
Chapter VI

Fundamental Group

29. Homotopy

29◦1. Continuous Deformations of Maps

29.A. Is it possible to deform continuously:

(1) the identity map id : R
2 → R

2 to the constant map R
2 → R

2 : x 7→
0,

(2) the identity map id : S1 → S1 to the symmetry S1 → S1 : x 7→ −x
(here x is considered a complex number because the circle S1 is
{x ∈ C : |x| = 1}),

(3) the identity map id : S1 → S1 to the constant map S1 → S1 : x 7→
1,

(4) the identity map id : S1 → S1 to the two-fold wrapping S1 → S1 :
x 7→ x2,

(5) the inclusion S1 → R2 to a constant map,

(6) the inclusion S1 → R
2

r 0 to a constant map?

29.B. Riddle. When you (tried to) solve the previous problem, what did
you mean by “deform continuously”?
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208 VI. Fundamental Group

The present section is devoted to the notion of homotopy formalizing the
naive idea of continuous deformation of a map.

29◦2. Homotopy as Map and Family of Maps

Let f and g be two continuous maps of a topological space X to a
topological space Y , and H : X × I → Y a continuous map such that
H(x, 0) = f(x) and H(x, 1) = g(x) for any x ∈ X. Then f and g are
homotopic , and H is a homotopy between f and g.

For x ∈ X, t ∈ I denote H(x, t) by ht(x). This change of notation
results in a change of the point of view of H. Indeed, for a fixed t the
formula x 7→ ht(x) determines a map ht : X → Y , and H becomes a family
of maps ht enumerated by t ∈ I.

29.C. Each ht is continuous.

29.D. Does continuity of all ht imply continuity of H?

The conditions H(x, 0) = f(x) and H(x, 1) = g(x) in the above defi-
nition of a homotopy can be reformulated as follows: h0 = f and h1 = g.
Thus a homotopy between f and g can be regarded as a family of continuous
maps that connects f and g. Continuity of a homotopy allows us to say that
it is a continuous family of continuous maps (see 29◦10).

29◦3. Homotopy as Relation

29.E. Homotopy of maps is an equivalence relation.

29.E.1. If f : X → Y is a continuous map, then H : X×I → Y : (x, t) 7→ f(x)
is a homotopy between f and f .

29.E.2. If H is a homotopy between f and g, then H ′ defined by H ′(x, t) =
H(x, 1 − t) is a homotopy between g and f .

29.E.3. If H is a homotopy between f and f ′ and H ′ is a homotopy between
f ′ and f ′′, then H ′′ defined by

H ′′(x, t) =

{

H(x, 2t) if t ∈
[

0, 1

2

]

,

H ′(x, 2t − 1) if t ∈
[

1

2
, 1

]
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is a homotopy between f and f ′′.

Homotopy, being an equivalence relation by 29.E, splits the set C(X,Y )
of all continuous maps from a space X to a space Y into equivalence classes.
The latter are homotopy classes. The set of homotopy classes of all contin-
uous maps X → Y is denoted by π(X,Y ). Map homotopic to a constant
map are said to be null-homotopic .

29.1. Prove that for any X, the set π(X, I) has a single element.

29.2. Prove that two constant maps Z → X are homotopic iff their images lie in
one path-connected component of X.

29.3. Prove that the number of elements of π(I, Y ) is equal to the number of path
connected components of Y .

29◦4. Rectilinear Homotopy

29.F. Any two continuous maps of the same space to Rn are homotopic.

29.G. Solve the preceding problem by proving that for continuous maps
f, g : X → R

n formula H(x, t) = (1− t)f(x)+ tg(x) determines a homotopy
between f and g.

The homotopy defined in 29.G is a rectilinear homotopy.

29.H. Any two continuous maps of an arbitrary space to a convex subspace
of Rn are homotopic.

29◦5. Maps to Star-Shaped Sets

A set A ⊂ R
n is star-shaped if there exists a point b ∈ A such that for any

x ∈ A the whole segment [a, x] connecting x to a is contained in A. The point
a is the center of the star. (Certainly, the center of the star is not uniquely
determined.)

29.4. Prove that any two continuous maps of a space to a star-shaped subspace
of R

n are homotopic.

29◦6. Maps of Star-Shaped Sets

29.5. Prove that any continuous map of a star-shaped set C ⊂ R
n to any space

is null-homotopic.

29.6. Under what conditions (formulated in terms of known topological properties
of a space X) any two continuous maps of any star-shaped set to X are homotopic?
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29◦7. Easy Homotopies

29.7. Prove that each non-surjective map of any topological space to Sn is null-
homotopic.

29.8. Prove that any two maps of a one-point space to R
n

r 0 with n > 1 are
homotopic.

29.9. Find two nonhomotopic maps from a one-point space to R r 0.

29.10. For various m, n, and k, calculate the number of homotopy classes of
maps {1, 2, . . . , m} → R

n
r {x1, x2, . . . , xk}, where {1, 2, . . . , m} is equipped with

discrete topology.

29.11. Let f and g be two maps from a topological space X to C r 0. Prove that
if |f(x) − g(x)| < |f(x)| for any x ∈ X, then f and g are homotopic.

29.12. Prove that for any polynomials p and q over C of the same degree in
one variable there exists r > 0 such that for any R > r formulas z 7→ p(z) and
z 7→ q(z) determine maps of the circle {z ∈ C : |z| = R} to C r 0 and these maps
are homotopic.

29.13. Let f , g be maps of an arbitrary topological space X to Sn. Prove that if
|f(a) − g(a)| < 2 for each a ∈ X, then f is homotopic to g.

29.14. Let f : Sn → Sn be a continuous map. Prove that if it is fixed-point-free,
i.e., f(x) 6= x for every x ∈ Sn, then f is homotopic to the symmetry x 7→ −x.

