
Chapter IV

Topological

Constructions

19. Multiplication

19◦1. Set-Theoretic Digression: Product of Sets

Let X and Y be sets. The set of ordered pairs (x, y) with x ∈ X and
y ∈ Y is called the direct product or Cartesian product or just product of X
and Y and denoted by X × Y . If A ⊂ X and B ⊂ Y , then A×B ⊂ X × Y .
Sets X×b with b ∈ Y and a×Y with a ∈ X are fibers of the product X×Y .

19.A. Prove that for any A1, A2 ⊂ X and B1, B2 ⊂ Y we have

(A1 ∪A2) × (B1 ∪B2) = (A1 ×B1) ∪ (A1 ×B2) ∪ (A2 ×B1) ∪ (A2 ×B2),

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩B2),

(A1 ×B1) r (A2 ×B2) =
(
(A1 rA2) ×B1

)
∩

(
A1 × (B1 rB2)

)
.

A1 A2

B1

B2

A1 A2

B1

B2

A1 A2

B1

B2

The natural maps

prX : X × Y → X : (x, y) 7→ x and prY : X × Y → Y : (x, y) 7→ y
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136 IV. Topological Constructions

are (natural) projections.

19.B. Prove that pr−1
X (A) = A× Y for any A ⊂ X.

19.1. Find the corresponding formula for B ⊂ Y .

19◦2. Graphs

A map f : X → Y determines a subset Γf of X × Y defined by Γf =
{(x, f(x)) | x ∈ X}, it is called the graph of f .

19.C. A set Γ ⊂ X × Y is the graph of a map X → Y iff for each a ∈ X
the intersection Γ ∩ (a× Y ) is one-point.

19.2. Prove that for any map f : X → Y and any set A ⊂ X, we have

f(A) = prY (Γf ∩ (A × Y )) = prY (Γf ∩ pr−1
X (A))

and f−1(B) = prX(Γ ∩ (X × B)) for any B ⊂ Y .

The set ∆ = {(x, x) | x ∈ X} = {(x, y) ∈ X × X | x = y} is the diagonal of
X × X.

19.3. Let A and B be two subsets of X. Prove that (A×B)∩∆ = ∅ iff A∩B = ∅.

19.4. Prove that the map prX

˛

˛

Γf
is bijective.

19.5. Prove that f is injective iff prY

˛

˛

Γf
is injective.

19.6. Consider the map T : X × Y → Y × X : (x, y) 7→ (y, x). Prove that
Γf−1 = T (Γf ) for any invertible map f : X → Y .

19◦3. Product of Topologies

Let X and Y be two topological spaces. If U is an open set of X and B
is an open set of Y , then we say that U × V is an elementary set of X × Y .

19.D. The set of elementary sets of X×Y is a base of a topological structure
in X × Y .

The product of two spaces X and Y is the set X×Y with the topological
structure determined by the base consisting of elementary sets.

19.7. Prove that for any subspaces A and B of spaces X and Y the product
topology on A × B coincides with the topology induced from X × Y via the
natural inclusion A × B ⊂ X × Y .

19.E. Y ×X is canonically homeomorphic to X × Y .

The word canonically means here that a homeomorphism between X×Y
and Y ×X, which exists according to the statement, can be chosen in a nice
special (or even obvious?) way, so that we may expect that it has additional
pleasant properties.

19.F. The canonical bijection X × (Y ×Z) → (X ×Y )×Z is a homeomor-
phism.
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19.8. Prove that if A is closed in X and B is closed in Y , then A×B is closed in
X × Y .

19.9. Prove that Cl(A × B) = Cl A × Cl B for any A ⊂ X and B ⊂ Y .

19.10. Is it true that Int(A × B) = IntA × IntB?

19.11. Is it true that Fr(A × B) = Fr A × Fr B?

19.12. Is it true that Fr(A × B) = (Fr A × B) ∪ (A × Fr B)?

19.13. Prove that Fr(A × B) = (Fr A × B) ∪ (A × Fr B) for closed A and B.

19.14. Find a formula for Fr(A × B) in terms of A, Fr A, B, and FrB.

19◦4. Topological Properties of Projections and Fibers

19.G. The natural projections prX : X × Y → X and prY : X × Y → Y
are continuous for any topological spaces X and Y .

19.H. The topology of product is the coarsest topology with respect to
which prX and prY are continuous.

19.I. A fiber of a product is canonically homeomorphic to the corresponding
factor. The canonical homeomorphism is the restriction to the fiber of the
natural projection of the product onto the factor.

19.J. Prove that R1×R1 = R2, (R1)n = Rn, and (I)n = In. (We remind
the reader that In is the n-dimensional unit cube in R

n.)

19.15. Let ΣX and ΣY be bases of spaces X and Y . Prove that the sets U × V
with U ∈ ΣX and V ∈ ΣY constitute a base for X × Y .

19.16. Prove that a map f : X → Y is continuous iff prX |Γf
: Γf → X is a

homeomorphism.

19.17. Prove that if W is open in X × Y , then prX(W ) is open in X.

A map from a space X to a space Y is open (closed) if the image of any open
set under this map is open (respectively, closed). Therefore, 19.17 states that
prX : X × Y → X is an open map.

19.18. Is prX a closed map?

19.19. Prove that for each space X and each compact space Y the map prX :
X × Y → X is closed.

19◦5. Cartesian Products of Maps

Let X, Y , and Z be three sets. A map f : Z → X × Y determines the
compositions f1 = prX ◦f : Z → X and f2 = prY ◦f : Z → Y , which are
called the factors (or components) of f . Indeed, f can be recovered from
them as a sort of product.

19.K. Prove that for any maps f1 : Z → X and f2 : Z → Y there exists a
unique map f : Z → X × Y with prX ◦f = f1 and prY ◦f = f2.
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19.20. Prove that f−1(A × B) = f−1
1 (A) ∩ f−1

2 (B) for any A ⊂ X and B ⊂ Y .

19.L. Let X, Y , and Z be three spaces. Prove that f : Z → X × Y is
continuous iff so are f1 and f2.

Any two maps g1 : X1 → Y1 and g2 : X2 → Y2 determine a map

g1 × g2 : X1 ×X2 → Y1 × Y2 : (x1, x2) 7→ (g1(x1), g2(x2)),

which is their (Cartesian) product.

19.21. Prove that (g1 × g2)(A1 × A2) = g1(A1) × g2(A2) for any A1 ⊂ X1 and
A2 ⊂ X2.

19.22. Prove that (g1 × g2)
−1(B1 × B2) = g−1

1 (B1) × g−1
2 (B2) for any B1 ⊂ Y1

and B2 ⊂ Y2.

19.M. Prove that the Cartesian product of continuous maps is continuous.

19.23. Prove that the Cartesian product of open maps is open.

19.24. Prove that a metric ρ : X × X → R is continuous with respect to the
topology generated by the metric.

19.25. Let f : X → Y be a map. Prove that the graph Γf is the preimage of the
diagonal ∆Y = {(y, y) | y ∈ Y } ⊂ Y ×Y under the map f × idY : X ×Y → Y ×Y .

19◦6. Properties of Diagonal and Other Graphs

19.26. Prove that a space X is Hausdorff iff the diagonal ∆ = {(x, x) | x ∈ X} is
closed in X × X.

x

y

f(x)

19.27. Prove that if Y is a Hausdorff space and f : X → Y is a continuous map,
then the graph Γf is closed in X × Y .

19.28. Let Y be a compact space. Prove that if a map f : X → Y has closed
graph Γf , then f is continuous.

19.29. Prove that the hypothesis on compactness in 19.28 is necessary.

19.30. Let f : R → R be a continuous function. Prove that its graph is:

(1) closed;
(2) connected;
(3) path connected;
(4) locally connected;
(5) locally compact.
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19.31. Consider the following functions

1) R → R : x 7→

(

0 if x = 0,
1
x
, otherwise.

; 2) R → R : x 7→

(

0 if x = 0,

sin 1
x
, otherwise.

Do their

graphs possess the properties listed in 19.30?

19.32. Does any of the properties of the graph of a function f that are mentioned
in 19.30 imply that f is continuous?

19.33. Let Γf be closed. Then the following assertions are equivalent:

(1) f is continuous;
(2) f is locally bounded;
(3) the graph Γf of f is connected;
(4) the graph Γf of f is path-connected.

19.34. Prove that if Γf is connected and locally connected, then f is continuous.

19.35. Prove that if Γf is connected and locally compact, then f is continuous.

19.36. Are some of the assertions in Problems 19.33–19.35 true for maps f :
R

2 → R?

19◦7. Topological Properties of Products

19.N. The product of Hausdorff spaces is Hausdorff.

19.37. Prove that the product of regular spaces is regular.

19.38. The product of normal spaces is not necessarily normal.

19.38.1*. Prove that the space R formed by real numbers with the
topology determined by the base consisting of all semi-open intervals
[a, b) is normal.

19.38.2. Prove that in the Cartesian square of the space introduced
in 19.38.1 the subspace {(x, y) | x = −y} is closed and discrete.

19.38.3. Find two disjoint subsets of {(x, y) | x = −y} that have no
disjoint neighborhoods in the Cartesian square of the space of 19.38.1.

19.O. The product of separable spaces is separable.

19.P. First countability of factors implies first countability of the product.

19.Q. The product of second countable spaces is second countable.

19.R. The product of metrizable spaces is metrizable.

19.S. The product of connected spaces is connected.

19.39. Prove that for connected spaces X and Y and any proper subsets A ⊂ X,
B ⊂ Y the set X × Y r A × B is connected.

19.T. The product of path-connected spaces is path-connected.

19.U. The product of compact spaces is compact.
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19.40. Prove that the product of locally compact spaces is locally compact.

19.41. If X is a paracompact space and Y is compact, then X×Y is paracompact.

19.42. For which of the topological properties studied above is it true that if
X × Y possesses the property, then so does X?

19◦8. Representation of Special Spaces as Products

19.V. Prove that R
2

r 0 is homeomorphic to S1 × R.

19.43. Prove that R
n

r R
k is homeomorphic to Sn−k−1 × R

k+1.

19.44. Prove that Sn ∩ {x ∈ R
n+1 | x2

1 + · · · + x2
k ≤ x2

k+1 + · · · + x2
n+1} is

homeomorphic to Sk−1 × Dn−k+1.

19.45. Prove that O(n) is homeomorphic to SO(n) × O(1).

19.46. Prove that GL(n) is homeomorphic to SL(n) × GL(1).

19.47. Prove that GL+(n) is homeomorphic to SO(n) × R
n(n+1)

2 , where

GL+(n) = {A ∈ L(n, n) | det A > 0}.

19.48. Prove that SO(4) is homeomorphic to S3 × SO(3).

The space S1 × S1 is a torus.

