
Chapter VIII

Fundamental Group

and Maps

36. Induced Homomorphisms

and Their First Applications

36◦1. Homomorphisms Induced by a Continuous Map

Let f : X → Y be a continuous map of a topological space X to a
topological space Y . Let x0 ∈ X and y0 ∈ Y be points such that f(x0) = y0.
The latter property of f is expressed by saying that f maps pair (X,x0) to
pair (Y, y0) and writing f : (X,x0) → (Y, y0).

Consider the map f# : Ω(X,x0) → Ω(Y, y0) : s 7→ f ◦ s. This map
assigns to a loop its composition with f .

36.A. f# maps homotopic loops to homotopic loops.

Therefore, f# induces a map f∗ : π1(X,x0) → π1(Y, y0).

36.B. f∗ : π(X,x0) → π1(Y, y0) is a homomorphism for any continuous
map f : (X,x0) → (Y, y0).

f∗ : π(X,x0) → π1(Y, y0) is the homomorphism induced by f .

36.C. Let f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0) be (continuous)
maps. Then

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) → π1(Z, z0).

36.D. Let f, g : (X,x0) → (Y, y0) be continuous maps homotopic via a
homotopy fixed at x0. Then f∗ = g∗.
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248 VIII. Fundamental Group and Maps

36.E. Riddle. How can we generalize Theorem 36.D to the case of freely
homotopic f and g?

36.F. Let f : X → Y be a continuous map, x0 and x1 points of X connected
by a path s : I → X. Denote f(x0) by y0 and f(x1) by y1. Then the diagram

π1(X,x0)
f∗

−−−−→ π1(Y, y0)

Ts

y
yTf◦s

π1(X,x1)
f∗

−−−−→ π1(Y, y1)

is commutative, i.e., Tf◦s ◦ f∗ = f∗ ◦ Ts.

36.1. Prove that the map Cr 0 → Cr 0 : z 7→ z3 is not homotopic to the identity
map C r 0 → C r 0 : z 7→ z.

36.2. Let X be a subset of R
n. Prove that if a continuous map f : X → Y

extends to a continuous map R
n → Y , then f∗ : π1(X, x0) → π1(Y, f(x0)) is a

trivial homomorphism (i.e., maps everything to unit) for any x0 ∈ X.

36.3. Prove that if a Hausdorff space X contains an open set homeomorphic to
S1 × S1

r (1, 1), then X has infinite noncyclic fundamental group.

36.3.1. Prove that a space X satisfying the conditions of 36.3 can
be continuously mapped to a space with infinite noncyclic fundamen-
tal group in such a way that the map would induce an epimorphism of
π1(X) onto this infinite group.

36.4. Prove that the fundamental group of the space GL(n, C) of complex n×n-
matrices with nonzero determinant is infinite.

36◦2. Fundamental Theorem of Algebra

Our goal here is to prove the following theorem, which at first glance
has no relation to fundamental group.

36.G Fundamental Theorem of Algebra. Every polynomial of positive
degree in one variable with complex coefficients has a complex root.

In more detail:

Let p(z) = zn + a1z
n−1 + · · · + an be a polynomial of degree n > 0 in z

with complex coefficients. Then there exists a complex number w such that
p(w) = 0.

Although it is formulated in an algebraic way and called “The Funda-
mental Theorem of Algebra,” it has no simple algebraic proof. Its proofs
usually involve topological arguments or use complex analysis. This is so
because the field C of complex numbers as well as the field R of reals
is extremely difficult to describe in purely algebraic terms: all customary
constructive descriptions involve a sort of completion construction, cf. Sec-
tion 17.



36. Induced Homomorphisms and Applications 249

36.G.1 Reduction to Problem on a Map. Deduce Theorem 36.G from the
following statement:

For any complex polynomial p(z) of a positive degree, the zero belongs to
the image of the map C → C : z 7→ p(z). In other words, the formula z 7→ p(z)
does not determine a map C → C r 0.

36.G.2 Estimate of Remainder. Let p(z) = zn + a1z
n−1 + · · · + an be a

complex polynomial, q(z) = zn, and r(z) = p(z) − q(z). Then there exists a
positive real R such that |r(z)| < |q(z)| = Rn for any z with |z| = R

36.G.3 Lemma on Lady with Doggy. (Cf. 29.11.) A lady q(z) and her dog
p(z) walk on the punctured plane C r 0 periodically (i.e., say, with z ∈ S1).
Prove that if the lady does not let the dog to run further than by |q(z)| from
her, then the doggy’s loop S1 → C r 0 : z 7→ p(z) is homotopic to the lady’s
loop S1 → C r 0 : z 7→ q(z).

36.G.4 Lemma for Dummies. (Cf. 29.12.) If f : X → Y is a continuous
map and s : S1 → X is a null-homotopic loop, then f ◦ s : S1 → Y is also
null-homotopic.

36◦3x. Generalization of Intermediate Value Theorem

36.Ax. Riddle. How to generalize Intermediate Value Theorem 12.A to
the case of maps f : Dn → R

n?

36.Bx. Find out whether Intermediate Value Theorem 12.A is equivalent
to the following statement:
Let f : D1 → R

1 be a continuous map. If 0 6∈ f(S0) and the submap
f |S0 : S0 → R

1
r 0 of f induces a nonconstant map π0(S

0) → π0(R
1

r 0),
then there exists a point x ∈ D1 such that f(x) = 0.

36.Cx. Riddle. Suggest a generalization of Intermediate Value Theorem
to maps Dn → R

n which would generalize its reformulation 36.Bx. To do
it, you must give a definition of the induced homomorphism for homotopy
groups.

36.Dx. Let f : Dn → R
n be a continuous map. If f(Sn−1) does not contain

0 ∈ Rn and the submap f |Sn−1 : Sn−1 → Rn r 0 of f induces a nonconstant
map

πn−1(S
n−1) → πn−1(R

n
r 0),

then there exists a point x ∈ D1 such that f(x) = 0.

Usability of Theorem 36.Dx is impeded by a condition which is difficult
to check if n > 0. For n = 1, this is still possible in the frameworks of the
theory developed above.

36.1x. Let f : D2 → R
2 be a continuous map. If f(S1) does not contain a ∈ R

2

and the circular loop f |S1 : S1 → R
2

r a determines a nontrivial element of
π1(R

2
r a), then there exists x ∈ D2 such that f(x) = a.
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36.2x. Let f : D2 → R
2 be a continuous map that leaves fixed each point of the

boundary circle S1. Then f(D2) ⊃ D2.

36.3x. Let f : R
2 → R

2 be a continuous map and there exists a real number m
such that |f(x) − x| ≤ m for any x ∈ R

2. Prove that f is a surjection.

36.4x. Let u, v : I → I × I be two paths such that u(0) = (0, 0), u(1) = (1, 1) and
v(0) = (0, 1), v(1) = (1, 0). Prove that u(I) ∩ v(I) 6= ∅.

36.4x.1. Let u, v be as in 36.4x. Prove that 0 ∈ R2 is a value of the
map w : I2 → R

2 : (x, y) 7→ u(x) − v(y).

36.5x. Prove that there exist connected disjoint sets F, G ⊂ I2 such that
(0, 0), (1, 1) ∈ F and (0, 1), (1, 0) ∈ G.

36.6x. Can we require in addition that the sets F and G satisfying the assumptions
of Problem 36.5x be closed?

36.7x. Let C be a smooth simple closed curve on the plane with two inflection
points. Prove that there is a line intersecting C in four points a, b, c, and d with
segments [a, b], [b, c] and [c, d] of the same length.

36◦4x. Winding Number

As we know (see 35.F), the fundamental group of the punctured plane
R

2
r 0 is isomorphic to Z. There are two isomorphisms, which differ by

multiplication by −1. We choose that taking the homotopy class of the loop
t 7→ (cos 2πt, sin 2πt) to 1 ∈ Z. In terms of circular loops, the isomorphism
means that to any loop f : S1 → R

2
r 0 we assign an integer. Roughly

speaking, it is the number of times the loop goes around 0 (with account of
direction).