29◦8. Two Natural Properties of Homotopies

29.I. Let f, f ′ : X → Y , g : Y → B, h : A → X be continuous maps and
F : X×I → Y a homotopy between f and f ′. Prove that then g◦F ◦(h×idI)
is a homotopy between g ◦ f ◦ h and g ◦ f ′ ◦ h.

29.J. Riddle. Under conditions of 29.I, define a natural map

π(X,Y ) → π(A,B).

How does it depend on g and h? Write down all nice properties of this
construction.

29.K. Prove that two maps f0, f1 : X → Y × Z are homotopic iff prY ◦f0

is homotopic to prY ◦ f1 and prZ ◦f0 is homotopic to prZ ◦ f1.

29◦9. Stationary Homotopy

Let A be a subset of X. A homotopy H : X×I → Y is fixed or stationary

on A, or, briefly, an A-homotopy if H(x, t) = H(x, 0) for all x ∈ A, t ∈ I.
Two maps connected by an A-homotopy are A-homotopic .

Certainly, any two A-homotopic maps coincide on A. If we want to
emphasize that a homotopy is not assumed to be fixed, then we say that it
is free. If we want to emphasize the opposite (that the homotopy is fixed),
then we say that it is relative.1

1Warning: there is a similar, but different kind of homotopy, which is also called relative.
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29.L. Prove that, like free homotopy, A-homotopy is an equivalence rela-
tion.

The classes into which A-homotopy splits the set of continuous maps
X → Y that agree on A with a map f : A → Y are A-homotopy classes of

continuous extensions of f to X.

29.M. For what A is a rectilinear homotopy fixed on A?

29◦10. Homotopies and Paths

Recall that a path in a space X is a continuous map from the segment
I to X. (See Section 13.)

29.N. Riddle. In what sense is any path a homotopy?

29.O. Riddle. In what sense does any homotopy consist of paths?

29.P. Riddle. In what sense is any homotopy a path?

Recall that the compact-open topology in C(X, Y ) is the topology generated
by the sets {ϕ ∈ C(X, Y ) | ϕ(A) ⊂ B} for compact A ⊂ X and open B ⊂ Y .

29.15. Prove that any homotopy ht : X → Y determines (see 29◦2) a path in
C(X,Y ) with compact-open topology.

29.16. Prove that if X is locally compact and regular, then any path in C(X, Y )
with compact-open topology determines a homotopy.

29◦11. Homotopy of Paths

29.Q. Prove that two paths in a space X are freely homotopic iff their
images belong to the same path-connected component of X.

This shows that the notion of free homotopy in the case of paths is not
interesting. On the other hand, there is a sort of relative homotopy playing
a very important role. This is (0 ∪ 1)-homotopy. This causes the following
commonly accepted deviation from the terminology introduced above: ho-
motopy of paths always means not a free homotopy, but a homotopy fixed
on the endpoints of I (i.e., on 0 ∪ 1).

Notation: a homotopy class of a path s is denoted by [s].
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30. Homotopy Properties of Path

Multiplication

30◦1. Multiplication of Homotopy Classes of Paths

Recall (see Section 13) that two paths u and v in a space X can be
multiplied, provided the initial point v(0) of v is the final point u(1) of u.
The product uv is defined by

uv(t) =

{

u(2t) if t ∈
[

0, 1
2

]

,

v(2t − 1) if t ∈
[

1
2 , 1

]

.

u(0)

v(1)

u(1)=v(0)

30.A. If a path u is homotopic to u′, a path v is homotopic to v′, and there
exists the product uv, then u′v′ exists and is homotopic to uv.

Define the product of homotopy classes of paths u and v as the homotopy
class of uv. So, [u][v] is defined as [uv], provided uv is defined. This is a
definition requiring a proof.

30.B. The product of homotopy classes of paths is well defined.2

30◦2. Associativity

30.C. Is multiplication of paths associative?

Certainly, this question might be formulated in more detail as follows.

30.D. Let u, v, and w be paths in a certain space such that products uv
and vw are defined (i.e., u(1) = v(0) and v(1) = w(0)). Is it true that
(uv)w = u(vw)?

30.1. Prove that for paths in a metric space (uv)w = u(vw) implies that u, v,
and w are constant maps.

30.2. Riddle. Find nonconstant paths u, v, and w in an indiscrete space such
that (uv)w = u(vw).

30.E. Multiplication of homotopy classes of paths is associative.

2Of course, when the initial point of paths in the first class is the final point of paths in the
second class.
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30.E.1. Reformulate Theorem 30.E in terms of paths and their homotopies.

30.E.2. Find a map ϕ : I → I such that if u, v, and w are paths with u(1) =
v(0) and v(1) = w(0), then ((uv)w) ◦ ϕ = u(vw).

1

30.E.3. Any path in I starting at 0 and ending at 1 is homotopic to id : I → I.

30.E.4. Let u, v and w be paths in a space such that products uv and vw
are defined (thus, u(1) = v(0) and v(1) = w(0)). Then (uv)w is homotopic to
u(vw).

If you want to understand the essence of 30.E, then observe that the
paths (uv)w and u(vw) have the same trajectories and differ only by the
time spent in different fragments of the path. Therefore, in order to find
a homotopy between them, we must find a continuous way to change one
schedule to the other. The lemmas above suggest a formal way of such a
change, but the same effect can be achieved in many other ways.

30.3. Present explicit formulas for the homotopy H between the paths (uv)w and
u(vw).

30◦3. Unit

Let a be a point of a space X. Denote by ea the path I → X : t 7→ a.

30.F. Is ea a unit for multiplication of paths?

The same question in more detailed form:

30.G. For a path u with u(0) = a is eau = u? For a path v with v(1) = a
is vea = v?

