metric space M is complete iff every nested decreas-
ing sequence of closed balls in M with radii tending to 0 has nonempty
intersection.

17.L. Prove that a compact metric space is complete.

17.M. Prove that a complete metric space is compact iff for each ε > 0 it
contains a finite ε-net.

17.N. Prove that a complete metric space is compact iff for any ε > 0 it
contains a compact ε-net.

17◦4x. Noncompact Balls in Infinite Dimension

By l∞ denote the set of all bounded sequences of real numbers. This is a
vector space with respect to the component-wise operations. There is a natural
norm in it: ||x|| = sup{|xn| | n ∈ N}.

17.1x. Are closed balls of l∞ compact? What about spheres?

17.2x. Is the set {x ∈ l∞ | |xn| ≤ 2−n, n ∈ N} compact?

17.3x. Prove that the set {x ∈ l∞ | |xn| = 2−n, n ∈ N} is homeomorphic to the
Cantor set K introduced in Section 2.

17.4x*. Does there exist an infinitely dimensional normed space in which closed
balls are compact?
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17◦5x. p-Adic Numbers

Fix a prime integer p. By Zp denote the set of series of the form a0 + a1p +
· · · + anpn + . . . with 0 ≤ an < p, an ∈ N. For x, y ∈ Zp, put ρ(x, y) = 0 if x = y,
and ρ(x, y) = p−m if m is the smallest number such that the mth coefficients in
the series x and y differ.

17.5x. Prove that ρ is a metric in Zp.

This metric space is the space of integer p-adic numbers. There is an injection
Z → Zp assigning to a0 + a1p + · · · + anpn ∈ Z with 0 ≤ ak < p the series

a0 + a1p + · · · + anp
n + 0p

n+1 + 0p
n+2 + · · · ∈ Zp

and to −(a0 + a1p + · · · + anpn) ∈ Z with 0 ≤ ak < p the series

b0 + b1p + · · · + bnp
n + (p − 1)pn+1 + (p − 1)pn+2 + . . . ,

where

b0 + b1p + · · · + bnp
n = p

n+1 − (a0 + a1p + · · · + anp
n).

Cf. 4.Ix.

17.6x. Prove that the image of the injection Z → Zp is dense in Zp.

17.7x. Is Zp a complete metric space?

17.8x. Is Zp compact?

17◦6x. Spaces of Convex Figures

Let D ⊂ R2 be a closed disk of radius p. Consider the set Pn of all convex
polygons P with the following properties:

• the perimeter of P is at most p;
• P is contained in D;
• P has at most n vertices (the cases of one and two vertices are not

excluded; the perimeter of a segment is twice its length).

See 4.Ax, cf. 4.Cx.

17.9x. Equip Pn with a natural topological structure. For instance, define a
natural metric on Pn.

17.10x. Prove that Pn is compact.

17.11x. Prove that there exists a polygon belonging to Pn and having the maximal
area.

17.12x. Prove that this polygon is a regular n-gon.

Consider now the set P∞ of all convex polygons that have perimeter at most
p and are contained in D. In other words, P∞ =

S

∞

n=1 Pn.

17.13x. Construct a topological structure in P∞ inducing the structures intro-
duced above in the spaces Pn.

17.14x. Prove that the space P∞ is not compact.

Consider now the set P of all convex closed subsets of the plane that have
perimeter at most p and are contained in D. (Observe that all sets in P are
compact.)
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17.15x. Construct a topological structure in P that induces the structure intro-
duced above in the space P∞.

17.16x. Prove that the space P is compact.

17.17x. Prove that there exists a convex plane set with perimeter at most p having
a maximal area.

17.18x. Prove that this is a disk of radius p

2π
.
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18x. Local Compactness and

Paracompactness

18◦1x. Local Compactness

A topological space X is locally compact if each point of X has a neigh-
borhood with compact closure.

18.1x. Compact spaces are locally compact.

18.2x. Which of the following spaces are locally compact: (a) R; (b) Q; (c) Rn;
(d) a discrete space?

18.3x. Find two locally compact sets on the line such that their union is not
locally compact.

18.Ax. Is the local compactness hereditary?

18.Bx. A closed subset of a locally compact space is locally compact.

18.Cx. Is it true that an open subset of a locally compact space is locally
compact?

18.Dx. A Hausdorff locally compact space is regular.

18.Ex. An open subset of a locally compact Hausdorff space is locally com-
pact.

18.Fx. Local compactness is a local property for a Hausdorff space, i.e., a
Hausdorff space is locally compact iff each of its points has a locally compact
neighborhood.

18◦2x. One-Point Compactification

Let (X,Ω) be a Hausdorff topological space. Let X∗ be the set obtained
by adding a point x∗ to X (of course, x∗ does not belong to X). Let Ω∗ be
the collection of subsets of X∗ consisting of

• sets open in X and

• sets of the form X∗ r C, where C ⊂ X is a compact set:

Ω∗ = Ω ∪ {X∗ r C | C ⊂ X is a compact set}.

18.Gx. Prove that Ω∗ is a topological structure on X∗.

18.Hx. Prove that the space (X∗,Ω∗) is compact.

18.Ix. Prove that the inclusion (X,Ω) →֒ (X∗,Ω∗) is a topological embed-
ding.
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18.Jx. Prove that if X is locally compact, then the space (X∗,Ω∗) is Haus-
dorff. (Recall that in the definition of X∗ we assumed that X is Hausdorff.)

A topological embedding of a space X into a compact space Y is a
compactification of X if the image of X is dense in Y . In this situation, Y
is also called a compactification of X. (To simplify the notation, we identify
X with its image in Y .)

