
Chapter V

Topological Algebra

In this chapter, we study topological spaces strongly related to groups: either
the spaces themselves are groups in a nice way (so that all the maps coming
from group theory are continuous), or groups act on topological spaces and
can be thought of as consisting of homeomorphisms.

This material has interdisciplinary character. Although it plays impor-
tant roles in many areas of Mathematics, it is not so important in the frame-
work of general topology. Quite often, this material can be postponed till
the introductory chapters of the mathematical courses that really require it
(functional analysis, Lie groups, etc.). In the framework of general topology,
this material provides a great collection of exercises.

In the second part of the book, which is devoted to algebraic topology,
groups appear in a more profound way. So, sooner or later, the reader will
meet groups. At latest in the next chapter, when studying fundamental
groups.

Groups are attributed to Algebra. In the mathematics built on sets,
main objects are sets with additional structure. Above, we met a few of
the most fundamental of these structures: topology, metric, partial order.
Topology and metric evolved from geometric considerations. Algebra stud-
ied algebraic operations with numbers and similar objects and introduced
into the set-theoretic Mathematics various structures based on operations.
One of the simplest (and most versatile) of these structures is the structure
of a group. It emerges in an overwhelming majority of mathematical envi-
ronments. It often appears together with topology and in a nice interaction
with it. This interaction is a subject of Topological Algebra.
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180 V. Topological Algebra

The second part of this book is called Algebraic Topology. It also treats
interaction of Topology and Algebra, spaces and groups. But this is a com-
pletely different interaction. The structures of topological space and group
do not live there on the same set, but the group encodes topological prop-
erties of the space.
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25x. Digression. Generalities on Groups

This section is included mainly to recall the most elementary definitions and
statements concerning groups. We do not mean to present a self-contained
outline of the group theory. The reader is actually assumed to be familiar
with groups, homomorphisms, subgroups, quotient groups, etc.

If this is not yet so, we recommend to read one of the numerous algebraic
textbooks covering the elementary group theory. The mathematical culture,
which must be acquired for mastering the material presented above in this
book, would make this an easy and pleasant exercise.

As a temporary solution, the reader can read few definitions and prove
few theorems gathered in this section. They provide a sufficient basis for
most of what follows.

25◦1x. The Notion of Group

Recall that a group is a set G equipped with a group operation. A group

operation in a set G is a map ω : G × G → G satisfying the following three
conditions (known as group axioms):

• Associativity. ω(a, ω(b, c)) = ω(ω(a, b), c) for any a, b, c ∈ G.

• Existence of Neutral Element. There exists e ∈ G such that
ω(e, a) = ω(a, e) = a for every a ∈ G.

• Existence of Inverse Element. For any a ∈ G, there exists
b ∈ G such that ω(a, b) = ω(b, a) = e.

25.Ax Uniqueness of Neutral Element. A group contains a unique

neutral element.

25.Bx Uniqueness of Inverse Element. Each element of a group has a

unique inverse element.

25.Cx First Examples of Groups. In each of the following situations,
check if we have a group. What is its neutral element? How to calculate the
element inverse to a given one?

• The set G is the set Z of integers, and the group operation is
addition: ω(a, b) = a + b.

• The set G is the set Q>0 of positive rational numbers, and the
group operation is multiplication: ω(a, b) = ab.

• G = R, and ω(a, b) = a + b.

• G = C, and ω(a, b) = a + b.

• G = R r 0, and ω(a, b) = ab.
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• G is the set of all bijections of a set A onto itself, and the group
operation is composition: ω(a, b) = a ◦ b.

25.1x Simplest Group. 1) Can a group be empty? 2) Can it consist of one
element?

A group consisting of one element is trivial .

25.2x Solving Equations. Let G be a set with an associative operation ω :
G×G → G. Prove that G is a group iff for any a, b ∈ G the set G contains a unique
element x such that ω(a, x) = b and a unique element y such that ω(y, a) = b.

25◦2x. Additive Versus Multiplicative

The notation above is never used! (The only exception may happen,
as here, when the definition of group is discussed.) Instead, one uses either
multiplicative or additive notation.

Under multiplicative notation, the group operation is called multiplica-

tion and denoted as multiplication: (a, b) 7→ ab. The neutral element is
called unity and denoted by 1 or 1G (or e). The element inverse to a is
denoted by a−1. This notation is borrowed, say, from the case of nonzero
rational numbers with the usual multiplication.

Under additive notation, the group operation is called addition and de-
noted as addition: (a, b) 7→ a + b. The neutral element is called zero and
denoted by 0. The element inverse to a is denoted by −a. This notation is
borrowed, say, from the case of integers with the usual addition.

An operation ω : G × G → G is commutative if ω(a, b) = ω(b, a) for
any a, b ∈ G. A group with commutative group operation is commutative

or Abelian. Traditionally, the additive notation is used only in the case
of commutative groups, while the multiplicative notation is used both in
the commutative and noncommutative cases. Below, we mostly use the
multiplicative notation.

25.3x. In each of the following situations, check if we have a group:

(1) a singleton {a} with multiplication aa = a,
(2) the set Sn of bijections of the set {1, 2, . . . , n} of the first n positive

integers onto itself with multiplication determined by composition (the
symmetric group of degree n),

(3) the sets Rn, Cn, and Hn with coordinate-wise addition,
(4) the set Homeo(X) of all homeomorphisms of a topological space X with

multiplication determined by composition,
(5) the set GL(n, R) of invertible real n×n matrices equipped with matrix

multiplication,
(6) the set Mn(R) of all real n × n matrices with addition determined by

addition of matrices,



25x. Digression. Generalities on Groups 183

(7) the set of all subsets of a set X with multiplication determined by the
symmetric difference:

(A, B) 7→ A △ B = (A ∪ B) r (A ∩ B),

(8) the set Zn of classes of positive integers congruent modulo n with ad-
dition determined by addition of positive integers,

(9) the set of complex roots of unity of degree n equipped with usual mul-
tiplication of complex numbers,

(10) the set R>0 of positive reals with usual multiplication,
(11) S1 ⊂ C with standard multiplication of complex numbers,
(12) the set of translations of a plane with multiplication determined by

composition.