30.4. Prove that if eau = u and the space satisfies the first separation axiom,
then u = ea.

30.H. The homotopy class of ea is a unit for multiplication of homotopy
classes of paths.
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30◦4. Inverse

Recall that for a path u there is the inverse path u−1 : t 7→ u(1− t) (see
Section 13).

30.I. Is the inverse path inverse with respect to multiplication of paths?

In other words:

30.J. For a path u beginning in a and finishing in b, is it true that uu−1 = ea

and u−1u = eb?

30.5. Prove that for a path u with u(0) = a equality uu−1 = ea implies u = ea.

30.K. For any path u, the homotopy class of the path u−1 is inverse to the
homotopy class of u.

30.K.1. Find a map ϕ : I → I such that uu−1 = u ◦ ϕ for any path u.

30.K.2. Any path in I that starts and finishes at 0 is homotopic to the constant
path e0 : I → I.

We see that from the algebraic point of view multiplication of paths
is terrible, but it determines multiplication of homotopy classes of paths,
which has nice algebraic properties. The only unfortunate property is that
the multiplication of homotopy classes of paths is defined not for any two
classes.

30.L. Riddle. How to select a subset of the set of homotopy classes of
paths to obtain a group?
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31. Fundamental Group

31◦1. Definition of Fundamental Group

Let X be a topological space, x0 its point. A path in X which starts
and ends at x0 is a loop in X at x0. Denote by Ω1(X,x0) the set of loops
in X at x0. Denote by π1(X,x0) the set of homotopy classes of loops in X
at x0.

Both Ω1(X,x0) and π1(X,x0) are equipped with a multiplication.

31.A. For any topological space X and a point x0 ∈ X the set π1(X,x0)
of homotopy classes of loops at x0 with multiplication defined above in Sec-
tion 30 is a group.

π1(X,x0) is the fundamental group of the space X with base point x0.
It was introduced by Poincaré, and this is why it is also called the Poincaré

group. The letter π in this notation is also due to Poincaré.

31◦2. Why Index 1?

The index 1 in the notation π1(X,x0) appeared later than the letter
π. It is related to one more name of the fundamental group: the first
(or one-dimensional) homotopy group. There is an infinite series of groups
πr(X,x0) with r = 1, 2, 3, . . . the fundamental group being one of them.
The higher-dimensional homotopy groups were defined by Witold Hurewicz
in 1935, thirty years after the fundamental group was defined. Roughly
speaking, the general definition of πr(X,x0) is obtained from the definition
of π1(X,x0) by replacing I with the cube Ir.

31.B. Riddle. How to generalize problems of this section in such a way
that in each of them I would be replaced by Ir?

There is even a “zero-dimensional homotopy group” π0(X,x0), but it
is not a group, as a rule. It is the set of path-connected components of
X. Although there is no natural multiplication in π0(X,x0), unless X is
equipped with some special additional structures, there is a natural unit in
π0(X,x0). This is the component containing x0.

31◦3. Circular loops

Let X be a topological space, x0 its point. A continuous map l : S1 → X
such that3 l(1) = x0 is a (circular) loop at x0. Assign to each circular loop l
the composition of l with the exponential map I → S1 : t 7→ e2πit. This is a
usual loop at the same point.

3Recall that S1 is regarded as a subset of the plane R2, and the latter is identified in a
canonical way with C. Hence, 1 ∈ S1 = {z ∈ C : |z| = 1}.
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31.C. Prove that any loop can be obtained in this way from a circular loop.

Two circular loops l1 and l2 are homotopic if they are 1-homotopic. A
homotopy of a circular loop not fixed at x0 is a free homotopy.

31.D. Prove that two circular loops are homotopic iff the corresponding
ordinary loops are homotopic.

31.1. What kind of homotopy of loops corresponds to free homotopy of circular
loops?

31.2. Describe the operation with circular loops corresponding to the multiplica-
tion of paths.

31.3. Let U and V be the circular loops with common base point U(1) = V (1)
corresponding to the loops u and v. Prove that the circular loop

z 7→

(

U(z2) if Im(z) ≥ 0,

V (z2) if Im(z) ≤ 0

corresponds to the product of u and v.

31.4. Outline a construction of fundamental group using circular loops.

31◦4. The Very First Calculations

31.E. Prove that π1(R
n, 0) is a trivial group (i.e., consists of one element).

31.F. Generalize 31.E to the situations suggested by 29.H and 29.4.

31.5. Calculate the fundamental group of an indiscrete space.

31.6. Calculate the fundamental group of the quotient space of disk D2 obtained
by identification of each x ∈ D2 with −x.

31.7. Prove that if a two-point space X is path-connected, then X is simply
connected.

31.G. Prove that π1(S
n, (1, 0, . . . , 0)) with n ≥ 2 is a trivial group.

Whether you have solved 31.G or not, we recommend you to consider prob-
lems 31.G.1, 31.G.2, 31.G.4, 31.G.5, and 31.G.6 designed to give an approach
to 31.G, warn about a natural mistake and prepare an important tool for further
calculations of fundamental groups.

31.G.1. Prove that any loop s : I → Sn that does not fill the entire Sn (i.e.,
s(I) 6= Sn) is null-homotopic, provided n ≥ 2. (Cf. Problem 29.7.)

Warning: for any n there exists a loop filling Sn. See 9.Ox.

31.G.2. Can a loop filling S2 be null-homotopic?

31.G.3 Corollary of Lebesgue Lemma 16.W. Let s : I → X be a path,
and Γ be an open cover of a topological space X. There exists a sequence of
points a1, . . . , aN ∈ I with 0 = a1 < a2 < · · · < aN−1 < aN = 1 such that
s([ai, ai+1]) is contained in an element of Γ for each i.
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31.G.4. Prove that if n ≥ 2, then for any path s : I → Sn there exists a
subdivision of I into a finite number of subintervals such that the restriction of
s to each of the subintervals is homotopic to a map with nowhere-dense image
via a homotopy fixed on the endpoints of the subinterval.

