
Chapter IX

Cellular Techniques

40. Cellular Spaces

40◦1. Definition of Cellular Spaces

In this section, we study a class of topological spaces that play a very
important role in algebraic topology. Their role in the context of this book
is more restricted: this is the class of spaces for which we learn how to
calculate the fundamental group. 1

A zero-dimensional cellular space is just a discrete space. Points of a 0-
dimensional cellular space are also called (zero-dimensional) cells, or 0-cells.

A one-dimensional cellular space is a space that can be obtained as follows.
Take any 0-dimensional cellular space X0. Take a family of maps ϕα : S0 →
X0. Attach to X0 via ϕα the sum of a family of copies of D1 (indexed by
the same indices α as the maps ϕα):

X0 ∪⊔ϕα

(⊔

α

D1

)
.

1This class of spaces was introduced by J. H. C. Whitehead. He called these spaces CW -

complexes, and they are known under this name. However, it is not a good name for plenty
of reasons. With very rare exceptions (one of which is CW -complex, the other is simplicial
complex), the word complex is used nowadays for various algebraic notions, but not for spaces.
We have decided to use the term cellular space instead of CW -complex, following D. B. Fuchs
and V. A. Rokhlin [6].
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The images of the interior parts of copies ofD1 are called (open) 1-dimensional

cells, 1-cells, one-cells, or edges. The subsets obtained from D1 are closed 1-
cells. The cells of X0 (i.e., points of X0) are also called vertices. Open 1-cells
and 0-cells constitute a partition of a one-dimensional cellular space. This
partition is included in the notion of cellular space, i.e., a one-dimensional
cellular space is a topological space equipped with a partition that can be
obtained in this way. 2

A two-dimensional cellular space is a space that can be obtained as follows.
Take any cellular space X1 of dimension 0 or 1. Take a family of continuous3

maps ϕα : S1 → X1. Attach the sum of a family of copies of D2 to X1 via
ϕα:

X1 ∪⊔ϕα

(⊔

α

D2

)
.

The images of the interior parts of copies of D2 are (open) 2-dimensional

cells, 2-cells, two-cells, or faces. The cells of X1 are also regarded as cells
of the 2-dimensional cellular space. Open cells of both kinds constitute a
partition of a 2-dimensional cellular space. This partition is included in the
notion of cellular space, i.e., a two-dimensional cellular space is a topological
space equipped with a partition that can be obtained in the way described
above. The set obtained out of a copy of the whole D2 is a closed 2-cell .

A cellular space of dimension n is defined in a similar way: This is a
space equipped with a partition. It is obtained from a cellular space Xn−1

of dimension less than n by attaching a family of copies of the n-disk Dn

via by a family of continuous maps of their boundary spheres:

Xn−1 ∪⊔ϕα

(⊔

α

Dn

)
.

2One-dimensional cellular spaces are also associated with the word graph. However, rather
often this word is used for objects of other classes. For example, one can call in this way one-
dimensional cellular spaces in which attaching maps of different one-cells are not allowed to coin-
cide, or the boundary of a one-cell is prohibited to consist of a single vertex. When one-dimensional
cellular spaces are to be considered anyway, despite of this terminological disregard, they are called
multigraphs or pseudographs. Furthermore, sometimes one includes into the notion of graph an
additional structure. Say, a choice of orientation on each edge. Certainly, all these variations
contradict a general tendency in mathematical terminology to call in a simpler way decent ob-
jects of a more general nature, passing to more complicated terms along with adding structures

and imposing restrictions. However, in this specific situation there is no hope to implement that
tendency. Any attempt to fix a meaning for the word graph apparently only contributes to this
chaos, and we just keep this word away from important formulations, using it as a short informal
synonym for more formal term of one-dimensional cellular space. (Other overused common words,
like curve and surface, also deserve this sort of caution.)

3In the above definition of a 1-dimensional cellular space, the attaching maps ϕα also were
continuous, although their continuity was not required since any map of S0 to any space is
continuous.
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The images of the interiors of the attached n-dosks are (open) n-dimensional

cells or simply n-cells. The images of the entire n-disks are closed n-cells.
Cells of Xn−1 are also regarded as cells of the n-dimensional cellular space.
The mappings ϕα are the attaching maps, and the restrictions of the factor-
ization map to the n-disks Dn are the characteristic maps.

A cellular space is obtained as a union of increasing sequence of cellular
spaces X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ . . . obtained in this way from each other.
The sequence may be finite or infinite. In the latter case, the topological
structure is introduced by saying that the cover of the union by Xn’s is
fundamental, i.e., a set U ⊂

⋃
∞

n=0Xn is open iff its intersection U ∩Xn with
each Xn is open in Xn.

The partition of a cellular space into its open cells is a cellular decompo-

sition. The union of all cells of dimension less than or equal to n of a cellular
space X is the n-dimensional skeleton of X. This term may be misleading
since the n-dimensional skeleton may contain no n-cells, and so it may coin-
cide with the (n−1)-dimensional skeleton. Thus, the n-dimensional skeleton
may have dimension less than n. For this reason, it is better to speak about
the nth skeleton or n-skeleton.

40.1. In a cellular space, skeletons are closed.

A cellular space is finite if it contains a finite number of cells. A cellular
space is countable if it contains a countable number of cells. A cellular space
is locally finite if each of its points has a neighborhood intersecting finitely
many cells.

Let X be a cellular space. A subspace A ⊂ X is a cellular subspace of
X if A is a union of open cells and together with each cell e contains the
closed cell ē. This definition admits various equivalent reformulations. For
instance, A ⊂ X is a cellular subspace of X iff A is both a union of closed cells
and a union of open cells. Another option: together with each point x ∈ A
the subspace A contains the closed cell e ∈ x. Certainly, A is equipped
with a partition into the open cells of X contained in A. Obviously, the
k-skeleton of a cellular space X is a cellular subspace of X.

40.2. Prove that the union and intersection of any collection of cellular subspaces
are cellular subspaces.

40.A. Prove that a cellular subspace of a cellular space is a cellular space.
(Probably, your proof will involve assertion 40.Gx.)

40.A.1. Let X be a topological space, and let X1 ⊂ X2 ⊂ . . . be an increasing
sequence of subsets constituting a fundamental cover of X . Let A ⊂ X be a
subspace, put Ai = A ∩Xi. Let one of the following conditions be fulfilled:
1) Xi are open in X ;
2) Ai are open in X ;
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3) Ai are closed in X .
Then {Ai} is a fundamental cover of A.

40◦2. First Examples

40.B. A cellular space consisting of two cells, one of which is a 0-cell and
the other one is an n-cell, is homeomorphic to Sn.

40.C. Represent Dn with n > 0 as a cellular space made of three cells.

40.D. A cellular space consisting of a single 0-cell and q one-cells is a bou-
quet of q circles.

40.E. Represent torus S1×S1 as a cellular space with one 0-cell, two 1-cells,
and one 2-cell.

40.F. How to obtain a presentation of torus S1×S1 as a cellular space with
4 cells from a presentation of S1 as a cellular space with 2 cells?

40.3. Prove that if X and Y are finite cellular spaces, then X × Y has a natural
structure of a finite cellular space.

40.4*. Does the statement of 40.3 remain true if we skip the finiteness condition
in it? If yes, prove this; if no, find an example where the product is not a cellular
space.

40.G. Represent sphere Sn as a cellular space such that spheres S0 ⊂ S1 ⊂
S2 ⊂ · · · ⊂ Sn−1 are its skeletons.

40.H. Represent RPn as a cellular space with n + 1 cells. Describe the
attaching maps of the cells.

40.5. Represent CPn as a cellular space with n+ 1 cells. Describe the attaching
maps of its cells.

40.6. Represent the following topological spaces as cellular ones

(a) handle; (b) Möbius strip; (c) S1 × I ,
(d) sphere with p

handles;
(e) sphere with p

crosscaps.

40.7. What is the minimal number of cells in a cellular space homeomorphic to

(a) Möbius strip; (b) sphere with p
handles;

(c) sphere with p
crosscaps?
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40.8. Find a cellular space where the closure of a cell is not equal to a union of
other cells. What is the minimal number of cells in a space containing a cell of
this sort?

40.9. Consider the disjoint sum of a countable collection of copies of closed interval
I and identify the copies of 0 in all of them. Represent the result (which is the
bouquet of the countable family of intervals) as a countable cellular space. Prove
that this space is not first countable.

40.I. Represent R
1 as a cellular space.

40.10. Prove that for any two cellular spaces homeomorphic to R
1 there exists

a homeomorphism between them homeomorphically mapping each cell of one of
them onto a cell of the other one.

40.J. Represent R
n as a cellular space.

Denote by R∞ the union of the sequence of Euclidean spaces R0 ⊂
R

1 ⊂ · · · ⊂ R
n ⊂ canonically included to each other: R

n = {x ∈ R
n+1 :

xn+1 = 0}. Equip R
∞ with the topological structure for which the spaces

R
n constitute a fundamental cover.

40.K. Represent R
∞ as a cellular space.