19.W. Construct a topological embedding of the torus to R
3.

The product S1 × · · · × S1 of k factors is the k-dimensional torus.

19.X. Prove that the k-dimensional torus can be topologically embedded
into R

k+1.

19.Y. Find topological embeddings of S1 × D2, S1 × S1 × I, and S2 × I
into R

3.
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20. Quotient Spaces

20◦1. Set-Theoretic Digression:

Partitions and Equivalence Relations

Recall that a partition of a set A is a cover of A consisting of pairwise
disjoint sets.

Each partition of a set X determines an equivalence relation (i.e., a rela-
tion, which is reflexive, symmetric, and transitive): two elements of X are
said to be equivalent if they belong to the same element of the partition.
Vice versa, each equivalence relation in X determines the partition of X
into classes of equivalent elements. Thus, partitions of a set into nonempty
subsets and equivalence relations in the set are essentially the same. More
precisely, they are two ways of describing the same phenomenon.

Let X be a set, S a partition. The set whose elements are members of
the partition S (which are subsets of X) is the quotient set or factor set of
X by S, it is denoted by X/S. 1

20.1. Riddle. How does this operation relate to division of numbers? Why is
there a similarity in terminology and notation?

The setX/S is also called the set of equivalence classes for the equivalence
relation corresponding to the partition S.

The map pr : X → X/S that maps x ∈ X to the element of S containing
x is the (canonical) projection or factorization map. A subset of X which is
a union of elements of a partition is saturated . The smallest saturated set
containing a subset A of X is the saturation of A.

20.2. Prove that A ⊂ X is an element of a partition S of X iff A = pr−1(point),
where pr : X → X/S is the natural projection.

20.A. Prove that the saturation of a set A equals pr−1
(
pr(A)

)
.

20.B. Prove that a set is saturated iff it is equal to its saturation.

1At first glance, the definition of a quotient set contradicts one of the very profound principles
of the set theory, which states that a set is determined by its elements. Indeed, according to this
principle, we have X/S = S since S and X/S have the same elements. Hence, there seems to
be no need to introduce X/S. The real sense of the notion of quotient set is not in its literal
set-theoretic meaning, but in our way of thinking of elements of partitions. If we remember that
they are subsets of the original set and want to keep track of their internal structure (at least, of
their elements), then we speak of a partition. If we think of them as atoms, getting rid of their
possible internal structure, then we speak about the quotient set.
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20◦2. Quotient Topology

A quotient set X/S of a topological space X with respect to a partition S
into nonempty subsets is provided with a natural topology: a set U ⊂
X/S is said to be open in X/S if its preimage pr−1(U) under the canonical
projection pr : X → X/S is open.

20.C. The collection of these sets is a topological structure in the quotient
set X/S.

This topological structure is the quotient topology . The set X/S with
this topology is the quotient space of X by partition S.

20.3. Give an explicit description of the quotient space of the segment [0, 1] by
the partition consisting of [0, 1

3
], ( 1

3
, 2

3
], ( 2

3
, 1].

[ ]( ]( ]

a b c

20.4. What can you say about a partition S of a space X if the quotient space X/S
is known to be discrete?

20.D. A subset of a quotient space X/S is open iff it is the image of an
open saturated set under the canonical projection pr.

20.E. A subset of a quotient space X/S is closed, iff its preimage under pr
is closed in X, iff it is the image of a closed saturated set.

20.F. The canonical projection pr : X → X/S is continuous.

20.G. Prove that the quotient topology is the finest topology in X/S such
that the canonical projection pr is continuous with respect to it.

20◦3. Topological Properties of Quotient Spaces

20.H. A quotient space of a connected space is connected.

20.I. A quotient space of a path-connected space is path-connected.

20.J. A quotient space of a separable space is separable.

20.K. A quotient space of a compact space is compact.

20.L. The quotient space of the real line by partition R+, R r R+ is not
Hausdorff.

20.M. The quotient space of a space X by a partition S is Hausdorff iff
any two elements of S have disjoint saturated neighborhoods.
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20.5. Formulate similar necessary and sufficient conditions for a quotient space
to satisfy other separation axioms and countability axioms.

20.6. Give an example showing that the second countability can may get lost
when we pass to a quotient space.

20◦4. Set-Theoretic Digression: Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let f : X → Y
be a map which is constant on each element of S. Then there is a map
X/S → Y which sends each element A of S to the element f(a), where
a ∈ A. This map is denoted by f/S and called the quotient map or factor

map of f (by the partition S).

20.N. 1) Prove that a map f : X → Y is constant on each element of a
partition S of X iff there exists a map g : X/S → Y such that the following
diagram is commutative:

X
f−−−−→ Y

pr

y ր g

X/S

2) Prove that such a map g coincides with f/S.

More generally, if S and T are partitions of sets X and Y , then every
map f : X → Y that maps each element of S to an element of T determines
a map X/S → Y/T which sends an element A of partition S to the element
of partition T containing f(A). This map is denoted by f/S, T and called

the quotient map or factor map of f (with respect to S and T ).

20.O. Formulate and prove for f/S, T a statement generalizing 20.N.

A map f : X → Y determines a partition of the set X into nonempty
preimages of the elements of Y . This partition is denoted by S(f).

20.P. The map f/S(f) : X/S(f) → Y is injective.

This map is the injective factor (or injective quotient) of f .

20◦5. Continuity of Quotient Maps

20.Q. Let X and Y be two spaces, S a partition of X into nonempty sets,
and f : X → Y a continuous map constant on each element of S. Then the
factor f/S of f is continuous.

20.7. If the map f is open, then so is the quotient map f/S.

20.8. Let X and Y be two spaces, S a partition of X into nonempty sets. Prove
that the formula f 7→ f/S determines a bijection from the set of all continuous
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maps X → Y that are constant on each element of S onto the set of all continuous
maps X/S → Y .

20.R. Let X and Y be two spaces, S and T partitions of X and Y , respec-
tively, and f : X → Y a continuous map which maps each element of S into
an element of T . Then the map f/S, T : X/S → Y/T is continuous.

20◦6x. Closed Partitions

A partition S of a space X is closed if the saturation of each closed set
is closed.

20.1x. Prove that a partition is closed iff the canonical projection X → X/S is a
closed map.

20.2x. Prove that if a partition S contains only one element consisting of more
than one point, then S is closed if this element is a closed set.

20.Ax. Let X be a space satisfying the first separation axiom, S a closed
partition of X. Then the quotient space X/S also satisfies the first separa-
tion axiom.

20.Bx. The quotient space of a normal space with respect to a closed parti-
tion is normal.

20◦7x. Open Partitions

A partition S of a space X is open if the saturation of each open set is
open.

20.3x. Prove that a partition S is open iff the canonical projection X → X/S is
an open map.

20.4x. Prove that if a set A is saturated with respect to an open partition, then
IntA and Cl A are also saturated.

20.Cx. The quotient space of a second countable space with respect to an
open partition is second countable.

20.Dx. The quotient space of a first countable space with respect to an open
partition is first countable.

20.Ex. Let X and Y be two spaces, and let S and T be their open partitions.
Denote by S × T the partition of X × Y consisting of A × B with A ∈ S
and B ∈ T . Then the injective factor X × Y/S × T → X/S × Y/T of
pr× prX × Y → X/S × Y/T is a homeomorphism.
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21. Zoo of Quotient Spaces

21◦1. Tool for Identifying a Quotient Space with

a Known Space

21.A. If X is a compact space, Y is a Hausdorff space, and f : X → Y
is a continuous map, then the injective factor f/S(f) : X/S(f) → Y is a

homeomorphism.

21.B. The injective factor of a continuous map from a compact space to a
Hausdorff one is a topological embedding.

21.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all letters of the alphabet.

21.2. Prove that there exists a partition of a segment I with the quotient space
homeomorphic to square I × I .

21◦2. Tools for Describing Partitions

An accurate literal description of a partition can often be somewhat
cumbersome, but usually it can be shortened and made more understand-
able. Certainly, this requires a more flexible vocabulary with lots of words
having almost the same meanings. For instance, such words as factorize and
pass to a quotient can be replaced by attach, glue together , identify , contract,
paste, and other words accompanying these ones in everyday life.

Some elements of this language are easy to formalize. For instance,
factorization of a space X with respect to a partition consisting of a set
A and one-point subsets of the complement of A is the contraction (of the
subset A to a point), and the result is denoted by X/A.

21.3. Let A,B ⊂ X form a fundamental cover of a space X. Prove that the
quotient map A/A ∩ B → X/B of the inclusion A →֒ X is a homeomorphism.

If A and B are two disjoint subspaces of a space X and f : A → B is
a homeomorphism, then passing to the quotient of X by the partition into
singletons in X r (A ∪ B) and two-point sets {x, f(x)}, where x ∈ A, we
glue or identify the sets A and B via the homeomorphism f .

A rather convenient and flexible way for describing partitions is to de-
scribe the corresponding equivalence relations. The main advantage of this
approach is that, by transitivity, it suffices to specify only some pairs of
equivalent elements: if one states that x ∼ y and y ∼ z, then it is not
necessary to state that x ∼ z since this already follows.

Hence, a partition is represented by a list of statements of the form
x ∼ y that are sufficient for recovering the equivalence relation. We denote
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the corresponding partition by such a list enclosed into square brackets. For
example, the quotient of a space X obtained by identifying subsets A and B
by a homeomorphism f : A → B is denoted by X/[a ∼ f(a) for any a ∈ A]

or just X/[a ∼ f(a)].

Some partitions are easily described by a picture, especially if the original
space can be embedded in the plane. In such a case, as in the pictures below,
we draw arrows on the segments to be identified to show the directions to
be identified.

Below we introduce all these kinds of descriptions for partitions and give
examples of their usage, simultaneously providing literal descriptions. The
latter are not that nice, but they may help the reader to remain confident
about the meaning of the new words. On the other hand, the reader will
appreciate the improvement the new words bring in.

21◦3. Welcome to the Zoo

21.C. Prove that I/[0 ∼ 1] is homeomorphic to S1.

∼=

In other words, the quotient space of segment I by the partition consist-
ing of {0, 1} and {a} with a ∈ (0, 1) is homeomorphic to a circle.

21.C.1. Find a surjective continuous map I → S1 such that the corresponding
partition into preimages of points consists of one-point subsets of the interior
of the segment and the pair of boundary points of the segment.

21.D. Prove that Dn/Sn−1 is homeomorphic to Sn.

In 21.D, we deal with the quotient space of the n-diskDn by the partition
{Sn−1} ∪ {{x} | x ∈ Bn}.

Here is a reformulation of 21.D: Contracting the boundary of an n-
dimensional ball to a point, we obtain gives rise an n-dimensional sphere.

21.D.1. Find a continuous map of the n-disk Dn to the n-sphere Sn that maps
the boundary of the disk to a single point and bijectively maps the interior of
the disk onto the complement of this point.