31.G.5. Prove that if n ≥ 2, then any loop in Sn is homotopic to a non-
surjective loop.

31.G.6. 1) Deduce 31.G from 31.G.1 and 31.G.5. 2) Find all points of the
proof of 31.G obtained in this way, where the condition n ≥ 2 is used.

31◦5. Fundamental Group of Product

31.H. The fundamental group of the product of topological spaces is canon-
ically isomorphic to the product of the fundamental groups of the factors:

π1(X × Y, (x0, y0)) = π1(X,x0) × π1(Y, y0)

31.8. Consider a loop u : I → X at x0, a loop v : I → Y at y0, and the loop
w = u × v : I → X × Y . We introduce the loops u′ : I → X × Y : t 7→ (u(t), y0)
and v′ : I → X × Y : t 7→ (x0, v(t). Prove that u′v′ ∼ w ∼ v′u′.

31.9. Prove that π1(R
n

r 0, (1, 0, . . . , 0)) is trivial if n ≥ 3.

31◦6. Simply-Connectedness

A nonempty topological space X is simply connected (or one-connected)
if X is path-connected and every loop in X is null-homotopic.

31.I. For a path-connected topological space X, the following statements are
equivalent:

(1) X is simply connected,

(2) each continuous map f : S1 → X is (freely) null-homotopic,

(3) each continuous map f : S1 → X extends to a continuous map
D2 → X,

(4) any two paths s1, s2 : I → X connecting the same points x0 and x1

are homotopic.

Theorem 31.I is closely related to Theorem 31.J below. Notice that since
Theorem 31.J concerns not all loops, but an individual loop, it is applicable
in a broader range of situations.

31.J. Let X be a topological space and s : S1 → X be a circular loop. Then
the following statements are equivalent:

(1) s is null-homotopic,

(2) s is freely null-homotopic,

(3) s extends to a continuous map D2 → X,
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(4) the paths s+, s− : I → X defined by formula s±(t) = s(e±πit) are
homotopic.

31.J.1. Riddle. To prove that 4 statements are equivalent, we must prove at
least 4 implications. What implications would you choose for the easiest proof
of Theorem 31.J?

31.J.2. Does homotopy of circular loops imply that these circular loops are
free homotopic?

31.J.3. A homotopy between a map of the circle and a constant map possesses
a quotient map whose source space is homoeomorphic to disk D2.

31.J.4. Represent the problem of constructing of a homotopy between paths s+

and s− as a problem of extension of a certain continuous map of the boundary
of a square to a continuous of the whole square.

31.J.5. When we solve the extension problem obtained as a result of Problem
31.J.4, does it help to know that the circular loop S1 → X : t 7→ s(e2πit)
extends to a continuous map of a disk?

31.10. Which of the following spaces are simply connected:

(a) a discrete
space;

(b) an indiscrete
space;

(c) R
n;

(d) a convex set; (e) a star-shaped set; (f) Sn;
(g) R

n
r 0?

31.11. Prove that if a topological space X is the union of two open simply con-
nected sets U and V with path-connected intersection U ∩ V , then X is simply
connected.

31.12. Show that the assumption in 31.11 that U and V are open is necessary.

31.13*. Let X be a topological space, U and V its open sets. Prove that if
U ∪ V and U ∩ V are simply connected, then so are U and V .

31◦7x. Fundamental Group of a Topological Group

Let G be a topological group. Given loops u, v : I → G starting at the
unity 1 ∈ G, let us define a loop u ⊙ v : I → G by the formula u ⊙ v(t) =
u(t) · v(t), where · denotes the group operation in G.

31.Ax. Prove that the set Ω(G, 1) of all loops in G starting at 1 equipped
with the operation ⊙ is a group.

31.Bx. Prove that the operation ⊙ on Ω(G, 1) determines a group operation
on π1(G, 1), which coincides with the standard group operation (determined
by multiplication of paths).

31.Bx.1. For loops u, v → G starting at 1, find (ue1) ⊙ (e1v).

31.Cx. The fundamental group of a topological group is Abelian.
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31◦8x. High Homotopy Groups

Let X be a topological space and x0 its point. A continuous map Ir → X
mapping the boundary ∂Ir of Ir to x0 is a spheroid of dimension r of X at
x0, or just an r-spheroid . Two r-spheroids are homotopic if they are ∂Ir-
homotopic. For two r-spheroids u and v of X at x0, r ≥ 1, define the product
uv by the formula

uv(t1, t2, . . . , tr) =

{

u(2t1, t2, . . . , tr) if t1 ∈
[

0, 1
2

]

,

v(2t1 − 1, t2, . . . , tr) if t1 ∈
[

1
2 , 1

]

.

The set of homotopy classes of r-spheroids of a space X at x0 is the rth
(or r-dimensional) homotopy group πr(X,x0) of X at x0. Thus,

πr(X,x0) = π(Ir, ∂Ir; X,x0).

Multiplication of spheroids induces multiplication in πr(X,x0), which makes
πr(X,x0) a group.

31.Dx. Find πr(R
n, 0).

31.Ex. For any X and x0 the group πr(X,x0) with r ≥ 2 is Abelian.

Similar to 31◦3, higher-dimensional homotopy groups can be constructed
not out of homotopy classes of maps (Ir, ∂Ir) → (X,x0), but as

π(Sr, (1, 0, . . . , 0); X,x0).

Another, also quite a popular way, is to define πr(X,x0) as

π(Dr, ∂Dr; X,x0).