Associativity implies that every finite sequence of elements in a group
has a well-defined product, which can be calculated by a sequence of pairwise
multiplications determined by any placement of parentheses, say, abcde =
(ab)(c(de)). The distribution of the parentheses is immaterial. In the case of
a sequence of three elements, this is precisely the associativity: (ab)c = a(bc).

25.Dx. Derive from the associativity that the product of any length does
not depend on the position of the parentheses.

For an element a of a group G, the powers an with n ∈ Z are defined by
the following formulas: a0 = 1, an+1 = ana, and a−n = (a−1)n.

25.Ex. Prove that raising to a power has the following properties: apaq =
ap+q and (ap)q = apq.

25◦3x. Homomorphisms

Recall that a map f : G → H of a group to another one is a homomor-

phism if f(xy) = f(x)f(y) for any x, y ∈ G.

25.4x. In the above definition of a homomorphism, the multiplicative notation is
used. How does this definition look in the additive notation? What if one of the
groups is multiplicative, while the other is additive?

25.5x. Let a be an element of a multiplicative group G. Is the map Z → G : n 7→
an a homomorphism?

25.Fx. Let G and H be two groups. Is the constant map G → H mapping
the entire G to the neutral element of H a homomorphism? Is any other
constant map G → H a homomorphism?

25.Gx. A homomorphism maps the neutral element to the neutral element,

and it maps mutually inverse elements to mutually inverse elements.

25.Hx. The identity map of a group is a homomorphism. The composition
of homomorphisms is a homomorphism.

Recall that a homomorphism f is an epimorphism if f is surjective, f is
a monomorphism if f is injective, and f is an isomorphism if f is bijective.
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25.Ix. The map inverse to an isomorphism is also an isomorphism.

Two groups are isomorphic if there exists an isomorphism of one of them
onto another one.

25.Jx. Isomorphism is an equivalence relation.

25.6x. Show that the additive group R is isomorphic to the multiplicative group
R>0.

25◦4x. Subgroups

A subset A of a group G is a subgroup of G if A is invariant under the
group operation of G (i.e., for any a, b ∈ A we have ab ∈ A) and A equipped
with the group operation induced by that in G is a group.

For two subsets A and B of a multiplicative group G, we put AB = {ab |
a ∈ A, b ∈ B} and A−1 = {a−1 | a ∈ A}.

25.Kx. A subset A of a multiplicative group G is a subgroup of G iff AA ⊂ G
and A−1 ⊂ A.

25.7x. The singleton consisting of the neutral element is a subgroup.

25.8x. Prove that a subset A of a finite group is a subgroup if AA ⊂ A. (The
condition A−1 ⊂ A is superfluous in this case.)

25.9x. List all subgroups of the additive group Z.

25.10x. Is GL(n, R) a subgroup of Mn(R)? (See 25.3x for notation.)

25.Lx. The image of a group homomorphism f : G → H is a subgroup of

H.

25.Mx. Let f : G → H be a group homomorphism, K a subgroup of H.

Then f−1(K) is a subgroup of G. In short:

The preimage of a subgroup under a group homomorphism is a subgroup.

The preimage of the neutral element under a group homomorphism f :
G → H is called the kernel of f and denoted by Ker f .

25.Nx Corollary of 25.Mx. The kernel of a group homomorphism is a

subgroup.

25.Ox. A group homomorphism is a monomorphism iff its kernel is trivial.

25.Px. The intersection of any collection of subgroups of a group is also a

subgroup.

A subgroup H of a group G is generated by a subset S ⊂ G if H is the
smallest subgroup of G containing S.

25.Qx. The subgroup H generated by S is the intersection of all subgroups
of G that contain S. On the other hand, H is the set of all elements that
are products of elements in S and elements inverse to elements in S.
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The elements of a set that generates G are generators of G. A group
generated by one element is cyclic .

25.Rx. A cyclic (multiplicative) group consists of powers of its generator.
(I.e., if G is a cyclic group and a generates G, then G = {an | n ∈ Z}.) Any
cyclic group is commutative.

25.11x. A group G is cyclic iff there exists an epimorphism f : Z → G.

25.Sx. A subgroup of a cyclic group is cyclic.

The number of elements in a group G is the order of G. It is denoted by
|G|.

25.Tx. Let G be a finite cyclic group, d a positive divisor of |G|. Then
there exists a unique subgroup H of G with |H| = d.

Each element of a group generates a cyclic subgroup, which consists
of all powers of this element. The order of the subgroup generated by a
(nontrivial) element a ∈ G is the order of a. It can be a positive integer or
the infinity.

For each subgroup H of a group G, the right cosets of H are the sets
Ha = {xa | x ∈ H}, a ∈ G. Similarly, the sets aH are the left cosets of H.
The number of distinct right (or left) cosets of H is the index of H.

25.Ux Lagrange theorem. If H is a subgroup of a finite group G, then

the order of H divides that of G.

A subgroup H of a group G is normal if for any h ∈ H and a ∈ G we have
aha−1 ∈ H. Normal subgroups are also called normal divisors or invariant

subgroups.

In the case where the subgroup is normal, left cosets coincide with right
cosets, and the set of cosets is a group with multiplication defined by the
formula (aH)(bH) = abH. The group of cosets of H in G is called the
quotient group or factor group of G by H and denoted by G/H.

25.Vx. The kernel Ker f of a homomorphism f : G → H is a normal
subgroup of G.

25.Wx. The image f(G) of a homomorphism f : G → H is isomorphic to

the quotient group G/Ker f of G by the kernel of f .

25.Xx. The quotient group R/Z is canonically isomorphic to the group S1.
Describe the image of the group Q ⊂ R under this isomorphism.

25.Yx. Let G be a group, A a normal subgroup of G, and B an arbitrary
subgroup of G. Then AB also is a normal subgroup of G, while A ∩ B is a
normal subgroup of B. Furthermore, we have AB/A ∼= B/A ∩ B.
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26x. Topological Groups

26◦1x. Notion of Topological Group

A topological group is a set G equipped with both a topological structure
and a group structure such that the maps G × G → G : (x, y) 7→ xy and
G → G : x 7→ x−1 are continuous.

