
Chapter VII

Covering Spaces and

Calculation of

Fundamental Groups

33. Covering Spaces

33◦1. Definition of Covering

Let X, B topological spaces, p : X → B a continuous map. Assume that
p is surjective and each point of B possesses a neighborhood U such that
the preimage p−1(U) of U is a disjoint union of open sets Vα and p maps
each Vα homeomorphically onto U . Then p : X → B is a covering (of B),
the space B is the base of this covering, X is the covering space for B and
the total space of the covering. Neighborhoods like U are said to be trivially

covered . The map p is a covering map or covering projection.

33.A. Let B be a topological space and F be a discrete space. Prove that
the projection prB : B × F → B is a covering.

33.1. If U ′ ⊂ U ⊂ B and the neighborhood U is trivially covered, then the
neighborhood U ′ is also trivially covered.

The following statement shows that in a certain sense any covering lo-
cally is organized as the covering of 33.A.

33.B. A continuous surjective map p : X → B is a covering iff for each point
a of B the preimage p−1(a) is discrete and there exist a neighborhood U of a
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232 VII. Coversing Spaces

and a homeomorphism h : p−1(U) → U×p−1(a) such that p|p−1(U) = prU ◦h.

Here, as usual, prU : U × p−1(a) → U .

However, the coverings of 33.A are not interesting. They are said to be
trivial . Here is the first really interesting example.

33.C. Prove that R → S1 : x 7→ e2πix is a covering.

To distinguish the most interesting examples, a covering with a con-
nected total space is called a covering in a narrow sense. Of course, the
covering of 33.C is a covering in a narrow sense.

33◦2. More Examples

33.D. R
2 → S1 × R : (x, y) 7→ (e2πix, y) is a covering.

33.E. Prove that if p : X → B and p′ : X ′ → B′ are coverings, then so is
p × p′ : X × X ′ → B × B′.

If p : X → B and p′ : X ′ → B′ are two coverings, then p×p′ : X×X ′ →
B × B′ is the product of the coverings p and p′. The first example of the
product of coverings is presented in 33.D.

33.F. C → C r 0 : z 7→ ez is a covering.

33.2. Riddle. In what sense the coverings of 33.D and 33.F are the same? Define
an appropriate equivalence relation for coverings.

33.G. R
2 → S1 × S1 : (x, y) 7→ (e2πix, e2πiy) is a covering.

33.H. For any positive integer n, the map S1 → S1 : z 7→ zn is a covering.

33.3. Prove that for each positive integer n the map C r 0 → C r 0 : z 7→ zn is a
covering.

33.I. For any positive integers p and q, the map S1 × S1 → S1 × S1 :
(z,w) 7→ (zp, wq) is a covering.

33.J. The natural projection Sn → RPn is a covering.
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33.K. Is (0, 3) → S1 : x 7→ e2πix a covering? (Cf. 33.14.)

33.L. Is the projection R
2 → R : (x, y) 7→ x a covering? Indeed, why

is not an open interval (a, b) ⊂ R a trivially covered neighborhood: its
preimage (a, b) × R is the union of open intervals (a, b) × {y}, which are
homeomorphically projected onto (a, b) by the projection (x, y) 7→ x?

33.4. Find coverings of the Möbius strip by a cylinder.

33.5. Find nontrivial coverings of Möbius strip by itself.

33.6. Find a covering of the Klein bottle by a torus. Cf. Problem 21.14.

33.7. Find coverings of the Klein bottle by the plane R
2 and the cylinder S1 ×R,

and a nontrivial covering of the Klein bottle by itself.

33.8. Describe explicitly the partition of R
2 into preimages of points under this

covering.

33.9*. Find a covering of a sphere with any number of crosscaps by a sphere
with handles.

33◦3. Local Homeomorphisms versus Coverings

33.10. Any covering is an open map.1

A map f : X → Y is a local homeomorphism if each point of X has a neighbor-
hood U such that the image f(U) is open in Y and the submap ab(f) : U → f(U)
is a homeomorphism.

33.11. Any covering is a local homeomorphism.

33.12. Find a local homeomorphism which is not a covering.

33.13. Prove that the restriction of a local homeomorphism to an open set is a
local homeomorphism.

33.14. For which subsets of R is the restriction of the map of Problem 33.C a
covering?

33.15. Find a nontrivial covering X → B with X homeomorphic to B and prove
that it satisfies the definition of a covering.