Now we change the viewpoint in this consideration, and fix the loop, but
vary the point. Let f : S1 → R

2 be a circular loop and let x ∈ R
2

r f(S1).
Then f determines an element in π1(R

2
r x) = Z (here we choose basically
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the same identification of π1(R
2 r x) with Z that takes 1 to the homotopy

class of t 7→ x+ (cos 2πt, sin 2πt)). This number is denoted by ind(f, x) and
called the winding number or index of x with respect to f .

ind=1

ind=2

ind=0

It is also convenient to characterize the number ind(u, x) as follows.
Along with the circular loop u : S1 → R2 rx, consider the map ϕu,x : S1 →

S1 : z 7→ u(z)−x
|u(z)−x| . The homomorphism

(
ϕu,x

)
∗

: π1(S
1) → π1(S

1) takes the

generator α of the fundamental group of the circle to the element kα, where
k = ind(u, x).

36.Ex. The formula x 7→ ind(u, x) defines a locally constant function on
R

2
r u(S1).

36.8x. Let f : S1 → R
2 be a loop and x, y ∈ R

2
r f(S1). Prove that if ind(f, x) 6=

ind(f, y), then any path connecting x and y in R
2 meets f(S1).

36.9x. Prove that if u(S1) is contained in a disk, while a point x is not, then
ind(u, x) = 0.

36.10x. Find the set of values of function ind : R
2

r u(S1) → Z for the following
loops u:
a) u(z) = z; b) u(z) = z̄; c) u(z) = z2; d) u(z) = z + z−1 + z2 − z−2

(here z ∈ S1 ⊂ C).

36.11x. Choose several loops u : S1 → R
2 such that u(S1) is a bouquet of two

circles (a “lemniscate”). Find the winding number with respect to these loops for
various points.

36.12x. Find a loop f : S1 → R
2 such that there exist points x, y ∈ R

2
r f(S1)

with ind(f, x) = ind(f, y), but belonging to different connected components of
R

2
r f(S1).

36.13x. Prove that any ray R radiating from x meets f(S1) at least at | ind(f, x)|
points (i.e., the number of points in f−1(R) is not less than | ind(f, x)|).

36.Fx. If u : S1 → R
2 is a restriction of a continuous map F : D2 → R

2

and ind(u, x) 6= 0, then x ∈ F (D2).

36.Gx. If u and v are two circular loops in R
2 with common base point (i. e.,

u(1) = v(1)) and uv is their product, then ind(uv, x) = ind(u, x) + ind(v, x)
for each x ∈ R2 r uv(S1).
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36.Hx. Let u and v be circular loops in R2, and x ∈ R2 r (u(S1) ∪ v(S1)).
If there exists a (free) homotopy ut, t ∈ I connecting u and v such that
x ∈ R

2
r ut(S

1) for each t ∈ I, then ind(u, x) = ind(v, x).

36.Ix. Let u : S1 → C be a circular loop and a ∈ C
2

r u(S1). Then

ind(u, a) =
1

2πi

∫

S1

|u(z) − a|

u(z) − a
dz.

36.Jx. Let p(z) be a polynomial with complex coefficients, R > 0, and let
z0 ∈ C. Consider the circular loop u : S1 → C : z 7→ p(Rz). If z0 ∈
C r u(S1), then the polynomial p(z) − z0 has (counting the multiplicities)
precisely ind(u, z0) roots in the open disk B2

R = {z : |z| < R}.

36.Kx. Riddle. By what can we replace the circular loop u, the domain
BR, and the polynomial p(z) so that the assertion remain valid?

36◦5x. Borsuk–Ulam Theorem

36.Lx One-Dimensional Borsuk–Ulam. For each continuous map f :
S1 → R1 there exists x ∈ S1 such that f(x) = f(−x).

36.Mx Two-Dimensional Borsuk–Ulam. For each continuous map f :
S2 → R2 there exists x ∈ S2 such that f(x) = f(−x).

36.Mx.1 Lemma. If there exists a continuous map f : S2 → R2 such that
f(x) 6= f(−x) for each x ∈ S2, then there exists a continuous map ϕ : RP 2 →
RP 1 inducing a nonzero homomorphism π1(RP

2) → π1(RP
1).

36.14x. Prove that at each instant of time, there is a pair of antipodal points on
the earth’s surface where the pressures and also the temperatures are equal.

Theorems 36.Lx and 36.Mx are special cases of the following general
theorem. We do not assume the reader to be ready to prove Theorem 36.Nx

in the full generality, but is there another easy special case?

36.Nx Borsuk–Ulam Theorem. For each continuous map f : Sn → R
n

there exists x ∈ Sn such that f(x) = f(−x).
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37. Retractions and Fixed Points

37◦1. Retractions and Retracts

A continuous map of a topological space onto a subspace is a retraction

if the restriction of the map to the subspace is the identity map. In other
words, if X is a topological space and A ⊂ X, then ρ : X → A is a retraction
if ρ is continuous and ρ|A = idA.

37.A. Let ρ be a continuous map of a space X onto its subspace A. Then
the following statements are equivalent:

(1) ρ is a retraction,

(2) ρ(a) = a for any a ∈ A,

(3) ρ ◦ in = idA,

(4) ρ : X → A is an extension of the identity map A→ A.

A subspace A of a space X is a retract of X if there exists a retraction
X → A.

37.B. Any one-point subset is a retract.

Two-point set may be a non-retract.

37.C. Any subset of R consisting of two points is not a retract of R.

37.1. If A is a retract of X and B is a retract of A, then B is a retract of X.

37.2. If A is a retract of X and B is a retract of Y , then A × B is a retract of
X × Y .

37.3. A closed interval [a, b] is a retract of R.

37.4. An open interval (a, b) is not a retract of R.

37.5. What topological properties of ambient space are inherited by a retract?

37.6. Prove that a retract of a Hausdorff space is closed.

37.7. Prove that the union of Y -axis and the set {(x, y) ∈ R
2 | x > 0, y = sin 1

x
}

is not a retract of R
2 and, moreover, is not a retract of any of its neighborhoods.

37.D. S0 is not a retract of D1.

The role of the notion of retract is clarified by the following theorem.

37.E. A subset A of a topological space X is a retract of X iff for each space
Y each continuous map A→ Y extends to a continuous map X → Y .
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37◦2. Fundamental Group and Retractions

37.F. If ρ : X → A is a retraction, i : A→ X is the inclusion, and x0 ∈ A,
then ρ∗ : π1(X,x0) → π1(A,x0) is an epimorphism and i∗ : π1(A,x0) →
π1(X,x0) is a monomorphism.

37.G. Riddle. Which of the two statements of Theorem 37.F (about ρ∗ or
i∗) is easier to use for proving that a set A ⊂ X is not a retract of X?

37.H Borsuk Theorem in Dimension 2. S1 is not a retract of D2.

37.8. Is the projective line a retract of the projective plane?

The following problem is more difficult than 37.H in the sense that its solution
is not a straightforward consequence of Theorem 37.F, but rather demands to
reexamine the arguments used in proof of 37.F.

37.9. Prove that the boundary circle of Möbius band is not a retract of Möbius
band.

37.10. Prove that the boundary circle of a handle is not a retract of the handle.

The Borsuk Theorem in its whole generality cannot be deduced like
Theorem 37.H from Theorem 37.F. However, it can be proven using a
generalization of 37.F to higher homotopy groups. Although we do not
assume that you can successfully prove it now relying only on the tools
provided above, we formulate it here.

37.I Borsuk Theorem. The (n − 1)-sphere Sn−1 is not a retract of the
n-disk Dn.

At first glance this theorem seems to be useless. Why could it be inter-
esting to know that a map with a very special property of being a retraction
does not exist in this situation? However, in mathematics nonexistence
theorems are often closely related to theorems that may seem to be more
attractive. For instance, the Borsuk Theorem implies the Brouwer Theorem
discussed below. But prior to this we must introduce an important notion
related to the Brouwer Theorem.

37◦3. Fixed-Point Property

Let f : X → X be a continuous map. A point a ∈ X is a fixed point

of f if f(a) = a. A space X has the fixed-point property if every continuous
map X → X has a fixed point. The fixed point property implies solvability
of a wide class of equations.