26.1x. Let G be a group and a topological space simultaneously. Prove that the
maps ω : G × G → G : (x, y) 7→ xy and α : G → G : x 7→ x−1 are continuous iff so
is the map β : G × G → G : (x, y) 7→ xy−1.

26.2x. Prove that if G is a topological group, then the inversion G → G : x 7→ x−1

is a homeomorphism.

26.3x. Let G be a topological group, X a topological space, f, g : X → G two
maps continuous at a point x0 ∈ X. Prove that the maps X → G : x 7→ f(x)g(x)
and X → G : x 7→ (f(x))−1 are continuous at x0.

26.Ax. A group equipped with the discrete topology is a topological group.

26.4x. Is a group equipped with the indiscrete topology a topological group?

26◦2x. Examples of Topological Groups

26.Bx. The groups listed in 25.Cx equipped with standard topologies are
topological groups.

26.5x. The unit circle S1 = {|z| = 1} ⊂ C with the standard multiplication is a
topological group.

26.6x. In each of the following situations, check if we have a topological group.

(1) The spaces Rn, Cn, and Hn with coordinate-wise addition. (Cn is iso-
morphic to R2n, while Hn is isomorphic to C2n.)

(2) The sets Mn(R), Mn(C), and Mn(H) of all n×n matrices with real, com-
plex, and, respectively, quaternion elements, equipped with the prod-

uct topology and element-wise addition. (We identify Mn(R) with Rn2

,

Mn(C) with Cn2

, and Mn(H) with Hn2

.)
(3) The sets GL(n, R), GL(n, C), and GL(n, H) of invertible n×n matrices

with real, complex, and quaternionic entries, respectively, under the
matrix multiplication.

(4) SL(n, R), SL(n, C), O(n), O(n, C), U(n), SO(n), SO(n, C), SU(n), and
other subgroups of GL(n, K) with K = R, C, or H.

26.7x. Introduce a topological group structure on the additive group R that would
be distinct from the usual, discrete, and indiscrete topological structures.

26.8x. Find two nonisomorphic connected topological groups that are homeomor-
phic as topological spaces.

26.9x. On the set G = [0, 1) (equipped with the standard topology), we define
addition as follows: ω(x, y) = x + y (mod 1). Is (G, ω) a topological group?
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26◦3x. Translations and Conjugations

Let G be a group. Recall that the maps La : G → G : x 7→ ax and
Ra : G → G : x 7→ xa are left and right translations through a, respectively.
Note that La ◦Lb = Lab, while Ra ◦Rb = Rba. (To “repair” the last relation,
some authors define right translations by x 7→ xa−1.)

26.Cx. A translation of a topological group is a homeomorphism.

Recall that the conjugation of a group G by an element a ∈ G is the map
G → G : x 7→ axa−1.

26.Dx. The conjugation of a topological group by any of its elements is a

homeomorphism.

The following simple observation allows a certain “uniform” treatment of
the topology in a group: neighborhoods of distinct points can be compared.

26.Ex. If U is an open set in a topological group G, then for any x ∈ G the
sets xU , Ux, and U−1 are open.

26.10x. Does the same hold true for closed sets?

26.11x. Prove that if U and V are subsets of a topological group G and U is
open, then UV and V U are open.

26.12x. Will the same hold true if we replace everywhere the word open by the
word closed?

26.13x. Are the following subgroups of the additive group R closed?

(1) Z,

(2)
√

2 Z,

(3) Z +
√

2 Z?

26.14x. Let G be a topological group, U ⊂ G a compact subset, V ⊂ G a closed
subset. Prove that UV and V U are closed.

26.14x.1. Let F and C be two disjoint subsets of a topological group
G. If F is closed and C is compact, then 1G has a neighborhood V such
that CV ∪ V C does not meet F . If G is locally compact, then V can be
chosen so that Cl(CV ∪ V C) be compact.

26◦4x. Neighborhoods

26.Fx. Let Γ be a neighborhood base of a topological group G at 1G. Then

Σ = {aU | a ∈ G, U ∈ Γ} is a base for topology of G.

A subset A of a group G is symmetric if A−1 = A.

26.Gx. Any neighborhood of 1 in a topological group contains a symmetric
neighborhood of 1.

26.Hx. For any neighborhood U of 1 in a topological group, 1 has a neigh-
borhood V such that V V ⊂ U .
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26.15x. Let G be a topological group, U a neighborhood of 1G, and n a positive
integer. Then 1G has a symmetric neighborhood V such that V n ⊂ U .

26.16x. Let V be a symmetric neighborhood of 1G in a topological group G. Then
S

∞

n=1
V n is an open-closed subgroup.

26.17x. Let G be a group, Σ be a collection of subsets of G. Prove that G carries
a unique topology Ω such that Σ is a neighborhood base for Ω at 1G and (G, Ω)
is a topological group, iff Σ satisfies the following five conditions:

(1) each U ∈ Σ contains 1G,
(2) for every x ∈ U ∈ Σ, there exists V ∈ Σ such that xV ⊂ U ,
(3) for each U ∈ Σ, there exists V ∈ Σ such that V −1 ⊂ U ,
(4) for each U ∈ Σ, there exists V ∈ Σ such that V V ⊂ U ,
(5) for any x ∈ G and U ∈ Σ, there exists V ∈ Σ such that V ⊂ x−1Ux.

26.Ix. Riddle. In what sense 26.Hx is similar to the triangle inequality?

26.Jx. Let C be a compact subset of G. Prove that for every neighborhood
U of 1G the unity 1G has a neighborhood V such that V ⊂ xUx−1 for every
x ∈ C.

26◦5x. Separation Axioms

26.Kx. A topological group G is Hausdorff, iff G satisfies the first separation
axiom, iff the unity 1G (or, more precisely, the singleton {1G}) is closed.

26.Lx. A topological group G is Hausdorff iff the unity 1G is the intersection
of its neighborhoods.

26.Mx. If the unity of a topological group G is closed, then G is regular
(as a topological space).

Use the following fact.

26.Mx.1. Let G be a topological group, U ⊂ G a neighborhood of 1G. Then
1G has a neighborhood V with closure contained in U : Cl V ⊂ U .