18.Kx. Prove that if X is a locally compact Hausdorff space and Y is a com-
pactification of X with one-point Y rX, then there exists a homeomorphism
Y → X∗ which is the identity on X.

Any space Y of Problem 18.Kx is called a one-point compactification

or Alexandrov compactification of X. Problem 18.Kx says Y is essentially
unique.

18.Lx. Prove that the one-point compactification of the plane is homeo-
morphic to S2.

18.4x. Prove that the one-point compactification of Rn is homeomorphic to Sn.

18.5x. Give explicit descriptions of one-point compactifications of the following
spaces:

(1) annulus {(x, y) ∈ R2 | 1 < x2 + y2 < 2};
(2) square without vertices {(x, y) ∈ R2 | x, y ∈ [−1, 1], |xy| < 1};
(3) strip {(x, y) ∈ R2 | x ∈ [0, 1]};
(4) a compact space.

18.Mx. Prove that a locally compact Hausdorff space is regular.

18.6x. Let X be a locally compact Hausdorff space, K a compact subset of X,
U a neighborhood of K. Then there exists a neighborhood V of K such that the
closure Cl V is compact and contained in U .

18◦3x. Proper Maps

A continuous map f : X → Y is proper if each compact subset of Y has
compact preimage.

Let X, Y be Hausdorff spaces. Any map f : X → Y obviously extends
to the map

f∗ : X∗ → Y ∗ : x 7→

{

f(x) if x ∈ X,

y∗ if x = x∗.

18.Nx. Prove that f∗ is continuous iff f is a proper continuous map.

18.Ox. Prove that any proper map of a Hausdorff space to a Hausdorff
locally compact space is closed.

Problem 18.Ox is related to Theorem 16.X.
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18.Px. Extend this analogy: formulate and prove statements corresponding
to Theorems 16.Z and 16.Y.

18◦4x. Locally Finite Collections of Subsets

A collection Γ of subsets of a space X is locally finite if each point b ∈ X
has a neighborhood U such that A∩U = ∅ for all sets A ∈ Γ except, maybe,
a finite number.

18.Qx. A locally finite cover of a compact space is finite.

18.7x. If a collection Γ of subsets of a space X is locally finite, then so is {Cl A |
A ∈ Γ}.

18.8x. If a collection Γ of subsets of a space X is locally finite, then each compact
set A ⊂ X intersects only a finite number of elements of Γ.

18.9x. If a collection Γ of subsets of a space X is locally finite and each A ∈ Γ
has compact closure, then each A ∈ Γ intersects only a finite number of elements
of Γ.

18.10x. Any locally finite cover of a sequentially compact space is finite.

18.Rx. Find an open cover of Rn that has no locally finite subcovering.

Let Γ and ∆ be two covers of a set X. The cover ∆ is a refinement of Γ
if for each A ∈ ∆ there exists B ∈ Γ such that A ⊂ B.

18.Sx. Prove that any open cover of Rn has a locally finite open refinement.

18.Tx. Let {Ui}i∈N be a (locally finite) open cover of Rn. Prove that there
exists an open cover {Vi}i∈N of Rn such that ClVi ⊂ Ui for each i ∈ N.

18◦5x. Paracompact Spaces

A space X is paracompact if every open cover of X has a locally finite
open refinement.

18.Ux. Any compact space is paracompact.

18.Vx. Rn is paracompact.

18.Wx. Let X =
⋃

∞

i=1 Xi, where Xi are compact sets such that Xi ⊂
IntXi+1. Then X is paracompact.

18.Xx. Let X be a locally compact space. If X has a countable cover by
compact sets, then X is paracompact.

18.11x. Prove that if a locally compact space is second countable, then it is
paracompact.

18.12x. A closed subspace of a paracompact space is paracompact.

18.13x. A disjoint union of paracompact spaces is paracompact.
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18◦6x. Paracompactness and Separation Axioms

18.14x. Let X be a paracompact topological space, and let F and M be two
disjoint subsets of X, where F is closed. Suppose that F is covered by open sets
Uα whose closures are disjoint with M : Cl Uα ∩ M = ∅. Then F and M have
disjoint neighborhoods.

18.15x. A Hausdorff paracompact space is regular.

18.16x. A Hausdorff paracompact space is normal.

18.17x. Let X be a Hausdorff locally compact and paracompact space, Γ a locally
finite open cover of X. Then X has a locally finite open cover ∆ such that the
closures Cl V , where V ∈ ∆, are compact sets and {Cl V | V ∈ ∆} is a refinement
of Γ.

Here is a more general (though formally weaker) fact.

18.18x. Let X be a normal space, Γ a locally finite open cover of X. Then X has
a locally finite open cover ∆ such that {Cl V | V ∈ ∆} is a refinement of Γ.

Information. Metrizable spaces are paracompact.

18◦7x. Partitions of Unity

Let X be a topological space, f : X → R a function. Then the set
supp f = Cl{x ∈ X | f(x) 6= 0} is the support of f .

18.19x. Let X be a topological space, and let {fα : X → R}α∈Λ be a family of
continuous functions whose supports supp(fα) constitute a locally finite cover of
X. Prove that the formula

f(x) =
X

α∈Λ

fα(x)

determines a continuous function f : X → R.

A family of nonnegative functions fα : X → R+ is a partition of unity if
the supports supp(fα) constitute a locally finite cover of the space X and
∑

α∈Λ fα(x) = 1.

A partition of unity {fα} is subordinate to a cover Γ if supp(fα) is con-
tained in an element of Γ for each α. We also say that Γ dominates {fα}.

18.Yx. Let X be a normal space. Then each locally finite open cover of X
dominates a certain partition of unity.