40.11. Show that R
∞ is not metrizable.

40◦3. Further Two-Dimensional Examples

Let us consider a class of 2-dimensional cellular spaces that admit a
simple combinatorial description. Each space in this class is a quotient
space of a finite family of convex polygons by identification of sides via
affine homeomorphisms. The identification of vertices is determined by the
identification of the sides. The quotient space has a natural decomposition
into 0-cells, which are the images of vertices, 1-cells, which are the images
of sides, and faces, the images of the interior parts of the polygons.

To describe such a space, we need, first, to show, what sides are identi-
fied. Usually this is indicated by writing the same letters at the sides to be
identified. There are only two affine homeomorphisms between two closed
intervals. To specify one of them, it suffices to show the orientations of the
intervals that are identified by the homeomorphism. Usually this is done
by drawing arrows on the sides. Here is a description of this sort for the
standard presentation of torus S1 × S1 as the quotient space of square:

b

a

b

a
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We can replace a picture by a combinatorial description. To do this,
put letters on all sides of polygon, go around the polygons counterclockwise
and write down the letters that stay at the sides of polygon along the con-
tour. The letters corresponding to the sides whose orientation is opposite
to the counterclockwise direction are put with exponent −1. This yields a
collection of words, which contains sufficient information about the family
of polygons and the partition. For instance, the presentation of the torus
shown above is encoded by the word ab−1a−1b.

40.12. Prove that:

(1) the word a−1a describes a cellular space homeomorphic to S2,
(2) the word aa describes a cellular space homeomorphic to RP 2,
(3) the word aba−1b−1c describes a handle,
(4) the word abcb−1 describes cylinder S1 × I ,
(5) each of the words aab and abac describe Möbius strip,
(6) the word abab describes a cellular space homeomorphic to RP 2,
(7) each of the words aabb and ab−1ab describe Klein bottle,
(8) the word

a1b1a
−1

1 b−1

1 a2b2a
−1

2 b−1

2 . . . agbga
−1
g b−1

g .

describes sphere with g handles,
(9) the word a1a1a2a2 . . . agag describes sphere with g crosscaps.

40◦4. Embedding to Euclidean Space

40.L. Any countable 0-dimensional cellular space can be embedded into R.

40.M. Any countable locally finite 1-dimensional cellular space can be em-
bedded into R

3.

40.13. Find a 1-dimensional cellular space which you cannot embed into R
2. (We

do not ask you to prove rigorously that no embedding is possible.)

40.N. Any finite dimensional countable locally finite cellular space can be
embedded into Euclidean space of sufficiently high dimension.

40.N.1. Let X and Y be topological spaces such that X can be embedded into
R
p and Y can be embedded into R

q, and both embeddings are proper maps
(see 18◦3x; in particular, their images are closed in Rp and Rq, respectively).
Let A be a closed subset of Y . Assume that A has a neighborhood U in Y such
that there exists a homeomorphism h : ClU → A× I mapping A to A× 0. Let
ϕ : A → X be a proper continuous map. Then the initial embedding X → Rp

extends to an embedding X ∪ϕ Y → Rp+q+1.

40.N.2. Let X be a locally finite countable k-dimensional cellular space and
A be the (k − 1)-skeleton of X . Prove that if A can be embedded to Rp, then
X can be embedded into Rp+k+1.

40.O. Any countable locally finite cellular space can be embedded into R∞.
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40.P. Any finite cellular space is metrizable.

40.Q. Any finite cellular space is normal.

40.R. Any countable cellular space can be embedded into R∞.

40.S. Any cellular space is normal.

40.T. Any locally finite cellular space is metrizable.

40◦5x. Simplicial Spaces

Recall that in 23◦3x we introduced a class of topological spaces: simpli-
cial spaces. Each simplicial space is equipped with a partition into subsets,
called open simplices, which are indeed homeomorphic to open simplices of
Euclidean space.

40.Ax. Any simplicial space is cellular, and its partition into open simplices
is the corresponding partition into open cells.

40◦6x. Topological Properties of Cellular Spaces

The present section contains assertions of mixed character. For example,
we study conditions ensuring that a cellular space is compact (40.Kx) or
separable (40.Ox). We also prove that a cellular space X is connected, iff X
is path-connected (40.Sx), iff the 1-skeleton of X is path-connected (40.Vx).
On the other hand, we study the cellular topological structure as such. For
example, any cellular space is Hausdorff (40.Bx). Further, is not obvious at
all from the definition of a cellular space that a closed cell is the closure of
the corresponding open cell (or that closed cells are closed at all). In this
connection, the present section includes assertions of technical character.
(We do not formulate them as lemmas to individual theorems because often
they are lemmas for several assertions.) For example: closed cells constitute
a fundamental cover of a cellular space (40.Dx).

We notice that, say, in the textbook [FR], a cellular space is defined
as a Hausdorff topological space equipped by a cellular partition with two
properties:
(C ) each closed cell intersects only a finite number of (open) cells;
(W ) closed cells constitute a fundamental cover of the space. The results of
assertions 40.Bx, 40.Cx, and 40.Fx imply that cellular spaces in the sense of
the above definition are cellular spaces in the sense of Rokhlin–Fuchs’ text-
book (i.e., in the standard sense), the possibility of inductive construction
for which is proved in [RF]. Thus, both definitions of a cellular space are
equivalent.

An advice to the reader: first try to prove the above assertions for finite
cellular spaces.
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40.Bx. Each cellular space is a Hausdorff topological space.

40.Cx. In a cellular space, the closure of any cell e is the closed cell e.

40.Dx. Closed cells constitute a fundamental cover of a cellular space.

40.Ex. Each cover of a cellular space by cellular subspaces is fundamental.

40.Fx. In a cellular space, any closed cell intersects only a finite number of
open cells.

40.Gx. If A is cellular subspace of a cellular space X, then A is closed in
X.

40.Hx. The space obtained as a result of pasting two cellular subspaces
together along their common subspace, is cellular.

40.Ix. If a subset A of a cellular space X intersects each open cell along
a finite set, then A is closed. Furthermore, the induced topology on A is
discrete.

40.Jx. Prove that any compact subset of a cellular space intersects a finite
number of cells.

40.Kx Corollary. A cellular space is compact iff it is finite.

40.Lx. Any cell of a cellular space is contained in a finite cellular subspace
of this space.

40.Mx. Any compact subset of a cellular space is contained in a finite
cellular subspace.

40.Nx. A subset of a cellular space is compact iff it is closed and intersects
only a finite number of open cells.

40.Ox. A cellular space is separable iff it is countable.

40.Px. Any path-connected component of a cellular space is a cellular sub-
space.

40.Qx. A cellular space is locally path-connected.

40.Rx. Any path-connected component of a cellular space is both open and
closed. It is a connected component.

40.Sx. A cellular space is connected iff it is path connected.

40.Tx. A locally finite cellular space is countable iff it has countable 0-
skeleton.

40.Ux. Any connected locally finite cellular space is countable.

40.Vx. A cellular space is connected iff its 1-skeleton is connected.
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41. Cellular Constructions

41◦1. Euler Characteristic

Let X be a finite cellular space. Let ci(X) denote the number of its cells
of dimension i. The Euler characteristic of X is the alternating sum of ci(X):

χ(X) = c0(X) − c1(X) + c2(X) − · · · + (−1)ici(X) + . . .

41.A. Prove that Euler characteristic is additive in the following sense: for
any cellular space X and its finite cellular subspaces A and B we have

χ(A ∪B) = χ(A) + χ(B) − χ(A ∩B).

41.B. Prove that Euler characteristic is multiplicative in the following sense:
for any finite cellular spaces X and Y the Euler characteristic of their prod-
uct X × Y is χ(X)χ(Y ).

41◦2. Collapse and Generalized Collapse

Let X be a cellular space, e and f its open cells of dimensions n and
n− 1, respectively. Suppose:

• the attaching map ϕe : Sn−1 → Xn−1 of e determines a homeomor-
phism of the open upper hemisphere Sn−1

+ onto f ,

• f does not meet images of attaching maps of cells, distinct from e,

• the cell e is disjoint from the image of attaching map of any cell.

f

e

41.C. X r (e ∪ f) is a cellular subspace of X.

41.D. X r (e ∪ f) is a deformation retract of X.

We say that X r (e ∪ f) is obtained from X by an elementary collapse,
and we write X ց X r (e ∪ f).

If a cellular subspace A of a cellular space X is obtained from X by a
sequence of elementary collapses, then we say that X is collapsed onto A
and also write X ց A.

41.E. Collapsing does not change the Euler characteristic: if X is a finite
cellular space and X ց A, then χ(A) = χ(X).
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As above, let X be a cellular space, let e and f be its open cells of dimen-
sions n and n−1, respectively, and let the attaching map ϕe : Sn → Xn−1 of
e determine a homeomorphism Sn−1

+ on f . Unlike the preceding situation,
here we assume neither that f is disjoint from the images of attaching maps
of cells different from e, nor that e is disjoint from the images of attaching
maps of whatever cells. Let χe : Dn → X be a characteristic map of e.
Furthermore, let ψ : Dn → Sn−1

rϕ−1
e (f) = Sn−1

rSn−1
+ be a deformation

retraction.

41.F. Under these conditions, the quotient space X/[χe(x) ∼ ϕe(ψ(x))] of

X is a cellular space where the cells are the images under the natural pro-
jections of all cells of X except e and f .