37.11. Prove that the fixed point property is a topological property.

37.12. A closed interval [a, b] has the fixed point property.

37.13. Prove that if a topological space has the fixed point property, then so does
each of its retracts.
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37.14. Let X and Y be two topological spaces, x0 ∈ X and y0 ∈ Y . Prove
that X and Y have the fixed point property iff so does their bouquet X ∨ Y =
X ⊔ Y/[x0 ∼ y0].

37.15. Prove that any finite tree (i.e., a connected space obtained from a fi-
nite collection of closed intervals by some identifying of their endpoints such that
deleting of an internal point of each of the segments makes the space disconnected,
see 42◦4x) has the fixed-point property. Is this statement true for infinite trees?

37.16. Prove that R
n with n > 0 does not have the fixed point property.

37.17. Prove that Sn does not have the fixed point property.

37.18. Prove that RP n with odd n does not have the fixed point property.

37.19*. Prove that CP n with odd n does not have the fixed point property.

Information. RPn and CPn with any even n have the fixed point
property.

37.J Brouwer Theorem. Dn has the fixed point property.

37.J.1. Deduce from Borsuk Theorem in dimension n (i.e., from the statement
that Sn−1 is not a retract of Dn) Brouwer Theorem in dimension n (i.e., the
statement that any continuous map Dn → Dn has a fixed point).

37.K. Derive the Borsuk Theorem from the Brouwer Theorem.

The existence of fixed points can follow not only from topological argu-
ments.

37.20. Prove that if f : R
n → R

n is a periodic affine transformation (i.e.,
f ◦ · · · ◦ f
| {z }

p times

= idRn for a certain p), then f has a fixed point.
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38. Homotopy Equivalences

38◦1. Homotopy Equivalence as Map

Let X and Y be two topological spaces, f : X → Y and g : Y → X
continuous maps. Consider the compositions f ◦ g : Y → Y and g ◦ f : X →
X. They would be equal to the corresponding identity maps if f and g were
mutually inverse homeomorphisms. If f ◦ g and g ◦ f are only homotopic
to the identity maps, then f and g are said to be homotopy inverse to each
other. If a continuous map f possesses a homotopy inverse map, then f is
a homotopy invertible map or a homotopy equivalence.

38.A. Prove the following properties of homotopy equivalences:

(1) any homeomorphism is a homotopy equivalence,

(2) a map homotopy inverse to a homotopy equivalence is a homotopy
equivalence,

(3) the composition of two homotopy equivalences is a homotopy equiv-
alence.

38.1. Find a homotopy equivalence that is not a homeomorphism.

38◦2. Homotopy Equivalence as Relation

Two topological spaces X and Y are homotopy equivalent if there exists
a homotopy equivalence X → Y .

38.B. Homotopy equivalence of topological spaces is an equivalence rela-
tion.

The classes of homotopy equivalent spaces are homotopy types. Thus
homotopy equivalent spaces are said to be of the same homotopy type.

38.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.

38.3. Prove that homotopy equivalent spaces have the same number of connected
components.

38.4. Find an infinite series of topological spaces that belong to the same homo-
topy type, but are pairwise not homeomorphic.

38◦3. Deformation Retraction

A retraction ρ : X → A is a deformation retraction if its composition
in ◦ ρ with the inclusion in : A → X is homotopic to the identity idX . If
in ◦ ρ is A-homotopic to idX , then ρ is a strong deformation retraction. If
X admits a (strong) deformation retraction onto A, then A is a (strong)
deformation retract of X.
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38.C. Each deformation retraction is a homotopy equivalence.

38.D. If A is a deformation retract of X, then A and X are homotopy
equivalent.

38.E. Any two deformation retracts of one and the same space are homo-
topy equivalent.

38.F. If A is a deformation retract of X and B is a deformation retract of
Y , then A×B is a deformation retract of X × Y .

38◦4. Examples

38.G. Circle S1 is a deformation retract of R2 r 0.

38.5. Prove that the Möbius strip is homotopy equivalent to a circle.

38.6. Classify letters of Latin alphabet up to homotopy equivalence.

38.H. Prove that a plane with s punctures is homotopy equivalent to a
union of s circles intersecting in a single point.

38.I. Prove that the union of a diagonal of a square and the contour of the
same square is homotopy equivalent to a union of two circles intersecting in
a single point.
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38.7. Prove that a handle is homotopy equivalent to a bouquet of two circles.
(E.g., construct a deformation retraction of the handle to a union of two circles
intersecting in a single point.)

38.8. Prove that a handle is homotopy equivalent to a union of three arcs with
common endpoints (i.e., letter θ).

38.9. Prove that the space obtained from S2 by identification of a two (distinct)
points is homotopy equivalent to the union of a two-sphere and a circle intersecting
in a single point.

38.10. Prove that the space {(p, q) ∈ C : z2 + pz + q has two distinct roots} of
quadratic complex polynomials with distinct roots is homotopy equivalent to the
circle.

38.11. Prove that the space GL(n, R) of invertible n×n real matrices is homotopy
equivalent to the subspace O(n) consisting of orthogonal matrices.

38.12. Riddle. Is there any relation between a solution of the preceding problem
and the Gram–Schmidt orthogonalization? Can the Gram–Schmidt orthogonal-
ization algorithm be considered a deformation retraction?

38.13. Construct the following deformation retractions: (a) R
3

r R
1 → S1; (b)

R
n

rR
m → Sn−m−1; (c) S3

rS1 → S1; (d) Sn
rSm → Sn−m−1 (e) RP n

rRP m →
RP n−m−1.

38◦5. Deformation Retraction versus Homotopy Equivalence

38.J. Spaces of Problem 38.I cannot be embedded one to another. On the
other hand, they can be embedded as deformation retracts in the plane with
two punctures.

Deformation retractions comprise a special type of homotopy equiva-
lences. For example, they are easier to visualize. However, as follows
from 38.J, it may happen that two spaces are homotopy equivalent, but none
of them can be embedded in the other one, and so none of them is homeo-
morphic to a deformation retract of the other one. Therefore, deformation
retractions seem to be insufficient for establishing homotopy equivalences.

However, this is not the case:

38.14*. Prove that any two homotopy equivalent spaces can be embedded as
deformation retracts in the same topological space.

38◦6. Contractible Spaces

A topological space X is contractible if the identity map id : X → X is
null-homotopic.

38.15. Show that R and I are contractible.

38.16. Prove that any contractible space is path-connected.

38.17. Prove that the following three statements about a topological space X are
equivalent:
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(1) X is contractible,
(2) X is homotopy equivalent to a point,
(3) there exists a deformation retraction of X onto a point,
(4) any point a of X is a deformation retract of X,
(5) any continuous map of any topological space Y to X is null-homotopic,
(6) any continuous map of X to any topological space Y is null-homotopic.

38.18. Is it true that if X is a contractible space, then for any topological space
Y

(1) any two continuous maps X → Y are homotopic?
(2) any two continuous maps Y → X are homotopic?

38.19. Find out if the spaces on the following list are contractible:

(1) R
n,

(2) a convex subset of R
n,

(3) a star-shaped subset of R
n,

(4) {(x, y) ∈ R
2 : x2 − y2 ≤ 1},

(5) a finite tree (i.e., a connected space obtained from a finite collection of
closed intervals by some identifying of their endpoints such that delet-
ing of an internal point of each of the segments makes the space discon-
nected, see 42◦4x.)

38.20. Prove that X × Y is contractible iff both X and Y are contractible.

38◦7. Fundamental Group and Homotopy Equivalences

38.K. Let f : X → Y and g : Y → X be homotopy inverse maps, and let
x0 ∈ X and y0 ∈ Y be two points such that f(x0) = y0 and g(y0) = x0 and,
moreover, the homotopies relating f ◦g to idY and g◦f to idX are fixed at y0

and x0, respectively. Then f∗ and g∗ are inverse to each other isomorphisms
between groups π1(X,x0) and π1(Y, y0).