21.E. Prove that I2/[(0, t) ∼ (1, t) for t ∈I] is homeomorphic to S1 × I.

Here the partition consists of pairs of points {(0, t), (1, t)} where t ∈ I,
and one-point subsets of (0, 1) × I.
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Reformulation of 21.E: If we glue the side edges of a square by identifying
points on the same hight, then we obtain a cylinder.

21.F. S1 × I/[(z, 0) ∼ (z, 1) for z ∈ S1] is homeomorphic to S1 × S1.

Here the partition consists of one-point subsets of S1 × (0, 1), and pairs
of points of the basis circles lying on the same generatrix of the cylinder.

Here is a reformulation of 21.F: If we glue the base circles of a cylinder
by identifying points on the same generatrix, then we obtain a torus.

21.G. I2/[(0, t) ∼ (1, t), (t, 0) ∼ (t, 1)] is homeomorphic to S1 × S1.

In 21.G , the partition consists of

• one-point subsets of the interior (0, 1) × (0, 1) of the square,

• pairs of points on the vertical sides that are the same distance from
the bottom side (i.e., pairs {(0, t), (1, t)} with t ∈ (0, 1)),

• pairs of points on the horizontal sides that lie on the same vertical
line (i.e., pairs {(t, 0), (t, 1)} with t ∈ (0, 1)),

• the four vertices of the square

Reformulation of 21.G: Identifying the sides of a square according to
the picturewe obtain a torus.

21◦4. Transitivity of Factorization

A solution of Problem 21.G can be based on Problems 21.E and 21.F
and the following general theorem.

21.H Transitivity of Factorization. Let S be a partition of a space
X, and let S′ be a partition of the space X/S. Then the quotient space
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(X/S)/S′ is canonically homeomorphic to X/T , where T is the partition of
X into preimages of elements of S′ under the projection X → X/S.

21◦5. Möbius Strip

The Möbius strip or Möbius band is defined as I2/[(0, t) ∼ (1, 1 − t)]. In

other words, this is the quotient space of the square I2 by the partition into
centrally symmetric pairs of points on the vertical edges of I2, and singletons
that do not lie on the vertical edges. The Möbius strip is obtained, so to
speak, by identifying the vertical sides of a square in such a way that the
directions shown on them by arrows are superimposed:

21.I. Prove that the Möbius strip is homeomorphic to the surface that is
swept in R

3 by a segment rotating in a half-plane around the midpoint, while
the half-plane rotates around its boundary line. The ratio of the angular
velocities of these rotations is such that the rotation of the half-plane through
360◦ takes the same time as the rotation of the segment through 180◦. See
Figure.

21◦6. Contracting Subsets

21.4. Prove that [0, 1]/[ 1
3
, 2

3
] is homeomorphic to [0, 1], and [0, 1]/{ 1

3
, 1} is home-

omorphic to letter P.

21.5. Prove that the following spaces are homeomorphic:
(a) R

2; (b) R
2/I; (c) R

2/D2; (d) R
2/I2;

(e) R
2/A, where A is a union of several segments with a common end point;

(f) R
2/B, where B is a simple finite polygonal line, i.e., a union of a finite

sequence of segments I1, . . . , In such that the initial point of Ii+1 is the
final point of Ii.
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21.6. Prove that if f : X → Y is a homeomorphism, then the quotient spaces
X/A and Y/f(A) are homeomorphic.

21.7. Let A ⊂ R
2 be a ray {(x, y) | x ≥ 0, y = 0}. Is R

2/A homeomorphic to
IntD2 ∪ {(0, 1)}?

21◦7. Further Examples

21.8. Prove that S1/[z ∼ e2πi/3z] is homeomorphic to S1.

The partition in 21.8 consists of triples of points that are vertices of equilateral
inscribed triangles.

21.9. Prove that the following quotient spaces of the disk D2 are homeomorphic
to D2:

(1) D2/[(x, y) ∼ (−x,−y)],

(2) D2/[(x, y) ∼ (x,−y)],

(3) D2/[(x, y) ∼ (−y, x)].

21.10. Find a generalization of 21.9 with Dn substituted for D2.

21.11. Describe explicitly the quotient space of line R
1 by equivalence relation

x ∼ y ⇔ x − y ∈ Z.

21.12. Represent the Möbius strip as a quotient space of cylinder S1 × I .

21◦8. Klein Bottle

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words, this

is the quotient space of square I2 by the partition into

• one-point subsets of its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same
vertical line,

• pairs of points (0, t), (1, 1− t) symmetric with respect to the center
of the square that lie on the vertical edges, and

• the quadruple of vertices.

21.13. Present the Klein bottle as a quotient space of

(1) a cylinder;
(2) the Möbius strip.

21.14. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphic to the Klein bot-

tle. (Here w̄ denotes the complex number conjugate to w.)

21.15. Embed the Klein bottle into R
4 (cf. 21.I and 19.W).

21.16. Embed the Klein bottle into R
4 so that the image of this embedding under

the orthogonal projection R
4 → R

3 would look as follows:
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21◦9. Projective Plane

Let us identify each boundary point of the disk D2 with the antipodal
point, i.e., factorize the disk by the partition consisting of one-point subsets
of the interior of the disk and pairs of points on the boundary circle sym-
metric with respect to the center of the disk. The result is the projective

plane. This space cannot be embedded in R
3, too. Thus we are not able to

draw it. Instead, we present it in other way.

21.J. A projective plane is a result of gluing together a disk and a Möbius
strip via a homeomorphism between their boundary circles.

21◦10. You May Have Been Provoked to Perform

an Illegal Operation

Solving the previous problem, you did something that did not fit into the
theory presented above. Indeed, the operation with two spaces called gluing

in 21.J has not appeared yet. It is a combination of two operations: first, we
make a single space consisting of disjoint copies of the original spaces, and
then we factorize this space by identifying points of one copy with points of
another. Let us consider the first operation in detail.

21◦11. Set-Theoretic Digression: Sums of Sets

The (disjoint) sum of a family of sets {Xα}α∈A is the set of pairs (xα, α)
such that xα ∈ Xα. The sum is denoted by

⊔
α∈AXα. So, we can write

⊔

α∈A

Xα =
⋃

α∈A

(Xα × {α}).

For each β ∈ A, we have a natural injection

inβ : Xβ →
⊔

α∈A

Xα : x 7→ (x, β).

If only two sets X and Y are involved and they are distinct, then we can
avoid indices and define the sum by setting

X ⊔ Y = {(x,X) | x ∈ X} ∪ {(y, Y ) | y ∈ Y }.



21. Zoo of Quotient Spaces 151

21◦12. Sums of Spaces

21.K. Let {Xα}α∈A be a collection of topological spaces. Then the collec-
tion of subsets of

⊔
α∈AXα whose preimages under all inclusions inα, α ∈ A,

are open is a topological structure.

The sum
⊔

α∈AXα with this topology is the (disjoint) sum of the topo-

logical spaces Xα (α ∈ A).

21.L. The topology described in 21.K is the finest topology with respect to
which all inclusions inα are continuous.

21.17. The maps inβ : Xβ →
F

α∈A Xα are topological embedding, and their

images are both open and closed in
F

α∈A Xα.

21.18. Which of the standard topological properties are inherited from summands
Xα by the sum

F

α∈A Xα? Which are not?

21◦13. Attaching Space

LetX and Y be two spaces, A a subset of Y , and f : A→ X a continuous
map. The quotient space X ∪f Y = (X ⊔ Y )/[a ∼ f(a) for a ∈ A] is said to

be the result of attaching or gluing the space Y to the space X via f . The
map f is the attaching map.

Here the partition of X ⊔ Y consists of one-point subsets of in2(Y rA)
and in1(X r f(A)), and sets in1(x) ∪ in2

(
f−1(x)

)
with x ∈ f(A).

21.19. Prove that the composition of inclusion X → X⊔Y and projection X⊔Y →
X ∪f Y is a topological embedding.

21.20. Prove that if X is a point, then X ∪f Y is Y/A.

21.M. Prove that attaching the n-disk Dn to its copy via the identity map
of the boundary sphere Sn−1 we obtain a space homeomorphic to Sn.

21.21. Prove that the Klein bottle is a result of gluing together two copies of the
Möbius strip via the identity map of the boundary circle.

a1 b1

a2 b2

a b

21.22. Prove that the result of gluing together two copies of a cylinder via the
identity map of the boundary circles (of one copy to the boundary circles of the
other) is homeomorphic to S1 × S1.
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21.23. Prove that the result of gluing together two copies of the solid torus S1×D2

via the identity map of the boundary torus S1 × S1 is homeomorphic to S1 × S2.

21.24. Obtain the Klein bottle by gluing two copies of the cylinder S1×I to each
other.

21.25. Prove that the result of gluing together two copies of the solid torus S1×D2

via the map

S1 × S1 → S1 × S1 : (x, y) 7→ (y, x)

of the boundary torus to its copy is homeomorphic to S3.

21.N. Let X and Y be two spaces, A a subset of Y , and f, g : A→ X two
continuous maps. Prove that if there exists a homeomorphism h : X → X
such that h ◦ f = g, then X ∪f Y and X ∪g Y are homeomorphic.

21.O. Prove that Dn∪hD
n is homeomorphic to Sn for any homeomorphism

h : Sn−1 → Sn−1.

21.26. Classify up to homeomorphism those spaces which can be obtained from
a square by identifying a pair of opposite sides by a homeomorphism.

21.27. Classify up to homeomorphism the spaces that can be obtained from two
copies of S1 × I by identifying the copies of S1 × {0, 1} by a homeomorphism.

21.28. Prove that the topological type of the space resulting from gluing together
two copies of the Möbius strip via a homeomorphism of the boundary circle does
not depend on the homeomorphism.

21.29. Classify up to homeomorphism the spaces that can be obtained from S1×I
by identifying S1 × 0 and S1 × 1 via a homeomorphism.

21◦14. Basic Surfaces

A torus S1 × S1 with the interior of an embedded disk deleted is a
handle. A two-sphere with the interior of n disjoint embedded disks deleted
is a sphere with n holes.

21.P. A sphere with a hole is homeomorphic to the disk D2.

21.Q. A sphere with two holes is homeomorphic to the cylinder S1 × I.

∼= ∼=

A sphere with three holes has a special name. It is called pantaloons or
just pants .



21. Zoo of Quotient Spaces 153

∼=

The result of attaching p copies of a handle to a sphere with p holes via
embeddings homeomorphically mapping the boundary circles of the handles
onto those of the holes is a sphere with p handles, or, in a more ceremonial
way (and less understandable, for a while), an orientable connected closed

surface of genus p.

21.30. Prove that a sphere with p handles is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

21.R. A sphere with one handle is homeomorphic to the torus S1 × S1.