Cellular space X/[χe(x) ∼ ϕe(ψ(x))] is said to be obtained by cancella-

tion of cells e and f .

41.G. The projection X → X/[χe(x) ∼ ϕe(ψ(x))] is a homotopy equiva-

lence.

41.G.1. Find a cellular subspace Y of a cellular space X such that the pro-
jection Y → Y/[χe(x) ∼ ϕe(ψ(x))] would be a homotopy equivalence by Theo-

rem 41.D.

41.G.2. Extend the map Y → Y r (e ∪ f) to a map X → X ′, which is a
homotopy equivalence by 41.6x.

41◦3x. Homotopy Equivalences of Cellular Spaces

41.1x. Let X = A∪ϕD
n be the space obtained by attaching an n-disk to a topo-

logical space A via a continuous map ϕ : Sn−1 → A. Prove that the complement
X r x of any point x ∈ X r A admits a (strong) deformation retraction to A.

41.2x. Let X be an n-dimensional cellular space, and let K be a set intersecting
each of the open n-cells of X at a single point. Prove that the (n − 1)-skeleton
Xn−1 of X is a deformation retract of X r K.

41.3x. Prove that the complement RPnrpoint is homotopy equivalent to RPn−1;
the complement CPn r point is homotopy equivalent to CPn−1.

41.4x. Prove that the punctured solid torus D2 × S1
r point, where point is an

arbitrary interior point, is homotopy equivalent to a torus with a disk attached
along the meridian S1 × 1.

41.5x. Let A be cellular space of dimension n, let ϕ : Sn → A and ψ : Sn → A
be continuous maps. Prove that if ϕ and ψ are homotopic, then the spaces Xϕ =
A ∪ϕ D

n+1 and Xψ = A ∪ψ D
n+1 are homotopy equivalent.

Below we need a more general fact.

41.6x. Let f : X → Y be a homotopy equivalence, ϕ : Sn−1 → X and ϕ′ :
Sn−1 → Y continuous maps. Prove that if f ◦ϕ ∼ ϕ′, then X ∪ϕD

n ≃ Y ∪ϕ′ Dn.
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41.7x. Let X be a space obtained from a circle by attaching of two copies of disk
by maps S1 → S1 : z 7→ z2 and S1 → S1 : z 7→ z3, respectively. Find a cellular
space homotopy equivalent to X with smallest possible number of cells.

41.8x. Riddle. Generalize the result of Problem 41.7x.

41.9x. Prove that if we attach a disk to the torus S1 × S1 along the parallel
S1 ×1, then the space K obtained is homotopy equivalent to the bouquet S2 ∨S1.

41.10x. Prove that the torus S1 ×S1 with two disks attached along the meridian
{1} × S1 and parallel S1 × 1, respectively, is homotopy equivalent to S2.

41.11x. Consider three circles in R
3: S1 = {x2 +y2 = 1, z = 0}, S2 = {x2 +y2 =

1, z = 1}, and S3 = {z2 + (y − 1)2 = 1, x = 0}. Since R
3 ∼= S3

r point, we can
assume that S1, S2, and S3 lie in S3. Prove that the space X = S3

r (S1 ∪S2) is
not homotopy equivalent to the space Y = S3

r (S1 ∪ S3).

41.Ax. Let X be a cellular space, A ⊂ X a cellular subspace. Then the
union (X × 0) ∪ (A× I) is a retract of the cylinder X × I.

41.Bx. Let X be a cellular space, A ⊂ X a cellular subspace. Assume
that we are given a map F : X → Y and a homotopy h : A × I → Y
of the restriction f = F |A. Then the homotopy h extends to a homotopy
H : X × I → Y of F .

41.Cx. Let X be a cellular space, A ⊂ X a contractible cellular subspace.
Then the projection pr : X → X/A is a homotopy equivalence.

Problem 41.Cx implies the following assertions.

41.Dx. If a cellular space X contains a closed 1-cell e homeomorphic to
I, then X is homotopy equivalent to the cellular space X/e obtained by
contraction of e.

41.Ex. Any connected cellular space is homotopy equivalent to a cellular
space with one-point 0-skeleton.

41.Fx. A simply connected finite 2-dimensional cellular space is homotopy
equivalent to a cellular space with one-point 1-skeleton.

41.12x. Solve Problem 41.9x with the help of Theorem 41.Cx.

41.13x. Prove that the quotient space

CP 2/[(z0 : z1 : z2) ∼ (z0 : z1 : z2)]

of the complex projective plane CP 2 is homotopy equivalent to S4.

Information. We have CP 2/[z ∼ τ (z)] ∼= S4.

41.Gx. Let X be a cellular space, and let A be a cellular subspace of X
such that the inclusion in : A→ X is a homotopy equivalence. Then A is a
deformation retract of X.
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42. One-Dimensional Cellular Spaces

42◦1. Homotopy Classification

42.A. Any connected finite 1-dimensional cellular space is homotopy equiv-
alent to a bouquet of circles.

42.A.1 Lemma. Let X be a 1-dimensional cellular space, e a 1-cell of X
attached by an injective map S0 → X0 (i.e., e has two distinct endpoints).
Prove that the projection X → X/e is a homotopy equivalence. Describe the
homotopy inverse map explicitly.

42.B. A finite connected cellular space X of dimension one is homotopy
equivalent to the bouquet of 1−χ(X) circles, and its fundamental group is
a free group of rank 1 − χ(X).

42.C Corollary. The Euler characteristic of a finite connected one-dimen-
sional cellular space is invariant under homotopy equivalence. It is not
greater than one. It equals one iff the space is homotopy equivalent to point.

42.D Corollary. The Euler characteristic of a finite one-dimensional cel-
lular space is not greater than the number of its connected components. It
is equal to this number iff each of its connected components is homotopy
equivalent to a point.

42.E Homotopy Classification of Finite 1-Dimensional Cellular

Spaces. Finite connected one-dimensional cellular spaces are homotopy
equivalent, iff their fundamental groups are isomorphic, iff their Euler char-
acteristics are equal.

42.1. The fundamental group of a 2-sphere punctured at n points is a free group
of rank n− 1.

42.2. Prove that the Euler characteristic of a cellular space homeomorphic to S2

is equal to 2.

42.3 The Euler Theorem. For any convex polyhedron in R
3, the sum of the

number of its vertices and the number of its faces equals the number of its edges
plus two.

42.4. Prove the Euler Theorem without using fundamental groups.

42.5. Prove that the Euler characteristic of any cellular space homeomorphi to
the torus is equal to 0.

Information. The Euler characteristic is homotopy invariant, but the
usual proof of this fact involves the machinery of singular homology theory,
which lies far beyond the scope of our book.
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42◦2. Spanning Trees

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A cellular subspace
A of a cellular space X is a spanning tree of X if A is a tree and is not
contained in any other cellular subspace B ⊂ X which is a tree.

42.F. Any finite connected one-dimensional cellular space contains a span-
ning tree.

42.G. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff A is a tree and contains all vertices of X.

Theorem 42.G explains the term spanning tree.

42.H. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff it is a tree and the quotient space X/A is a bouquet of circles.

42.I. Let X be a one-dimensional cellular space and A its cellular subspace.
Prove that if A is a tree, then the projection X → X/A is a homotopy
equivalence.

Problems 42.F, 42.I, and 42.H provide one more proof of Theorem 42.A.

42◦3x. Dividing Cells

42.Ax. In a one-dimensional connected cellular space each connected com-
ponent of the complement of an edge meets the closure of the edge. The
complement has at most two connected component.

A complete local characterization of a vertex in a one-dimensional cellu-
lar space is its valency . This is the total number of points in the preimages
of the vertex under attaching maps of all one-cells of the space. It is more
traditional to define the degree of a vertex v as the number of edges incident
to v, counting with multiplicity 2 the edges that are incident only to v.

42.Bx. 1) Each connected component of the complement of a vertex in a
connected one-dimensional cellular space contains an edge with boundary
containing the vertex. 2) The complement of a vertex of valency m has at
most m connected components.

42◦4x. Trees and Forests

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A one-dimensional
cellular space is a forest if each of its connected components is a tree.

42.Cx. Any cellular subspace of a forest is a forest. In particular, any
connected cellular subspace of a tree is a tree.
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42.Dx. In a tree the complement of an edge consists of two connected
components.

42.Ex. In a tree, the complement of a vertex of valency m has consists of
m connected components.

42.Fx. A finite tree has there exists a vertex of valency one.

42.Gx. Any finite tree collapses to a point and has Euler characteristic one.

42.Hx. Prove that any point of a tree is its deformation retract.

42.Ix. Any finite one-dimensional cellular space that can be collapsed to a
point is a tree.

42.Jx. In any finite one-dimensional cellular space the sum of valencies of
all vertices is equal to the number of edges multiplied by two.

42.Kx. A finite connected one-dimensional cellular space with Euler char-
acteristic one has a vertex of valency one.

42.Lx. A finite connected one-dimensional cellular space with Euler char-
acteristic one collapses to a point.