33◦4. Number of Sheets

Let p : X → B be a covering. The cardinality (i.e., the number of points)
of the preimage p−1(a) of a point a ∈ B is the multiplicity of the covering at
a or the number of sheets of the covering over a.

33.M. If the base of a covering is connected, then the multiplicity of the
covering at a point does not depend on the point.

1We remind that a map is open if the image of any open set is open.
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In the case of covering with connected base, the multiplicity is called
the number of sheets of the covering. If the number of sheets is n, then
the covering is n-sheeted , and we talk about an n-fold covering. Of course,
unless the covering is trivial, it is impossible to distinguish the sheets of
it, but this does not prevent us from speaking about the number of sheets.
On the other hand, we adopt the following agreement. By definition, the
preimage p−1(U) of any trivially covered neighborhood U ⊂ B splits into
open subsets: p−1(U) = ∪Vα, such that the restriction p|Vα

: Vα → U is a
homeomorphism. Each of the subsets Vα is a sheet over U .

33.16. What are the numbers of sheets for the coverings from Section 33◦2?

In problems 33.17–33.19 we did not assume that you would rigorously justify
your answers. This will be done below, see problems 39.3–39.6.

33.17. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by the cylinder S1 × I?

33.18. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by itself?

33.19. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by a torus?

33.20. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by itself?

33.21. Construct a d-fold covering of a sphere with p handles by a sphere with
1 + d(p − 1) handles.

33.22. Let p : X → Y and q : Y → Z be coverings. Prove that if q has finitely
many sheets, then q ◦ p : x → Y is a covering.

33.23*. Is the hypothesis of finiteness of the number of sheets in Problem 33.22

necessary?

33.24. Let p : X → B be a covering with compact base B. 1) Prove that if X is
compact, then the covering is finite-sheeted. 2) If B is Hausdorff and the covering
is finite-sheeted, then X is compact.

33.25. Let X be a topological space presentable as the union of two open con-
nected sets U and V . Prove that if the intersection U ∩ V is disconnected, then
X has a connected infinite-sheeted covering.

33◦5. Universal Coverings

A covering p : X → B is universal if X is simply connected. The appear-
ance of the word universal in this context is explained below in Section 39.

33.N. Which coverings of the problems stated above in this section are
universal?
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34. Theorems on Path Lifting

34◦1. Lifting

Let p : X → B and f : A → B be arbitrary maps. A map g : A → X

such that p◦g = f is said to cover f or be a lifting of f . Various topological
problems can be phrased in terms of finding a continuous lifting of some
continuous map. Problems of this sort are called lifting problems. They
may involve additional requirements. For example, the desired lifting must
coincide with a lifting already given on some subspace.

34.A. The identity map S1 → S1 does not admit a continuous lifting with
respect to the covering R → S1 : x 7→ e2πix. (In other words, there exists no

continuous map g : S1 → R such that e2πig(x) = x for x ∈ S1.)

34◦2. Path Lifting

34.B Path Lifting Theorem. Let p : X → B be a covering, x0 ∈ X,
b0 ∈ B be points such that p(x0) = b0. Then for any path s : I → B starting
at b0 there exists a unique path s̃ : I → X starting at x0 and being a lifting
of s. (In other words, there exists a unique path s̃ : I → X with s̃(0) = x0

and p ◦ s̃ = s.)

We can also prove a more general assertion than Theorem 34.B: see Prob-
lems 34.1–34.3.

34.1. Let p : X → B be a trivial covering. Then for any continuous map f of any

space A to B there exists a continuous lifting f̃ : A → X.

34.2. Let p : X → B be a trivial covering and x0 ∈ X, b0 ∈ B be points such that
p(x0) = b0. Then for any continuous map f of a space A to B mapping a point

a0 to b0, a continuous lifting f̃ : A → X with f̃(a0) = x0 is unique.

34.3. Let p : X → B be a covering, A a connected and locally connected space. If
f, g : A → X are two continuous maps coinciding at some point and p ◦ f = p ◦ g,
then f = g.

34.4. If we replace x0, b0, and a0 in Problem 34.2 by pairs of points, then the

lifting problem may happen to have no solution f̃ with f̃(a0) = x0. Formulate a
condition necessary and sufficient for existence of such a solution.