38.L Corollary. If ρ : X → A is a strong deformation retraction, x0 ∈
A, then ρ∗ : π1(X,x0) → π1(A,x0) and in∗ : π1(A,x0) → π1(X,x0) are
mutually inverse isomorphisms.

38.21. Calculate the fundamental group of the following spaces:

(a) R
3

r R
1, (b) R

N
r R

n, (c) R
3

r S1, (d) R
N

r Sn,

(e) S3
r S1, (f) SN

r Sk, (g) RP 3
r RP 1, (h) handle,

(i) Möbius band, (j) sphere with s holes,
(k) Klein bottle with a point re-

moved,
(l) Möbius band with s holes.

38.22. Prove that the boundary circle of the Möbius band standardly embedded
in R

3 (see 21.18) could not be the boundary of a disk embedded in R
3 in such a

way that its interior does not intersect the band.

38.23. 1) Calculate the fundamental group of the space Q of all complex polyno-
mials ax2 + bx + c with distinct roots. 2) Calculate the fundamental group of the
subspace Q1 of Q consisting of polynomials with a = 1 (unital polynomials).

38.24. Riddle. Can you solve 38.23 along the lines of deriving the customary
formula for the roots of a quadratic trinomial?
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38.M. Suppose that the assumptions of Theorem 38.K are weakened as
follows: g(y0) 6= x0 and/or the homotopies relating f ◦ g to idY and g ◦ f
to idX are not fixed at y0 and x0, respectively. How would f∗ and g∗ be
related? Would π1(X,x0) and π1(Y, y0) be isomorphic?
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39. Covering Spaces via Fundamental

Groups

39◦1. Homomorphisms Induced by Covering Projections

39.A. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). Then p∗ :
π1(X,x0) → π1(B, b0) is a monomorphism. Cf. 34.C.

The image of the monomorphism p∗ : π1(X,x0) → π1(B, b0) induced by
the covering projection p : X → B is the group of the covering p with base

point x0.

39.B. Riddle. Is the group of covering determined by the covering?

39.C Group of Covering versus Lifting of Loops. Describe loops in
the base space of a covering, whose homotopy classes belong to the group
of the covering, in terms provided by Path Lifting Theorem 34.B.

39.D. Let p : X → B be a covering, let x0, x1 ∈ X belong to the same
path-component of X, and b0 = p(x0) = p(x1). Then p∗(π1(X,x0)) and
p∗(π1(X,x1)) are conjugate subgroups of π1(B, b0) (i.e., there exists an α ∈
π1(B, b0) such that p∗(π1(X,x1)) = α−1p∗(π1(X,x0))α).

39.E. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). For each
α ∈ π1(B, b0), there exists an x1 ∈ p−1(b0) such that p∗(π1(X,x1)) =
α−1p∗(π1(X,x0))α.

39.F. Let p : X → B be a covering in a narrow sense, G ⊂ π1(B, b0) the
group of this covering with a base point x0. A subgroup H ⊂ π1(B, b0) is a
group of the same covering iff H is conjugate to G.

39◦2. Number of Sheets

39.G Number of Sheets and Index of Subgroup. Let p : X → B be a
covering in a narrow sense with finite number of sheets. Then the number
of sheets is equal to the index of the group of this covering.

39.H Sheets and Right Cosets. Let p : X → B be a covering in a
narrow sense, b0 ∈ B, and x0 ∈ p−1(b0). Construct a natural bijection of
p−1(b0) and the set p∗(π1(X,x0))\π1(B, b0) of right cosets of the group of
the covering in the fundamental group of the base space.

39.1 Number of Sheets in Universal Covering. The number of sheets of a
universal covering equals the order of the fundamental group of the base space.

39.2 Nontrivial Covering Means Nontrivial π1. Any topological space that
has a nontrivial path-connected covering space has a nontrivial fundamental group.
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39.3. What numbers can appear as the number of sheets of a covering of the
Möbius strip by the cylinder S1 × I?

39.4. What numbers can appear as the number of sheets of a covering of the
Möbius strip by itself?

39.5. What numbers can appear as the number of sheets of a covering of the
Klein bottle by torus?

39.6. What numbers can appear as the number of sheets of a covering of the
Klein bottle by itself?

39.7. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by plane R

2?

39.8. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by S1 × R?

39◦3. Hierarchy of Coverings

Let p : X → B and q : Y → B be two coverings, x0 ∈ X, y0 ∈ Y , and
p(x0) = q(y0) = b0. The covering q with base point y0 is subordinate to p
with base point x0 if there exists a map ϕ : X → Y such that q ◦ϕ = p and
ϕ(x0) = y0. In this case, the map ϕ is a subordination.

39.I. A subordination is a covering map.

39.J. If a subordination exists, then it is unique. Cf. 34.B.

Two coverings p : X → B and q : Y → B are equivalent if there exists a
homeomorphism h : X → Y such that p = q ◦h. In this case, h and h−1 are
equivalences.

39.K. If two coverings are mutually subordinate, then the corresponding
subordinations are equivalences.

39.L. The equivalence of coverings is, indeed, an equivalence relation in the
set of coverings with a given base space.

39.M. Subordination determines a nonstrict partial order in the set of
equivalence classes of coverings with a given base.

39.9. What equivalence class of coverings is minimal (i.e., subordinate to all other
classes)?

39.N. Let p : X → B and q : Y → B be coverings, x0 ∈ X, y0 ∈ Y and
p(x0) = q(y0) = b0. If q with base point y0 is subordinate to p with base
point x0, then the group of covering p is contained in the group of covering
q, i.e., p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)).
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39◦4x. Existence of Subordinations

A topological space X is locally path-connected if for each point a ∈ X
and each neighborhood U of a the point a has a path-connected neighbor-
hood V ⊂ U .

39.1x. Find a path connected, but not locally path connected topological space.

39.Ax. Let B be a locally path-connected space, p : X → B and q : Y → B
be coverings in a narrow sense, x0 ∈ X, y0 ∈ Y and p(x0) = q(y0) = b0. If
p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)), then q is subordinate to p.

39.Ax.1. Under the conditions of 39.Ax, if two paths u, v : I → X have the
same initial point x0 and a common final point, then the paths that cover p ◦ u
and p ◦ v and have the same initial point y0 also have the same final point.

39.Ax.2. Under the conditions of 39.Ax, the map X → Y defined by 39.Ax.1
(guess, what this map is!) is continuous.

39.2x. Construct an example proving that the hypothesis of local path connect-
edness in 39.Ax.2 and 39.Ax is necessary.

39.Bx. Two coverings p : X → B and q : Y → B with a common locally
path-connected base are equivalent iff for some x0 ∈ X and y0 ∈ Y with
p(x0) = q(y0) = b0 the groups p∗(π1(X,x0)) and q∗(π1(Y, y0)) are conjugate
in π1(B, b0).

39.3x. Construct an example proving that the assumption of local path connect-
edness of the base in 39.Bx is necessary.

39◦5x. Micro Simply Connected Spaces

A topological space X is micro simply connected if each point a ∈ X has a
neighborhood U such that the inclusion homomorphism π1(U, a) → π1(X,a)
is trivial.

39.4x. Any simply connected space is micro simply connected.

39.5x. Find a micro simply connected, but not simply connected space.

A topological space is locally contractible at point a if each neighborhood
U of a contains a neighborhood V of a such that the inclusion V → U
is null-homotopic. A topological space is locally contractible if it is locally
contractible at each of its points.

39.6x. Any finite topological space is locally contractible.

39.7x. Any locally contractible space is micro simply connected.

39.8x. Find a space which is not micro simply connected.



264 VIII. Fundamental Group and Maps

In the literature, the micro simply connectedness is also called weak local

simply connectedness, while a strong local simply connectedness is the follow-
ing property: any neighborhood U of any point x contains a neighborhood
V such that any loop at x in V is null-homotopic in U .

39.9x. Find a micro simply connected space which is not strong locally simply
connected.

39◦6x. Existence of Coverings

39.Cx. A space having a universal covering space is micro simply connected.