∼=

21.S. A sphere with two handles is homeomorphic to the result of gluing
together two copies of a handle via the identity map of the boundary circle.

∼=

A sphere with two handles is a pretzel . Sometimes, this word also denotes
a sphere with more handles.

The space obtained from a sphere with q holes by attaching q copies
of the Möbius strip via embeddings of the boundary circles of the Möbius
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strips onto the boundary circles of the holes (the boundaries of the holes) is
a sphere with q crosscaps, or a nonorientable connected closed surface of genus

q.

21.31. Prove that a sphere with q crosscaps is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

21.T. A sphere with a crosscap is homeomorphic to the projective plane.

21.U. A sphere with two crosscaps is homeomorphic to the Klein bottle.

A sphere, spheres with handles, and spheres with crosscaps are basic

surfaces.

21.V. Prove that a sphere with p handles and q crosscaps is homeomorphic
to a sphere with 2p + q crosscaps (here q > 0).

21.32. Classify up to homeomorphism those spaces which are obtained by attach-
ing p copies of S1 × I to a sphere with 2p holes via embeddings of the boundary
circles of the cylinders onto the boundary circles of the sphere with holes.
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22. Projective Spaces

This section can be considered as a continuation of the previous one. The
quotient spaces described here are of too great importance to regard them
just as examples of quotient spaces.

22◦1. Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere Sn by the
partition into pairs of antipodal points, and denoted by RPn.

22.A. The space RPn is homeomorphic to the quotient space of the n-
disk Dn by the partition into one-point subsets of the interior of Dn, and
pairs of antipodal point of the boundary sphere Sn−1.

22.B. RP 0 is a point.

22.C. The space RP 1 is homeomorphic to the circle S1.

22.D. The space RP 2 is homeomorphic to the projective plane defined in
the previous section.

22.E. The space RPn is canonically homeomorphic to the quotient space
of R

n+1
r 0 by the partition into one-dimensional vector subspaces of R

n+1

punctured at 0.

A point of the space R
n+1

r 0 is a sequence of real numbers, which are
not all zeros. These numbers are the homogeneous coordinates of the cor-
responding point of RPn. The point with homogeneous coordinates x0, x1,
. . . , xn is denoted by (x0 : x1 : · · · : xn). Homogeneous coordinates deter-
mine a point of RPn, but are not determined by this point: proportional
vectors of coordinates (x0, x1, . . . , xn) and (λx0, λx1, . . . , λxn) determine the
same point of RPn.

22.F. The space RPn is canonically homeomorphic to the metric space,
whose points are lines of R

n+1 through the origin 0 = (0, . . . , 0) and the
metric is defined as the angle between lines (which takes values in [0, π

2 ]).
Prove that this is really a metric.

22.G. Prove that the map

i : R
n → RPn : (x1, . . . , xn) 7→ (1 : x1 : · · · : xn)

is a topological embedding. What is its image? What is the inverse map of
its image onto Rn?

22.H. Construct a topological embedding RPn−1 → RPn with image RPn
r

i(Rn), where i is the embedding from Problem 22.G.
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Therefore the projective space RPn can be considered as the result of
extending R

n by adjoining “improper” or “infinite” points, which constitute
a projective space RPn−1.

22.1. Introduce a natural topological structure in the set of all lines on the plane
and prove that the resulting space is homeomorphic to a) RP 2

r {pt}; b) open
Möbius strip (i.e., a Möbius strip with the boundary circle removed).

22.2. Prove that the set of all rotations of the space R
3 around lines passing

through the origin equipped with the natural topology is homeomorphic to RP 3.

22◦2x. Complex Projective Space of Dimension n

This space is defined as the quotient space of the unit sphere S2n+1 in
C

n+1 by the partition into circles cut by (complex) lines of C
n+1 passing

through the point 0. It is denoted by CPn.

22.Ax. CPn is homeomorphic to the quotient space of the unit 2n-disk D2n

of the space C
n by the partition whose elements are one-point subsets of the

interior of D2n and circles cut on the boundary sphere S2n−1 by (complex)
lines of Cn passing through the origin 0 ∈ Cn.

22.Bx. CP 0 is a point.

The space CP 1 is a complex projective line.

22.Cx. The complex projective line CP 1 is homeomorphic to S2.

22.Dx. The space CPn is canonically homeomorphic to the quotient space
of the space C

n+1
r0 by the partition into complex lines of C

n+1 punctured
at 0.

Hence, CPn can be regarded as the space of complex-proportional non-
zero complex sequences (x0, x1, . . . , xn). The notation (x0 : x1 : · · · : xn)
and term homogeneous coordinates introduced for the real case are used in
the same way for the complex case.

22.Ex. The space CPn is canonically homeomorphic to the metric space,
whose points are the (complex) lines of C

n+1 passing through the origin 0,
and the metric is defined as the angle between lines (which takes values in
[0, π

2 ]).
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22◦3x. Quaternionic Projective Spaces

Recall that R
4 bears a remarkable multiplication, which was discovered

by R. W. Hamilton in 1843. It can be defined by the formula

(x1, x1, x3, x4) × (y1, y2, y3, y4) =

(x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,

x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1).

It is bilinear, and to describe it in a shorter way it suffices to specify the
products of the basis vectors. The latter are traditionally denoted in this
case, following Hamilton, as follows:

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1).

In this notation, 1 is really a unity: (1, 0, 0, 0) × x = x for any x ∈ R4. The
rest of multiplication table looks as follows:

ij = k, jk = i, ki = j, ji = −k, kj = −i and ik = −j.
Together with coordinate-wise addition, this multiplication determines a
structure of algebra in R4. Its elements are quaternions.

22.Fx. Check that the quaternion multiplication is associative.

It is not commutative (e.g., ij = k 6= −k = ji). Otherwise, quaternions
are very similar to complex numbers. As in C, there is a transformation
called conjugation acting in the set of quaternions. As the conjugation of
complex numbers, it is also denoted by a bar: x 7→ x. It is defined by
the formula (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4) and has two remarkable
properties:

22.Gx. We have ab = ba for any two quaternions a and b.

22.Hx. We have aa = |a|2, i.e., the product of any quaternion a by the
conjugate quaternion a equals (|a|2, 0, 0, 0).

The latter property allows us to define, for any a ∈ R4, the inverse
quaternion

a−1 = |a|−2a

such that aa−1 = 1.

Hence, the quaternion algebra is a division algebra or a skew field . It is
denoted by H after Hamilton, who discovered it.

In the space Hn = R4n, there are right quaternionic lines, i.e., subsets
{(a1ξ, . . . , anξ) | ξ ∈ H}, and similar left quaternionic lines {(ξa1, . . . , ξan) |
ξ ∈ H}. Each of them is a real 4-dimensional subspace of H

n = R
4n.
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22.Ix. Find a right quaternionic line that is not a left quaternionic line.

22.Jx. Prove that two right quaternionic lines in H
n either meet only at 0,

or coincide.

The quotient space of the unit sphere S4n+3 of the space H
n+1 = R

4n+4

by the partition into its intersections with right quaternionic lines is the
(right) quaternionic projective space of dimension n. Similarly, but with left
quaternionic lines, we define the (left) quaternionic projective space of dimen-

sion n.

22.Kx. Are the right and left quaternionic projective space of the same
dimension homeomorphic?

The left quaternionic projective space of dimension n is denoted by HPn.

22.Lx. HP 0 consists of a single point.

22.Mx. HPn is homeomorphic to the quotient space of the closed unit disk
D4n in H

n by the partition into points of the interior ofD4n and the 3-spheres
that are intersections of the boundary sphere S4n−1 with (left quaternionic)
lines of H

n.

The space HP 1 is the quaternionic projective line.

22.Nx. Quaternionic projective line HP 1 is homeomorphic to S4.

22.Ox. HPn is canonically homeomorphic to the quotient space of Hn+1r0
by the partition to left quaternionic lines of H

n+1 passing through the origin
and punctured at it.

Hence, HPn can be presented as the space of classes of left proportional
(in the quaternionic sense) nonzero sequences (x0, . . . , xn) of quaternions.
The notation (x0 : x1 : . . . : xn) and the term homogeneous coordinates in-
troduced above in the real case are used in the same way in the quaternionic
situation.

22.Px. HPn is canonically homeomorphic to the set of (left quaternionic)
lines of H

n+1 equipped with the topology generated by the angular metric
(which takes values in

[
0, π

2

]
).
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23x. Finite Topological Spaces

23◦1x. Set-Theoretic Digression:

Splitting a Transitive Relation

Into Equivalence and Partial Order

In the definitions of equivalence and partial order relations, the condition
of transitivity seems to be the most important. Below, we supply a formal
justification of this feeling by showing that the other conditions are natural
companions of transitivity, although they are not its consequences.

23.Ax. Let ≺ be a transitive relation in a set X. Then the relation -

defined by
a - b if a ≺ b or a = b

is also transitive (and, furthermore, it is certainly reflexive, i.e., a - a for
each a ∈ X).

A binary relation - in a setX is a preorder if it is transitive and reflective,
i.e., satisfies the following conditions:

• Transitivity . If a - b and b - c, then a - c.

• Reflexivity . We have a - a for any a.

A set X equipped with a preorder is preordered .

If a preorder is antisymmetric, then this is a nonstrict order.

23.1x. Is the relation a|b a preorder in the set Z of integers?

23.Bx. If (X,-) is a preordered set, then the relation ∼ defined by

a ∼ b if a - b and b - a

is an equivalence relation (i.e., it is symmetric, reflexive, and transitive) in
X.

23.2x. What equivalence relation is defined in Z by the preorder a|b?

23.Cx. Let (X,-) be a preordered set and ∼ be an equivalence relation
defined in X by - according to 23.Bx. Then a′ ∼ a, a - b and b ∼ b′ imply
a′ - b′ and in this way - determines a relation in the set of equivalence
classes X/∼. This relation is a nonstrict partial order.

Thus any transitive relation generates an equivalence relation and a par-
tial order in the set of equivalence classes.

23.Dx. How this chain of constructions would degenerate if the original
relation was

(1) an equivalence relation, or
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(2) nonstrict partial order?

23.Ex. In any topological space, the relation - defined by

a - b if a ∈ Cl{b}
is a preorder.

23.3x. In the set of all subsets of an arbitrary topological space the relation

A - B if A ⊂ Cl B

is a preorder. This preorder determines the following equivalence relation: sets
are equivalent iff they have the same closure.

23.Fx. The equivalence relation defined by the preorder of Theorem 23.Ex

determines the partition of the space into maximal (with respect to inclusion)
indiscrete subspaces. The quotient space satisfies the Kolmogorov separation
axiom T0.

The quotient space of Theorem 23.Fx is the maximal T0-quotient of X.