42◦5x. Simple Paths

Let X be a one-dimensional cellular space. A simple path of length n in
X is a finite sequence (v1, e1, v2, e2, . . . , en, vn+1), formed by vertices vi and
edges ei of X such that each term appears in it only once and the boundary
of every edge ei consists of the preceding and subsequent vertices vi and vi+1.
The vertex v1 is the initial vertex, and vn+1 is the final one. The simple path
connects these vertices. They are connected by a path I → X, which is a
topological embedding with image contained in the union of all cells involved
in the simple path. The union of these cells is a cellular subspace of X. It
is called a simple broken line.

42.Mx. In a connected one-dimensional cellular space, any two vertices are
connected by a simple path.

42.Nx Corollary. In a connected one-dimensional cellular space X, any
two points are connected by a path I → X which is a topological embedding.

42.1x. Can a path-connected space contain two distinct points that cannot be
connected by a path which is a topological embedding?

42.2x. Can you find a Hausdorff space with this property?

42.Ox. A connected one-dimensional cellular space X is a tree iff there
exists no topological embedding S1 → X.
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42.Px. In a one-dimensional cellular space X there exists a loop S1 → X
that is not null-homotopic iff there exists a topological embedding S1 → X.

42.Qx. A one-dimensional cellular space is a tree iff any two distinct ver-
tices are connected in it by a unique simple path.

42.3x. Prove that any finite tree has fixed point property.

Cf. 37.12, 37.13, and 37.14.

42.4x. Is this true for any tree; for any finite connected one-dimensional cellular
space?
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43. Fundamental Group of a Cellular

Space

43◦1. One-Dimensional Cellular Spaces

43.A. The fundamental group of a connected finite one-dimensional cellular
space X is a free group of rank 1 − χ(X).

43.B. Let X be a finite connected one-dimensional cellular space, T a span-
ning tree of X, and x0 ∈ T . For each 1-cell e ⊂ XrT , choose a loop se that
starts at x0, goes inside T to e, then goes once along e, and then returns to
x0 in T . Prove that π1(X,x0) is freely generated by the homotopy classes
of se.

43◦2. Generators

43.C. Let A be a topological space, x0 ∈ A. Let ϕ : Sk−1 → A be a
continuous map, X = A∪ϕD

k. If k > 1, then the inclusion homomorphism
π1(A,x0) → π1(X,x0) is surjective. Cf. 43.G.4 and 43.G.5.

43.D. Let X be a cellular space, x0 its 0-cell and X1 the 1-skeleton of X.
Then the inclusion homomorphism

π1(X1, x0) → π1(X,x0)

is surjective.

43.E. Let X be a finite cellular space, T a spanning tree of X1, and x0 ∈ T .
For each cell e ⊂ X1 r T , choose a loop se that starts at x0, goes inside
T to e, then goes once along e, and finally returns to x0 in T . Prove that
π1(X,x0) is generated by the homotopy classes of se.

43.1. Deduce Theorem 31.G from Theorem 43.D.

43.2. Find π1(CP
n).

43◦3. Relations

Let X be a cellular space, x0 its 0-cell. Denote by Xn the n-skeleton
of X. Recall that X2 is obtained from X1 by attaching copies of the disk
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D2 via continuous maps ϕα : S1 → X1. The attaching maps are circular
loops in X1. For each α, choose a path sα : I → X1 connecting ϕα(1) with
x0. Denote by N the normal subgroup of π1(X,x0) generated (as a normal
subgroup4) by the elements

Tsα [ϕα] ∈ π1(X1, x0).

43.F. N does not depend on the choice of the paths sα.

43.G. The normal subgroup N is the kernel of the inclusion homomorphism
in∗ : π1(X1, x0) → π1(X,x0).

Theorem 43.G can be proved in various ways. For example, we can de-
rive it from the Seifert–van Kampen Theorem (see 43.4x). Here we prove
Theorem 43.G by constructing a “rightful” covering space. The inclusion
N ⊂ Ker in∗ is rather obvious (see 43.G.1). The proof of the converse inclu-
sion involves the existence of a covering p : Y → X, whose submap over the
1-skeleton of X is a covering p1 : Y1 → X1 with group N , and the fact that
Ker in∗ is contained in the group of each covering over X1 that extends to
a covering over the entire X. The scheme of argument suggested in Lem-
mas 1–7 can also be modified. The thing is that the inclusion X2 → X
induces an isomorphism of fundamental groups. It is not difficult to prove
this, but the techniques involved, though quite general and natural, never-
theless lie beyond the scope of our book. Here we just want to emphasize
that this result replaces Lemmas 4 and 5.

43.G.1 Lemma 1. N ⊂ Ker i∗, cf. 31.J (3).

43.G.2 Lemma 2. Let p1 : Y1 → X1 be a covering with covering group N .
Then for any α and a point y ∈ p−1

1 (ϕα(1)) there exists a lifting ϕ̃α : S1 → Y1

of ϕα with ϕ̃α(1) = y.

43.G.3 Lemma 3. Let Y2 be a cellular space obtained by attaching copies
of disk to Y1 by all liftings of attaching maps ϕα. Then there exists a map
p2 : Y2 → X2 extending p1 which is a covering.

43.G.4 Lemma 4. Attaching maps of n-cells with n ≥ 3 are lift to any covering
space. Cf. 39.Xx and 39.Yx.

43.G.5 Lemma 5. Covering p2 : Y2 → X2 extends to a covering of the whole
X .

43.G.6 Lemma 6. Any loop s : I → X1 realizing an element of Ker i∗ (i.e.,
null-homotopic in X) is covered by a loop of Y . The covering loop is contained
in Y1.

43.G.7 Lemma 7. N = Ker in∗.

4Recall that a subgroup N is normal if N coincides with all conjugate subgroups of N . The
normal subgroup N generated by a set A is the minimal normal subgroup containing A. As a
subgroup, N is generated by elements of A and elements conjugate to them. This means that
each element of N is a product of elements conjugate to elements of A.
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43.H. The inclusion in2 : X2 → X induces an isomorphism between the
fundamental groups of a cellular space and its 2-skeleton.

43.3. Check that the covering over the cellular space X constructed in the proof
of Theorem 43.G is universal.

43◦4. Writing Down Generators and Relations

Theorems 43.E and 43.G imply the following recipe for writing down a
presentation for the fundamental group of a finite dimensional cellular space
by generators and relations:

Let X be a finite cellular space, x0 a 0-cell of X. Let T a spanning
tree of the 1-skeleton of X. For each 1-cell e 6⊂ T of X, choose a loop se

that starts at x0, goes inside T to e, goes once along e, and then returns
to x0 in T . Let g1, . . . , gm be the homotopy classes of these loops. Let
ϕ1, . . . , ϕn : S1 → X1 be the attaching maps of 2-cells of X. For each ϕi

choose a path si connecting ϕi(1) with x0 in the 1-skeleton of X. Express
the homotopy class of the loop s−1

i ϕisi as a product of powers of generators
gj. Let r1, . . . , rn are the words in letters g1, . . . , gm obtained in this way.
The fundamental group of X is generated by g1, . . . , gm, which satisfy the
defining relations r1 = 1, . . . , rn = 1.

43.I. Check that this rule gives correct answers in the cases of RPn and S1×
S1 for the cellular presentations of these spaces provided in Problems 40.H
and 40.E.

In assertion 41.Fx proved above we assumed that the cellular space is
2-dimensional. The reason for this was that at that moment we did not
know that the inclusion X2 → X induces an isomorphism of fundamental
groups.

43.J. Each finite simply connected cellular space is homotopy equivalent to
a cellular space with one-point 1-skeleton.

43◦5. Fundamental Groups of Basic Surfaces

43.K. The fundamental group of a sphere with g handles admits presenta-
tion

〈a1, b1, a2, b2, . . . ag, bg | a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.

43.L. The fundamental group of a sphere with g crosscaps admits the fol-
lowing presentation

〈a1, a2, . . . ag | a2
1a

2
2 . . . a

2
g = 1〉.

43.M. Fundamental groups of spheres with different numbers of handles are
not isomorphic.
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When we want to prove that two finitely presented groups are not iso-
morphic, one of the first natural moves is to abelianize the groups. (Recall
that to abelianize a group G means to quotient it out by the commutator
subgroup. The commutator subgroup [G,G] is the normal subgroup gener-
ated by the commutators a−1b−1ab for all a, b ∈ G. Abelianization means
adding relations that ab = ba for any a, b ∈ G.)

Abelian finitely generated groups are well known. Any finitely generated
Abelian group is isomorphic to a product of a finite number of cyclic groups.
If the abelianized groups are not isomorphic, then the original groups are
not isomorphic as well.

43.M.1. The abelianized fundamental group of a sphere with g handles is a free
Abelian group of rank 2g (i.e., is isomorphic to Z2g).

43.N. Fundamental groups of spheres with different numbers of crosscaps
are not isomorphic.

43.N.1. The abelianized fundamental group of a sphere with g crosscaps is
isomorphic to Zg−1 × Z2.

43.O. Spheres with different numbers of handles are not homotopy equiva-
lent.

43.P. Spheres with different numbers of crosscaps are not homotopy equiv-
alent.

43.Q. A sphere with handles is not homotopy equivalent to a sphere with
crosscaps.

If X is a path-connected space, then the abelianized fundamental group
of X is the 1-dimensional (or first) homology group of X and denoted by
H1(X). If X is not path-connected, then H1(X) is the direct sum of the first
homology groups of all path-connected components of X. Thus 43.M.1 can
be rephrased as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g.