39.Dx Existence of Covering With a Given Group. If a topological
space B is path connected, locally path connected, and micro simply con-
nected, then for any b0 ∈ B and any subgroup π of π1(B, b0) there exists
a covering p : X → B and a point x0 ∈ X such that p(x0) = b0 and
p∗(π1(X,x0)) = π.

39.Dx.1. Suppose that in the assumptions of Theorem 39.Dx there exists a
covering p : X → B satisfying all requirements of this theorem. For each
x ∈ X , describe all paths in B that are p-images of paths connecting x0 to x in
X .

39.Dx.2. Does the solution of Problem 39.Dx.1 determine an equivalence re-
lation in the set of all paths in B starting at b0, so that we obtain a one-to-one
correspondence between the set X and the set of equivalence classes?

39.Dx.3. Describe a topology in the set of equivalence classes from 39.Dx.2
such that the natural bijection between X and this set be a homeomorphism.

39.Dx.4. Prove that the reconstruction of X and p : X → B provided by
problems 39.Dx.1–39.Dx.4 under the assumptions of Theorem 39.Dx determine
a covering whose existence is claimed by Theorem 39.Dx.

Essentially, assertions 39.Dx.1–39.Dx.3 imply the uniqueness of the cov-
ering with a given group. More precisely, the following assertion holds true.

39.Ex Uniqueness of the Covering With a Given Group. Assume
that B is path-connected, locally path-connected, and micro simply connected.
Let p : X → B and q : Y → B be two coverings, and let p∗(π1(X,x0)) =
q∗(π1(Y, y0)). Then the coverings p and q are equivalent, i.e., there exists a
homeomorphism f : X → Y such that f(x0) = y0 and p ◦ f = q.

39.Fx Classification of Coverings Over a Good Space. There is a
one-to-one correspondence between classes of equivalent coverings (in a nar-
row sense) over a path-connected, locally path-connected, and micro simply
connected space B with base point b0, on the one hand, and conjugacy classes
of subgroups of π1(B, b0), on the other hand. This correspondence identifies
the hierarchy of coverings (ordered by subordination) with the hierarchy of
subgroups (ordered by inclusion).
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Under the correspondence of Theorem 39.Fx, the trivial subgroup cor-
responds to a covering with simply connected covering space. Since this
covering subordinates any other covering with the same base space, it is
said to be universal .

39.10x. Describe all coverings of the following spaces up to equivalence and sub-
ordination:

(1) circle S1;
(2) punctured plane R

2
r 0;

(3) Möbius strip;
(4) four point digital circle (the space formed by 4 points, a, b, c, d; with the

base of open sets formed by {a}, {c}, {a, b, c} and {c, d, a})
(5) torus S1 × S1;

39◦7x. Action of Fundamental Group on Fiber

39.Gx Action of π1 on Fiber. Let p : X → B be a covering, b0 ∈ B.
Construct a natural right action of π1(B, b0) on p−1(b0).

39.Hx. When the action in 39.Gx is transitive?

39◦8x. Automorphisms of Covering

A homeomorphism ϕ : X → X is an automorphism of a covering p : X →
B if p ◦ ϕ = p.

39.Ix. Automorphisms of a covering form a group.

Denote the group of automorphisms of a covering p : X → B by Aut(p).

39.Jx. An automorphism ϕ : X → X of covering p : X → B is recovered
from the image ϕ(x0) of any x0 ∈ X. Cf. 39.J.

39.Kx. Any two-fold covering has a nontrivial automorphism.

39.11x. Find a three-fold covering without nontrivial automorphisms.

Let G be a group and H its subgroup. Recall that the normalizer Nr(H)
of H is the subset of G consisting of g ∈ G such that g−1Hg = H. This is
a subgroup of G, which contains H as a normal subgroup. So, Nr(H)/H is
a group.

39.Lx. Let p : X → B be a covering, x0 ∈ X and b0 = p(x0). Con-
struct a map π1(B, b0) → p−1(b0) which induces a bijection of the set
p∗(π1(X,x0))\π1(B, b0) of right cosets onto p−1(b0).

39.Mx. Show that the bijection p∗(π1(X,x0))\π1(B, b0) → p−1(b0) from
39.Lx maps the set of images of a point x0 under all automorphisms of a
covering p : X → B to the group Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)).
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39.Nx. For any covering p : X → B in a narrow sense, there is a natural
injective map Aut(p) to the group Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)). This

map is an antihomomorphism.1

39.Ox. Under assumptions of Theorem 39.Nx, if B is locally path connected,
then the antihomomorphism Aut(p) → Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)) is

bijective.

39◦9x. Regular Coverings

39.Px Regularity of Covering. Let p : X → B be a covering in a narrow
sense, b0 ∈ B, x0 ∈ p−1(b0). The following conditions are equivalent:

(1) p∗
(
π1(X,x0)

)
is a normal subgroup of π1(B, b0);

(2) p∗
(
π1(X,x)

)
is a normal subgroup of π1(B, p(x)) for each x ∈ X;

(3) all groups p∗π1(X,x) for x ∈ p−1(b) are the same;

(4) for any loop s : I → B either every path in X covering s is a loop
(independent on the its initial point) or none of them is a loop;

(5) the automorphism group acts transitively on p−1(b0).

A covering satisfying to (any of) the equivalent conditions of Theorem
39.Px is said to be regular .

39.12x. The coverings R → S1 : x 7→ e2πix and S1 → S1 : z 7→ zn for integer
n > 0 are regular.

39.Qx. The automorphism group of a regular covering p : X → B is nat-
urally anti-isomorphic to the quotient group π1(B, b0)/p∗π1(X,x0) of the

group π1(B, b0) by the group of the covering for any x0 ∈ p−1(b0).

39.Rx Classification of Regular Coverings Over a Good Base.

There is a one-to-one correspondence between classes of equivalent cover-
ings (in a narrow sense) over a path connected, locally path connected, and
micro simply connected space B with a base point b0, on one hand, and
anti-epimorphisms π1(B, b0) → G, on the other hand.

Algebraic properties of the automorphism group of a regular covering
are often referred to as if they were properties of the covering itself. For
instance, a cyclic covering is a regular covering with cyclic automorphism
group, an Abelian covering is a regular covering with Abelian automorphism
group, etc.

1Recall that a map ϕ : G → H from a group G to a group H is an antihomomorphism if
ϕ(ab) = ϕ(b)ϕ(a) for any a, b ∈ G.
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39.13x. Any two-fold covering is regular.

39.14x. Which coverings considered in Problems of Section 33 are regular? Is out
there any nonregular covering?

39.15x. Find a three-fold nonregular covering of a bouquet of two circles.

39.16x. Let p : X → B be a regular covering, Y ⊂ X, C ⊂ B, and let q : Y → C
be a submap of p. Prove that if q is a covering, then this covering is regular.

39◦10x. Lifting and Covering Maps

39.Sx. Riddle. Let p : X → B and f : Y → B be continuous maps.
Let x0 ∈ X and y0 ∈ Y be points such that p(x0) = f(y0). Formulate in
terms of homomorphisms p∗ : π1(X,x0) → π1(B, p(x0)) and f∗ : π1(Y, y0) →

π1(B, f(y0)) a necessary condition for existence of a lifting f̃ : Y → X of f

such that f̃(y0) = x0. Find an example where this condition is not sufficient.
What additional assumptions can make it sufficient?

39.Tx Theorem on Lifting a Map. Let p : X → B be a covering in
a narrow sense and f : Y → B be a continuous map. Let x0 ∈ X and
y0 ∈ Y be points such that p(x0) = f(y0). If Y is a locally path-connected
space and f∗π(Y, y0) ⊂ p∗π(X,x0), then there exists a unique continuous

map f̃ : Y → X such that p ◦ f̃ = f and f̃(y0) = x0.

39.Ux. Let p : X → B and q : Y → C be coverings in a narrow sense and
f : B → C be a continuous map. Let x0 ∈ X and y0 ∈ Y be points such
that fp(x0) = q(y0). If there exists a continuous map F : X → Y such that
fp = qF and F (x0) = y0, then f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0).