23.Gx. A continuous image of an indiscrete space is indiscrete.

23.Hx. Prove that any continuous map X → Y induces a continuous map
of the maximal T0-quotient of X to the maximal T0-quotient of Y .

23◦2x. The Structure of Finite Topological Spaces

The results of the preceding subsection provide a key to understanding
the structure of finite topological spaces. Let X be a finite space. By
Theorem 23.Fx, X is partitioned to indiscrete clusters of points. By 23.Gx,
continuous maps between finite spaces respect these clusters and, by 23.Hx,
induce continuous maps between the maximal T0-quotient spaces.

This means that we can consider a finite topological space as its maximal
T0-quotient whose points are equipped with multiplicities, that are positive
integers: the numbers of points in the corresponding clusters of the original
space.

The maximal T0-quotient of a finite space is a smallest neighborhood
space (as a finite space). By Theorem 14.O, its topology is determined by
a partial order. By Theorem 9.Bx, homeomorphisms between spaces with
poset topologies are monotone bijections.

Thus, a finite topological space is characterized up to homeomorphism
by a finite poset whose elements are equipped with multiplicities (positive
integers). Two such spaces are homeomorphic iff there exists a monotone
bijection between the corresponding posets that preserves the multiplicities.
To recover the topological space from the poset with multiplicities, we must
equip the poset with the poset topology and then replace each of its ele-
ments by an indiscrete cluster of points, the number points in which is the
multiplicity of the element.
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23◦3x. Simplicial schemes

Let V be a set, Σ a set of some of subsets of V . A pair (V,Σ) is a
simplicial scheme with set of vertices V and set of simplices Σ if

• each subset of any element of Σ belongs to Σ,

• the intersection of any collection of elements of Σ belongs to Σ,

• each one-element subset of V belongs to Σ.

The set Σ is partially ordered by inclusion. When equipped with the poset
topology of this partial order, it is called the space of simplices of the sim-
plicial scheme (X,Σ).

A simplicial scheme gives rise also to another topological space. Namely,
for a simplicial scheme (V,Σ) consider the set S(V,Σ) of all functions c :
V → [0, 1] such that

Supp(c) = {v ∈ V | c(v) 6= 0} ∈ Σ

and
∑

v∈V c(v) = 1. Equip S(V,Σ) with the topology generated by metric

ρ(c1, c2) = sup
v∈V

|c1(v) − c2(v)|.

The space S(V,Σ) is a simplicial or triangulated space. It is covered by
the sets {c ∈ S | Supp(c) = σ}, where σ ∈ Σ, which are called its (open)
simplices.

23.4x. Which open simplices of a simplicial space are open sets, which are closed,
and which are neither closed nor open?

23.Ix. For each σ ∈ Σ, find a homeomorphism of the space

{c ∈ S | Supp(c) = σ} ⊂ S(V,Σ)

onto an open simplex whose dimension is one less than the number of vertices
belonging to σ. (Recall that the open n-simplex is the set {(x1, . . . , xn+1) ∈
Rn+1 | xj > 0 for j = 1, . . . , n+ 1 and

∑n+1
i=1 xi = 1}.)

23.Jx. Prove that for any simplicial scheme (V,Σ) the quotient space of the
simplicial space S(V,Σ) by its partition to open simplices is homeomorphic
to the space Σ of simplices of the simplicial scheme (V,Σ).

23◦4x. Barycentric Subdivision of a Poset

23.Kx. Find a poset which is not isomorphic to the set of simplices (ordered
by inclusion) of whatever simplicial scheme.

Let (X,≺) be a poset. Consider the set X ′ of all nonempty finite strictly
increasing sequences a1 ≺ a2 ≺ · · · ≺ an of elements of X. It can also be
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described as the set of all nonempty finite subsets of X in each of which ≺
determines a linear order. It is naturally ordered by inclusion.

The poset (X ′,⊂) is the barycentric subdivision of (X,≺).

23.Lx. For any poset (X,≺), pair (X,X ′) is a simplicial scheme.

There is a natural map X ′ → X that maps an element of X ′ (i.e., a
nonempty finite linearly ordered subset of X) to its greatest element.

23.Mx. Is this map monotone? Strictly monotone? The same questions
concerning a similar map that maps a nonempty finite linearly ordered sub-
set of X to its smallest element.

Let (V,Σ) be a simplicial scheme and Σ′ be the barycentric subdivision
of Σ (ordered by inclusion). The simplicial scheme (Σ,Σ′) is the barycentric

subdivision of the simplicial scheme (V,Σ).

There is a natural mapping Σ → S(V,Σ) that maps a simplex σ ∈ Σ (i.e.,
a subset {v0, v1, . . . , vn} of V ) to the function bσ : V → R with bσ(vi) = 1

n+1

and bσ(v) = 0 for any v 6∈ σ.

Define a map β : S(Σ,Σ′) → S(V,Σ) that maps a function ϕ : Σ → R

to the function
V → R : v 7→

∑

σ∈Σ

ϕ(σ)bσ(v).

23.Nx. Prove that the map β : S(Σ,Σ′) → S(V,Σ) is a homeomorphism
and constitutes, together with projections S(V,Σ) → Σ and S(Σ,Σ′) → Σ′

and the natural map Σ′ → Σ a commutative diagram

S(Σ,Σ′)
β−−−−→ S(V,Σ)

y
y

Σ′ −−−−→ Σ
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24x. Spaces of Continuous Maps

24◦1x. Sets of Continuous Mappings

By C(X,Y ) we denote the set of all continuous maps of a space X to a
space Y .

24.1x. Let X be non empty. Prove that C(X, Y ) consists of a single element iff
so does Y .

24.2x. Let X be non empty. Prove that there exists an injection Y → C(X, Y ).
In other words, the cardinality card C(X,Y ) of C(X,Y ) is greater than or equal to
card Y .

24.3x. Riddle. Find natural conditions implying that C(X,Y ) = Y .

24.4x. Let Y = {0, 1} equipped with topology {∅, {0}, Y }. Prove that there
exists a bijection between C(X, Y ) and the topological structure of X.

24.5x. Let X be a set of n points with discrete topology. Prove that C(X,Y ) can
be identified with Y × . . . × Y (n times).

24.6x. Let Y be a set of k points with discrete topology. Find necessary and
sufficient condition for the set C(X, Y ) contain k2 elements.

24◦2x. Topologies on Set of Continuous Mappings

Let X and Y be two topological spaces, A ⊂ X, and B ⊂ Y . We define
W (A,B) = {f ∈ C(X,Y ) | f(A) ⊂ B},

∆(pw) = {W (a,U) | a ∈ X, U is open in Y },
and

∆(co) = {W (C,U) | C ⊂ X is compact, U is open in Y }.

24.Ax. ∆(pw) is a subbase of a topological structure on C(X,Y ).

The topological structure generated by ∆(pw) is the topology of pointwise

convergence. The set C(X,Y ) equipped with this structure is denoted by

C(pw)(X,Y ).

24.Bx. ∆(co) is a subbase of a topological structures on C(X,Y ).

The topological structure determined by ∆(co) is the compact-open topol-

ogy . Hereafter we denote by C(X,Y ) the space of all continuous maps
X → Y with the compact-open topology, unless the contrary is specified
explicitly.

24.Cx Compact-Open Versus Pointwise. The compact-open topology
is finer than the topology of pointwise convergence.
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24.7x. Prove that C(I, I) is not homeomorphic to C(pw)(I, I).

Denote by Const(X, Y ) the set of all constant maps f : X → Y .

24.8x. Prove that the topology of pointwise convergence and the compact-open
topology of C(X, Y ) induce the same topological structure on Const(X, Y ), which,
with this topology, is homeomorphic Y .

24.9x. Let X be a discrete space of n points. Prove that C(pw)(X, Y ) is homeo-
morphic Y × . . . × Y (n times). Is this true for C(X,Y )?

24◦3x. Topological Properties of Mapping Spaces

24.Dx. Prove that if Y is Hausdorff, then C(pw)(X,Y ) is Hausdorff for any
space X. Is this true for C(X,Y )?

24.10x. Prove that C(I, X) is path connected iff X is path connected.

24.11x. Prove that C(pw)(I, I) is not compact. Is the space C(I, I) compact?

24◦4x. Metric Case

24.Ex. If Y is metrizable and X is compact, then C(X,Y ) is metrizable.

Let (Y, ρ) be a metric space and X a compact space. For continuous
maps f, g : X → Y put

d(f, g) = max{ρ(f(x), g(x)) | x ∈ X}.
24.Fx This is a Metric. If X is a compact space and Y a metric space,
then d is a metric on the set C(X,Y ).

LetX be a topological space, Y a metric space with metric ρ. A sequence
fn of maps X → Y uniformly converges to f : X → Y if for any ε > 0 there
exists a positive integer N such that ρ(fn(x), f(x)) < ε for any n > N and
x ∈ X. This is a straightforward generalization of the notion of uniform
convergence which is known from Calculus.

24.Gx Metric of Uniform Convergence. Let X be a compact space,
(Y, d) a metric space. A sequence fn of mapsX → Y converges to f : X → Y
in the topology generated by d iff fn uniformly converges to f .

24.Hx Completeness of C(X,Y ). Let X be a compact space, (Y, ρ) a
complete metric space. Then

(
C(X,Y ), d

)
is a complete metric space.

24.Ix Uniform Convergence Versus Compact-Open. Let X be a com-
pact space and Y a metric space. Then the topology generated by d on
C(X,Y ) is the compact-open topology.

24.12x. Prove that the space C(R, I) is metrizable.

24.13x. Let Y be a bounded metric space, X a topological space admitting a
presentation X =

S

∞

i=1 Xi, where Xi is compact and Xi ⊂ IntXi+1 for each
i = 1, 2, . . .. Prove that C(X,Y ) is metrizable.
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Denote by Cb(X,Y ) the set of all continuous bounded maps from a topo-
logical space X to a metric space Y . For maps f, g ∈ Cb(X,Y ), put

d∞(f, g) = sup{ρ(f(x), g(x)) | x ∈ X}.

24.Jx Metric on Bounded Maps. This is a metric in Cb(X,Y ).

24.Kx d∞ and Uniform Convergence. Let X be a topological space
and Y a metric space. A sequence fn of bounded maps X → Y converges
to f : X → Y in the topology generated by d∞ iff fn uniformly converge to
f .

24.Lx When Uniform Is Not Compact-Open. Find X and Y such
that the topology generated by d∞ on Cb(X,Y ) is not the compact-open
topology.

24◦5x. Interactions With Other Constructions

24.Mx. For any continuous maps ϕ : X ′ → X and ψ : Y → Y ′ the map
C(X,Y ) → C(X ′, Y ′) : f 7→ ψ ◦ f ◦ ϕ is continuous.