26.Nx Corollary. For topological groups, the first three separation axioms

are equivalent.

26.18x. Prove that a finite group carries as many topological group structures as
there are normal subgroups. Namely, each finite topological group G contains a
normal subgroup N such that the sets gN with g ∈ G form a base for the topology
of G.

26◦6x. Countability Axioms

26.Ox. If Γ is a neighborhood base at 1G in a topological group G and
S ⊂ G is a dense set, then Σ = {aU | a ∈ S,U ∈ Γ} is a base for the
topology of G. (Cf. 26.Fx and 15.J.)

26.Px. A first countable separable topological group is second countable.
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26.19x*. (Cf. 15.Dx) A first countable Hausdorff topological group G is metriz-
able. Furthermore, G can be equipped with a right (left) invariant metric.
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27x. Constructions

27◦1x. Subgroups

27.Ax. Let H be a subgroup of a topological group G. Then the topological
and group structures induced from G make H a topological group.

27.1x. Let H be a subgroup of an Abelian group G. Prove that, given a structure
of topological group in H and a neighborhood base at 1, G carries a structure of
topological group with the same neighborhood base at 1.

27.2x. Prove that a subgroup of a topological group is open iff it contains an
interior point.

27.3x. Prove that every open subgroup of a topological group is also closed.

27.4x. Prove that every closed subgroup of finite index is also open.

27.5x. Find an example of a subgroup of a topological group that

(1) is closed, but not open;
(2) is neither closed, nor open.

27.6x. Prove that a subgroup H of a topological group is a discrete subspace iff
H contains an isolated point.

27.7x. Prove that a subgroup H of a topological group G is closed, iff there exists
an open set U ⊂ G such that U ∩ H = U ∩ Cl H 6= ∅, i.e., iff H ⊂ G is locally
closed at one of its points.

27.8x. Prove that if H is a non-closed subgroup of a topological group G, then
Cl H r H is dense in Cl H .

27.9x. The closure of a subgroup of a topological group is a subgroup.

27.10x. Is it true that the interior of a subgroup of a topological group is a
subgroup?

27.Bx. A connected topological group is generated by any neighborhood of
1.

27.Cx. Let H be a subgroup of a group G. Define a relation: a ∼ b if
ab−1 ∈ H. Prove that this is an equivalence relation, and the right cosets of
H in G are the equivalence classes.

27.11x. What is the counterpart of 27.Cx for left cosets?

Let G be a topological group, H ⊂ G a subgroup. The set of left (re-
spectively, right) cosets of H in G is denoted by G/H (respectively, H\G).
The sets G/H and H\G carry the quotient topology. Equipped with these
topologies, they are called spaces of cosets.

27.Dx. For any topological group G and its subgroup H, the natural pro-
jections G → G/H and G → H\G are open (i.e., the image of every open
set is open).
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27.Ex. The space of left (or right) cosets of a closed subgroup in a topolog-
ical group is regular.

27.Fx. The group G is compact (respectively, connected) if so are H and
G/H.

27.12x. If H is a connected subgroup of a group G, then the preimage of any
connected component of G/H is a connected component of G.

27.13x. Let us regard the group SO(n − 1) as a subgroup of SO(n). If n ≥ 2,
then the space SO(n)/SO(n − 1) is homeomorphic to Sn−1.

27.14x. The groups SO(n), U(n), SU(n), and Sp(n) are 1) compact and 2)
connected for any n ≥ 1. 3) How many connected components do the groups O(n)
and O(p, q) have? (Here, O(p, q) is the group of linear transformations in Rp+q

preserving the quadratic form x2
1 + · · · + x2

p − y2
1 − · · · − y2

q .)

27◦2x. Normal Subgroups

27.Gx. Prove that the closure of a normal subgroup of a topological group
is a normal subgroup.

27.Hx. The connected component of 1 in a topological group is a closed
normal subgroup.

27.15x. The path-connected component of 1 in a topological group is a normal
subgroup.

27.Ix. The quotient group of a topological group is a topological group
(provided that it is equipped with the quotient topology).

27.Jx. The natural projection of a topological group onto its quotient group
is open.

27.Kx. If a topological group G is first (respectively, second) countable,
then so is any quotient group of G.

27.Lx. Let H be a normal subgroup of a topological group G. Then the
quotient group G/H is regular iff H is closed.

27.Mx. Prove that a normal subgroup H of a topological group G is open
iff the quotient group G/H is discrete.

The center of a group G is the set C(G) = {x ∈ G | xg = gx for each g ∈
G}.

27.16x. Each discrete normal subgroup H of a connected group G is contained
in the center of G.
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27◦3x. Homomorphisms

For topological groups, by a homomorphism one means a group homo-
morphism which is continuous.

27.Nx. Let G and H be two topological groups. A group homomorphism

f : G → H is continuous iff f is continuous at 1G.

Besides similar modifications, which can be summarized by the follow-
ing principle: everything is assumed to respect the topological structures, the
terminology of group theory passes over without changes. In particular, an
isomorphism in group theory is an invertible homomorphism. Its inverse is
a homomorphism (and hence an isomorphism) automatically. In the theory
of topological groups, this must be included in the definition: an isomor-

phism of topological groups is an invertible homomorphism whose inverse
is also a homomorphism. In other words, an isomorphism of topological
groups is a map that is both a group isomorphism and a homeomorphism.
Cf. Section 10.

27.17x. Prove that the map [0, 1) → S1 : x 7→ e2πix is a topological group
homomorphism.

27.Ox. An epimorphism f : G → H is an open map iff the injective factor
f/S(f) : G/Ker f → H of f is an isomorphism.

27.Px. An epimorphism of a compact topological group onto a topological
group with closed unity is open.

27.Qx. Prove that the quotient group R/Z of the additive group R by the
subgroup Z is isomorphic to the multiplicative group S1 = {z ∈ C : |z| = 1}
of complex numbers with absolute value 1.

27◦4x. Local Isomorphisms

Let G and H be two topological groups. A local isomorphism from G to H
is a homeomorphism f of a neighborhood U of 1G in G onto a neighborhood
V of 1H in H such that

• f(xy) = f(x)f(y) for any x, y ∈ U such that xy ∈ U ,

• f−1(zt) = f−1(z)f−1(t) for any z, t ∈ V such that zt ∈ V .