31.Fx. Construct natural bijections

π(Ir, ∂Ir; X,x0) → π(Dr, ∂Dr; X,x0) → π(Sr, (1, 0, . . . , 0); X,x0)

31.Gx. Riddle. For any X,x0 and r ≥ 2 present group πr(X,x0) as the
fundamental group of some space.

31.Hx. Prove the following generalization of 31.H:

πr(X × Y, (x0, y0)) = πr(X,x0) × πr(Y, y0).

31.Ix. Formulate and prove analogs of Problems 31.Ax and 31.Bx for higher
homotopy groups and π0(G, 1).
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32. The Role of Base Point

32◦1. Overview of the Role of Base Point

Sometimes the choice of the base point does not matter, sometimes it
is obviously crucial, sometimes this is a delicate question. In this section,
we have to clarify all subtleties related to the base point. We start with
preliminary formulations describing the subject in its entirety, but without
some necessary details.

The role of the base point may be roughly described as follows:

• As the base point changes within the same path-connected compo-
nent, the fundamental group remains in the same class of isomor-
phic groups.

• However, if the group is non-Abelian, it is impossible to find a
natural isomorphism between the fundamental groups at different
base points even in the same path-connected component.

• Fundamental groups of a space at base points belonging to different
path-connected components have nothing to do to each other.

In this section these will be demonstrated. The proof involves useful con-
structions, whose importance extends far outside of the frameworks of our
initial question on the role of base point.

32◦2. Definition of Translation Maps

Let x0 and x1 be two points of a topological space X, and let s be a path
connecting x0 with x1. Denote by σ the homotopy class [s] of s. Define a
map Ts : π1(X,x0) → π1(X,x1) by the formula Ts(α) = σ−1ασ.

x0

x1

32.1. Prove that for any loop a : I → X representing α ∈ π1(X, x0) and any path
s : I → X with s(0) = x0 there exists a free homotopy H : I × I → X between a

and a loop representing Ts(α) such that H(0, t) = H(1, t) = s(t) for t ∈ I .

32.2. Let a, b : I → X be loops homotopic via a homotopy H : I × I → X

such that H(0, t) = H(1, t) (i.e., H is a free homotopy of loops: at each moment
t ∈ I , it keeps the endpoints of the path coinciding). Set s(t) = H(0, t) (hence,
s is the path run through by the initial point of the loop under the homotopy).
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Prove that the homotopy class of b is the image of the homotopy class of a under
Ts : π1(X, s(0)) → π1(X, s(1)).

32◦3. Properties of Ts

32.A. Ts is a (group) homomorphism.4

32.B. If u is a path connecting x0 to x1 and v is a path connecting x1 with
x2, then Tuv = Tv ◦ Tu. In other words, the diagram

π1(X,x0)
Tu−−−−→ π1(X,x1)

ցTuv





y
Tv

π1(X,x2)

is commutative.

32.C. If paths u and v are homotopic, then Tu = Tv.

32.D. Tea
= id : π1(X,a) → π1(X,a)

32.E. Ts−1 = T−1
s .

32.F. Ts is an isomorphism for any path s.

32.G. For any points x0 and x1 lying in the same path-connected component
of X groups π1(X,x0) and π1(X,x1) are isomorphic.

In spite of the result of Theorem 32.G, we cannot write π1(X) even if
the topological space X is path-connected. The reason is that although the
groups π1(X,x0) and π1(X,x1) are isomorphic, there may be no canonical
isomorphism between them (see 32.J below).

32.H. The space X is simply connected iff X is path-connected and the
group π1(X,x0) is trivial for a certain point x0 ∈ X.

32◦4. Role of Path

32.I. If a loop s represents an element σ of the fundamental group π1(X,x0),
then Ts is the inner automorphism of π1(X,x0) defined by α 7→ σ−1ασ.

32.J. Let x0 and x1 be points of a topological space X belonging to the same
path-connected component. The isomorphisms Ts : π1(X,x0) → π1(X,x1)
do not depend on s iff π1(X,x0) is an Abelian group.

Theorem 32.J implies that if the fundamental group of a topological
space X is Abelian, we may simply write π1(X).

4Recall that this means that Ts(αβ) = Ts(α)Ts(β).
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32◦5x. In Topological Group

In a topological group G there is another way to relate π1(G,x0) with
π1(G,x1): there are homeomorphisms Lg : G → G : x 7→ xg and Rg :
G → G : x 7→ gx, so that there are the induced isomorphisms (L

x−1

0
x1

)∗ :

π1(G,x0) → π1(G,x1) and (Rx1x−1

0

)∗ : π1(G,x0) → π1(G,x1).

32.Ax. Let G be a topological group, s I → G be a path. Prove that

Ts = (Ls(0)−1s(1))∗ = (Rs(1)s(0)−1) : π1(G, s(0)) → π1(G, s(1)).

32.Bx. Deduce from 32.Ax that the fundamental group of a topological
group is Abelian (cf. 31.Cx).

32.1x. Prove that the following spaces have Abelian fundamental groups:

(1) the space of nondegenerate real n×n matrices GL(n, R) = {A | det A 6=
0};

(2) the space of orthogonal real n×n matrices O(n, R) = {A | A·(tA) = E};
(3) the space of special unitary complex n × n matrices SU(n) = {A |

A · (tĀ) = 1, det A = 1}.

32◦6x. In High Homotopy Groups

32.Cx. Riddle. Guess how Ts is generalized to πr(X,x0) with any r.

Here is another form of the same question. We put it because its state-
ment contains a greater piece of an answer.

32.Dx. Riddle. Given a path s : I → X with s(0) = x0 and a spheroid
f : Ir → X at x0, how to cook up a spheroid at x1 = s(1) out of these?