18.20x. Let X be a Hausdorff space. If each open cover of X dominates a certain
partition of unity, then X is paracompact.

Information. A Hausdorff space X is paracompact iff each open cover
of X dominates a certain partition of unity.
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18◦8x. Application: Making Embeddings From Pieces

18.21x. Let X be a topological space, {Ui}
k
i=1 an open cover of X. If Ui can be

embedded in Rn for each i = 1, . . . , k, then X can be embedded in Rk(n+1).

18.21x.1. Let hi : Ui → Rn, i = 1, . . . , k, be embeddings, and let
fi : X → R form a partition of unity subordinate to the cover {Ui}

k
i=1.

We put ĥi(x) = (hi(x), 1) ∈ Rn+1. Show that the map X → Rk(n+1) :

x 7→ (fi(x)ĥi(x))k
i=1 is an embedding.

18.22x. Riddle. How can you generalize 18.21x?
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Proofs and Comments

11.A A set A is open and closed, iff A and X r A are open, iff A and
X r A are closed.

11.B It suffices to prove the following apparently less general assertion:
A space having a connected everywhere dense subset is connected . (See 6.3.)
Let X ⊃ A be the space and the subset. To prove that X is connected, let
X = U ∪V , where U and V are disjoint sets open in X, and prove that one
of them is empty (cf. 11.A). U ∩ A and V ∩ A are disjoint sets open in A,
and

A = X ∩ A = (U ∪ V ) ∩ A = (U ∩ A) ∪ (V ∩ A).

Since A is connected, one of these sets, say U ∩ A, is empty. Then U is
empty since A is dense, see 6.M.

11.C To simplify the notation, we may assume that X =
⋃

λ Aλ.
By Theorem 11.A, it suffices to prove that if U and V are two open sets
partitioning X, then either U = ∅ or V = ∅. For each λ ∈ Λ, since Aλ is
connected, we have either Aλ ⊂ U or Aλ ⊂ V (see 11.14). Fix a λ0 ∈ Λ. To
be definite, let Aλ0 ⊂ U . Since each of the sets Aλ meets Aλ0 , all sets Aλ

also lie in U , and so none of them meets V , whence

V = V ∩ X = V ∩
⋃

λ

Aλ =
⋃

λ

(V ∩ Aλ) = ∅.

11.E Apply Theorem 11.C to the family {Aλ∪Aλ0}λ∈Λ, which consists
of connected sets by 11.D. (Or just repeat the proof of Theorem 11.C.)

11.F Using 11.D, prove by induction that
⋃n

−n Ak is connected, and
apply Theorem 11.C.

11.G The union of all connected sets containing a given point is con-
nected (by 11.C) and obviously maximal.

11.H Let A and B be two connected components with A∩B 6= ∅. Then
A ∪ B is connected by 11.D. By the maximality of connected components,
we have A ⊃ A ∪ B ⊂ B, whence A = A ∪ B = B.

11.I This is obvious since the component is connected.
Since the components of the points are not disjoint, they coincide.

11.K If A is a connected component, then its closure ClA is connected
by 11.B. Therefore, ClA ⊂ A by the maximality of connected components.
Hence, A = Cl A, because the opposite inclusion holds true for any set A.

11.M See 11.10.
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11.N Passing to the map ab f : X → f(X), we see that it suffices to
prove the following theorem:

If X is a connected space and f : X → Y is a continuous surjection,
then Y is also connected .

Consider a partition of Y in two open sets U and V and prove that one
of them is empty. The preimages f−1(U) and f−1(V ) are open by continuity
of f and constitute a partition of X. Since X is connected, one of them, say
f−1(U), is empty. Since f is surjective, we also have U = ∅.

11.Q Let X = U ∪ V , where U and V are nonempty disjoint
sets open in X. Set f(x) = −1 for x ∈ U and f(x) = 1 for x ∈ V . Then f
is continuous and surjective, is it not? Assume the contrary: let X
be connected. Then S0 is also connected by 11.N, a contradiction.

11.R By Theorem 11.Q, this statement follows from Cauchy Interme-
diate Value Theorem. However, it is more natural to deduce Intermediate
Value Theorem from 11.Q and the connectedness of I.

Thus assume the contrary: let I = [0, 1] be disconnected. Then [0, 1] =
U ∪ V , where U and V are disjoint and open in [0, 1]. Suppose 0 ∈ U ,
consider the set C = {x ∈ [0, 1] | [0, x) ⊂ U} and put c = supC. Show
that each of the possibilities c ∈ U and c ∈ V gives rise to contradiction.
A slightly different proof of Theorem 11.R is sketched in Lemmas 11.R.1
and 11.R.2.

11.R.1 Use induction: for n = 1, 2, 3, . . . , put

(an+1, bn+1) :=

{

(an+bn

2 , bn) if an+bn

2 ∈ U ,

(an, an+bn

2 ) if an+bn

2 ∈ V .

11.R.2 On the one hand, we have c ∈ U since c ∈ Cl{an | n ∈ N}, and
an belong to U , which is closed in I. On the other hand, we have c ∈ V
since c ∈ Cl{bn | n ∈ N}, and bn belong to V , which is also closed in I.
The contradiction means that U and V cannot be both closed, i.e., I is
connected.

11.S Every open set on a line is a union of disjoint open intervals
(see 2.Ax), each of which contains a rational point. Therefore each open
subset U of a line is a union of a countable collection of open intervals.
Each of them is open and connected, and thus is a connected component of
U (see 11.T).

11.T Apply 11.R and 11.J. (Cf. 11.U and 11.X.)