Two topological groups G and H are locally isomorphic if there exists a
local isomorphism from G to H.

27.Rx. Isomorphic topological groups are locally isomorphic.

27.Sx. The additive group R and the multiplicative group S1 ⊂ C are
locally isomorphic, but not isomorphic.
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27.18x. Prove that local isomorphism of topological groups is an equivalence
relation.

27.19x. Find neighborhoods of unities in R and S1 and a homeomorphism between
them that satisfies the first condition in the definition of local isomorphism, but
does not satisfy the second one.

27.20x. Prove that if a homeomorphism between neighborhoods of unities in
two topological groups satisfies only the first condition in the definition of local
isomorphism, then it has a submap that is a local isomorphism between these
topological groups.

27◦5x. Direct Products

Let G and H be two topological groups. In group theory, the product
G × H is given a group structure.1 In topology, it is given a topological
structure (see Section 19).

27.Tx. These two structures are compatible: the group operations in G×H
are continuous with respect to the product topology.

Thus, G×H is a topological group. It is called the direct product of the
topological groups G and H. There are canonical homomorphisms related
to this: the inclusions iG : G → G × H : x 7→ (x, 1) and iH : H → G × H :
x 7→ (1, x), which are monomorphisms, and the projections prG : G × H →
G : (x, y) 7→ x and prH : G × H → H : (x, y) 7→ y, which are epimorphisms.

27.21x. Prove that the topological groups (G × H)/iH(H) and G are isomorphic.

27.22x. The product operation is both commutative and associative: G × H is
(canonically) isomorphic to H × G, while G × (H × K) is canonically isomorphic
to (G × H) × K.

A topological group G decomposes into a direct product of two subgroups

A and B if the map A × B → G : (x, y) 7→ xy is a topological group
isomorphism. If this is the case, the groups G and A×B are usually identified
via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The
only difference is that there an isomorphism is just an algebraic isomor-
phism. Furthermore, in that theory, G decomposes into a direct product
of its subgroups A and B iff A and B generate G, A and B are normal
subgroups, and A ∩ B = {1}. Therefore, if these conditions are fulfilled in
the case of topological groups, then A × B → G : (x, y) 7→ xy is a group
isomorphism.

27.23x. Prove that in this situation the map A × B → G : (x, y) 7→ xy is contin-
uous. Find an example where the inverse group isomorphism is not continuous.

1Recall that the multiplication in G × H is defined by the formula (x, u)(y, v) = (xy, uv).
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27.Ux. Prove that if a compact Hausdorff group G decomposes algebraically
into a direct product of two closed subgroups, then G also decomposes into
a direct product of these subgroups as a topological group.

27.24x. Prove that the multiplicative group Rr0 of nonzero reals is isomorphic (as
a topological group) to the direct product of the multiplicative groups S0 = {1,−1}
and R>0 = {x ∈ R | x > 0}.
27.25x. Prove that the multiplicative group C r 0 of nonzero complex numbers
is isomorphic (as a topological group) to the direct product of the multiplicative
groups S1 = {z ∈ C : |z| = 1} and R>0.

27.26x. Prove that the multiplicative group H r 0 of nonzero quaternions is iso-
morphic (as a topological group) to the direct product of the multiplicative groups
S3 = {z ∈ H : |z| = 1} and R>0.

27.27x. Prove that the subgroup S0 = {1,−1} of S3 = {z ∈ H : |z| = 1} is not
a direct factor.

27.28x. Find a topological group homeomorphic to RP 3 (the three-dimensional
real projective space).

Let a group G contain a normal subgroup A and a subgroup B such
that AB = G and A ∩ B = {1G}. If B is also normal, then G is the direct
product A × B. Otherwise, G is a semidirect product of A and B.

27.Vx. Let a topological group G be a semidirect product of its subgroups
A and B. If for any neighborhoods of unity, U ⊂ A and V ⊂ B, their
product UV contains a neighborhood of 1G, then G is homeomorphic to
A × B.

27◦6x. Groups of Homeomorphisms

For any topological space X, the auto-homeomorphisms of X form a
group under composition as the group operation. We denote this group by
Top X. To make this group topological, we slightly enlarge the topological
structure induced on Top X by the compact-open topology of C(X,X).

27.Wx. The collection of the sets W (C,U) and (W (C,U))−1 taken over all
compact C ⊂ X and open U ⊂ X is a subbase for the topological structure
on Top X.

In what follows, we equip Top X with this topological structure.

27.Xx. If X is Hausdorff and locally compact, then Top X is a topological
group.

27.Xx.1. If X is Hausdorff and locally compact, then the map TopX×TopX →
Top X : (g, h) 7→ g ◦ h is continuous.
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28x. Actions of Topological Groups

28◦1x. Action of a Group on a Set

A left action of a group G on a set X is a map G×X → X : (g, x) 7→ gx
such that 1x = x for any x ∈ X and (gh)x = g(hx) for any x ∈ X and
g, h ∈ G. A set X equipped with such an action is a left G-set. Right G-sets
are defined in a similar way.

28.Ax. If X is a left G-set, then G × X → X : (x, g) 7→ g−1x is a right
action of G on X.

28.Bx. If X is a left G-set, then for any g ∈ G the map X → X : x 7→ gx
is a bijection.

A left action of G on X is effective (or faithful) if for each g ∈ G r 1 the
map G → G : x 7→ gx is not equal to idG. Let X1 and X2 be two left G-sets.
A map f : X1 → X2 is G-equivariant if f(gx) = gf(x) for any x ∈ X and
g ∈ G.

We say that X is a homogeneous left G-set, or, what is the same, that
G acts on X transitively if for any x, y ∈ X there exists g ∈ G such that
y = gx.

The same terminology applies to right actions with obvious modifica-
tions.

28.Cx. The natural actions of G on G/H and H\G transform G/H and

H\G into homogeneous left and, respectively, right G-sets.

Let X be a homogeneous left G-set. Consider a point x ∈ X and the
set Gx = {g ∈ G | gx = x}. We easily see that Gx is a subgroup of G. It is
called the isotropy subgroup of x.