34.5. What goes wrong with the Path Lifting Theorem 34.B for the local home-
omorphism of Problem 33.K?

34.6. Consider the covering C → C r 0 : z 7→ ez. Find liftings of the paths
u(t) = 2 − t and v(t) = (1 + t)e2πit and their products uv and vu.
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34◦3. Homotopy Lifting

34.C Path Homotopy Lifting Theorem. Let p : X → B be a covering,
x0 ∈ X, b0 ∈ B be points such that p(x0) = b0. Let u, v : I → B be paths
starting at b0 and ũ, ṽ : I → X be the lifting paths for u, v starting at x0.
If the paths u and v are homotopic, then the covering paths ũ and ṽ are
homotopic.

34.D Corollary. Under the assumptions of Theorem 34.C, the covering
paths ũ and ṽ have the same final point (i.e., ũ(1) = ṽ(1)).

Notice that the paths in 34.C and 34.D are assumed to share the initial
point x0. In the statement of 34.D, we emphasize that then they also share
the final point.

34.E Corollary of 34.D. Let p : X → B be a covering and s : I → B be
a loop. If there exists a lifting s̃ : I → X of s with s̃(0) 6= s̃(1) (i.e., there
exists a covering path which is not a loop), then s is not null-homotopic.

34.F. If a path-connected space B has a nontrivial path-connected covering
space, then the fundamental group of B is nontrivial.

34.7. Prove that any covering p : X → B with simply connected B and path
connected X is a homeomorphism.

34.8. What corollaries can you deduce from 34.F and the examples of coverings
presented above in Section 33?

34.9. Riddle. Is it really important in the hypothesis of Theorem 34.C that u

and v are paths? To what class of maps can you generalize this theorem?
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35. Calculation of Fundamental Groups

Using Universal Coverings

35◦1. Fundamental Group of Circle

For an integer n, denote by sn the loop in S1 defined by the formula
sn(t) = e2πint. The initial point of this loop is 1. Denote the homotopy class
of s1 by α. Thus, α ∈ π1(S

1, 1).

35.A. The loop sn represents αn ∈ π1(S
1, 1).

35.B. Find the paths in R starting at 0 ∈ R and covering the loops sn with
respect to the universal covering R → S1.

35.C. The homomorphism Z → π1(S
1, 1) : n 7→ αn is an isomorphism.

35.C.1. The formula n 7→ αn determines a homomorphism Z → π1(S
1, 1).

35.C.2. Prove that a loop s : I → S1 starting at 1 is homotopic to sn if the
path s̃ : I → R covering s and starting at 0 ∈ R ends at n ∈ R (i.e., s̃(1) = n).

35.C.3. Prove that if the loop sn is null-homotopic, then n = 0.

35.1. Find the image of the homotopy class of the loop t 7→ e2πit2 under the
isomorphism of Theorem 35.C.

Denote by deg the isomorphism inverse to the isomorphism of Theorem 35.C.

35.2. For any loop s : I → S1 starting at 1 ∈ S1, the integer deg([s]) is the final
point of the path starting at 0 ∈ R and covering s.

35.D Corollary of Theorem 35.C. The fundamental group of (S1)n is
a free Abelian group of rank n (i.e., isomorphic to Zn).

35.E. On torus S1 × S1 find two loops whose homotopy classes generate
the fundamental group of the torus.

35.F Corollary of Theorem 35.C. The fundamental group of punctured
plane R

2
r 0 is an infinite cyclic group.

35.3. Solve Problems 35.D – 35.F without reference to Theorems 35.C and 31.H,
but using explicit constructions of the corresponding universal coverings.

35◦2. Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic group.
It is calculated in the previous subsection since the projective line is a circle.
The zero-dimensional projective space is a point, hence its fundamental
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group is trivial. Now we calculate the fundamental groups of projective
spaces of all other dimensions.

Let n ≥ 2, and let and l : I → RPn be a loop covered by a path
l̃ : I → Sn which connects two antipodal points of Sn, say the poles P+ =
(1, 0, . . . , 0) and P− = (−1, 0, . . . , 0). Denote by λ the homotopy class of l.
It is an element of π1(RPn, (1 : 0 : · · · : 0)).

35.G. For any n ≥ 2 group π1(RPn, (1 : 0 : · · · : 0)) is a cyclic group of
order 2. It consists of two elements: λ and 1.