32.Ex. Let s : I → X be a path, f : Ir → X a spheroid with f(Fr Ir) =
s(0). Prove that there exists a homotopy H : Ir × I → X of f such that
H(Fr Ir × t) = s(t) for any t ∈ I. Furthermore, the spheroid obtained by
such a homotopy is unique up to homotopy and determines an element of
πr(X, s(1)), which is uniquely determined by the homotopy class of s and
the element of πr(X, s(0)) represented by f .

Certainly, a solution of 32.Ex gives an answer to 32.Dx and 32.Cx. The
map πr(X, s(0)) → πr(X, s(1)) defined by 32.Ex is denoted by Ts. By 32.2,
this Ts generalizes Ts defined in the beginning of the section for the case
r = 1.

32.Fx. Prove that the properties of Ts formulated in Problems 32.A – 32.F
hold true in all dimensions.

32.Gx. Riddle. What are the counterparts of 32.Ax and 32.Bx for higher
homotopy groups?



Proofs and Comments 223

Proofs and Comments

29.A (a), (b), (e): yes; (c), (d), (f): no. See 29.B.

29.B See 29◦2.

29.C The map ht is continuous as the restriction of the homotopy H
to the fiber X × t ⊂ X × I.

29.D Certainly, no, it does not.

29.E See 29.E.1, 29.E.2, and 29.E.3.

29.E.1 The map H is continuous as the composition of the projection
p : X × I → X and the map f , and, furthermore, H(x, 0) = f(x) = H(x, 1).
Consequently, H is a homotopy.

29.E.2 The map H ′ is continuous as the composition of the homeo-
morphism X × I → X × I : (x, t) 7→ (x, 1 − t) and the homotopy H, and,
furthermore, H ′(x, 0) = H(x, 1) = g(x) and H ′(x, 1) = H(x, 0) = f(x).
Therefore, H ′ is a homotopy.

29.E.3 Indeed, H ′′(x, 0) = f(x) and H ′′(x, 1) = H ′(x, 1) = f ′′(x). H ′′

is continuous since the restriction of H ′′ to each of the sets X ×
[

0, 1
2

]

and

X ×
[

1
2 , 1

]

is continuous and these sets constitute a fundamental cover of
X × I.
Below we do not prove that the homotopies are continuous because this
always follows from explicit formulas.

29.F Each of them is homotopic to the constant map mapping the entire
space to the origin, for example, if H(x, t) = (1−t)f(x), then H : X×I → R

n

is a homotopy between f and the constant map x 7→ 0. (There is a more
convenient homotopy between arbitrary maps to Rn, see 29.G.)

29.G Indeed, H(x, 0) = f(x) and H(x, 1) = g(x). The map H is
obviously continuous. For example, this follows from the inequality
∣

∣H(x, t)−H(x′, t′)
∣

∣ ≤ |f(x)−f(x′)|+ |g(x)−g(x′)|+
(

|f(x)|+ |g(x)|
)

|t− t′|.

29.H Let K be a convex subset of Rn, f, g : X → K two continuous
maps, and H the rectilinear homotopy between f and g. Then H(x, t) ∈ K
for all (x, t) ∈ X × I, and we obtain a homotopy H : X × I → K.

29.I The map H = g◦F ◦(h×idI) : A×I → B is continuous, H(a, 0) =
g(F (h(a), 0)) = g(f(h(a))), and H(a, 1) = g(F (h(a), 1)) = g(f ′(h(a))).
Consequently, H is a homotopy.

29.J Take f : X → Y to g ◦ f ◦ h : A → B. Assertion 29.I shows that
this correspondence preserves the homotopy relation, and, hence, it can be



224 VI. Fundamental Group

transferred to homotopy classes of maps. Thus, a map π(X,Y ) → π(A,B)
is defined.

29.K Any map f : X → Y × Z is uniquely determined by its com-
ponents prX ◦f and prY ◦f . If H is a homotopy between f and g,
then prY ◦H is a homotopy between prY ◦f and prY ◦g, and prZ ◦H is a
homotopy between prZ ◦f and prZ ◦g.

If HY is a homotopy between prY ◦f and prY ◦g and HZ is a homotopy
between prZ ◦f and prZ ◦g, then a homotopy between f and g is determined
by the formula H(x, t) = (HY (x, t),HZ(x, t)).

29.L The proof does not differ from that of assertion 29.E.

29.M For the sets A such that f |A = g|A (i.e., for the sets contained
in the coincidence set of f and g).

29.N A path is a homotopy of a map of a point, cf. 29.8.

29.O For each point x ∈ X, the map ux : I → X : t 7→ h(x, t) is a
path.

29.P If H is a homotopy, then for each t ∈ I the formula ht = H(x, t)
determines a continuous map X → Y . Thus, we obtain a map H : I →
C(X,Y ) of the segment to the set of all continuous maps X → Y . After
that, see 29.15 and 29.16.

29.15 This follows from 24.Vx.

29.16 This follows from 24.Wx.

29.Q This follows from the solution of Problem 29.3.

30.A 1) We start with a visual description of the required homotopy.
Let ut : I → X be a homotopy joining u and u′, and vt : I → X a homotopy
joining v and v′. Then the paths utvt with t ∈ [0, 1] form a homotopy
between uv and u′v′.
2) Now we present a more formal argument. Since the product uv is defined,
we have u(1) = v(0). Since u ∼ u′, we have u(1) = u′(1), we similarly have
v(0) = v′(0). Therefore, the product u′v′ is defined. The homotopy between
uv and u′v′ is the map

H : I × I → X : (s, t) 7→

{

H ′(2s, t) if s ∈
[

0, 1
2

]

,

H ′′(2s − 1, t) if s ∈
[

1
2 , 1

]

.

(H is continuous because the sets
[

0, 1
2

]

× I and
[

1
2 , 1

]

× I constitute a
fundamental cover of the square I × I, and the restriction of H to each of
these sets is continuous.)