28.Dx. Each homogeneous left (respectively, right) G-set X is isomorphic
to G/H (respectively, H\G), where H is the isotropy group of a certain
point in X.

28.Dx.1. All isotropy subgroups Gx, x ∈ G, are pairwise conjugate.

Recall that the normalizer Nr(H) of a subgroup H of a group G consists
of all elements g ∈ G such that gHg−1 = H. This is the largest subgroup
of G containing H as a normal subgroup.

28.Ex. The group of all automorphisms of a homogeneous G-set X is iso-
morphic to N(H)/H , where H is the isotropy group of a certain point in
X.

28.Ex.1. If two points x, y ∈ X have the same isotropy group, then there exists
an automorphism of X that sends x to y.



196 V. Topological Algebra

28◦2x. Continuous Action

We speak about a left G-space X if X is a topological space, G is a
topological group acting on X, and the action G × X → X is continuous
(as a map). All terminology (and definitions) concerning G-sets extends to
G-spaces literally.

Note that if G is a discrete group, then any action of G by homeomor-
phisms is continuous and thus provides a G-space.

28.Fx. Let X be a left G-space. Then the natural map φ : G → Top X
induced by this action is a group homomorphism.

28.Gx. If in the assumptions of Problem 28.Fx the G-space X is Hausdorff
and locally compact, then the induced homomorphism φ : G → Top X is
continuous.

28.1x. In each of the following situations, check if we have a continuous action
and a continuous homomorphism G → Top X:

(1) G is a topological group, X = G, and G acts on X by left (or right)
translations, or by conjugation;

(2) G is a topological group, H ⊂ G is a subgroup, X = G/H , and G acts
on X via g(aH) = (ga)H ;

(3) G = GL(n, K) (where K = R, C, or H)), and G acts on Kn via matrix
multiplication;

(4) G = GL(n, K) (where K = R, C, or H), and G acts on KP n−1 via
matrix multiplication;

(5) G = O(n, R), and G acts on Sn−1 via matrix multiplication;
(6) the (additive) group R acts on the torus S1 × · · · × S1 according to

formula (t, (w1, . . . , wr)) 7→ (e2πia1tw1, . . . , e
2πiartwr); this action is an

irrational flow if a1, . . . , ar are linearly independent over Q.

If the action of G on X is not effective, then we can consider its kernel

GKer = {g ∈ G | gx = x for all x ∈ X}.

This kernel is a closed normal subgroup of G, and the topological group
G/GKer acts naturally and effectively on X.

28.Hx. The formula gGKer(x) = gx determines an effective continuous ac-
tion of G/GKer on X.

A group G acts properly discontinuously on X if for any compact set
C ⊂ X the set {g ∈ G | (gC) ∩ C 6= ∅} is finite.

28.Ix. If G acts properly discontinuously and effectively on a Hausdorff
locally compact space X, then φ(G) is a discrete subset of Top X. (Here, as
before, φ : G → Top X is the monomorphism induced by the G-action.) In
particular, G is a discrete group.

28.2x. List, up to similarity, all triangles T ⊂ R2 such that the reflections in the
sides of T generate a group acting on R2 properly discontinuously.
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28◦3x. Orbit Spaces

Let X be a G-space. For x ∈ X, the set G(x) = {gx | g ∈ G} is the orbit

of x. In terms of orbits, the action of G on X is transitive iff it has only one
orbit. For A ⊂ X and E ⊂ G, we put E(A) = {ga | g ∈ E, a ∈ A}.

28.Jx. Let G be a compact topological group acting on a Hausdorff space X.

Then for any x ∈ X the canonical map G/Gx → G(x) is a homeomorphism.

28.3x. Give an example where X is Hausdorff, but G/Gx
is not homeomorphic

to G(x).

28.Kx. If a compact topological group G acts on a compact Hausdorff space
X, then X/G is a compact Hausdorff space.

28.4x. Let G be a compact group, X a Hausdorff G-space, A ⊂ X. If A is closed
(respectively, compact), then so is G(A).

28.5x. Consider the canonical action of G = R r 0 on X = R (by multiplication).
Find all orbits and all isotropy subgroups of this action. Recognize X/G as a
topological space.

28.6x. Let G be the group generated by reflections in the sides of a rectangle
in R2. Recognize the quotient space R2/G as a topological space. Recognize the
group G.

28.7x. Let G be the group from Problem 28.6x, and let H ⊂ G be the subgroup
of index 2 constituted by the orientation-preserving elements in G. Recognize the
quotient space R2/H as a topological space. Recognize the groups G and H .

28.8x. Consider the (diagonal) action of the torus G = (S1)n+1 on X = CP n via
(z0, z1, . . . , zn) 7→ (θ0z0, θ1z1, . . . , θnzn). Find all orbits and isotropy subgroups.
Recognize X/G as a topological space.

28.9x. Consider the canonical action (by permutations of coordinates) of the
symmetric group G = Sn on X = Rn and X = Cn, respectively. Recognize X/G
as a topological space.

28.10x. Let G = SO(3) act on the space X of symmetric 3× 3 real matrices with
trace 0 by conjugation x 7→ gxg−1. Recognize X/G as a topological space. Find
all orbits and isotropy groups.

28◦4x. Homogeneous Spaces

A G-space is homogeneous it the action of G is transitive.

28.Lx. Let G be a topological group, H ⊂ G a subgroup. Then G is
a homogeneous H-space under the translation action of H. The quotient
space G/H is a homogeneous G-space under the induced action of G.

28.Mx. Let X be a Hausdorff homogeneous G-space. If X and G are locally

compact and G is second countable, then X is homeomorphic to G/Gx for

any x ∈ X.

28.Nx. Let X be a homogeneous G-space. Then the canonical map G/Gx →
X, x ∈ X, is a homeomorphism iff it is open.



198 V. Topological Algebra

28.11x. Show that O(n + 1)/O(n) = Sn and U(n)/U(n − 1) = S2n−1.

28.12x. Show that O(n + 1)/O(n) × O(1) = RP n and U(n)/U(n − 1) × U(1) =

CP n.