24.Nx Continuity of Restricting. Let X and Y be two spaces, A ⊂ X.
Prove that the map C(X,Y ) → C(A,Y ) : f 7→ f |A is continuous.

24.Ox Extending Target. For any spaces X and Y and any B ⊂ Y , the
map C(X,B) → C(X,Y ) : f 7→ iB ◦ f is a topological embedding.

24.Px Maps to Product. For any three spaces X, Y , and Z, the space
C(X,Y × Z) is canonically homeomorphic to C(X,Y ) × C(X,Z).

24.Qx Restricting to Sets Covering Source. Let {X1, . . . ,Xn} be a
closed cover of X. Prove that for any space Y

φ : C(X,Y ) →
n∏

i=1

C(Xi, Y ) : f 7→ (f |X1 , . . . , f |Xn)

is a topological embedding. What if the cover is not fundamental?

24.Rx. Riddle. Can you generalize assertion 24.Qx?

24.Sx Continuity of Composing. Let X be a space and Y a locally
compact Hausdorff space. Prove that the map

C(X,Y ) × C(Y,Z) → C(X,Z) : (f, g) 7→ g ◦ f

is continuous.

24.14x. Is local compactness of Y necessary in 24.Sx?
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24.Tx Factorizing Source. Let S be a closed partition2 of a Hausdorff
compact space X. Prove that for any space Y the map

φ : C(X/S, Y ) → C(X,Y )

is a topological embedding.

24.15x. Are the conditions imposed on S and X in 24.Tx necessary?

24.Ux The Evaluation Map. Let X and Y be two spaces. Prove that if
X is locally compact and Hausdorff, then the map

φ : C(X,Y ) ×X → Y : (f, x) 7→ f(x)

is continuous.

24.16x. Are the conditions imposed on X in 24.Ux necessary?

24◦6x. Mappings X × Y → Z and X → C(Y,Z)

24.Vx. Let X, Y , and Z be three topological spaces, f : X × Y → Z a
continuous map. Then the map

F : X → C(Y,Z) : F (x) : y 7→ f(x, y),

is continuous.

The converse assertion is also true under certain additional assumptions.

24.Wx. Let X and Z be two spaces, Y a Hausdorff locally compact space,
F : X → C(Y,Z) a continuous map. Then the map f : X × Y → Z :
(x, y) 7→ F (x)(y) is continuous.

24.Xx. If X is a Hausdorff space and the collection ΣY = {Uα} is a subbase
of the topological structure of Y , then the collection {W (K,U) | U ∈ Σ} is
a subbase of the compact-open topology in C(X,Y ).

24.Yx. Let X, Y , and Z be three spaces. Let

Φ : C(X × Y,Z) → C(X, C(Y,Z))

be defined by the relation

Φ(f)(x) : y 7→ f(x, y).

Then

(1) if X is a Hausdorff space, then Φ is continuous;

(2) if X is a Hausdorff space, while Y is locally compact and Hausdorff,
then Φ is a homeomorphism.

2Recall that a partition is closed if the saturation of each closed set is closed.
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24.Zx. Let S be a partition of a space X, and let pr : X → X/S be the
projection. The space X × Y bears a natural partition S′ = {A × y | A ∈
S, y ∈ Y }. If the space Y is Hausdorff and locally compact, then the natural
quotient map f : (X × Y )/S′ → X/S × Y of the projection pr× idY is a
homeomorphism.

24.17x. Try to prove Theorem 24.Zx directly.
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Proofs and Comments

19.A For example, let us prove the second relation:

(x, y) ∈ (A1 ×B1) ∩ (A2 ×B2) ⇐⇒ x ∈ A1, y ∈ B1, x ∈ A2, y ∈ B2

⇐⇒ x ∈ A1 ∩A2, y ∈ B1 ∩B2 ⇐⇒ (x, y) ∈ (A1 ∩A2) × (B1 ∩B2).

19.B Indeed,

pr−1
X (A) = {z ∈ X × Y | prX(z) ∈ A} = {(x, y) ∈ X × Y | x ∈ A} = A× Y.

19.C Indeed, Γf ∩ (x× Y ) = {(x, f(x))} is a singleton.
If Γ ∩ (x× Y ) is a singleton {(x, y)}, then we can put f(x) = y.

19.D This follows from 3.A because the intersection of elementary sets
is an elementary set.

19.E Verify that X×Y → Y ×X : (x, y) 7→ (y, x) is a homeomorphism.

19.F In view of a canonical bijection, we can identify two sets and
write

(X × Y ) × Z = X × (Y × Z) = {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z}.
However, elementary sets in the spaces (X × Y ) × Z and X × (Y × Z) are
different. Check that the collection {U × V ×W | U ∈ ΩX , V ∈ ΩY , W ∈
ΩZ} is a base of the topological structures in both spaces.

19.G Indeed, for each open set U ⊂ X the preimage pr−1
X (U) = U ×Y

is an elementary open set in X × Y .

19.H Let Ω′ be a topology in X×Y such that the projections prX and
prY are continuous. Then, for any U ∈ ΩX and V ∈ ΩY , we have

pr−1
X (U) ∩ pr−1

Y (V ) = (U × Y ) ∩ (X × V ) = U × V ∈ Ω′.

Therefore, each base set of the product topology lies in Ω′, whence it follows
that Ω′ contains the product topology of X and Y .

19.I Clearly, ab(prX) : X × y0 → X is a continuous bijection. To
see that the inverse map is continuous, we must show that each set open in
X × y0 as in a subspace of X ×Y has the form U × y0. Indeed, if W is open
in X × Y , then

W∩(X×y0) =
⋃

α

(Uα×Vα)∩(X×y0) =
⋃

α : y0∈Vα

(Uα×y0) =
( ⋃

α : y0∈Vα

Uα

)
×y0.

19.J From the point of view of set theory, we have R1 ×R1 = R2. The
collection of open rectangles is a base of topology in R

1 × R
1 (show this),

therefore, the topologies in R
1 × R

1 and R
2 have one and the same base,
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and so they coincide. The second assertion is proved by induction and, in
turn, implies the third one by 19.7.

19.K Set f(z) = (f1(z), f2(z)). If f(z) = (x, y) ∈ X × Y , then x =
(prX ◦f)(z) = f1(z). We similarly have y = f2(z).

19.L The maps f1 = prX ◦f and f2 = prY ◦f are continuous as
compositions of continuous maps (use 19.G).

Recall the definition of the product topology and use 19.20.

19.M Recall the definition of the product topology and use 19.22.

19.N Let X and Y be two Hausdorff spaces, (x1, y1), (x2, y2) ∈ X × Y
two distinct points. Let, for instance, x1 6= x2. Since X is Hausdorff, x1 and
x2 have disjoint neighborhoods: Ux1 ∩ Ux2 = ∅. Then, e.g., Ux1 × Y and
Ux2 × Y are disjoint neighborhoods of (x1, y1) and (x2, y2) in X × Y .

19.O If A and B are countable and dense in X and Y , respectively,
then A×B is a dense countable set in X × Y .

19.P See the proof of Theorem 19.Q below.

19.Q If ΣXand ΣY are countable bases in X and Y , respectively, then
Σ = {U × V | U ∈ ΣX , V ∈ ΣY } is a base in X × Y by 19.15.

19.R Show that if ρ1 and ρ2 are metrics on X and Y , respectively,
then ρ

(
(x1, y1), (x2, y2)

)
= max{ρ1(x1, x2), ρ2(y1, y2)} is a metric in X × Y

generating the product topology. What form have the balls in the metric
space (X × Y, ρ)?

19.S For any two points (x1, y1), (x2, y2) ∈ X × Y , the set (X × y2) ∪
(x1 × Y ) is connected and contains these points.

19.T If u are v are paths joining x1 with x2 and y1 with y2, respectively,
then the path u× v joins (x1, y1) with (x2, y2).

19.U It is sufficient to consider a cover consisting of elementary sets.
Since Y is compact, each fiber x × Y has a finite subcovering {Ux

i × V x
i }.

Put W x = ∩Ux
i . Since X is compact, the cover {W x}x∈X has a finite

subcovering W xj . Then {Uxj

i × V
xj

i } is the required finite subcovering.

19.V Consider the map (x, y) 7→
((

x√
x2+y2

, x√
x2+y2

)
, ln(

√
x2 + y2)

)
.

20.A First, the preimage pr−1
(
pr(A)

)
is saturated, secondly, it is

the least because if B ⊃ A is a saturated set, then B = pr−1
(
pr(B)

)
⊃

pr−1
(
pr(A)

)
.

20.C Put Ω′ = {U ⊂ X/S | pr−1(U) ∈ Ω}. Let Uα ∈ Ω′. Since the
sets p−1(Uα) are open, the set p−1(∪Uα) = ∪p−1(Uα) is also open, whence
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∪Uα ∈ Ω′. Verify the remaining axioms of topological structure on your
own.

20.D If a set V ⊂ X is open and saturated, then V =
pr−1

(
p(V )

)
, hence, the set U = pr(V ) is open in X/S.

Conversely, if U ⊂ X/S is open, then U = pr
(
pr−1(U)

)
, where

V = pr−1(U) is open and saturated.

20.E The set F closed, iff X/S r F is open, iff pr−1(X/S r F ) =
X r pr−1(F ) is open, iff p−1(F ) is closed.

20.F This immediately follows from the definition of the quotient topol-
ogy.

20.G We must prove that if Ω′ is a topology in X/S such that the
factorization map is continuous, then Ω′ ⊂ ΩX/S . Indeed, if U ∈ Ω′, then

p−1(U) ∈ ΩX , whence U ∈ ΩX/S by the definition of the quotient topology.

20.H It is connected as a continuous image of a connected space.

20.I It is path-connected as a continuous image of a path-connected
space.

20.J It is separable as a continuous image of a separable space.

20.K It is compact as a continuous image of a compact space.

20.L This quotient space consists of two points, one of which is not
open in it.

20.M Let a, b ∈ X/S, and let A,B ⊂ X be the corresponding
elements of the partition. If Ua and Ub are disjoint neighborhoods of a and
b, then p−1(Ua) and p−1(Ub) are disjoint saturated neighborhoods of A and
B. This follows from 20.D.

20.N 1) Put g = f/S. The set f−1(y) = p−1(g−1(y))
is saturated, i.e., it consists of elements of the partition S. Therefore, f is
constant at each of the elements of the partition. 2) If A is an element of
S, a is the point of the quotient set corresponding to A, and x ∈ A, then
f/S(a) = f(A) = g(p(x)) = g(a).

20.O The map f maps elements of S to those of T iff there exists a
map g : X/S → Y/T such that the diagram

X
f−−−−→ Y

prX

y prY

y

X/S
g−−−−→ Y/T

is commutative. Then we have f/(S, T ) = g.
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20.P This is so because distinct elements of the partition S(f) are
preimages of distinct points in Y .