43◦6x. Seifert–van Kampen Theorem

To calculate fundamental group, one often uses the Seifert–van Kampen
Theorem, instead of the cellular techniques presented above.

43.Ax Seifert–van Kampen Theorem. Let X be a path-connected topo-
logical space, A and B be its open path-connected subspaces covering X, and
let C = A ∩ B be also path-connected. Then π1(X) can be presented as
amalgamated product of π1(A) and π1(B) with identified subgroup π1(C).
In other words, if x0 ∈ C,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,
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π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

π1(C, x0) is generated by its elements γ1, . . . , γt, and inA : C → A and
inB : C → B are inclusions, then π1(X,x0) can be presented as

〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

inA∗(γ1) = inB∗(γ1), . . . , inA∗(γt) = inB∗(γt)〉.

Now we consider the situation where the space X and its subsets A and
B are cellular.

43.Bx. Assume that X is a connected finite cellular space, and A and B
are two cellular subspaces of X covering X. Denote A ∩ B by C. How are
the fundamental groups of X, A, B, and C related to each other?

43.Cx Seifert–van Kampen Theorem. Let X be a connected finite cel-
lular space, A and B – connected cellular subspaces covering X, C = A∩B.
Assume that C is also connected. Let x0 ∈ C be a 0-cell,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and let the group π1(C, x0) be generated by the elements γ1, . . . , γt. Denote
by ξi(α1, . . . , αp) and ηi(β1, . . . , βq) the images of the elements γi (more pre-
cisely, their expression via the generators) under the inclusion homomor-
phisms

π1(C, x0) → π1(A,x0) and, respectively, π1(C, x0) → π1(B,x0).

Then

π1(X,x0) = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ1 = η1, . . . , ξt = ηt〉.

43.1x. Let X, A, B, and C be as above. Assume that A and B are simply
connected and C consists of two connected components. Prove that π1(X) is
isomorphic to Z.

43.2x. Is Theorem 43.Cx a special case of Theorem 43.Ax?

43.3x. May the assumption of openness of A and B in 43.Ax be omitted?

43.4x. Deduce Theorem 43.G from the Seifert–van Kampen Theorem 43.Ax.

43.5x. Compute the fundamental group of the lens space, which is obtained by
pasting together two solid tori via the homeomorphism S1 × S1 → S1 × S1 :
(u, v) 7→ (ukvl, umvn), where kn− lm = 1.



43. Fundamental Group of a Cellular Space 299

43.6x. Determine the homotopy and the topological type of the lens space for
m = 0, 1.

43.7x. Find a presentation for the fundamental group of the complement in R
3 of

a torus knot K of type (p, q), where p and q are relatively prime positive integers.
This knot lies on the revolution torus T , which is described by parametric equations

8

>

<

>

:

x = (2 + cos 2πu) cos 2πv

y = (2 + cos 2πu) sin 2πv

z = sin 2πu,

and K is described on T by equation pu = qv.

43.8x. Let (X,x0) and (Y, y0) be two simply connected topological spaces with
marked points, and let Z = X ∨ Y be their bouquet.

(1) Prove that if X and Y are cellular spaces, then Z is simply connected.
(2) Prove that if x0 and y0 have neighborhoods Ux0

⊂ X and Vy0 ⊂ Y that
admit strong deformation retractions to x0 and y0, respectively, then Z
is simply connected.

(3) Construct two simply connected topological spaces X and Y with a
non-simply connected bouquet.

43◦7x. Group-Theoretic Digression:

Amalgamated Product of Groups

At first glance, description of the fundamental group of X given above
in the statement of Seifert - van Kampen Theorem is far from being invari-
ant: it depends on the choice of generators and relations of other groups
involved. However, this is actually a detailed description of a group - theo-
retic construction in terms of generators and relations. By solving the next
problem, you will get a more complete picture of the subject.

43.Dx. Let A and B be groups,

A = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

B = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and C be a group generated by γ1, . . . γt. Let ξ : C → A and η : C → B be
arbitrary homomorphisms. Then

X = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ(γ1) = η(γ1), . . . , ξ(γt) = η(γt)〉.

and homomorphisms φ : A → X : αi 7→ αi, i = 1, . . . , p and ψ : B → X :
βj 7→ βj , j = 1, . . . , q take part in commutative diagram
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A
ξ

  A
AA

AA

C

φ >>~~~~~

ψ   @
@@

@@
X

B
r

>>}}}}}

and for each group X ′ and homomorphisms ϕ′ : A → X ′ and ψ′ : B →
X ′ involved in commutative diagram

A
ξ′

  B
BB

BB

C

φ
??~~~~~

ψ ��@
@@

@@
X ′

B
r′

>>|||||

there exists a unique homomorphism ζ : X → X ′ such that diagram

A

ξ   @
@@

@@
@@

ξ′

((PPPPPPPPPPPPP

C

φ
??~~~~~~~

ψ ��@
@@

@@
@@

X
ζ

//___ X ′

B

r
>>~~~~~~~ r′

77nnnnnnnnnnnnn

is commutative. The latter determines the group X up to isomorphism.

The group X described in 43.Dx is a free product of A and B with amal-

gamated subgroup C, it is denoted by A ∗C B. Notice that the name is not
quite precise, as it ignores the role of the homomorphisms φ and ψ and the
possibility that they may be not injective.

If the group C is trivial, then A ∗C B is denoted by A ∗B and called the
free product of A and B.

43.9x. Is a free group of rank n a free product of n copies of Z?

43.10x. Represent the fundamental group of Klein bottle as Z ∗Z Z. Does this
decomposition correspond to a decomposition of Klein bottle?

43.11x. Riddle. Define a free product as a set of equivalence classes of words in
which the letters are elements of the factors.

43.12x. Investigate algebraic properties of free multiplication of groups: is it
associative, commutative and, if it is, then in what sense? Do homomorphisms of
the factors determine a homomorphism of the product?
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43.13x*. Find decomposition of modular group Mod = SL(2,Z)/
„

−1 0

0 −1

«

as

free product Z2 ∗ Z3.

43◦8x. Addendum to Seifert–van Kampen Theorem

Seifert-van Kampen Theorem appeared and used mainly as a tool for
calculation of fundamental groups. However, it helps not in any situation.
For example, it does not work under assumptions of the following theorem.

43.Ex. Let X be a topological space, A and B open sets covering X and
C = A ∩ B. Assume that A and B are simply connected and C consists of
two connected components. Then π1(X) is isomorphic to Z.

Theorem 43.Ex also holds true if we assume that C consists of two path-
connected components. The difference seems to be immaterial, but the proof
becomes incomparably more technical.

Seifert and van Kampen needed more universal tool for calculation of
fundamental group, and theorems published by them were much more gen-
eral than 43.Ax. Theorem 43.Ax is all that could penetrate from there
original papers to textbooks. Theorem 43.1x is another special case of their
results. The most general formulation is cumbersome, and we restrict our-
selves to one more special case, which was distinguished by van Kampen.
Together with 43.Ax, it allows one to calculate fundamental groups in all
situations that are available with the most general formulations by van Kam-
pen, although not that fast. We formulate the original version of this the-
orem, but recommend, first, to restrict to a cellular version, in which the
results presented in the beginning of this section allow one to obtain a com-
plete answer about calculation of fundamental groups, and only after that
to consider the general situation.

First, let us describe the situation common for both formulations. Let
A be a topological space, B its closed subset and U a neighborhood of B in
A such that U r B is a union of two disjoint sets, M1 and M2, open in A.
Put Ni = B ∪Mi. Let C be a topological space that can be represented as
(Ar U) ∪ (N1 ⊔N2) and in which the sets (Ar U) ∪N1 and (Ar U) ∪N2

with the topology induced from A form a fundamental cover. There are two
copies of B in C, which come from N1 and N2. The space A can be identified
with the quotient space of C obtained by identification of the two copies of
B via the natural homeomorphism. However, our description begins with
A, since this is the space whose fundamental group we want to calculate,
while the space B is auxiliary constructed out of A (see Figure 1).

In the cellular version of the statement formulated below, space A is
supposed to be cellular, and B its cellular subspace. Then C is also equipped
with a natural cellular structure such that the natural map C → A is cellular.
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B1 B2

M1 M2

A

B

M1 M2

Figure 1

43.Fx. Let in the situation described above C is path-connected and x0 ∈
C r (B1 ∪ B2). Let π1(C, x0) is presented by generators α1, . . . , αn and
relations ψ1 = 1, . . . , ψm = 1. Assume that base points yi ∈ Bi are mapped
to the same point y under the map C → A, and σi is a homotopy class of a
path connecting x0 with yi in C. Let β1, . . . , βp be generators of π1(B, y),
and β1i, . . . , βpi the corresponding elements of π1(Bi, yi). Denote by ϕli a

word representing σiβliσ
−1
i in terms of α1, . . . , αn. Then π1(A,x0) has the

following presentation:

〈α1, . . . , αn, γ | ψ1 = · · · = ψm = 1, γϕ11 = ϕ12γ, . . . , γϕp1 = ϕp2γ〉.

43.14x. Using 43.Fx, calculate fundamental groups of torus and Klein bottle.