28.13x. Show that Sp(n)/Sp(n − 1) = S4n−1, where

Sp(n) = {A ∈ GL(H) | AA∗ = I}.
28.14x. Represent the torus S1×S1 and the Klein bottle as homogeneous spaces.

28.15x. Give a geometric interpretation of the following homogeneous spaces:
1) O(n)/O(1)n, 2) O(n)/O(k) × O(n − k), 3) O(n)/SO(k) × O(n − k), and 4)

O(n)/O(k).

28.16x. Represent S2 × S2 as a homogeneous space.

28.17x. Recognize SO(n, 1)/SO(n) as a topological space.
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Proofs and Comments

26.Ax Use the fact that any auto-homeomorphism of a discrete space is
continuous.

26.Cx Any translation is continuous, and the translations by a and
a−1 are mutually inverse.

26.Dx Any conjugation is continuous, and the conjugations by g and
g−1 are mutually inverse.

26.Ex The sets xU , Ux, and U−1 are the images of U under the
homeomorphisms Lx and Rx of the left and right translations through x
and passage to the inverse element (i.e., reversing), respectively.

26.Fx Let V ⊂ G be an open set, a ∈ V . If a neighborhood U ∈ Γ
is such that U ⊂ a−1V , then aU ⊂ V . By Theorem 3.A, Σ is a base for
topology of G.

26.Gx If U is a neighborhood of 1, then U ∩ U−1 is a symmetric
neighborhood of 1.

26.Hx By the continuity of multiplication, 1 has two neighborhoods
V1 and V2 such that V1V2 ⊂ U . Put V = V1 ∩ V2.

26.Jx Let W be a symmetric neighborhood such that 1G ∈ W and
W 3 ⊂ U . Since C is compact, C is covered by finitely many sets of the form
W1 = x1W, . . . ,Wn = xnW with x1, . . . , xn ∈ C. Put V =

⋂
(xiWx−1

i ).
Clearly, V is a neighborhood of 1G. If x ∈ C, then x = xiwi for suitable
i, wi ∈ W . Finally, we have

x−1V x = w−1
i x−1

i V xiwi ⊂ w−1
i Wwi ⊂ W 3 ⊂ U.

26.Kx If 1G is closed, then all singletons in G are closed. Therefore,
G satisfies T1 iff 1G is closed. Let us prove that in this case the group G
is also Hausdorff. Consider g 6= 1 and take a neighborhood U of 1G not
containing g. By 26.15x, 1G has a symmetric neighborhood V such that
V 2 ⊂ U . Verify that gV and V are disjoint, whence it follows that G is
Hausdorff.

26.Lx Use 14.C In this case, each element of G is the
intersection of its neighborhoods. Hence, G satisfies the first separation
axiom, and it remains to apply 26.Kx.

26.Mx.1 It suffices to take a symmetric neighborhood V such that
V 2 ⊂ U . Indeed, then for any g /∈ U the neighborhoods gV and V are
disjoint, whence ClV ⊂ U .

26.Ox Let W be an open set, g ∈ W . Let V be a symmetric neigh-
borhood of 1G with V 2 ⊂ W . There 1G has a neighborhood U ∈ Γ such
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that U ⊂ V . There exists a ∈ S such that a ∈ gU−1. Then g ∈ aU and
a ∈ gU−1 ⊂ gV −1 = gV . Therefore, aU ⊂ aV ⊂ gV 2 ⊂ W .

26.Px This immediately follows from 26.Ox.

27.Bx This follows from 26.16x.

27.Dx If U is open, then UH (respectively, HU) is open, see 26.11x.

27.Ex Let G be the group, H ⊂ G the subgroup. The space G/H of
left cosets satisfies the first separation axiom since gH is closed in G for any
g ∈ G. Observe that every open set in G/H has the form {gH | g ∈ U},
where U is an open set in G. Hence, it is sufficient to check that for every
open neighborhood U of 1G in G the unity 1G has a neighborhood V in G
such that ClV H ⊂ UH. Pick a symmetric neighborhood V with V 2 ⊂ U ,
see 26.15x. Let x ∈ G belong to ClV H. Then V x contains a point vh with
v ∈ V and h ∈ H, so that there exists v′ ∈ V such that v′x = vh, whence
x ∈ V −1V H = V 2H ⊂ UH.

27.Fx (Compactness) First, we check that if H is compact, then the
projection G → G/H is a closed map. Let F ⊂ G be a closed set, x /∈ FH.
Since FH is closed (see 26.14x), x has a neighborhood U disjoint with
FH. Then UH is disjoint with FH. Hence, the projection is closed. Now,
consider a family of closed sets in G with finite intersection property. Their
images also form a family of closed sets in G/H with finite intersection
property. Since G/H is compact, the images have a nonempty intersection.
Therefore, there is g ∈ G such that the traces of the closed sets in the family
on gH have finite intersection property. Finally, since gH is compact, the
closed sets in the family have a nonempty intersection.
(Connectedness) Let G = U ∪ V , where U and V are disjoint open subsets
of G. Since all cosets gH, g ∈ G, are connected, each of them is contained
either in U or in V . Hence, G is decomposed into UH and V H, which
yields a decomposition of G/H in two disjoint open subsets. Since G/H is
connected, either UH or V H is empty. Therefore, either U or V is empty.

27.Hx Let C be the connected component of 1G in a topological group
G. Then C−1 is connected and contains 1G, whence C−1 ⊂ C. For any
g ∈ C, the set gC is connected and meets C, whence gC ⊂ C. Therefore, C
is a subgroup of G. C is closed since connected components are closed. C
is normal since gCg−1 is connected and contains 1G, whatever g ∈ G is.

27.Ix Let G be a topological group, H a normal subgroup of G, a, b ∈ G
two elements. Let W be a neighborhood of the coset abH in G/H . The
preimage of W in G is an open set W consisting of cosets of H and containing
ab. In particular, W is a neighborhood of ab. Since the multiplication in G
is continuous, a and b have neighborhoods U and V , respectively, such that
UV ⊂ W . Then (UH)(V H) = (UV )H ⊂ WH. Therefore, multiplication of
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elements in the quotient group determines a continuous map G/H×G/H →
G/H. Prove on your own that the map G/H × G/H : aH → a−1H is also
continuous.