20.Q Since p−1((f/S)−1(U)) = (f/S◦p)−1(U) = f−1(U), the definition
of the quotient topology implies that for each U ∈ ΩY the set (f/S)−1(U)
is open, i.e., the map f/S is continuous.

20.R See 20.O and 20.8.

20.Ax Each singleton in X/S is the image of a singleton in X. Since
X satisfies T1, each singleton in X is closed, and its image, by 20.1x, is also
closed. Consequently, the quotient space also satisfies T1.

20.Bx This follows from 14.25.

20.Cx Let Un = p(Vn), n ∈ N, where {Vn}n∈N is a base X. Consider
an open set W in the quotient space. Since pr−1(W ) =

⋃
n∈A Vn, we have

W = pr
(
pr−1(W )

)
=

⋃
n∈A Un, i.e., the collection {Un} is a base in the

quotient space.

20.Dx For an arbitrary point y ∈ X/S, consider the image of a count-
able neighborhood base at a certain point x ∈ pr−1(y).

20.Ex Since the injective factor of a continuous surjection is a continu-
ous bijection, it only remains to prove that the factor is an open map, which
follows by 20.7 from the fact that the map X × Y → X/S × Y/T is open
(see 19.23).

21.A This follows from 20.P, 20.Q, 20.K, and 16.Y.

21.B Use 16.Z instead of 16.Y.

21.C.1 If f : t ∈ [0, 1] 7→ (cos 2πt, sin 2πt) ∈ S1, then f/S(f) is a home-

omorphism as a continuous bijection of a compact space onto a Hausdorff
space, and the partition S(f) is the initial one.

21.D.1 If f : x ∈ Rn 7→ (x
r sinπr,− cos πr) ∈ Sn ⊂ Rn+1, then the

partition S(f) is the initial one and f/S(f) is a homeomorphism.

21.E Consider the map g = f × id : I2 = I × I → S1 × I (f is
defined as in 21.C.1). The partition S(g) is the initial one, so that g/S(g)

a homeomorphism.

21.F Check that the partition S(idS1 ×f) is the initial one.

21.G The partition S(f × f) is the initial one.
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21.H Consider the commutative diagram

X
p1−−−−→ X/S

p

y p2

y

X/T
q−−−−→ X/S/S′

where the map q is obviously a bijection. The assertion of the problem
follows from the fact that a set U is open in X/S/S′ iff p−1

1

(
p−1
2 (U)

)
=

p−1
(
q−1(U)

)
is open in X iff q−1(U) is open in X/T .

21.I To simplify the formulas, we replace the square I2 ba a rectangle.
Here is a formal argument: consider the map

ϕ : [0, 2π] × [−1
2 ,

1
2 ] → R

3 : (x, y) 7→
(
(1 + y sin x

2 ) cos x, (1 + y sin x
2 ) sinx, y sinx

)
.

Check that ϕ really maps the square onto the Möbius strip and that S(ϕ)
is the given partition. Certainly, the starting point of the argument is not
a specific formula. First of all, you should imagine the required map. We
map the horizontal midline of the unit square onto the mid-circle of the
Möbius strip, and we map each of the vertical segments of the square onto
a segment of the strip orthogonal to the the mid-circle. This mapping maps
the vertical sides of the square to one and the same segment, but here the
opposite vertices of the square are identified with each other (check this).

21.J See the following section.

21.K Actually, it is easier to prove a more general assertion. Assume
that we are given topological spaces Xα and maps fα : Xα → Y . Then
Ω = {U ⊂ Y | f−1

α (U) is open in Xα} is the finest topological structure in
Y with respect to which all maps fα are continuous.

21.L See the hint to 21.K.

21.M We map Dn
1 ⊔ Dn

2 to Sn so that the images of Dn
1 and Dn

2 are
the upper and the lower hemisphere, respectively. The partition into the
preimages is the partition with quotient spaceDn∪id |Sn−1

Dn. Consequently,

the corresponding quotient map is a homeomorphism.

21.N Consider the map F : X ⊔ Y → X ⊔ Y such that F |X = idX and
F |Y = h. This mapping maps an element of the partition corresponding
to the equivalence relation z ∼ f(x) to an element of the partition corre-
sponding to the equivalence relation x ∼ g(x). Consequently, there exists a
continuous bijection H : X ∪f Y → X ∪g Y . Since h−1 also is a homeomor-
phism, H−1 is also continuous.
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21.O By 21.N, it is sufficient to prove that any homeomorphism f :
Sn−1 → Sn−1 can be extended to a homeomorphism F : Dn → Dn, which
is obvious.

21.P For example, the stereographic projection from an inner point of
the hole maps the sphere with a hole onto a disk homeomorphically.

21.Q The stereographic projection from an inner point of one of the
holes homeomorphically maps the sphere with two holes onto a “disk with
a hole”. Prove that the latter is homeomorphic to a cylinder. (Another
option: if we take the center of the projection in the hole in an appropriate
way, then the projection maps the sphere with two holes onto a circular ring,
which is obviously homeomorphic to a cylinder.)

21.R By definition, the handle is homeomorphic to a torus with a hole,
while the sphere with a hole is homeomorphic to a disk, which precisely fills
in the hole.

21.S Cut a sphere with two handles into two symmetric parts each of
which is homeomorphic to a handle.

21.T Combine the results of 21.P 21.J.

21.U Consider the Klein bottle as a quotient space of a square and cut
the square into 5 horizontal (rectangular) strips of equal width. Then the
quotient space of the middle strip will be a Möbius band, the quotient space
of the union of the two extreme strips will be one more Möbius band, and
the quotient space of the remaining two strips will be a ring, i.e., precisely
a sphere with two holes. (Here is another, maybe more visual, description.
Look at the picture of the Klein bottle: it has a horizontal plane of symmetry.
Two horizontal planes close to the plane of symmetry cut the Klein bottle
into two Möbius bands and a ring.)

21.V The most visual approach here is as follows: single out one of
the handles and one of the films. Replace the handle by a “tube” whose
boundary circles are attached to those of two holes on the sphere, which
should be sufficiently small and close to each other. After that, start moving
one of the holes. (The topological type of the quotient space does not change
in the course of such a motion.) First, bring the hole to the boundary of
the film, then shift it onto the film, drag it once along the film, shift it from
the film, and, finally, return the hole to the initial spot. As a result, we
transform the initial handle (a torus with a hole) into a Klein bottle with a
hole, which splits into two Möbius bands (see Problem 21.U), i.e., into two
films.

22.A Consider the composition f of the embedding Dn in Sn onto a
hemisphere and of the projection pr : Sn → RPn. The partition S(f) is that
described in the formulation. Consequently, f/S(f) is a homeomorphism.
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22.C Consider f : S1 → S1 : z 7→ z2 ∈ C. Then S1/S(f) ∼= RP 1.

22.D See 22.A.

22.E Consider the composition f of the embedding of Sn in Rn r 0
and of the projection onto the quotient space by the described the partition.
It is clear that the partition S(f) is the partition factorizing by which we
obtain the projective space. Therefore, f/S(f) is a homeomorphism.

22.F To see that the described function is a metric, use the triangle
inequality between the plane angles of a trilateral angle. Now, take each
point x ∈ Sn the line l(x) through the origin with direction vector x. We
have thus defined a continuous (check this) map of Sn to the indicated space
of lines, whose injective factor is a homeomorphism.

22.G The image of this map is the set U0 = {(x0 : x1 : . . . : xn) | x0 6=
0}, and the inverse map j : U0 → Rn is defined by the formula

(x0 : x1 : . . . : xn) 7→
(
x1

x0
,
x2

x0
, . . . ,

xn

x0

)
.

Since both i and j are continuous, i is a topological embedding.

22.H Consider the embedding Sn−1 = Sn ∩ {xn+1 = 0} → Sn ⊂ R
n+1

and the induced embedding RPn−1 → RPn.

23.Ax If a - b - c, then we have a ≺ b ≺ c, a = b = c, a ≺ b = c, or
a = b ≺ c. In all four cases, we have a - c.

23.Bx The relation ∼ is obviously reflexive, symmetric, and also tran-
sitive.

23.Cx Indeed, if a′ ∼ a, a - b, and b ∼ b′, then a′ - a - b - b′, whence
a′ - b′. Clearly, the relation defined on the equivalence classes is transitive
and reflexive. Now, if two equivalence classes [a] and [b] satisfy both a - b
and b - a, then [a] = [b], i.e., the relation is anti-symmetric, hence, it is a
nonstrict order.

23.Dx (a) In this case, we obtain the trivial nonstrict order on a sin-
gleton; (b) In this case, we obtain the same nonstrict order on the same
set.

23.Ex The relation is obviously reflexive. Further, if a - b, then each
neighborhood U of a contains b, and so U also is a neighborhood of b, hence,
if b - c, then c ∈ U . Therefore, a ∈ Cl{c}, whence a - c, and thus the
relation is also transitive.

23.Fx Consider the element of the partition that consists by definition
of points each of which lies in the closure of any other point, so that each open
set in X containing one of the points also contains any other. Therefore,



Proofs and Comments 175

the topology induced on each element of the partition is indiscrete. It is
also clear that each element of the partition is a maximal subset which is an
indiscrete subspace. Now consider two points in the quotient space and two
points x, y ∈ X lying in the corresponding elements of the partition. Since
x 6∼ y, there is an open set containing exactly one of these points. Since
each open set U in X is saturated with respect to the partition, the image
of U in X/S is the required neighborhood.

23.Gx Obvious.

23.Hx This follows from 23.Fx, 23.Gx, and 20.R.

24.Ax It is sufficient to observe that the sets in ∆(pw) cover the entire
set C(X,Y ). (Actually, C(X,Y ) ∈ ∆(pw).)

24.Bx Similarly to 24.Ax

24.Cx Since each one-point subset is compact, it follows that ∆(pw) ⊂
∆(co), whence Ω(pw) ⊂ Ω(co).

24.Dx If f 6= g, then there is x ∈ X such that f(x) 6= g(x). Since Y is
Hausdorff, f(x) and g(x) have disjoint neighborhoods U and V , respectively.
The subbase elements W (x,U) and W (x, V ) are disjoint neighborhoods of

f and g in the space C(pw)(X,Y ). They also are disjoint neighborhoods of
f and g in C(X,Y ).

24.Ex See assertion 24.Ix.