11.U Apply 11.R and 11.J. (Recall that a set K ⊂ Rn is said to be
convex if for any p, q ∈ K we have [p, q] ⊂ K.)
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11.V Combine 11.R and 11.C.

11.X This is 11.10. This is 11.V.

11.Y Singletons and all kinds of intervals (including open and closed
rays and the whole line).

11.Y Use 10.R, 11.U, and, say Theorem 11.B (or 11.I).

12.A Since the segment [a, b] is connected by 11.R, its image is an
interval by 11.29. Therefore, it contains all points between f(a) and f(b).

12.B Combine 11.N and 11.10.

12.C Combine 11.V and 11.29.

12.D One of them is connected, while the other one is not.

12.E For each of the spaces, find the number of points with connected
complement. (This is obviously a topological invariant.)

12.F Cf. 12.4.

13.A Since the cover
{

[0, 1
2 ], [12 , 1]

}

of [0, 1] is fundamental and the
restriction of uv to each element of the cover is continuous, the entire map
uv is also continuous.

13.B If x, y ∈ I, then I → I : t 7→ (1 − t)x + ty is a path connecting x
and y.

13.C If x, y ∈ Rn, then [0, 1] → Rn : t 7→ (1 − t)x + ty is a path
connecting x and y.

13.D Use 10.R and 13.C.

13.E Combine 11.R and 11.Q.

13.7 Use (the formula of) 13.C, 13.A, and 13.5.

13.F Let x and y be two points in the union, and let A and B be the
sets in the family that contain x and y. If A = B, there is nothing to prove.
If A 6= B, take z ∈ A ∩ B, join x with z in A by a path u, and join y with
z in B by a path v. Then the path uv joins x and y in the union, and it
remains to use 13.5.

13.G Consider the union of all path-connected sets containing the point
and use 13.F. (Cf. 11.G.)

13.H Similarly to 11.H, only instead of 11.D use 13.F.

13.I Recall the definition of a path-connected component.
This follows from (the proof of) 13.G.

13.J Let X be path-connected, let f : X → Y be a continuous map,
and let y1, y2 ∈ f(X). If yi = f(xi), i = 1, 2, and u is a path joining x1 and
x2, then how can you construct a path joining y1 and y2?

13.M Combine 13.8 and 11.J.



124 III. Topological Properties

13.N By 10.Q, A is homeomorphic to (0,+∞) ∼= R, which is path-
connected by 13.C, and so A is also path-connected by 13.K. Since A
is connected (combine 11.T and 11.O, or use 13.M) and, obviously, A ⊂
X ⊂ ClA (what is ClA, by the way?), it follows form 11.15 that X is also
connected.

13.O This is especially obvious for A since A ∼= (0,∞) (you can also
use 11.2).

13.P Prove that any path in X starting at (0, 0) is constant.

13.Q Let A and X be as above. Check that A is dense in X (cf. the
solution to 13.N) and plug in Problems 13.N and 13.P.

13.R See 13.Q.

13.S Let C be a path-connected component of X, x ∈ C an arbitrary
point. If Ux is a path-connected neighborhood of x, then Ux lies entirely in
C (by the definition of a path-connected component!), and so x is an interior
point of C, which is thus open.

13.T This is 13.M. Since path-connected components of
X are open (see Problem 13.S) and X is connected, there can be only one
path-connected component.

13.U This follows from 13.T because spherical neighborhoods in Rn

(i.e., open balls) are path-connected (by 13.6 or 13.7).

14.A If r1 + r2 ≤ ρ(x1, x2), then the balls Br1(x1) and Br2(x2) are
disjoint.

14.B Certainly, I is Hausdorff since it is metrizable. The intervals
[

0, 1
2

)

and
(

1
2 , 1

]

are disjoint neighborhoods of 0 and 1, respectively.

14.C If y 6= x, then there exist disjoint neighborhoods Ux and
Vy. Therefore, y /∈ ClUx, whence y /∈

⋂

U∋x
Cl U .

If y 6= x, then y /∈
⋂

U∋x
ClU , it follows that there exists a neighborhood

Ux such that y /∈ ClUx. Set Vy = X r ClUx.

14.D Assume the contrary: let xn → a and xn → b, where a 6= b.
Let U and V be disjoint neighborhoods of a and b, respectively. Then for
sufficiently large n we have xn ∈ U ∩ V = ∅, a contradiction.

14.E A neighborhood of a point in RT1 has the form U = R r

{x1, . . . , xN}, where, say, x1 < x2 < · · · < xN . Then, obviously, an ∈ U for
each n > xN .
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14.F Assume that X is a space, A ⊂ X is a subspace, and x, y ∈ A are
two distinct points. If X is Hausdorff, then x and y have disjoint neighbor-
hoods U and V in X. In this case, U∩A and V ∩A are disjoint neighborhoods
of x and y in A. (Recall the definition of the relative topology!)

14.G (a) Let X satisfy T1 and let x ∈ X. By Axiom T1,
each point y ∈ X r x has a neighborhood U that does not contain x, i.e.,
U ⊂ X rx, which means that all points in X rx are inner. Therefore, X rx
is open, and so its complement {x} is closed. If singletons in X are
closed and x, y ∈ X are two distinct points, then X r x is a neighborhood
of y that does not contain x, as required in T1.

(b) If singletons in X are closed, then so are finite subsets of X,
which are finite unions of singletons. Obvious.

14.H Combine 14.12 and 14.G.

14.I Combine 14.A and 14.12.

14.J Each point in RT1 is closed, as required by T1, but any two
nonempty sets intersect, which contradicts T2.

14.K Combine 14.G and 5.4, and once more use 14.G; or just modify
the proof of 14.F.