35.G.1 Lemma. Any loop in RPn at (1 : 0 : · · · : 0) is homotopic either to l

or constant. This depends on whether the covering path of the loop connects the
poles P+ and P

−
, or is a loop.

35.4. Where did we use the assumption n ≥ 2 in the proofs of Theorem 35.G and
Lemma 35.G.1 ?

35◦3. Fundamental Group of Bouquet of Circles

Consider a family of topological spaces {Xα}. In each of the spaces, let
a point xα be marked. Take the disjoint sum

⊔
α Xα and identify all marked

points. The resulting quotient space
∨

α Xα is the bouquet of {Xα}. Hence
a bouquet of q circles is a space which is a union of q copies of circle. The
copies meet at a single common point, and this is the only common point
for any two of them. The common point is the center of the bouquet.

Denote the bouquet of q circles by Bq and its center by c. Let u1, . . . ,
uq be loops in Bq starting at c and parameterizing the q copies of circle
comprising Bq. Denote by αi the homotopy class of ui.

35.H. π1(Bq, c) is a free group freely generated by α1, . . . , αq.

35◦4. Algebraic Digression: Free Groups

Recall that a group G is a free group freely generated by its elements
a1, . . . , aq if:

• each element x ∈ G is a product of powers (with positive or negative
integer exponents) of a1, . . . , aq, i.e.,

x = ae1

i1
ae2

i2
. . . aen

in

and

• this expression is unique up to the following trivial ambiguity: we
can insert or delete factors aia

−1
i and a−1

i ai or replace am
i by ar

i a
s
i

with r + s = m.

35.I. A free group is determined up to isomorphism by the number of its
free generators.
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The number of free generators is the rank of the free group. For a
standard representative of the isomorphism class of free groups of rank q,
we can take the group of words in an alphabet of q letters a1, . . . , aq and their

inverses a−1
1 , . . . , a−1

q . Two words represent the same element of the group iff
they can be obtained from each other by a sequence of insertions or deletions
of fragments aia

−1
i and a−1

i ai. This group is denoted by F(a1, . . . , aq), or
just Fq, when the notation for the generators is not to be emphasized.

35.J. Each element of F(a1, . . . , aq) has a unique shortest representative.
This is a word without fragments that could have been deleted.

The number l(x) of letters in the shortest representative of an element
x ∈ F(a1, . . . , aq) is the length of x. Certainly, this number is not well defined
unless the generators are fixed.

35.5. Show that an automorphism of Fq can map x ∈ Fq to an element with
different length. For what value of q does such an example not exist? Is it possible
to change the length in this way arbitrarily?

35.K. A group G is a free group freely generated by its elements a1, . . . ,
aq iff every map of the set {a1, . . . , aq} to any group X extends to a unique
homomorphism G → X.

Theorem 35.K is sometimes taken as a definition of a free group. (Defi-
nitions of this sort emphasize relations among different groups, rather than
the internal structure of a single group. Of course, relations among groups
can tell everything about “internal affairs” of each group.)

Now we can reformulate Theorem 35.H as follows:

35.L. The homomorphism

F(a1, . . . , aq) → π1(Bq, c)

taking ai to αi for i = 1, . . . , q is an isomorphism.

First, for the sake of simplicity we restrict ourselves to the case where
q = 2. This will allow us to avoid superfluous complications in notation
and pictures. This is the simplest case, which really represents the general
situation. The case q = 1 is too special.

To take advantages of this, let us change the notation. Put B = B2,
u = u1, v = u2, α = α1, and β = α2.

Now Theorem 35.L looks as follows:

The homomorphism F(a, b) → π(B, c) taking a to α and b to β is an
isomorphism.

This theorem can be proved like Theorems 35.C and 35.G, provided the
universal covering of B is known.
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35◦5. Universal Covering for Bouquet of Circles

Denote by U and V the points antipodal to c on the circles of B. Cut
B at these points, removing U and V and putting instead each of them two
new points. Whatever this operation is, its result is a cross K, which is the
union of four closed segments with a common endpoint c. There appears a
natural map P : K → B that takes the center c of the cross to the center c

of B and homeomorphically maps the rays of the cross onto half-circles of
B. Since the circles of B are parameterized by loops u and v, the halves
of each of the circles are ordered: the corresponding loop passes first one
of the halves and then the other one. Denote by U+ the point of P−1(U)
belonging to the ray mapped by P onto the second half of the circle, and
by U− the other point of P−1(U). We similarly denote points of P−1(V ) by
V + and V −.