24.Hx Consider functions fn ∈ C(X,Y ) such that {fn}∞1 is a Cauchy
sequence. For every point x ∈ X, the sequence {fn(x)} is a Cauchy sequence
in Y . Therefore, since Y is a complete space, this sequence converges. Put
f(x) = lim fn(x). We have thus defined a function f : X → Y .
Since {fn} is a Cauchy sequence, for each ε > 0 there exists a positive integer
N such that ρ

(
fn(x), fk(x)

)
< ε

4 for any n, k ≥ N and x ∈ X. Passing to

the limit as k → ∞, we see that ρ
(
fn(x), f(x)

)
≤ ε

4 <
ε
3 for any n ≥ N and

x ∈ X. Thus, to prove that fn → f as n → ∞, it remains to show that
f ∈ C(X,Y ). For each a ∈ X, there exists a neighborhood Ua such that
ρ
(
fN (x), fN (a)

)
< ε

3 for every x ∈ Ua. The triangle inequality implies that
for every x ∈ Ua we have

ρ
(
f(x), f(a)

)
≤ ρ

(
f(x), fN (x)

)
+ ρ

(
fN (x), fN (a)

)
+ ρ

(
fN (a), f(a)

)
< ε.

Therefore, the function f is a continuous limit of the considered Cauchy
sequence.

24.Ix Take an arbitrary set W (K,U) in the subbase. Let f ∈W (K,U).
If r = ρ(f(K), Y r U), then Dr(f) ⊂ W (K,U). As a consequence, we see
that each open set in the compact-open topology is open in the topology
generated by the metric of uniform convergence. To prove the converse



176 IV. Topological Constructions

assertion, it suffices to show that for each map f : X → Y and each r > 0
there are compact sets K1,K2, . . . ,Kn ⊂ X and open sets U1, U2, . . . , Un ⊂
Y such that

f ∈
n⋂

i=1

W (Ki, Ui) ⊂ Dr(f).

Cover f(X) by a finite number of balls with radius r/4 centered at certain
points f(x1), f(x2), . . . , f(xn). Let Ki be the f -preimage of a closed disk in
Y with radius r/4, and let Ui be the open ball with radius r/2. By construc-
tion, we have f ∈W (K1, U1)∩ . . .∩W (Kn, Un). Consider an arbitrary map
g in this intersection. For each x ∈ K1, we see that f(x) and g(x) lie in one
and the same open ball with radius r/2, whence ρ(f(x), g(x)) < r. Since,
by construction, the sets K1, . . . ,Kn cover X, we have ρ(f(x), g(x)) < r for
all x ∈ X, whence d(f, g) < r, and, therefore, g ∈ Dr(f).

24.Mx This follows from the fact that for each compact K ⊂ X ′ and
U ⊂ Y ′ the preimage of the subbase set W (K,U) ∈ ∆(co)(X ′, Y ′) is the

subbase set W (ϕ(K), ψ−1(U)) ∈ ∆(co)(X,Y ).

24.Nx This immediately follows from 24.Mx.

24.Ox It is clear that the indicated map is an injection. To simplify the
notation, we identify the space C(X,B) with its image under this injection.
for each compact set K ⊂ X and U ∈ ΩB we denote by WB(K,U) the
corresponding subbase set in C(X,B). If V ∈ ΩY and U = B ∩ V , then
we have WB(K,U) = C(X,B) ∩W (K,V ), whence it follows that C(X,Y )
induces the compact-open topology on C(X,B).

24.Px Verify that the natural mapping f 7→ (prY ◦f,prZ ◦f) is a home-
omorphism.

24.Qx The injectivity of φ follows from the fact that {Xi} is a cover,
while the continuity of φ follows from assertion 24.Nx. Once more, to sim-
plify the notation, we identify the set C(X,Y ) with its image under the
injection φ. Let K ⊂ X be a compact set, U ∈ ΩY . Put Ki = K ∩Xi and
denote by W i(Ki, U) the corresponding element in the subbase ∆(co)(Xi, Y ).
Since, obviously,

W (K,U) = C(X,Y ) ∩
(
W 1(K1, U) × . . . ×W n(Kn, U)

)
,

the continuous injection φ is indeed a topological embedding.

24.Sx Consider maps f : X → Y , g : Y → Z, a compact set K ⊂ X
and V ∈ ΩZ such that g(f(K)) ⊂ V , i.e., φ(f, g) ∈ W (K,V ). Then we
have an inclusion f(K) ⊂ g−1(V ) ∈ ΩY . Since Y is Hausdorff and locally
compact and the set f(K) is compact, f(K) has a neighborhood U whose
closure is compact and also contained in g−1(V ) (see, 18.6x.) In this case,
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we have φ(W (K,U)×W (ClU, V )) ⊂W (K,V ), and, consequently, the map
φ is continuous.

24.Tx The continuity of φ follows from 24.Mx, and its injectivity is
obvious. Let K ⊂ X/S be a compact set, U ∈ ΩY . The image of the open
subbase set W (K,U) ⊂ C(X/S, Y ) is the set of all maps g : X → Y constant
on all elements of the partitions and such that g(pr−1(K)) ⊂ U . It remains
to show that the set W (pr−1(K), U) is open in C(X,Y ). Since the quotient
space X/S is Hausdorff, it follows that the set K is closed. Therefore,
the preimage pr−1(K) is closed, and hence also compact. Consequently,
W (pr−1(K), U) is a subbase set in C(X,Y ).

24.Ux Let f0 ∈ C(X,Y ) and x0 ∈ X. To prove that φ is continuous at
the point (f0, x0), consider a neighborhood V of f0(x0) in Y . Since the map
f0 is continuous, the point x0 has a neighborhood U ′ such that f0(U

′) ⊂ V .
Since the space X is Hausdorff and locally compact, it follows that x0 has a
neighborhood U such that the closure ClU is a compact subset of U ′. Since,
obviously, f(x) ∈ V for any map f ∈W = W (ClU, V ) and any point x ∈ U ,
we see that φ(W × U) ⊂ V .

24.Vx Assume that x0 ∈ X, K ⊂ Y be a compact set, V ⊂ ΩZ ,
and F (x0) ∈ W (K,V ), i.e., f({x0} × K) ⊂ V . Let us show that the map
F is continuous. For this purpose, let us find a neighborhood U0 of x0 in
X such that F (U0) ⊂ W (K,V ). The latter inclusion is equivalent to the
fact that f(U0 × K) ∈ V . We cover the set {x0} × K by a finite number
of neighborhoods Ui × Vi such that f(Ui × Vi) ⊂ V . It remains to put
U0 =

⋂
i Ui.

24.Wx Let (x0, y0) ∈ X×Y , and let G be a neighborhood of the point
z0 = f(x0, y0) = F (x0)(y0). Since the map F (x0) : Y → Z is continuous,
y0 has a neighborhood W such that F (W ) ⊂ G. Since Y is Hausdorff and
locally compact, y0 has a neighborhood V with compact closure such that
ClV ⊂ W and, consequently, F (x0)(ClV ) ⊂ G, i.e., F (x0) ∈ W (ClV,G).
Since the map F is continuous, x0 has a neighborhood U such that F (U) ⊂
W (ClV,G). Then, if (x, y) ∈ U × V , we have F (x) ∈ W (ClV,G), whence
f(x, y) = F (x)(y) ∈ G. Therefore, f(U × V ) ⊂ G, i.e., f is continuous.

24.Xx It suffices to show that for each compact set K ⊂ X, each open
set U ⊂ Y , and each f ∈W (K,U) there are compact sets K1,K2, . . . ,Km ⊂
K and open sets U1, U2, . . . , Um ∈ ΣY such that

f ∈W (K1, U1) ∩W (K2, U2) ∩ . . . ∩W (Km, Um) ⊂W (K,U).

Let x ∈ K. Since f(x) ∈ U , there are sets Ux
1 , U

x
2 , . . . , U

x
nx

∈ ΣY such
that f(x) ∈ Ux

1 ∩ Ux
2 ∩ . . . ∩ Unx ⊂ U . Since f is continuous, x has a

neighborhood Gx such that f(x) ∈ Ux
1 ∩ Ux

2 ∩ · · · ∩ Unx . Since X is locally
compact and Hausdorff, X is regular, consequently, x has a neighborhood
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Vx such that ClVx is compact and ClVx ∈ Gx. Since the set K is compact,
K is covered by a finite number of neighborhoods Vxi , i = 1, 2, . . . , n. We
put Ki = K ∩ ClVxi , i = 1, 2, . . . , n, and Uij = Uxi

j , j = 1, 2, . . . , nxi . Then
the set

n⋂

i=1

ni⋂

j=1

W (Kj, Uij)

is the required one.

24.Yx First of all, we observe that assertion 24.Vx implies that the
map Φ is well defined (i.e., for f ∈ C(X, C(Y,Z)) we indeed have Φ(f) ∈
C(X, C(Y,Z))), while assertion 24.Wx implies that if Y is locally compact
and Hausdorff, then Φ is invertible.
1) Let K ⊂ X and L ⊂ Y be compact sets, V ∈ ΩZ . The sets of the form
W (L, V ) constitute a subbase in C(Y,Z). By 24.Xx, the sets of the form
W (K,W (L, V )) constitute a subbase in C(X, C(Y,Z)). It remains to observe

that Φ−1(W (K,W (L, V ))) = W (K × L, V ) ∈ ∆(co)(X × Y,Z). Therefore,
the map Φ is continuous.
2) Let Q ⊂ X × Y be a compact set and G ⊂∈ ΩZ . Let ϕ ∈ Φ(W (Q,G)),
so that ϕ(x) : y 7→ f(x, y) for a certain map f ∈ W (Q,G). For each
q ∈ Q, take a neighborhood Uq × Vq of q such that: the set ClVq is compact
and f(Uq × ClVq) ⊂ G. Since Q is compact, we have Q ⊂ ⋃n

i=1(Uqi ×
Vqi). The sets Wi = W (ClVqi , G) are open in C(Y,Z), hence, the sets Ti =
W (pX(Q)∩ClUqi ,Wi) are open in C(X, C(Y,Z)). Therefore, T =

⋂n
i=1 Ti is

a neighborhood of ϕ. Let us show that T ⊂ Φ(W (Q,G)). Indeed, if ψ ∈ T ,
then ψ = Φ(g), and we have g(x, y) ∈ G for (x, y) ∈ Q, so that g ∈W (Q,G),
whence ψ ∈ Φ(W (Q,G)). Therefore, the set Φ(W (Q,G)) is open, and so Φ
is a homeomorphism.

24.Zx It is obvious that the quotient map f is a continuous bijection.
Consider the factorization map p : X × Y → (X × Y )/S′. By 24.Vx, the
map Φ : X → C(Y, (X × Y )/S′), where Φ(x)(y) = p(x, y), is continuous. We
observe that Φ is constant on elements of the partition S, consequently, the

quotient map Φ̃ : X/S → C(Y, (X × Y )/S′) is continuous. By 24.Wx, the

map g : X/S×Y → (X × Y )/S′, where g(z, y) = Φ̃(z)(y), is also continuous.
It remains to observe that g and f are mutually inverse maps.