14.N (a) ⇒ (b) Actually, T0 precisely says that at least one of the
points does not lie in the closure of the other (to see this, use Theorem 6.F).
(b) ⇒ (a) Use the above reformulation of T0 and the fact that if x ∈ Cl{y}
and y ∈ Cl{x}, then Cl{x} = Cl{y}.
(a) ⇔ (c) This is obvious. (Recall the definition of the relative topology!)
(c) ⇔ (d) This is also obvious.

14.O This is obvious. Let X be a T0 space such
that each point x ∈ X has a smallest neighborhood Cx. Then we say that
x � y if y ∈ Cx. Let us verify the axioms of order. Reflexivity is obvious.
Transitivity: assume that x � y and y � z. Then Cx is a neighborhood
of y, whence Cy ⊂ Cx, and so also z ∈ Cx, which means that x � z.
Antisymmetry: if x � y and y � x, then y ∈ Cx and x ∈ Cy, whence
Cx = Cy. By T0, this is possible only if x = y. Verify that this order
generates the initial topology.

14.P Let X be a regular space, and let x, y ∈ X be two distinct points.
Since X satisfies T1, the singleton {y} is closed, and so we can apply T3 to
x and {y}.

14.Q See Problem 14.P. See Problem 14.12.

14.R Let X be a metric space, x ∈ X, and r > 0. Prove that, e.g.,
ClBr(x) ⊂ B2r(x), and use 14.19.
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14.S Apply T4 to a closed set and a singleton, which is also closed by
T1.

14.T See Problem 14.S. See Problem 14.12.

14.U Let A and B be two disjoint closed sets in a metric space (X, ρ).
Then, obviously, A ⊂ U = {x ∈ X | ρ(x,A) < ρ(x,B)} and B ⊂ V = {x ∈
X | ρ(x,A) > ρ(x,B)}. U and V are open (use 9.L) and disjoint.

14.Ax.1 Put U1 = X r B. Since X is normal, there exists an open
neighborhood U0 ⊃ A such that ClU0 ⊂ U1. Let U1/2 be an open neighbor-
hood of ClU0 such that ClU1/2 ⊂ U1. Repeating the process, we obtain the
required collection {Up}p∈Λ.

14.Ax Put f(x) = inf{λ ∈ Λ | x ∈ ClUλ}. We easily see that f
continuous.

14.Bx Slightly modify the proof of 14.9x, using Urysohn Lemma 14.Ax

instead of 14.9x.1.

15.A Let f : X → N be an injection and let A ⊂ X. Then the
restriction f |A : A → N is also an injection. Use 15.1.

15.B Let X be a countable set, and let f : X → Y be a map. Taking
each y ∈ f(X) to a point in f−1(y) , we obtain an injection f(X) → X.
Hence, f(X) is countable by 15.1.

15.D Suggest an algorithm (or even a formula!) for enumerating ele-
ments in N2.

15.E Use 15.D.

15.G Derive this from 6.44.

15.H Construct a countable set A intersecting each base set (at least)
at one point and prove that A is everywhere dense.

15.I Let X be a second countable space, A ⊂ X a subspace. If {Ui}
∞

1

is a countable base in X, then {Ui∩A}∞1 is a countable base in A. (See 5.1.)

15.J Show that if the set A = {xn}
∞

n=1 is everywhere dense, then the
collection {Br(x) | x ∈ A, r ∈ Q, r > 0} is a countable base of X. (Use
Theorems 4.I and 3.A to show that this is a base and 15.E to show that it
is countable.)

15.L Use 15.K and 15.I.

15.M By 15.K and 15.I (or, more to the point, combine 15.J, 15.I,
and 15.H), it is sufficient to find a countable everywhere-dense set in Rn.
For example, take Qn = {x ∈ Rn | xi ∈ Q, i = 1, . . . , n}. To see that Qn

is dense in Rn, use the metric ρ(∞). To see that Qn is countable, use 15.F
and 15.E.

15.N Use 9.15.
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15.O Let X be the space, let {U} be a countable base in X, and let
Γ = {V } be a cover of X. Let {Ui}

∞

i=1 be the base sets that are contained
in at least element of the cover: let Ui ⊂ Vi. Using the definition of a base,
we easily see that {Ui}

∞

i=1 is a cover of X. Then {Vi}
∞

i=1 is the required
countable subcovering of Γ.

15.P Use 3.A.

15.Q Use 15.12

15.R Use 15.P and 15.A.

15.S Consider an uncountable discrete space.

15.T If xn ∈ A and xn → a, then, obviously, a is an adherent point for
A.

15.U Let a ∈ ClA, and let {Un}n∈N be a decreasing neighborhood
base at a (see 15.16). For each n, there is xn ∈ Un ∩ A, and we easily see
that xn → a.

15.V Indeed, let f : X → Y be a continuous map, let b ∈ X, and let
an → b in X. We must prove that f(an) → f(b) in Y . Let V ⊂ Y be a
neighborhood of f(b). Since f is continuous, f−1(V ) ⊂ X is a neighborhood
of b, and since an → b, we have an ∈ f−1(V ) for n > N . Then also f(an) ∈ V
for n > N , as required.

15.W Assume that f : X → Y is a sequentially continuous map and
A ⊂ Y is a sequentially closed set. To prove that f−1(A) is sequentially
closed, we must prove that if {xn} ⊂ f−1(A) and xn → a, then a ∈ f−1(A).
Since f is sequentially continuous, we have f(xn) → f(a), and since A is
sequentially closed, we have f(a) ∈ A, whence a ∈ f−1(A), as required.