U V
U+

U−

U+

U−

∼=

U+

U−

V +

V −

The restriction of P to K r{U+, U−, V +, V −} maps this set homeomor-
phically onto B r {U, V }. Therefore P provides a covering of B r {U, V }.
However, it fails to be a covering at U and V : none of these points has a
trivially covered neighborhood. Furthermore, the preimage of each of these
points consists of 2 points (the endpoints of the cross), where P is not even
a local homeomorphism. To eliminate this defect, we can attach a copy of
K at each of the 4 endpoints of K and extend P in a natural way to the
result. But then 12 new endpoints appear at which the map is not a local
homeomorphism. Well, we repeat the trick and recover the property of be-
ing a local homeomorphism at each of the 12 new endpoints. Then we do
this at each of the 36 new points, etc. But if we repeat this infinitely many
times, all bad points become nice ones.2

35.M. Formalize the construction of a covering for B described above.

2This sounds like a story about a battle with Hydra, but the happy ending demonstrates that
modern mathematicians have a magic power of the sort that the heros of myths and tales could not
even dream of. Indeed, we meet a Hydra K with 4 heads, chop off all the heads, but, according to
the old tradition of the genre, 3 new heads appear in place of each of the original heads. We chop
them off, and the story repeats. We do not even try to prevent this multiplication of heads. We
just chop them off. But contrary to the real heros of tales, we act outside of Time and hence have
no time limitations. Thus after infinite repetitions of the exercise with an exponentially growing
number of heads we succeed! No heads left!

This is a typical success story about an infinite construction in mathematics. Sometimes, as
in our case, such a construction can be replaced by a finite one, but dealing with infinite objects.
However, there are important constructions in which an infinite fragment is unavoidable.
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Consider F(a, b) as a discrete topological space. Take K × F(a, b). It
can be thought of as a collection of copies of K enumerated by elements of
F(a, b). Topologically this is a disjoint sum of the copies because F(a, b) is
equipped with discrete topology. In K × F(a, b), we identify points (U−, g)
with (U+, ga) and (V −, g) with (V +, gb) for each g ∈ F(a, b). Denote the
resulting quotient space by X.

35.N. The composition of the projection K ×F(a, b) → K and P : K → B

determines a continuous quotient map p : X → B.

35.O. p : X → B is a covering.

35.P. X is path-connected. For any g ∈ F(a, b), there exists a path con-
necting (c, 1) with (c, g) and covering the loop obtained from g by replacing
a with u and b with v.

35.Q. X is simply connected.

35◦6. Fundamental Groups of Finite Topological Spaces

35.6. Prove that if a three-point space X is path-connected, then X is simply
connected (cf. 31.7).

35.7. Consider a topological space X = {a, b, c, d} with topology determined by
the base {{a}, {c}, {a, b, c}, {c, d, a}}. Prove that X is path-connected, but not
simply connected.

35.8. Calculate π1(X).

35.9. Let X be a finite topological space with nontrivial fundamental group. Let
n0 be the least possible cardinality of X. 1) Find n0. 2) What nontrivial groups
arise as fundamental groups of n0-point spaces?

35.10. 1) Find a finite topological space with non-Abelian fundamental group.
2) What is the least possible cardinality of such a space?

35.11*. Let a topological space X be the union of two open path-connected sets
U and V . Prove that if U ∩ V has at least three connected components, then the
fundamental group of X is non-Abelian and, moreover, admits an epimorphism
onto a free group of rank 2.

35.12*. Find a finite topological space with fundamental group isomorphic to
Z2.
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Proofs and Comments

33.A Let us show that the set B itself is trivially covered. Indeed,
(
prB

)
−1

(B) = X =
⋃

y∈F (B × y), and since the topology in F is discrete, it
follows that each of the sets B × y is open in the total space of the covering,
and the restriction of prB to each of them is a homeomorphism.

33.B We construct a homeomorphism h : p−1(U) → U ×
p−1(a) for an arbitrary trivially covered neighborhood U ⊂ B of a. By
the definition of a trivially covered neighborhood, we have p−1(U) =

⋃
Uα.