39.Vx Theorem on Covering of a Map. Let p : X → B and q : Y → C
be coverings in a narrow sense and f : B → C be a continuous map. Let
x0 ∈ X and y0 ∈ Y be points such that fp(x0) = q(y0). If Y is locally
path connected and f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0), then there exists a unique
continuous map F : X → Y such that fp = qF and F (x0) = y0.

39◦11x. Induced Coverings

39.Wx. Let p : X → B be a covering and f : A → B a continuous map.
Denote by W a subspace of A × X consisting of points (a, x) such that
f(a) = p(x). Let q : W → A be a restriction of A × X → A. Then
q : W → A is a covering with the same number of sheets as p.

A covering q : W → A obtained as in Theorem 39.Wx is said to be
induced from p : X → B by f : A→ B.

39.17x. Represent coverings from problems 33.D and 33.F as induced from R →
S1 : x 7→ e2πix.
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39.18x. Which of the coverings considered above can be induced from the covering
of Problem 35.7?

39◦12x. High-Dimensional Homotopy Groups of Covering Space

39.Xx. Let p : X → B be a covering. Then for any continuous map s :
In → B and a lifting u : In−1 → X of the restriction s|In−1 there exists a
unique lifting of s extending u.

39.Yx. For any covering p : X → B and points x0 ∈ X, b0 ∈ B such
that p(x0) = b0 the homotopy groups πr(X,x0) and πr(B, b0) with r > 1 are
canonically isomorphic.

39.Zx. Prove that homotopy groups of dimensions greater than 1 of circle,
torus, Klein bottle and Möbius strip are trivial.
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Proofs and Comments

36.A This follows from 29.I.

36.B Let [u], [v] ∈ π1(X,x0). Since f ◦ (uv) = (f ◦ u)(f ◦ v), we have
f#(uv) = f#(u)f#(v) and

f∗([u][v]) = f∗
(
[uv]

)
=

[
f#(uv)

]
=

[
f#(u)f#(v)] =

=
[
f#(u)

][
f#(v)

]
= f∗([u])f∗([v]).

36.C Let [u] ∈ π1(X,x0). Since (g ◦ f)#(u) = g ◦ f ◦ u = g#(f#(u)),
consequently,

(g ◦ f)∗([u]) =
[
(g ◦ f)#(u)

]
=

[
g#(f#(u))

]
= g∗ ([f#(u)]) = g∗(f∗(u)),

thus, (g ◦ f)∗ = g∗ ◦ f∗.

36.D Let H : X × I → Y be a homotopy between f and g, and
let H(x0, t) = y0 for all t ∈ I; u is a certain loop in X. Consider a map
h = H ◦ (u× idI), thus, h : (τ, t) 7→ H(u(τ), t). Then h(τ, 0) = H(u(τ), 0) =
f(u(τ)) and h(τ, 1) = H(u(τ), 1) = g(u(τ)), so that h is a homotopy between
the loops f ◦u and g ◦u. Furthermore, h(0, t) = H(u(0), t) = H(x0, t) = y0,
and we similarly have h(1, t) = y0, therefore, h is a homotopy between the
loops f#(u) and g#(v), whence

f∗ ([u]) = [f# (u)] = [g# (u)] = g∗ ([u]) .

36.E Let H be a homotopy between the maps f and g and the loop s
is defined by the formula s(t) = H(x0, t). By assertion 32.2, g∗ = Ts ◦ f∗.

36.F This obviously follows from the equality

f#(s−1us) = (f ◦ s)−1f#(u)(f ◦ s).

36.G.1 This is the assertion of Theorem 36.G.

36.G.2 For example, it is sufficient to take R such that

R > max{1, |a1| + |a2| + . . .+ |an|}.

36.G.3 Use the rectilinear homotopy h(z, t) = tp(z) + (1 − t)q(z). It
remains to verify that h(z, t) 6= 0 for all z and t. Indeed, since |p(z)−q(z)| <
q(z) by assumption, we have

|h(z, t)| ≥ |q(z)| − t|p(z) − q(z)| ≥ |q(z)| − |p(z) − q(z)| > 0.

36.G.4 Indeed, this is a quite obvious lemma; see 36.A.
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36.G Take a number R satisfying the assumptions of assertion 36.G.2
and consider the loop u : u(t) = Re2πit. The loop u, certainly, is null-
homotopic in C. Now we assume that p(z) 6= 0 for all z with |z| ≤ R. Then
the loop p ◦ u is null-homotopic in C r 0, by 36.G.3, and the loop q ◦ u is
null-homotopic in C r 0. However, (q ◦u)(t) = Rne2πint, therefore, this loop
is not null-homotopic. A contradiction.

36.Ax See 36.Dx.

36.Bx Yes, it is.

36.Cx See 36.Dx.

36.Dx Let i : Sn−1 → Dn be the inclusion. Assume that f(x) 6= 0 for
all x ∈ Dn. We preserve the designation f for the submap Dn → Rn r0 and
consider the inclusion homomorphisms i∗ : πn−1(S

n−1) → πn−1(D
n) and

f∗ : πn−1(D
n) → πn−1(R

n
r0). Since all homotopy groups of Dn are trivial,

the composition (f ◦ i)∗ = f∗ ◦ i∗ is a zero homomorphism. However, the
composition f ◦ i is the map f0, which, by assumption, induces a nonzero
homomorphism πn−1(S

n−1) → πn−1(R
n r 0).

36.Ex Consider a circular neighborhood U of x disjoint with the image
u(S1) of the circular loop under consideration and let y ∈ U . Join x and y
by a rectilinear path s : t 7→ ty + (1 − t)x. Then

h(z, t) = ϕu,s(t)(z) =
u(z) − s(t)

|u(z) − s(t)|

determines a homotopy between ϕu,x and ϕu,y, whence
(
ϕu,x

)
∗

=
(
ϕu,y

)
∗
,

whence it follows that ind(u, y) = ind(u, x) for any point y ∈ U . Conse-
quently, the function ind : x 7→ ind(u, x) is constant on U .

36.Fx If x /∈ F (D2), then the circular loop u is null-homotopic in R
2
rx

because u = F ◦ i, where i is the standard embedding S1 → D2, and i is
null-homotopic in D2.

36.Gx This is true because we have [uv] = [u][v] and π1(R
2 r x) → Z

is a homomorphism.

36.Hx The formula

h(z, t) = ϕut,x(z) =
ut(z) − x

|ut(z) − x|

determines a homotopy between ϕu,x and ϕv,x, whence ind(u, x) = ind(v, x);
cf. 36.Ex.

36.Lx We define a map ϕ : S1 → R : x 7→ f(x) − f(−x). Then

ϕ(−x) = f(−x) − f(x) = −(f(x) − f(−x)) = −ϕ(x),



Proofs and Comments 271

thus ϕ is an odd map. Consequently, if, for example, ϕ(1) 6= 0, then the
image ϕ(S1) contains values with distinct signs. Since the circle is connected,
there is a point x ∈ S1 such that f(x) − f(−x) = ϕ(x) = 0.

36.Mx.1 Assume that f(x) 6= f(−x) for all x ∈ S2. In this case,

the formula g(x) = f(x)−f(−x)
|f(x)−f(−x)| determines a map g : S2 → S1. Since

g(−x) = −g(x), it follows that g takes antipodal points of S2 to antipodal
points of S1. The quotient map of g is a continuous map ϕ : RP 2 → RP 1.
We show that the induced homomorphism ϕ∗ : π1(RP

2) → π1(RP
1) is

nontrivial. The generator λ of the group π1(RP
2) is the class of the loop

l covered by the path l̃ joining two opposite points of S2. The path g ◦ l̃
also joins two opposite points lying on the circle, consequently, the loop ϕ◦ l
covered by g ◦ l̃ is not null-homotopic. Thus, ϕ∗(λ) is a nontrivial element
of π1(RP

1).

36.Mx To prove the Borsuk–Ulam Theorem, it only remains to observe
that there are no nontrivial homomorphisms π1(RP

2) → π1(RP
1) because

the first of these groups is isomorphic to Z2, while the second one is isomor-
phic to Z.