43.15x. Using 43.Fx, calculate the fundamental groups of basic surfaces.

43.16x. Deduce Theorem 43.1x from 43.Ax and 43.Fx.

43.17x. Riddle. Develop an algebraic theory of group-theoretic construction
contained in Theorem 43.Fx.



Proofs and Comments 303

Proofs and Comments

40.A Let A be a cellular subspace of a cellular space X. For n = 0, 1, . . .,
we see that A ∩ Xn+1 is obtained from A ∩ Xn by attaching the (n + 1)-
cells contained in A. Therefore, if A is contained in a certain skeleton,
then A certainly is a cellular space and the intersections An = A ∩ Xn,
n = 0, 1, . . ., are the skeletons of A. In the general case, we must verify that
the cover of A by the sets An is fundamental, which follows from assertion
3 of Lemma 40.A.1 below, Problem 40.1, and assertion 40.Gx.

40.A.1 We prove only assertion 3 because it is needed for the proof
of the theorem. Assume that a subset F ⊂ A intersects each of the sets Ai

along a set closed in Ai. Since F ∩Xi = F ∩Ai is closed in Ai, it follows that
this set is closed in Xi. Therefore, F is closed in X since the cover {Xi}
is fundamental. Consequently, F is also closed in A, which proves that the
cover {Ai} is fundamental.

40.B This is true because attaching Dn to a point along the boundary
sphere we obtain the quotient space Dn/Sn−1 ∼= Sn.

40.C These (open) cells are: a point, the (n− 1)-sphere Sn−1 without
this point, the n-ball Bn bounded by Sn−1: e0 = x ∈ Sn−1 ⊂ Dn, en−1 =
Sn

r x, en = Bn.

40.D Indeed, factorizing the disjoint union of segments by the set of
all of their endpoints, we obtain a bouquet of circles.

40.E We present the product I × I as a cellular space consisting of
9 cells: four 0-cells – the vertices of the square, four 1-cells – the sides of
the square, and a 2-cell – the interior of the square. After the standard
factorization under which the square becomes a torus, from the four 0-cells
we obtain one 0-cell, and from the four 1-cells we obtain two 1-cells.

40.F Each open cell of the product is a product of open cells of the
factors, see Problem 40.3.

40.G Let Sk = Sn ∩ R
k+1, where

R
k+1 = {(x1, x2, . . . , xk+1, 0, . . . , 0)} ⊂ R

n+1.

If we present Sn as the union of the constructed spheres of smaller dimen-
sions: Sn =

⋃n
k=0 S

k, then for each k ∈ {1, . . . , n} the difference Sk
r Sk−1

consists of exactly two k-cells: open hemispheres.

40.H Consider the cellular partition of Sn described in the solution
of Problem 40.G. Then the factorization Sn → RPn identifies both cells
in each dimension into one. Each of the attaching maps is the projection
Dk → RP k mapping the boundary sphere Sk−1 onto RP k−1.
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40.I 0-cells are all integer points, and 1-cells are the open intervals
(k, k + 1), k ∈ Z.

40.J Since R
n = R × . . . × R (n factors), the cellular structure of R

n

can be determined by those of the factors (see 40.3). Thus, the 0-cells are
the points with integer coordinates. The 1-cells are open intervals with end-
points (k1, . . . , ki, . . . , kn) and (k1, . . . , ki + 1, . . . , kn), i.e., segments parallel
to the coordinate axes. The 2-cells are squares parallel to the coordinate
2-planes, etc.

40.K See the solution of Problem 40.J.

40.L This is obvious: each infinite countable 0-dimensional space is
homeomorphi to N ⊂ R.

40.M We map 0-cells to integer points Ak(k, 0, 0) on the x axis. The
embeddings of 1-cells will be piecewise linear and performed as follows. Take
the nth 1-cell of X to the pair of points with coordinates Cn(0, 2n − 1, 1)
and Dn(0, 2n, 1), n ∈ N. If the endpoints of the 1-cell are mapped to Ak

and Al, then the image of the 1-cell is the three-link polyline AkCnDnAl

(possibly, closed). We easily see that the images of distinct open cells are
disjoint (because their outer third parts lie on two skew lines). We have thus
constructed an injection f : X → R

3, which is obviously continuous. The
inverse map is continuous because it is continuous on each of the constructed
polylines, which in addition constitute a closed locally-finite cover of f(X),
which is fundamental by 9.U.

Ak
Al

Cn
Dn

40.N Use induction on skeletons and 40.N.2. The argument is simpli-
fied a great deal in the case where the cellular space is finite.

40.N.1 We assume that X ⊂ Rp ⊂ Rp+q+1, where Rp is the coordinate
space of the first p coordinate lines in R

p+q+1, and Y ⊂ R
q ⊂ R

p+q+1,
where Rq is the coordinate space of the last q coordinate lines in Rp+q+1.
Now we define a map f : X ⊔ Y → R

p+q+1. Put f(x) = x if x ∈ X,
and f(y) = (0, . . . , 0, 1, y) if y /∈ V = h−1

(
A ×

[
0, 1

2

))
. Finally, if y ∈ U ,
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h(y) = (a, t), and t ∈
[
0, 1

2

]
, then we put

f(y) =
(
(1 − 2t)ϕ(a), 2t, 2ty

)
.

We easily see that f is a proper map. The quotient map f̂ : X∪ϕY → R
p+q+1

is a proper injection, therefore, f̂ is an embedding by 18.Ox (cf. 18.Px).

40.N.2 By the definition of a cellular space, X is obtained by attaching
a disjoint union of closed k-disks to the (k − 1)-skeleton of X. Let Y be
a countable union of k-balls, A the union of their boundary spheres. (The
assumptions of Lemma 40.N.1 is obviously fulfilled: let the neighborhood U
be the complement of the union of concentric disks with radius 1

2 .) Thus,
Lemma 40.N.2 follows from 40.N.1.

40.O This follows from 40.N.2 by the definition of the cellular topology.

40.P This follows from 40.O and 40.N.

40.Q This follows from 40.P.

40.R Try to prove this assertion at least for 1-dimensional spaces.

40.S This can be proved by somewhat complicating the argument used
in the proof of 40.Bx.

40.T See, [FR, p. 93].

40.Ax We easily see that the closure of any open simplex is canonically
homeomorphi to the closed n-simplex. and, since any simplicial space Σ is
Hausdorff, Σ is homeomorphi to the quotient space obtained from a disjoint
union of several closed simplices by pasting them together along entire faces
via affine homeomorphisms. Since each simplex ∆ is a cellular space and
the faces of ∆ are cellular subspaces of ∆, it remains to use Problem 40.Hx.

40.Bx Let X be a cellular space, x, y ∈ X. Let n be the smallest
number such that x, y ∈ Xn. We construct their disjoint neighborhoods Un

and Vn in Xn. Let, for example, x ∈ e, where e is an open n-cell. Then let
Un be a small ball centered at x, and let Vn be the complement (in Xn) of
the closure of Un. Now let a be the center of an (n+1)-cell, ϕ : Sn → Xn the
attaching map. Consider the open cones over ϕ−1(Un) and ϕ−1(Vn) with
vertex a. Let Un+1 and Vn+1 be the unions of the images of such cones over
all (n+ 1)-cells of X. Clearly, they are disjoint neighborhoods of x and y in
Xn+1. The sets U = ∪∞

k=nUk and V = ∪∞

k=nVk are disjoint neighborhoods
of x and y in X.

40.Cx Let X be a cellular space, e ⊂ X a cell of X, ψ : Dn → X the
characteristic map of e, B = Bn ⊂ Dn the open unit ball. Since the map
ψ is continuous, we have e = ψ(Dn) = ψ(ClB) ⊂ Cl(ψ(B)) = Cl(e). On
the other hand, ψ(Dn) is a compact set, which is closed by 40.Bx, whence
e = ψ(Dn) ⊃ Cl(e).
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40.Dx Let X be a cellular space, Xn the n-skeleton of X, n ∈ N.
The definition of the quotient topology easily implies that Xn−1 and closed
n-cells of X form a fundamental cover of Xn. Starting with n = 0 and
reasoning by induction, we prove that the cover of Xn by closed k-cells with
k ≤ n is fundamental. And since the cover of X by the skeletons Xn is
fundamental by the definition of the cellular topology, so is the cover of X
by closed cells (see 9.31).

40.Ex This follows from assertion 40.Dx, the fact that, by the definition
of a cellular subspace, each closed cell is contained in an element of the cover,
and assertion 9.31.

40.Fx Let X be a cellular space, Xk the k-skeleton of X. First, we
prove that each compact set K ⊂ Xk intersects only a finite number of open
cells in Xk. We use induction on the dimension of the skeleton. Since the
topology on the 0-skeleton is discrete, each compact set can contain only a
finite number of 0-cells of X. Let us perform the step of induction. Consider
a compact set K ⊂ Xn. For each n-cell eα meeting K, take an open ball
Uα ⊂ eα such that K∩Uα 6= ∅. Consider the cover Γ = {eα,Xnr∪Cl(Uα)}.
It is clear that Γ is an open cover of K. Since K is compact, Γ contains a
finite subcovering. Therefore, K intersects finitely many n-cells. The inter-
section of K with the (n− 1)-skeleton is closed, therefore, it is compact. By
the inductive hypothesis, this set (i.e., K ∩ Xn−1) intersects finitely many
open cells. Therefore, the set K also intersects finitely many open cells.
Now let ϕ : Sn−1 → Xn−1 be the attaching map for the n-cell, F =
ϕ(Sn−1) ⊂ Xn−1. Since F is compact, F can intersect only a finite num-
ber of open cells. Thus we see that each closed cell intersects only a finite
number of open cells.