Let x ∈ p−1(U), consider an open sets Uα containing x and take x to the
pair (p(x), c), where {c} = p−1(a) ∩ Uα. It is clear that the correspondence
x 7→ (p(x), c) determines a homeomorphism h : p−1(U) → U × p−1(a).

By assertion 33.1, U is a trivially covered neighborhood, hence, p :
X → B is a covering.

33.C For each point z ∈ S1, the set Uz = S1
r {−z} is a trivially

covered neighborhood of z. Indeed, let z = e2πix. Then the preimage of Uz

is the union
⋃

k∈Z
(x + k − 1

2 , x + k + 1
2), and the restriction of the covering

to each of the above intervals is a homeomorphism.

33.D The product (S1 r{−z})×R is a trivially covered neighborhood
of a point (z, y) ∈ S1 × R; cf. 33.E.

33.E Verify that the product of trivially covered neighborhoods of
points b ∈ B and b′ ∈ B′ is a trivially covered neighborhood of the point
(b, b′) ∈ B × B′.

33.F Consider the diagram

R
2 h

−−−−→ C

q

y
yp

S1 × R
g

−−−−→ C r 0,

where g(z, x) = zex, h(x, y) = y + 2πix, and q(x, y) = (e2πix, y). The equal-
ity g(q(x, y)) = e2πix · ey = ey+2πix = p(h(x, y)) implies that the diagram is
commutative. Clearly, g and h are homeomorphisms. Since q is a covering
by 33.D, p is also a covering.

33.G By 33.E, this assertion follows from 33.C. Certainly, it is not
difficult to prove it directly. The product (S1

r {−z}) × (S1
r {−z′}) is a

trivially covered neighborhood of the point (z, z′) ∈ S1 × S1.

33.H Let z ∈ S1. The preimage −z under the projection consists of
n points, which partition the covering space into n arcs, and the restriction
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of the projection to each of them determines a homeomorphism of this arc
onto the neighborhood S1

r {−z} of z.

33.I By 33.E, this assertion follows from 33.H.

33.J The preimage of a point y ∈ RPn is a pair {x,−x} ⊂ Sn of
antipodal points. The plane passing through the center of the sphere and
orthogonal to the vector x splits the sphere into two open hemispheres, each
of which is homeomorphially projected to a neighborhood (homeomorphi to
R

n) of the point y ∈ RPn.

33.K No, it is not, because the point 1 ∈ S1 has no trivially covered
neighborhood.

33.L The open intervals mentioned in the statement are not open
subsets of the plane. Furthermore, since the preimage of any interval is a
connected set, it cannot be split into disjoint open subsets at all.

33.M Prove that the definition of a covering implies that the set of the
points in the base with preimage of prescribed cardinality is open and use
the fact that the base of the covering is connected.

33.N Those coverings where the covering space is R
1, R

2, R
n

r 0 with
n ≥ 3, and Sn with n ≥ 2, i.e., a simply connected space.

34.A Assume that there exists a lifting g of the identity map S1 → S1;
this is a continuous injection S1 → R. We show that there are no such
injections. Let g(S1) = [a, b]. The Intermediate Value Theorem implies
that each point x ∈ (a, b) is the image of at least two points of the circle.
Consequently, g is not an injection.

34.B Cover the base by trivially covered neighborhoods and partition
the segment [0, 1] by points 0 = a0 < a1 < . . . < an = 1, such that the
image s([ai, ai+1]) is entirely contained in one of the trivially covered neigh-
borhoods; s([ai, ai+1]) ⊂ Ui, i = 0, 1, . . . , n − 1. Since the restriction of the
covering to p−1(U0) is a trivial covering and f([a0, a1]) ⊂ U0, there exists
a lifting of s|[a0,a1] such that s̃(a0) = x0, let x1 = s̃(a1). Similarly, there
exists a unique lifting s̃|[a1,a2] such that s̃(a1) = x1; let x2 = s̃(a2), and so
on. Thus, there exists a lifting s̃ : I → X. Its uniqueness is obvious. If you
do not agree, use induction.