30.B This is a straight-forward reformulation of 30.A.

30.C No; see 30.D, cf. 30.1.
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30.D No, this is almost always wrong (see 30.1 and 30.2). Here is the
simplest example. Let u(s) = 0 and w(s) = 1 for all s ∈ [0, 1] and v(s) = s.
Then (uv)w(s) = 0 only for s ∈

[

0, 1
4

]

, and u(vw)(s) = 0 for s ∈
[

0, 1
2

]

.

30.E.1 Reformulation: for any three paths u, v, and w such that the
products uv and vw are defined, the paths (uv)w and u(vw) are homotopic.

30.E.2 Let

ϕ(s) =











s
2 if s ∈

[

0, 1
2

]

,

s − 1
4 if s ∈

[

1
2 , 3

4

]

,

2s − 1 if s ∈
[

3
4 , 1

]

.

Verify that ϕ is the required function, i.e., ((uv)w)(ϕ(s)) = u(vw)(s).

30.E.3 Consider the rectilinear homotopy, which is in addition fixed
on {0, 1}.

30.E.4 This follows from 29.I, 30.E.2, and 30.E.3.

30.F See 30.G.

30.G Generally speaking, no; see 30.4.

30.H Let

ϕ(s) =

{

0 if s ∈
[

0, 1
2

]

,

2s − 1 if s ∈
[

1
2 , 1

]

.

Verify that eau = u ◦ ϕ. Since ϕ ∼ idI , we have u ◦ ϕ ∼ u, whence

[ea][u] = [eau] = [u ◦ ϕ] = [u].

30.I See 30.J.

30.J Certainly not.

30.K.1 Consider the map

ϕ(s) =

{

2s if s ∈
[

0, 1
2

]

,

2 − 2s if s ∈
[

1
2 , 1

]

,

30.K.2 Consider the rectilinear homotopy.

30.L Groups are the sets of classes of paths u with u(0) = u(1) = x0,
where x0 is a certain marked point of X, as well as their subgroups.

31.A This immediately follows from 30.B, 30.E, 30.H, and 30.K.

31.B See 31◦8x.

31.C If u : I → X is a loop, then there exists a quotient map ũ :
I/{0, 1} → X. It remains to observe that I/{0, 1} ∼= S1.
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31.D If H : S1×I → X is a homotopy of circular loops, then the
formula H ′(s, t) = H(e2πis, t) determines a homotopy H ′ between ordinary
loops.

Homotopies of circular loops are quotient maps of homotopies of or-
dinary loops by the partition of the square induced by the relation (0, t) ∼
(1, t).

31.E This is true because there is a rectilinear homotopy between any
loop in R

n at the origin and a constant loop.

31.F Here is a possible generalization: for each convex (and even star-
shaped) set V ⊂ R

n and any point x0 ∈ V , the fundamental group π1(V, x0)
is trivial.

31.G.1 Let p ∈ Sn
r u(I). Consider the stereographic projection

τ : Sn r p → Rn. The loop v = τ ◦ u is null-homotopic, let h be the
corresponding homotopy. Then H = τ−1 ◦ h is a homotopy joining the loop
u and a constant loop on the sphere.

31.G.2 Such loops certainly exist. Indeed, if a loop u fills the entire
sphere, then so does the loop uu−1, which, however, is null-homotopic.

31.G.4 Let x be an arbitrary point of the sphere. We cover the sphere
by two open sets U = Sn

rx and V = Sn
r{−x}. By Lemma 31.G.3, there

is a sequence of points a1, . . . , aN ∈ I, where 0 = a1 < a2 < . . . < aN−1 <
aN = 1, such that for each i the image u([ai, ai+1]) is entirely contained in
U or in V . Since each of these sets is homeomorphi to R

n, where any two
paths with the same starting and ending points are homotopic, it follows
that each of the restrictions u|[ai,ai+1] is homotopic to a path the image of
which is, e.g., an “arc of a great circle” of Sn. Thus, the path u is homotopic
to a path the image of which does not fill the sphere, and even is nowhere
dense.

31.G.5 This immediately follows from Lemma 31.G.4.

31.G.6 1) This is immediate. 2) The assumption n ≥ 2 was used only
in Lemma 31.G.4.

31.H Take a loop u : I → X × Y at the point (x0, y0) to the pair of
loops in X and Y that are the components of u: u1 = prX ◦u and u2 =
prY ◦u. By assertion 29.I, the loops u and v are homotopic iff u1 ∼ v1 and
u2 ∼ v2. Consequently, taking the class of the loop u to the pair ([u1], [u2]),
we obtain a bijection between the fundamental group π1(X × Y, (x0, y0))
of the product of the spaces and the product π1(X,x0) × π1(Y, y0) of the
fundamental groups of the factors. It remains to verify that the bijection
constructed is a homomorphism, which is also obvious because prX ◦(uv) =
(prX ◦u)(prX ◦v).
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31.I (a) =⇒ (b): The space X is simply connected ⇒ each loop in X
is null-homotopic ⇒ each circular loop in X is relatively null-homotopic ⇒
each circular loop in X is freely null-homotopic.
(b) =⇒ (c): By assumption, for an arbitrary map f : S1 → X there is
a homotopy h : S1 × I → X such that h(p, 0) = f(p) and h(p, 1) = x0.
Consequently, there is a continuous map h′ : S1 × I/(S1 × 1) → X such

that h = h′ ◦ pr. It remains to observe that S1 × I/(S1 × 1) ∼= D2.

(c) =⇒ (d): Put g(t, 0) = u1(t), g(t, 1) = u2(t), g(0, t) = x0, and g(1, t) = x1

for t ∈ I. Thus, we mapped the boundary of the square I × I to X. Since
the square is homeomorphi to a disk and its boundary is homeomorphi to
a circle, it follows that the map extends from the boundary to the entire
square. The extension obtained is a homotopy between u1 and u2.
(d) =⇒ (a): This is obvious.