40.Gx Let A be a cellular subspace of X. By 40.Dx, it is sufficient to
verify that A ∩ e is closed for each cell e of X. Since a cellular subspace is
a union of open (as well as of closed) cells, i.e., A = ∪eα = ∪eα, it follows
from 40.Fx that we have

A ∩ e =
(
∪eα

)
∩ e = (∪n

i=1eαi) ∩ e ⊂ (∪n
i=1eαi) ∩ e ⊂ A ∩ e

and, consequently, the inclusions in this chain are equalities. Consequently,
by 40.Cx, the set A∩e = ∪n

i=1 (eαi ∩ e) is closed as a union of a finite number
of closed sets.

40.Ix Since, by 40.Fx, each closed cell intersects only a finite number
of open cells, it follows that the intersection of any closed cell e with A is
finite and consequently (since cellular spaces are Hausdorff) closed, both in
X, and a fortiori in e. Since, by 40.Dx, closed cells constitute a fundamental
cover, the set A itself is also closed. Similarly, each subset of A is also closed
in X and a fortiori in A. Thus, indeed, the induced topology in A is discrete.
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40.Jx Let K ⊂ X be a compact subset. In each of the cells eα meeting
K, we take a point xα ∈ eα ∩K and consider the set A = {xα}. By 40.Ix,
the set A is closed, and the topology on A is discrete. Since A is compact
as a closed subset of a compact set, therefore, A is finite. Consequently, K
intersects only a finite number of open cells.

40.Kx Use 40.Jx. A finite cellular space is compact as a
union of a finite number of compact sets – closed cells.

40.Lx We can use induction on the dimension of the cell because the
closure of any cell intersects finitely many cells of smaller dimension. Notice
that the closure itself is not necessarily a cellular subspace.

40.Mx This follows from 40.Jx, 40.Lx, and 40.2.

40.Nx Let K be a compact subset of a cellular space. Then K
is closed because each cellular space is Hausdorff. Assertion 40.Jx implies
that K meets only a finite number of open cells.

If K intersects finitely many open cells, then by 40.Lx K lies in a finite
cellular subspace Y , which is compact by 40.Kx, and K is a closed subset
of Y .

40.Ox Let X be a cellular space. We argue by contradiction.
Let X contain an uncountable set of n-cells enα. Put Un

α = enα. Each of the
sets Un

α is open in the n-skeleton Xn of X. Now we construct an uncountable
collection of disjoint open sets in X. Let a be the center of a certain (n+1)-
cell, ϕ : Sn → Xn the attaching map of the cell. We construct the cone over
ϕ−1(Un

α ) with vertex at a and denote by Un+1
α the union of such cones over

all (n+1)-cells of X. It is clear that
{
Un+1

α

}
is an uncountable collection of

sets open in Xn+1. Then the sets Uα =
⋃

∞

k=nU
k
α constitute an uncountable

collection of disjoint sets that are open in the entire X. Therefore, X is not
second countable and, therefore, nonseparable.

If X has a countable set of cells, then, taking in each cell a countable
everywhere dense set and uniting them, we obtain a countable set dense in
the entire X (check this!). Thus, X is separable.

40.Px Indeed, any path-connected component Y of a cellular space
together with each point x ∈ Y entirely contains each closed cell containing
x and, in particular, it contains the closure of the open cell containing x.

40.Rx Cf. the argument used in the solution of Problem 40.Ox.

40.Rx This is so because a cellular space is locally path-connected,
see 40.Qx.

40.Sx This follows from 40.Rx.

40.Tx Obvious. We show by induction that the number of
cells in each dimension is countable. For this purpose, it is sufficient to prove
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that each cell intersects finitely many closed cells. It is more convenient to
prove a stronger assertion: any closed cell e intersects finitely many closed
cells. It is clear that any neighborhood meeting the closed cell also meets the
cell itself. Consider the cover of e by neighborhoods each of which intersects
finitely many closed cells. It remains to use the fact that e is compact.

40.Ux By Problem 40.Tx, the 1-skeleton of X is connected. The result
of Problem 40.Tx implies that it is sufficient to prove that the 0-skeleton of
X is countable. Fix a 0-cell x0. Denote by A1 the union of all closed 1-cells
containing x0. Now we consider the set A2 – the union of all closed 1-cells
meeting A1. Since X is locally finite, each of the sets A1 and A2 contains a
finite number of cells. Proceeding in a similar way, we obtain an increasing
sequence of 1-dimensional cellular subspaces A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . .,
each of which is finite. Put A =

⋃
∞

k=1Ak. The set A contains countably
many cells. The definition of the cellular topology implies that A is both
open and closed in X1. Since X1 is connected, we have A = X1.

40.Vx Assume the contrary: let the 1-skeleton X1 be discon-
nected. Then X1 is the union of two closed sets: X1 = X ′

1 ∪X
′′

1 . Each 2-cell
is attached to one of these sets, whence X2 = X ′

2 ∪X
′′

2 . A similar argument
shows that for each positive integer n the n-skeleton is a union of its closed
subsets. Put X ′ =

⋃
∞

n=0X
′

n and X ′′ =
⋃

∞

n=0X
′′

n. By the definition of the
cellular topology, X ′ and X ′′ are closed, consequently, X is disconnected.

This is obvious.

41.A This immediately follows from the obvious equality ci(A∪B) =
ci(A) + ci(B) − ci(A ∩B).

41.B Here we use the following artificial trick. We introduce the poly-
nomial χA(t) = c0(A)+c1(A)t+ . . .+ci(A)ti + . . .. This is the Poincaré poly-

nomial , and its most important property for us here is that χ(X) = χX(−1).

Since ck(X × Y ) =
∑k

i=0 ci(X)ck−i(Y ), we have

χX×Y (t) = χX(t) · χY (t),

whence χ(X × Y ) = χX×Y (−1) = χX(−1) · χY (−1) = χ(X) · χ(Y ).

41.C Set X ′ = X r (e ∪ f). It follows from the definition that the
union of all open cells in X ′ coincides with the union of all closed cells in
X ′, consequently, X ′ is a cellular subspace of X.

41.D The deformation retraction of Dn to the lower closed hemisphere
Sn−1
−

determines a deformation retraction X → X r (e ∪ f).

41.E The assertion is obvious because each elementary combinatorial
collapse decreases by one the number of cells in each of two neighboring
dimensions.
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41.F Let p : X → X ′ be the factorization map. The space X ′ has the
same open cells as X except e and f . The attaching map for each of them
is the composition of the initial attaching map and p.

41.G.1 Put Y = Xn−1 ∪ϕe D
n. Clearly, Y ′ ∼= Y r (e ∪ f), and so

we identify these spaces. Then the projection p′ : Y → Y ′ is a homotopy
equivalence by 41.D.

41.G.2 Let {eα} be a collection of n-cells of X distinct from the cell
e, ϕα – the corresponding attaching maps. Consider the map p′ : Y → Y ′.
Since

Xn = Y ∪(
F

α ϕα)

(⊔

α

Dn
α

)
,

we have

X ′

n = Y ′ ∪(
F

α p′◦ϕα)

(⊔

α

Dn
α

)
.

Since p′ is a homotopy equivalence by 41.G.1, the result of 41.6x implies
that p′ extends to a homotopy equivalence pn : Xn → X ′

n. Using induction
on skeletons, we obtain the required assertion.

41.Ax We use induction on the dimension. Clearly, we should consider
only those cells which do not lie in A. If there is a retraction

ρn−1 : (Xn−1 ∪A) × I → (Xn−1 × 0) ∪ (A× I),

and we construct a retraction

ρ̃n : (Xn ∪A) × I → (Xn × 0) ∪ ((Xn−1 ∪A) × I),

then it is obvious how, using their “composition”, we can obtain a retraction

ρn : (Xn ∪A) × I → (Xn × 0) ∪ (A× I).

We need the standard retraction ρ : Dn × I → (Dn × 0) ∪ (Sn−1 × I). (It
is most easy to define ρ geometrically. Place the cylinder in a standard
way in Rn+1 and consider a point p lying over the center of the upper
base. For z ∈ Dn × I, let ρ(z) be the point of intersection of the ray
starting at p and passing through z with the union of the base Dn × 0 and
the lateral area Sn−1 × I of the cylinder.) The quotient map ρ is a map
e × I → (Xn × 0) ∪ (Xn−1 × I). Extending it identically to Xn−1 × I, we
obtain a map

ρe : (e× I) ∪ (Xn−1 × I) → (Xn × 0) ∪ (Xn−1 × I).