15.X It suffices to check that if F ⊂ Y is a closed set, then so is the
preimage f−1(F ) ⊂ X, i.e., Cl(f−1(F )) ⊂ f−1(F ). Let a ∈ Cl(f−1(F )).
Since X is first countable, we also have a ∈ SCl(f−1(F )) (see 15.U), and so
there is a sequence {xn} ⊂ f−1(F ) such that xn → a, whence f(xn) → f(a)
because f is sequentially continuous. Since F is closed, we have f(a) ∈ F
(by 15.T), i.e., a ∈ f−1(F ), as required.

15.Ax Since l2 is a metric space, it is sufficient to prove that l2 is
separable (see 15.K), i.e., to find a countable everywhere dense set A ⊂ l2.
The first idea here might be to consider the set of sequences with rational
components, but this set is uncountable! Instead of this, let A be the set of
all rational sequences {xi} such that xi = 0 for all sufficiently large i. (To
show that A is countable, use 15.F and 15.E. To show that A is everywhere
dense, use the fact that if a series

∑

x2
i converges, then for each ε > 0 there

is k such that
∑

∞

i=k x2
i < ε.)

16.A Each of the spaces has only a finite number of open sets, and so
each open cover is finite.
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16.B Only the finite ones. (Consider the cover consisting of all single-
tons.)

16.C Consider the cover of R by the open intervals (−n, n), n ∈ N.

16.D The latter condition is precisely the negation of compactness.

16.E This follows from the Lindelöf theorem 15.O.

16.F This follows from the second De Morgan formula (see 2.E). In-
deed,

⋂

Aλ 6= ∅ iff
⋃

(X r Aλ) = X r
⋂

Aλ 6= X.

16.G Let X be a compact space and let Γ = {Fλ} be a family
of closed subsets of X with the finite intersection property. Assume the
contrary: let

⋂

Fλ = ∅. Then by the second De Morgan formula we have
⋃

(X r Fλ) = X r
⋂

Fλ = X, i.e., {X r Fλ} is an open cover of X. Since
X is compact, this cover contains a finite subcovering:

⋃n
1 (X r Fi) = X,

whence
⋂n

1 Fi = ∅, which contradicts the finite intersection property of Γ.
Prove the converse implication on your own.

16.H Let Γ = {Uα} be a cover of A by open subsets of X. Since
A is a compact set, the cover of A with the sets A ∩ Uα contains a finite
subcovering {A ∩ Uαi

}n
1 . Hence {Uαi

} is a finite subcovering of Γ.
Prove the converse implication on your own.

16.I Certainly not.

16.J Let X be a compact space, F ⊂ X a closed subset, and {Uα}
an open cover of A. Then {X r F} ∪ {Uα} is an open cover of X, which
contains a finite subcovering {X r F} ∪ {Ui}

n
1 . Clearly, {Ui}

n
1 is a cover of

F .

16.K This follows from 16.L.

16.L Since X is Hausdorff, for each x ∈ A the points x and b possess
disjoint neighborhoods Ux and Vb(x). Obviously, {Ux}x∈A is an open cover
of A. Since A is compact, the cover contains a finite subcovering {Uxi

}n
1 .

Put U =
⋃n

1 Uxi
and V =

⋂n
1 Vb(xi). Then U and V are the required sets.

(Check that they are disjoint.)

16.M Combine 16.J and 16.L.

16.N This follows from 16.O.

16.O (Cf. the proof of Lemma 16.L.) Let X be a Hausdorff space,
and let A,B ⊂ X be two compact sets. By Lemma 16.L, each x ∈ B has a
neighborhood Vx disjoint with a certain neighborhood U(x) of A. Obviously,
{Vx}x∈B is an open cover of B. Since B is compact, the cover contains a
finite subcovering {Uxi

}n
1 . Put V =

⋃n
1 Vxi

and U =
⋂n

1 Ub(xi). Then U
and V are the required neighborhoods. (Check that they are disjoint.)

16.P Let us argue by contradiction. If I is not compact, then I has
a cover Γ0 such that no finite part of Γ0 covers I (see 16.D). We bisect I
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and denote by I1 the half that also is not covered by any finite part of Γ0.
Then we bisect I1, etc. As a result, we obtain a sequence of nested segments
In, where the length of In is equal to 2−n. By the completeness axiom,
they have a unique point in common:

⋂

∞

1 In = {x0}. Consider an element
U0 ∈ Γ0 containing x0. Since U0 is open, we have In ⊂ U0 for sufficiently
large n, in contradiction to the fact that, by construction, In is covered by
no finite part of Γ0.

16.Q Repeat the argument used in the proof of Theorem 16.P, only
instead of bisecting the segment each time subdivide the current cube into
2n equal smaller cubes.

16.R Consider the cover by open balls, {Bn(x0)}
∞

n=1.

16.S Let, e.g., X = [0, 1) ∪ [2, 3]. (Or just put X = [0, 1).) The set
[0, 1) is bounded, it is also closed in X, but it is not compact.

16.T Combine Theorems 14.A, 16.K, and 16.R.
If a subset F ⊂ Rn is bounded, then F lies in a certain cube, which

is compact (see Theorem 16.Q). If, in addition, F is closed, then F is also
compact by 16.J.

16.U We use Theorem 16.H. Let Γ = {Uλ} be a cover of f(X) by
open subsets of Y . Since f is continuous, {f−1(Uλ)} is an open cover of X.
Since X is compact, this cover has a finite subcovering {f−1(Uλi

)}n
i=1. Then

{Uλi
}n

i=1 is a finite subcovering of Γ.