34.C Let h : I×I → B be a homotopy between the paths u and v, thus,
h(τ, 0) = u(τ), h(τ, 1) = v(τ), h(0, t) = b0, and h(1, t) = b1 ∈ B. We show

that there exists a map h̃ : I×I → X covering h and such that h(0, 0) = x0.
The proof of the existence of the covering homotopy is similar to that of the
Path Lifting Theorem. We subdivide the square I × I into smaller squares
such that the h-image of each of them is contained in a certain trivially
covered neighborhood in B. The restriction hk,l of the homotopy h to each
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of the “little” squares Ik,l is covered by the corresponding map h̃k,l. In
order to obtain a homotopy covering h, we must only ensure that these
maps coincide on the intersections of these squares. By 34.3, it suffices to
require that these maps coincide at least at one point. Let us make the

first step: let h(I0,0) ⊂ Ub0 and let h̃0,0 : I0,0 → X be a covering map

such that h̃0,0(a0, c0) = x0. Now we put b1 = h(a1, c0) and x1 = h̃(a1, c0).

There is a map h̃1,0 : I1,0 → X covering h|I1,0
such that h̃1,0(a1, c0) = x1.

Proceeding in this way, we obtain a map h̃ defined on the entire square.

It remains to verify that h̃ is a homotopy of paths. Consider the covering

path ũ : t 7→ h̃(0, t). Since p ◦ ũ is a constant path, the path ũ must also

be constant, whence h̃(0, t) = x0. Similarly, h̃(1, t) = x1 is a marked point

of the covering space. Therefore, h̃ is a homotopy of paths. In conclusion,
we observe that the uniqueness of this homotopy follows, once more, from
Lemma 34.3.

34.D Formally speaking, this is indeed a corollary, but actually we
already proved this when proving Theorem 34.C.

34.E A constant path is covered by a constant path. By 34.D, each
null-homotopic loop is covered by a loop.

35.A Consider the paths s̃n : I → R : t 7→ nt, s̃n−1 : I → R : t 7→
(n− 1)t, and s̃1 : I → R : t 7→ n− 1+ t covering the paths sn, sn−1, and s1,
respectively. Since the product s̃n−1s̃1 is defined and has the same starting
and ending points as the path s̃n, we have s̃n ∼ s̃n−1s̃1, whence sn ∼ sn−1s1.
Therefore, [sn] = [sn−1]α. Reasoning by induction, we obtain the required
equality [sn] = αn.

35.B See the proof of assertion 35.A: this is the path defined by the
formula s̃n(t) = nt.

35.C By 35.C.1, the map in question is indeed a well-defined homo-
morphism. By 35.C.2, it is an epimorphism, and by 35.C.3 it is a monomor-
phism. Therefore, it is an isomorphism.

35.C.1 If n 7→ αn and k 7→ αk, then n + k 7→ αn+k = αn · αk.

35.C.2 Since R is simply connected, the paths s̃ and s̃n are homotopic,
therefore, the paths s and sn are also homotopic, whence [s] = [sn] = αn.

35.C.3 If n 6= 0, then the path s̃n ends at the point n, hence, it is not
a loop. Consequently, the loop sn is not null-homotopic.
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35.D This follows from the above computation of the fundamental
group of the circle and assertion 31.H:

π1(S
1 × . . . × S1

︸ ︷︷ ︸
n factors

, (1, 1, . . . , 1)) ∼= π1(S
1, 1) × . . . × π1(S

1, 1)︸ ︷︷ ︸
n factors

∼= Z
n.

35.E Let S1×S1 = {(z,w) : |z| = 1, |w| = 1} ⊂ C×C. The generators
of π1(S

1 × S1, (1, 1)) are the loops s1 : t 7→ (e2πit, 1) and s2 : t 7→ (1, e2πit).

35.F Since R2 r 0 ∼= S1 × R, we have π1(R
2 r 0, (1, 0)) ∼= π1(S

1, 1) ×
π1(R, 1) ∼= Z.

35.G.1 Let u be a loop in RPn, and let ũ be the covering u the path
in Sn. For n ≥ 2, the sphere Sn is simply connected, and if ũ is a loop, then
ũ and hence also u are null-homotopic. Now if ũ is not a loop, then, once

more since Sn is simply connected, we have ũ ∼ l̃, whence u ∼ l.

35.G By 35.G.1, the fundamental group consists of two elements, there-
fore, it is a cyclic group of order two.

35.H See 35◦5.

35.M See the paragraph following the present assertion.

35.N This obviously follows from the definition of P .

35.O This obviously follows from the definition of p.

35.P Use induction.

35.Q Use the fact that the image of any loop, as a compact set, inter-
sects only a finite number of the segments constituting the covering space
X, and use induction on the number of such segments.