27.Jx This is special case of 27.Dx.

27.Kx If {Ui} is a countable (neighborhood) base in G, then {UiH} is
a countable (neighborhood) base in G/H .

27.Lx This is a special case of 27.Ex.

27.Mx In this case, all cosets of H are also open. Therefore,
each singleton in G/H is open. If 1G/H is open in G/H, then H is
open in G by the definition of the quotient topology.

27.Nx Obvious. Let a ∈ G, and let b = f(a) ∈ H. For any
neighborhood U of b, the set b−1U is a neighborhood of 1H in H. Therefore,
1G has a neighborhood V in G such that f(V ) ⊂ b−1U . Then aV is a
neighborhood of a, and we have f(aV ) = f(a)f(V ) = bf(V ) ⊂ bb−1U = U .
Hence, f is continuous at each point a ∈ G, i.e., f is a topological group
homomorphism.

27.Ox Each open subset of G/Ker f has the form U · Ker f ,

where U is an open subset of G. Since f/S(f)(U · Ker f) = f(U), the map

f/S(f) is open.

Since the projection G → G/Ker f is open (see 27.Dx), the map f is

open if so is f/S(f).

27.Px Combine 27.Ox, 26.Kx, and 16.Y.

27.Qx This follows from 27.Ox since the exponential map R → S1 :
x 7→ e2πxi is open.

27.Sx The groups are not isomorphic since only one of them is compact.
The exponential map x 7→ e2πxi determines a local isomorphism from R to
S1.

27.Vx The map A × B → G : (a, b) 7→ ab is a continuous bijection.
To see that it is a homeomorphism, observe that it is open since for any
neighborhoods of unity, U ⊂ A and V ⊂ B, and any points a ∈ A and b ∈ B,
the product UaV b = abU ′V ′, where U ′ = b−1a−1Uab and V ′ = b−1V b,
contains abW ′, where W ′ is a neighborhood of 1G contained in U ′V ′.

27.Wx This immediately follows from 3.8.

27.Xx The map Top X → Top X : g 7→ g−1 is continuous because it
preserves the subbase for the topological structure on Top X. It remains to
apply 27.Xx.1.
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27.Xx.1 It suffices to check that the preimage of every element of
a subbase is open. For W (C,U), this is a special case of 24.Sx, where we
showed that for any gh ∈ W (C,U) there is an open U ′, h(C) ⊂ U ′ ⊂ g−1(U),
such that ClU ′ is compact, h ∈ W (C,U ′), g ∈ W (ClU ′, U), and

gh ∈ W (ClU ′, U) ◦ W (C,U ′) ⊂ W (C,U).

The case of (W (C,U))−1 reduces to the previous one because for any gh ∈
(W (C,U))−1 we have h−1g−1 ∈ W (C,U), and so, applying the above con-
struction, we obtain an open U ′ such that g−1(C) ⊂ U ′ ⊂ h(U), ClU ′ is
compact, g−1 ∈ W (C,U ′), h−1 ∈ W (ClU ′, U), and

h−1g−1 ∈ W (ClU ′, U) ◦ W (C,U ′) ⊂ W (C,U).

Finally, we have g ∈ (W (C,U ′))−1, h ∈ (W (ClU ′, U))−1, and

gh ∈ (W (C,U ′))−1 ◦ (W (Cl U ′, U))−1 ⊂ (W (C,U))−1.

We observe that the above map is continuous even for the pure compact-
open topology on Top X.

28.Gx It suffices to check that the preimage of every element of a
subbase is open. For W (C,U), this is a special case of 24.Vx. Let φ(g) ∈
(W (C,U))−1. Then φ(g−1) ∈ W (C,U), and therefore g−1 has an open
neighborhood V in G with φ(V ) ⊂ W (C,U). It follows that V −1 is an open
neighborhood of g in G and φ(V −1) ⊂ (W (C,U))−1. (The assumptions
about X are needed only to ensure that Top X is a topological group.)

28.Ix Let us check that 1G is an isolated point of G. Consider an
open set V with compact closure. Let U ⊂ V be an open subset with
compact closure ClU ⊂ V . Then, for each of finitely many gk ∈ G with
gk(U) ∩ V 6= ∅, let xk ∈ X be a point with gk(xk) 6= xk, and let Uk be an
open neighborhood of xk disjoint with gk(xk). Finally, G ∩ W (ClU, V ) ∩⋂

W (xk, Uk) contains only 1G.

28.Jx The space G/Gx is compact, the orbit G(x) ⊂ X is Hausdorff,
and the map G/Gx → G(x) is a continuous bijection. It remains to ap-
ply 16.Y.

28.Kx To prove that X/G is Hausdorff, consider two disjoint orbits,
G(x) and G(y). Since G(y) is compact, there are disjoint open sets U ∋ x
and V ⊃ G(y). Since G(x) is compact, there is a finite number of elements
gk ∈ G such that

⋃
gkU covers G(x). Then Cl(

⋃
gkU) =

⋃
Cl gkU =⋃

gk ClU is disjoint with G(y), which shows that X/G is Hausdorff. (Note
that this part of the proof does not involve the compactness of X.) Finally,
X/G is compact as a quotient of the compact space X.

28.Mx It suffices to prove that the canonical map f : G/Gx → X is
open (see 28.Nx).
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Take a neighborhood V ⊂ G of 1G with compact closure and a neighborhood
U ⊂ G of 1G with ClU ·ClU ⊂ V . Since G contains a dense countable set, it
follows that there is a sequence gn ∈ G such that {gnU} is an open cover of G.
It remains to prove that at least one of the sets f(gnU) = gnf(U) = gnU(x)
has nonempty interior.
Assume the contrary. Then, using the local compactness of X, its Hausdorff
property, and the compactness of f(gn ClU), we construct by induction a
sequence Wn ⊂ X of nested open sets with compact closure such that Wn

is disjoint with gkUx with k < n and gnUx ∩ Wn is closed in Wn. Finally,
we obtain nonempty

⋂
Wn disjoint with G(x), a contradiction.

28.Nx The canonical map G/Gx → X is continuous and bijective.
Hence, it is a homeomorphism iff it is open (and iff it is closed).