37.A Prove this assertion on your own.

37.B Since any map to a singleton is continuous, the map ρ : X → {x0}
is a retraction.

37.C The line is connected. Therefore, its retract (being its continu-
ous image) is connected, too. However, a pair of points in the line is not
connected.

37.D See the proof of assertion 37.C.

37.E Let ρ : X → A be a retraction. and let f : A → Y be a
continuous map. Then the composition F = f ◦ ρ : X → Y extends f .

Consider the identity map id : A→ A. Its continuous extension to X
is the required retraction ρ : X → A.

37.F Since ρ∗ ◦ i∗ = (ρ ◦ i)∗ = (id A)∗ = id π1(A,x0), it follows that
the homomorphism ρ∗ is an epimorphism, and the homomorphism i∗ is a
monomorphism.

37.G About i∗; for example, see the proof of the following assertion.

37.H Since the group π1(D
2) is trivial, while π1(S

1) is not, it follows
that i∗ : π1(S

1, 1) → π1(D
2, 1) cannot be a monomorphism. Consequently,

by assertion 37.F, the disk D2 cannot be retracted to its boundary S1.

37.I The proof word by word repeats that of Theorem 37.H, only
instead of fundamental groups we must use (n − 1)-dimensional homotopy
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groups. The reason for this is that the group πn−1(D
n) is trivial, while

πn−1(S
n−1) ∼= Z (i.e., this group is nontrivial).

37.J Assume that a map f : Dn → Dn has no fixed points. For each
x ∈ Dn, consider the ray starting at f(x) ∈ Dn and passing through x, and
denote by ρ(x) the point of its intersection with the boundary sphere Sn−1.
It is clear that ρ(x) = x for x ∈ Sn−1. Prove that the map ρ is continuous.
Therefore, ρ : Dn → Sn−1 is a retraction. However, this contradicts the
Borsuk Theorem.

38.A Prove this assertion on your own.

38.B This immediately follows from assertion 38.A.

38.C Since ρ is a retraction, it follows that one of the conditions in the
definition of homotopically inverse maps is automatically fulfilled: ρ ◦ in =
idA. The second requirement: in ◦ρ is homotopic to idX , is fulfilled by
assumption.

38.D This immediately follows from assertion 38.C.

38.E This follows from 38.D and 38.B.

38.F Let ρ1 : X → A and ρ2 : Y → B be deformation retractions.
Prove that ρ1 × ρ2 is a deformation retraction.

38.G Let the map ρ : R
2
r0 → S1 be defined by the formula ρ(x) = x

|x| .

The formula h(x, t) = (1 − t)x + t x
|x| determines a rectilinear homotopy

between the identity map of R
2
r 0 and the composition ρ ◦ i, where i is the

standard inclusion S1 → R2 r 0.

38.H The topological type of R
2
r {x1, x2, . . . , xs} does not depend on

the position of the points x1, x2, . . . , xs in the plane. We put them on the
unit circle: for example, let them be roots of unity of degree s. Consider
s simple closed curves on the plane each of which encloses exactly one of
the points and passes through the origin, and which have no other common
points except the origin. Instead of curves, maybe it is simpler to take, e.g.,
rhombi with centers at our points. It remains to prove that the union of the
curves (or rhombi) is a deformation retract of the plane with s punctures.
Clearly, it makes little sense to write down explicit formulas, although this
is possible. Consider an individual rhombus R and its center c. The central
projection maps R r c to the boundary of R, and there is a rectilinear
homotopy between the projection and the identical map of Rrc. It remains
to show that the part of the plane lying outside the union of the rhombi also
admits a deformation retraction to the union of their boundaries. What can
we do in order to make the argument look more like a proof? First consider
the polygon P whose vertices are the vertices of the rhombi opposite to the
origin. We easily see that P is a strong deformation retract of the plane (as
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well as the disk is). It remains to show that the union of the rhombi is a
deformation retract of P , which is obvious, is not it?

38.I We subdivide the square into four parts by two midlines and con-
sider the set K formed by the contour, the midlines, and the two quarters
of the square containing one of the diagonals. Show that each of the fol-
lowing sets is a deformation retract of K: the union of the contour and the
mentioned diagonal of the square; the union of the contours of the “empty”
quarters of this square.

38.J 1) None of these spaces can be embedded in another. Prove
this on your own, using the following lemma. Let Jn be the union of n
segments with a common endpoint. Then Jn cannot be embedded in Jk for
any n > k ≥ 2. 2) The second question is answered in the affirmative; see
the proof of assertion 38.I.

38.K Since the composition g◦f is x0-null-homotopic, we have g∗◦f∗ =
(g ◦ f)∗ = idπ1(X,x0). Similarly, f∗ ◦ g∗ = idπ1(Y,y0). Thus, f∗ and g∗ are
mutually inverse homomorphisms.

38.L Indeed, this immediately follows from Theorem 38.K.

38.M Let x1 = g(x0). For any homotopy h between idX and g ◦ f ,
the formula s(t) = h(x0, t) determines a path at x0. By the answer to Rid-
dle 36.E, the composition g∗ ◦ f∗ = Ts is an isomorphism. Similarly, the
composition f∗ ◦ g∗ is an isomorphism. Therefore, f∗ and g∗ are isomor-
phisms.

39.A If u is a loop in X such that the loop p◦u in B is null-homotopic,
then by the Path Homotopy Lifting Theorem 34.C the loop u is also null-
homotopic. Thus, if p∗([u]) = [p ◦ u] = 0, then [u] = 0, which precisely
means that p∗ is a monomorphism.

39.B No, it is not. If p(x0) = p(x1) = b0, x0 6= x1, and the group
π1(B, b0) is non-Abelian, then the subgroups p∗(π1(X,x0)) and p∗(π1(X,x1))
can easily be distinct (see 39.D).

39.C The group p∗(π1(X,x0)) of the covering consists of the homotopy
classes of those loops at b0 whose covering path starting at x0 is a loop.

39.D Let s be a path in X joining x0 and x1. Denote by α the class
of the loop p ◦ s and consider the inner automorphism ϕ : π1(B, b0) →
π1(B, b0) : β 7→ α−1βα. We prove that the following diagram is commuta-
tive:

π1(X,x0)
Ts−−−−→ π1(X,x1)

p∗

y
yp∗

π1(B, b0)
ϕ

−−−−→ π1(B, b0).
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Indeed, since Ts([u]) = [s−1us], we have

p∗
(
Ts([u])

)
= [p ◦ (s−1us)] = [(p ◦ s−1)(p ◦ u)(p ◦ s)] = α−1p∗

(
[u]

)
α.

Since the diagram is commutative and Ts is an isomorphism, it follows that

p∗(π1(X,x1)) = ϕ(p∗(π1(X,x0))) = α−1p∗(π1(X,x0))α,

thus, the groups p∗(π1(X,x0)) and p∗(π1(X,x1)) are conjugate.

39.E Let s be a loop in X representing the class α ∈ π1(B, b0). Let the
path s̃ cover s and start at x0. If we put x1 = s̃(1), then, as it follows from
the proof of assertion 39.D, we have p∗(π1(X,x1)) = α−1p∗(π1(X,x0))α.

39.F This follows from 39.D and 39.E.

39.G See 39.H.

39.H For brevity, put H = p∗(π1(X,x0)). Consider an arbitrary point
x1 ∈ p−1(b0); let s be the path starting at x0 and ending at x1, and α = [p◦s].
Take x1 to the right coset Hα ⊂ π1(B, b0). Let us verify that this definition
is correct. Let s1 be another path from x0 to x1, α1 = [p ◦ s1]. The path
ss−1

1 is a loop, so that αα−1
1 ∈ H, whence Hα = Hα1. Now we prove that

the described correspondence is a surjection. Let Hα be a coset. Consider a
loop u representing the class α, let ũ be the path covering u and starting at
x0, and x1 = ũ(1) ∈ p−1(b0). By construction, x1 is taken to the coset Hα,
therefore, the above correspondence is surjective. Finally, let us prove that
it is injective. Let x1, x2 ∈ p−1(b0), and let s1 and s2 be two paths joining
x0 with x1 and x2, respectively; let αi = [p ◦ si], i = 1, 2. Assume that
Hα1 = Hα2 and show that then x1 = x2. Consider a loop u = (p◦s1)(p◦s

−1
2 )

and the path ũ covering u, which is a loop because α1α
−1
2 ∈ H. It remains to

observe that the paths s′1 and s′2, where s′1(t) = u
(

t
2

)
and s′2(t) = u

(
1− t

2

)
,

start at x0 and cover the paths p ◦ s1 and p ◦ s2, respectively. Therefore,
s1 = s′1 and s2 = s′2, thus,

x1 = s1(1) = s′1(1) = ũ
(

1
2

)
= s′2(1) = s2(1) = x2.