31.J.1 It is reasonable to consider the following implications: (a) =⇒
(b) =⇒ (c) =⇒ (d) =⇒ (a).

31.J.2 It certainly does. Furthermore, since s is null-homotopic, it
follows that the circular loop f is also null-homotopic, and the homotopy is
even fixed at the point 1 ∈ S1. Thus, (a) =⇒ (b).

31.J.3 The assertion suggests the main idea of the proof of the impli-
cation (b) =⇒ (c). A null-homotopy of a certain circular loop f is a map
H : S1 × I → X constant on the upper base of the cylinder. Consequently,
there is a quotient map S1 × I/S1 × 1 → X. It remains to observe that the
quotient space of the cylinder by the upper base is homeomorphi to a disk.

31.J.4 By the definition of a homotopy H : I × I → X between two
paths, the restriction of H to the contour of the square is given. Conse-
quently, the problem of constructing a homotopy between two paths is the
problem of extending a map from the contour of the square to the entire
square.

31.J.5 All that remains to observe for the proof of the implication
(c) =⇒ (d), is the following fact: if F : D2 → X is an extension of the circu-
lar loop f , then the formula H(t, τ) = F

(

cos πt, (2τ − 1) sin πt
)

determines
a homotopy between s+ and s−.

31.J In order to prove the theorem, it remains to prove the implication
(d) =⇒ (a). Let us state this assertion without using the notion of circular
loop. Let s : I → X be a loop. Put s+(t) = s(2t) and s−(t) = s(1 − 2t).
Thus, we must prove that if the paths s+ and s− are homotopic, then the
loop s is null-homotopic. Try to prove this on your own.

31.Ax The associativity of ⊙ follows from that of the multiplication
in G; the unity in the set Ω(G, 1) of all loops is the constant loop at the
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unity of the group; the element inverse to the loop u is the path v, where

v(s) =
(

u(s)
)−1

.

31.Bx.1 Verify that (ue1) ⊙ (e1v) = uv.

31.Bx We prove that if u ∼ u1, then u⊙v ∼ u1⊙v. For this purpose it
suffices to check that if h is a homotopy between u and u1, then the formula
H(s, t) = h(s, t)v(s) determines a homotopy between u ⊙ v and u1 ⊙ v.
Further, since ue1 ∼ u and e1v ∼ v, we have uv = (ue1) ⊙ (e1v) ∼ u ⊙ v,
therefore, the paths uv and u ⊙ v lie in one homotopy class. Consequently,
the operation ⊙ induces the standard group operation in the set of homotopy
classes of paths.

31.Cx It is sufficient to prove that uv ∼ vu, which fact follows from
the following chain:

uv = (ue1) ⊙ (e1v) ∼ u ⊙ v ∼ (e1u) ⊙ (ve1) = vu.

31.Dx This group is also trivial. The proof is similar to that of asser-
tion 31.E.

32.A Indeed, if α = [u] and β = [v], then

Ts(αβ) = σ−1αβσ = σ−1ασσ−1βσ = Ts(α)Ts(β).

32.B Indeed,

Tuv(α) = [uv]−1α[uv] = [v]−1[u]−1α[u][v] = Tv

(

Tu(α)
)

.

32.C By the definition of translation along a path, the homomorphism
Ts depends only on the homotopy class of s.

32.D This is so because Tea
([u]) = [eauea] = [u].

32.E Since s−1s ∼ ex1
, 32.B–32.D imply that

Ts−1 ◦ Ts = Ts−1s = Tex1
= idπ1(X,x1) .

Similarly, we have Ts ◦ Ts−1 = idπ1(X,x0), whence Ts−1 = T−1
s .

32.F By 32.E, the homomorphism Ts has an inverse and, consequently,
is an isomorphism.

32.G If x0 and x1 lie in one path-connected component, then they are
joined by a path s. By 32.F, Ts : π1(X,x0) → π1(X,x1) is an isomorphism.

32.H This immediately follows from Theorem 32.G.

32.I This directly follows from the definition of Ts.

32.J Assume that the translation isomorphism does not depend
on the path. In particular, the isomorphism of translation along any loop
at x0 is trivial. Consider an arbitrary element β ∈ π1(X,x0) and a loop
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s in the homotopy class β. By assumption, β−1αβ = Ts(α) = α for each
α ∈ π1(X,x0). Therefore, αβ = βα for any elements α, β ∈ π1(X,x0), which
precisely means that the group π1(X,x0) is Abelian.

Consider two paths s1 and s2 joining x0 and x1. Since T
s1s−1

2

=

T−1
s2

◦Ts1
, it follows that Ts1

= Ts2
iff T

s1s−1

2

= idπ1(X,x0). Let β ∈ π1(X,x0)

be the class of the loop s1s
−1
2 . If the group π1(X,x0) is Abelian, then

T
s1s−1

2

(α) = β−1αβ = α, whence T
s1s−1

2

= id, and so Ts1
= Ts2

.

32.Ax Let u be a loop at s(0). The formula H(τ, t) = u(τ)s(0)−1s(1)
determines a free homotopy between u and the loop Ls(0)−1s(1)(u) such

that H(0, t) = H(1, t) = s(t). Therefore, by 32.2, the loops Ls(0)−1s(1)(u)

and s−1us are homotopic, whence Ts =
(

Ls(0)−1s(1)

)

∗
. The equality for

Rs(0)−1s(1) is proved in a similar way.

32.Bx By 32.Ax, we have Ts = (Le)∗ = idπ1(X,x0) for each loop s at x0.

Therefore, if β is the class of the loop s, then Ts(α) = β−1αβ = α, whence
αβ = βα.