16.V By 16.U and 16.T, the set f(X) ⊂ R is closed and bounded.
Since f(X) is bounded, there exist finite numbers m = inf f(X) and M =
sup f(X), whence, in particular, m ≤ f(x) ≤ M . Since f(X) is closed, we
have m,M ∈ f(X), whence it follows that there are a, b ∈ X with f(a) = m
and f(b) = M , as required.

16.W This follows from 16.23: consider the cover {f−1(U) | U ∈ Γ} of
X.

16.X This immediately follows from 16.J, 16.K, and 16.U.

16.Y Combine 16.X and 16.24.

16.Z See Problem 16.Y.

17.A.1 This is obvious. Let x be a limit point. If x is
not an accumulation point of A, then x has a neighborhood Ux such that
the set Ux ∩ A is finite. Show that x has a neighborhood Wx such that
(Wx r x) ∩ A = ∅.

17.A.2 Argue by contradiction: consider the cover of the space by
neighborhoods having finite intersections with the infinite set.

17.A.3 Let X be a space, and let {an} be a sequence of points in X.
Let A be the set of all points in the sequence. If A is finite, there is not
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much to prove. So, we assume that A is infinite. By Theorem 17.A.2, A
has an accumulation point x0. Let {Un} be a countable neighborhood base
of x0 and xn1 ∈ U1 ∩ A. Since the set U2 ∩ A is infinite, there is n2 > n1

such that xn2 ∈ U2 ∩A. Prove that the subsequence {xnk
} thus constructed

converges to x0. If A is finite, then the argument simplifies a great deal.

17.B.1 Consider a sequence {xn}, xn ∈ Fn and show that if xnk
→ x0,

then xn ∈ Fn for all n ∈ N.

17.B.2 Let {Fk} ⊂ X be a sequence of closed sets the finite
intersection property. Then

{
⋂n

1 Fk

}

is a nested sequence of nonempty

closed sets, whence
⋂

∞

1 Fk 6= ∅. This is obvious.

17.B.3 By the Lindelöf theorem 15.O, it is sufficient to consider count-
able covers {Un}. If no finite collection of sets in this cover is not a cover,
then the closed sets Fn = XrUn form a collection with the finite intersection
property.

17.C This follows from 17.B and 17.A.

17.D Reformulate the definition of an ε-net: A is an ε-net if {Bε(x)}x∈A

is a cover of X. Now the proof is obvious.

17.E We argue by contradiction. If {xi}
k−1
i=1 is not an ε-net, then there

is a point xk such that ρ(xi, xk) ≥ ε, i = 1, . . . , k− 1. As a result, we obtain
a sequence in which the distance between any two points is at least ε, and
so it has no convergent subsequences.

17.F This is obvious because open balls in a metric space are
open sets. Use the definition of the metric topology.

17.G The union of finite 1
n -nets of the space is countable and every-

where dense. (see 17.E).

17.H Use 13.82.

17.I If X is compact, then X is sequentially compact by 17.A. If X
is sequentially compact, then X is separable, and hence X has a countable
base. Then 17.C implies that X is compact.

17.J Assume that {xn} is a Cauchy sequence and its subsequence xnk

converges to a point a. Find a number m such that ρ(xl, xk) < ε
2 for k, l ≥ m,

and i such that ni > m and ρ(xni
, a) < ε

2 . Then for all l ≥ m we have the
inequality ρ(xl, a) ≤ ρ(xl, xni

) + ρ(xni
, a) < ε.

17.K Obvious. Let {xn} be a Cauchy sequence. Let n1 be
such that ρ(xn, xm) < 1

2 for all n,m ≥ n1. Therefore, xn ∈ B1/2(xn1) for all

n ≥ n1. Further, take n2 > n1 so that ρ(xn, xm) < 1
4 for all n,m ≥ n2, then

B1/4(xn2) ⊂ B1/2(xn1). Proceeding the construction, we obtain a sequence
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of decreasing disks such that their unique common point x0 satisfies xn →
x0.

17.L Let {xn} be a Cauchy sequence of points of a compact metric
space X. Since X is also sequentially compact, {xn} contains a convergent
subsequence, and then the initial sequence also converges.

17.M Each compact space contains a finite ε-net.
Let us show that the space is sequentially compact. Consider an

arbitrary sequence {xn}. We denote by An a finite 1
n -net in X. Since

X =
⋃

x∈A1
B1(x), one of the balls contains infinitely many points of the

sequence; let xn1 be the first of them. From the remaining members lying
in the first ball, we let xn2 be the first one of those lying in the ball B1/2(x),
x ∈ A2. Proceeding with this construction, we obtain a subsequence {xnk

}.
Let us show that the latter is fundamental. Since by assumption the space
is complete, the constructed sequence has a limit. We have thus proved that
the space is sequentially compact, hence, it is also compact.

17.N Obvious. This follows from assertion 17.M because
an ε

2 -net for a ε
2 -net is an ε-net for the entire space.

18.Ax No, it is not: consider Q ⊂ R.

18.Bx Let X be a locally compact space, F ⊂ X a closed subset space,
x ∈ F . Let Ux ⊂ X be a neighborhood of x with compact closure. Then
Ux ∩F is a neighborhood of x in F . Since F is closed, the set ClF (U ∩F ) =
(ClU) ∩ F (see 6.3) is compact as a closed subset of a compact set.

18.Cx No, this is wrong in general. Take any space (X,Ω) that is not
locally compact (e.g., let X = Q). We put X∗ = X∪x∗ and Ω∗ = {X∗}∪Ω.
The space (X∗,Ω∗) is compact for a trivial reason (which one?), hence, it
is locally compact. Now, X is an open subset of X∗, but it is not locally
compact by our choice of X.