39.I Consider an arbitrary point y ∈ Y , let b = q(y), and let Ub be a
neighborhood of b that is trivially covered for both p and q. Further, let V be
the sheet over Ub containing y, and let {Wα} be the collection of sheets over
Ub the union of which is ϕ−1(V ). Clearly, the map ϕ|Wα = (q|V )−1 ◦ p|Wα

is a homeomorphism.

39.J Let p and q be two coverings. Consider an arbitrary point x ∈ X
and a path s joining the marked point x0 with x. Let u = p ◦ s. By
assertion 34.B, there exists a unique path ũ : I → Y covering u and starting
at y0. Therefore, ũ = ϕ ◦ s, consequently, the point ϕ(x) = ϕ(s(1)) = ũ(1)
is uniquely determined.
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39.K Let ϕ : X → Y and ψ : Y → X be subordinations, and let
ϕ(x0) = y0 and ψ(y0) = x0. Clearly, the composition ψ◦ϕ is a subordination
of the covering p : X → B to itself. Consequently, by the uniqueness of
a subordination (see 39.J), we have ψ ◦ ϕ = idX . Similarly, ϕ ◦ ψ = idY ,
which precisely means that the subordinations ϕ and ψ are mutually inverse
equivalences.

39.L This relation is obviously symmetric, reflexive, and transitive.

39.M It is clear that if two coverings p and p′ are equivalent and q
is subordinate to p, then q is also subordinate to p′, therefore, the subor-
dination relation is transferred from coverings to their equivalence classes.
This relation is obviously reflexive and transitive, and it is proved in 39.K
that two coverings subordinate to each other are equivalent, therefore this
relationb is antisymmetric.

39.N Since p∗ = (q ◦ ϕ)∗ = q∗ ◦ ϕ∗, we have

p∗(π1(X,x0)) = q∗(ϕ∗(π1(X,x0))) ⊂ q∗(π1(Y, y0)).

39.Ax.1 Denote by ũ, ṽ : I → Y the paths starting at y0 and covering
the paths p ◦ u and p ◦ v, respectively. Consider the path uv−1, which is a
loop at x0 by assumption, the loop (p ◦ u)(p ◦ v)−1 = p ◦ (uv−1), and its
class α ∈ p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)). Thus, α ∈ q∗(π1(Y, y0)), therefore,
the path starting at y0 and covering the loop (p ◦ u)(p ◦ v)−1 is also a loop.
Consequently, the paths covering p ◦ u and p ◦ v and starting at y0 end at
one and the same point. It remains to observe that they are the paths ũ
and ṽ.

39.Ax.2 We define the map ϕ : X → Y as follows. Let x ∈ X, u – a
path joining x0 and x. Then ϕ(x) = y, where y is the endpoint of the path
ũ : I → Y covering the path p ◦ u. By assertion 39.Ax.1, the map ϕ is well
defined. We prove that ϕ : X → Y is continuous. Let x1 ∈ X, b1 = p(x1)
and y1 = ϕ(x1); by construction, we have q(y1) = b1. Consider an arbitrary
neighborhood V of y1. We can assume that V is a sheet over a trivially
covered path-connected neighborhood U of b1. Let W be the sheet over U
containing x1, thus, the neighborhood W is also path-connected. Consider
an arbitrary point x ∈ W . Let a path v : I → W join x1 and x. It is clear
that the image of the path ṽ starting at y1 and covering the path p ◦ v is
contained in the neighborhood V , whence ϕ(x) ∈ V . Thus, ϕ(W ) ⊂ V ,
consequently, ϕ is continuous at x.

39.Bx This follows from 39.E, 39.Ax, and 39.K.

39.Cx Let X → B be a universal covering, U a trivially covered neigh-
borhood of a point a ∈ B, and V one of the “sheets” over U . Then the
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inclusion i : U → B is the composition p ◦ j ◦ (p|V )−1, where j is the inclu-
sion V → X. Since the group π1(X) is trivial, the inclusion homomorphism
i∗ : π1(U, a) → π1(B, a) is also trivial.

39.Dx.1 Let two paths u1 and u2 join b0 and b. The paths covering
them and starting at x0 end at one and the same point x iff the class of the
loop u1u

−1
2 lies in the subgroup π.

39.Dx.2 Yes, it does. Consider the set of all paths in B starting at b0,
endow it with the following equivalence relation: u1 ∼ u2 if [u1u

−1
2 ] ∈ π, and

let X̃ be the quotient set by this relation. A natural bijection between X
and X̃ is constructed as follows. For each point x ∈ X, we consider a path u
joining the marked point x0 with of a point x. The class of the path p ◦u in

X̃ is the image of x. The described correspondence is obviously a bijection

f : X → X̃. The map g : X̃ → X inverse to f has the following structure.
Let u : I → B represent a class y ∈ X̃. Consider the path v : I → X
covering u and starting at x0. Then g(y) = v(1).

39.Dx.3 We define a base for the topology in X̃. For each pair (U, x),

where U is an open set in B and x ∈ X̃, the set Ux consists of the classes
of all possible paths uv, where u is a path in the class x, and v is a path in
U starting at u(1). It is not difficult to prove that for each point y ∈ Ux we
have the identity Uy = Ux, whence it follows that the collection of the sets

of the form Ux is a base for the topology in X̃. In order to prove that f
and g are homeomorphisms, it is sufficient to verify that each of them maps
each set in a certain base for the topology to an open set. Consider the base
consisting of trivially covered neighborhoods U ⊂ B, each of which, firstly,
is path-connected, and, secondly, each loop in which is null-homotopic in B.

39.Dx.4 The space X̃ is defined in 39.Dx.2. The projection p : X̃ → B

is defined as follows: p(y) = u(1), where u is a path in the class y ∈ X̃.
The map p is continuous without any assumptions on the properties of B.
Prove that if a set U in B is open and path-connected and each loop in U
is null-homotopic in B, then U is a trivially covered neighborhood.

39.Fx Consider the subgroups π ⊂ π0 ⊂ π1(B, b0) and let p : Ỹ → B

and q : Ỹ → B be the coverings constructed by π and π0, respectively. The

construction of the covering implies that there exists a map f : X̃ → Ỹ .
Show that f is the required subordination.

39.Gx We say that the group G acts from the right on a set F if each
element α ∈ G determines a map ϕα : F → F so that: 1) ϕαβ = ϕα ◦ϕβ ; 2)
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if e is the unity of the group G, then ϕe = idF . Put F = p−1(b0). For each
α ∈ π1(B, b0), we define a map ϕα : F → F as follows. Let x ∈ F . Consider
a loop u at b0, such that [u] = α. Let the path ũ cover u and start at x.
Put ϕα(x) = ũ(1).
The Path Homotopy Lifting Theorem implies that the map ϕα depends only
on the homotopy class of u, therefore, the definition is correct. If [u] = e,
i.e., the loop u is null-homotopic, then the path ũ is also a loop, whence
ũ(1) = x, thus, ϕe = idF . Verify that the first property in the definition of
an action of a group on a set is also fulfilled.

39.Hx See 39.Px.

39.Ix The group operation in the set of all automorphisms is their
composition.

39.Jx This follows from 39.J.

39.Kx Show that the map transposing the two points in the preimage
of each point in the base, is a homeomorphism.

39.Lx This is assertion 39.H.

39.Qx This follows from 39.Nx and 39.Px.