18.Dx Let X be the space, W be a neighborhood of a point x ∈ X. Let
U0 be a neighborhood of x with compact closure. Since X is Hausdorff, it
follows that {x} =

⋂

U∋x ClU , whence {x} =
⋂

U∋x

(

ClU0∩ClU
)

. Since each
of the sets ClU0 ∩ClU is compact, 16.11 implies that x has neighborhoods
U1, . . . , Un such that ClU0 ∩ ClU1 ∩ . . . ∩ ClUn ⊂ W . Put V = U0 ∩ U1 ∩
. . . ∩ Un. Then ClV ⊂ W . Therefore, each neighborhood of x contains the
closure of a certain neighborhood (a “closed neighborhood”) of x. By 14.19,
X is regular.

18.Ex Let X be the space, V ⊂ X the open subset, x ∈ V a point. Let
U be a neighborhood of x such that ClU is compact. By 18.Dx and 14.19, x
has a neighborhood W such that ClW ⊂ U ∩ V . Therefore, ClV W = ClW
is compact, and so the space V is locally compact.

18.Fx Obvious. See the idea used in 18.Ex.
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18.Gx Since ∅ is both open and compact in X, we have ∅,X∗ ∈ Ω∗.
Let us verify that unions and finite intersections of subsets in Ω∗ lie in Ω∗.
This is obvious for subsets in Ω. Let X∗ r Kλ ∈ Ω∗, where Kλ ⊂ X are
compact sets, λ ∈ Λ. Then we have

⋃

(X∗rKλ) = X∗r
⋂

Kλ ∈ Ω∗ because
X is Hausdorff and so

⋂

Kλ is compact. Similarly, if Λ is finite, then we
also have

⋂

(X∗ r Kλ) = X∗ r
⋃

Kλ ∈ Ω∗. Therefore, it suffices to consider
the case where a set in Ω∗ and a set in Ω are united (intersected). We leave
this as an exercise.

18.Hx Let U = X∗ r K0 be an element of the cover that contains the
added point. Then the remaining elements of the cover provide an open
cover of the compact set K0.

18.Ix In other words, the topology of X∗ induced on X the initial
topology of X (i.e., Ω∗ ∩ 2X = Ω). We must check that there arise no new
open sets in X. This is true because compact sets in the Hausdorff space X
are closed.

18.Jx If x, y ∈ X, this is obvious. If, say, y = x∗ and Ux is a neighbor-
hood of x with compact closure, then Ux and X r ClUx are neighborhoods
separating x and x∗.

18.Kx Let X∗ r X = {x∗} and Y r X = {y}. We have an obvious
bijection

f : Y → X∗ : x 7→

{

x if x ∈ X,

x∗ if x = y.

If U ⊂ X∗ and U = X∗ r K, where K is a compact set in X, then the set
f−1(U) = Y r K is open in Y . Therefore, f is continuous. It remains to
apply 16.Y.

18.Lx Verify that if an open set U ⊂ S2 contains the “North Pole”
(0, 0, 1) of S2, then the complement of the image of U under the stereo-
graphic projection is compact in R2.

18.Mx X∗ is compact and Hausdorff by 18.Hx and 18.Jx, therefore,
X∗ is regular by 16.M. Since X is a subspace of X∗ by 18.Ix, it remains to
use the fact that regularity is hereditary by 14.20. (Also try to prove the
required assertion without using the one-point compactification.)

18.Nx If1 f∗ is continuous, then, obviously, so is f (by 18.Ix).
Let K ⊂ Y be a compact set, and let U = Y r K. Since f∗ is continuous,
the set (f∗)−1(U) = X∗ r f−1(K) is open in X∗, i.e., f−1(K) is compact in
X. Therefore, f is proper. Use a similar argument.

18.Ox Let f∗ : X∗ → Y ∗ be the canonical extension of a map f : X →
Y . Prove that if F is closed in X, then F ∪ {x∗} is closed in X∗, and hence
compact. After that, use 18.Nx, 16.X, and 18.Ix.
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18.Px A proper injection of a Hausdorff space into a locally compact
Hausdorff space is a topological embedding. A proper bijection of a Haus-
dorff space onto a locally compact Hausdorff space is a homeomorphism.

18.Qx Let Γ be a locally finite cover, and let ∆ be a cover of X by
neighborhoods each of which meets only a finite number of sets in Γ. Since
X is compact, we can assume that ∆ is finite. In this case, obviously, Γ is
also finite.

18.Rx Cover Rn by the balls Bn(0), n ∈ N.

18.Sx Use a locally finite covering of Rn by equal open cubes.

18.Tx Cf. 18.17x.

18.Ux This is obvious.

18.Vx This is 18.Sx.

18.Wx Let Γ be an open cover of X. Since each of the sets Ki =
Xi r Int Xi−1 is compact, Γ contains a finite subcovering Γi of Ki. Observe
that the sets Wi = Int Xi+1 r Xi−2 ⊃ Ki form a locally finite open cover of
X. Intersecting for each i elements of Γi with Wi, we obtain a locally finite
refinement of Γ.

18.Xx Using assertion 18.6x, construct a sequence of open sets Ui such
that for each i the closure Xi := ClUi is compact and lies in Ui+1 ⊂ IntXi+1.
After that, apply 18.Wx.

18.Yx Let Γ = {Uα} be the cover. By 18.18x, there exists an open
cover ∆ = {Vα} such that ClVα ⊂ Uα for each α. Let ϕα : X → I be an
Urysohn function with suppϕα = X r Uα and ϕ−1

α (1) = ClVα (see 14.Ax).
Put ϕ(x) =

∑

α ϕα(x). Then the collection {ϕα(x)/ϕ(x)} is the required
partition of unity.