Since the closed cells constitute a fundamental cover of a cellular space, the
retraction ρ̃n is thus defined.
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41.Bx The formulas H̃(x, 0) = F (x) for x ∈ X and H̃(x, t) = h(x, t) for

(x, t) ∈ A× I determine a map H̃ : (X × 0)∪ (A× I) → Y . By 41.Ax, there

is a retraction ρ : X × I → (X × 0) ∪ (A× I). The composition H = H̃ ◦ ρ
is the required homotopy.

41.Cx Denote by h : A × I → A a homotopy between the identity
map of A and the constant map A → A : a 7→ x0. Consider the homotopy

h̃ = i ◦ h : A × I → X. By Theorem 41.Bx, h̃ extends to a homotopy
H : X × I → X of the identity map of the entire X. Consider the map

f : X → X, f(x) = H(x, 1). By the construction of the homotopy h̃, we
have f(A) = {x0}, consequently, the quotient map of f is a continuous map
g : X/A → X. We prove that pr and g are mutually inverse homotopy
equivalences. To do this we must verify that g ◦pr ∼ idX and pr ◦g ∼ idX/A.
1) We observe thatH(x, 1) = g(pr(x)) by the definition of g. SinceH(x, 0) =
x for all x ∈ X, it follows that H is a homotopy between idX and the
composition g ◦ pr.
2) If we factorize each fiber X × t by A × t, then, since H(x, t) ∈ A for all

x ∈ A and t ∈ I, the homotopy H determines a homotopy H̃ : X/A→ X/A
between idX/A and the composition p ◦ g.

41.Fx Let X be the space. By 41.Ex, we can assume that X has one
0-cell, and therefore the 1-skeleton X1 is a bouquet of circles. Consider the
characteristic map ψ : I → X1 of a certain 1-cell. Instead of the loop ψ, it is
more convenient to consider the circular loop S1 → X1, which we denote by
the same letter. Since X is simply connected, the loop ψ extends to a map
f : D2 → X. Now consider the diskD3. To simplify the notation, we assume
that f is defined on the lower hemisphere S2

− ⊂ D3. Put Y = X ∪f D
3 ≃ X.

The space Y is cellular and is obtained by adding two cells to X: a 2- and a
3-cell. The new 2-cell e, i.e., the image of the upper hemisphere in D3, is a
contractible cellular space. Therefore, we have Y/e ≃ Y , and Y/e contains
one 1-cell less than the initial space X. Proceeding in this way, we obtain
a space with one-point 2-skeleton. Notice that our construction yielded
a 3-dimensional cellular space. Actually, in our assumptions the space is
homotopy equivalent to: a point, a 2-sphere, or a bouquet of 2-spheres, but
the proof of this fact involves more sophisticated techniques (the homology).

41.Gx Let the map f : X → A be homotopically inverse to the in-
clusion inA. By assumption, the restriction of f to the subspace A, i.e.,
the composition f ◦ in, is homotopic to the identity map idA. By Theo-
rem 41.Bx, this homotopy extends to a homotopy H : X × I → A of f .
Put ρ(x) = H(x, 1); then ρ(x, 1) = x for all x ∈ A. Consequently, ρ is a
retraction. It remains to observe that, since ρ is homotopic to f , it follows
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that in ◦ρ is homotopic to the composition inA ◦f , which is homotopic to
idX because f and in are homotopically inverse by assumption.

42.A Prove this by induction, using Lemma 42.A.1.

42.A.1 Certainly, the fact that the projection is a homotopy equiv-
alence is a special case of assertions 41.Dx and 41.G. However, here we
present an independent argument, which is more visual in the 1-dimensional
case. All homotopies will be fixed outside a neighborhood of the 1-cell e
of the initial cellular space X and outside a neighborhood of the 0-cell x0,
which is the image of e in the quotient space Y = X/e. For this reason,
we consider only the closures of such neighborhoods. Furthermore, to sim-
plify the notation, we assume that the spaces under consideration coincide
with these neighborhoods. In this case, X is the 1-cell e with the segments
I1, I2, . . . , Ik (respectively, J1, J2, . . . , Jn) attached to the left endpoint, (re-
spectively, to the right endpoint). The space Y is simply a bouquet of all
these segments with a common point x0. The map f : X → Y has the
following structure: each of the segments Ii and Jj is mapped onto itself
identically, and the cell e is mapped to x0. The map g : Y → X takes x0 to
the midpoint of e and maps a half of each of the segments Is and Jt to the
left and to the right half of e, respectively. Finally, the remaining half of
each of these segments is mapped (with double stretching) onto the entire
segment. We prove that the described maps are homotopically inverse. Here
it is important that the homotopies be fixed on the free endpoints of Is and
Jt. The composition f ◦ g : Y → Y has the following structure. The restric-
tion of f ◦ g to each of the segments in the bouquet is, strictly speaking, the
product of the identical path and the constant path, which is known to be
homotopic to the identical path. Furthermore, the homotopy is fixed both
on the free endpoints of the segments and on x0. The composition g◦f maps
the entire cell e to the midpoint of e, while the halves of each of the segments
Is and Jt adjacent to e are mapped a half of e, and their remaining parts
are doubly stretched and mapped onto the entire corresponding segment.
Certainly, the map under consideration is homotopic to the identity.

42.B By 42.A.1, each connected 1-dimensional finite cellular space X
is homotopy equivalent to a space X ′, where the number of 0- and 1-cells
is one less than in X, whence χ(X) = χ(X ′). Reasoning by induction, we
obtain as a result a space with a single 0-cell and with Euler characteristic
equal to χ(X) (cf. 41.E). Let k be the number of 1-cells in this space. Then
χ(X) = 1−k, whence k = 1−χ(X). It remains to observe that k is precisely
the rang of π1(X).

42.C This follows from 42.B because the fundamental group of a space
is invariant with respect to homotopy equivalences.

42.D This follows from 42.C.
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42.E By 42.B, if two finite connected 1-dimensional cellular spaces
have isomorphic fundamental groups (or equal Euler characteristics), then
each of them is homotopy equivalent to a bouquet consisting of one and the
same number of circles, therefore, the spaces are homotopy equivalent. If the
spaces are homotopy equivalent, then, certainly, their fundamental groups
are isomorphic, and, by 42.C, their Euler characteristics are also equal.

42.Ax Let e be an open cell. If the image ϕe(S
0) of the attaching

map of e is one-point, then X r e is obviously connected. Assume that
ϕe(S

0) = {x0, x1}. Prove that each connected component of X r e contains
at least one of the points x0 and x1.

42.Bx 1) Let X be a connected 1-dimensional cellular space, x ∈ X a
vertex. If a connected component of X r x contains no edges whose closure
contains x, then, since cellular spaces are locally connected, the component
is both open and closed in the entire X, contrary to the connectedness of
X. 2) This follows from the fact that a vertex of degree m lies in the closure
of at most m distinct edges.

43.A See 42.B.

43.B This follows from 42.I (or 41.Cx) because of 35.L.

43.C It is sufficient to prove that each loop u : I → X is homotopic
to a loop v with v(I) ⊂ A. Let U ⊂ Dk be the open ball with radius
2
3 , and let V be the complement in X of a closed disk with radius 1

3 . By
the Lebesgue Lemma 16.W, the segment I can be subdivided segments
I1, . . . , IN the image of each of which is entirely contained in one of the sets
U or V . Assume that u(Il) ⊂ U . Since in Dk any two paths with the same
starting and ending points are homotopic, it follows that the restriction u|Il

is homotopic to a path that does not meet the center a ∈ Dk. Therefore, the
loop u is homotopic to a loop u′ whose image does not contain a. It remains
to observe that the space A is a deformation retract of X r a, therefore, u′

is homotopic to a loop v with image lying in A.

43.D Let s be a loop at x0. Since the set s(I) is compact, s(I) is
contained in a finite cellular subspace Y of X. It remains to apply asser-
tion 43.C and use induction on the number of cells in Y .

43.E This follows from 43.D and 43.B.

43.F If we take another collection of paths s′α, then the elements Tsα [ϕα]
and Ts′α [ϕα] will be conjugate in π1(X1, x0), and since the subgroup N is
normal, N contains the collection of elements {Tsα [ϕα]} iff N contains the
collection {Ts′α [ϕα]}.

43.G We can assume that the 0-skeleton of X is the singleton {x0},
so that the 1-skeleton X1 is a bouquet of circles. Consider a covering
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p1 : Y1 → X1 with group N . Its existence follows from the more gen-
eral Theorem 39.Dx on the existence of a covering with given group. In the
case considered, the covering space is a 1-dimensional cellular space. Now
the proof of the theorem consists of several steps, each of which is the proof
of one of the following seven lemmas. It will also be convenient to assume
that ϕα(1) = x0, so that Tsα [ϕα] = [ϕα].

43.G.1 Since, clearly, in∗([ϕα]) = 1 in π1(X,x0), we have in∗([ϕα]) =
1 in π1(X,x0), therefore, each of the elements [ϕα] ∈ Ker i∗. Since the
subgroup Ker i∗ is normal, it contains N , which is the smallest subgroup
generated by these elements.

43.G.2 This follows from 39.Px.

43.G.3 Let F = p−1
1 (x0) be the fiber over x0. The map p2 is a quotient

map

Y1 ⊔

(⊔

α

⊔

y∈Fα

D2
α,y

)
→ X1 ⊔

(⊔

α

D2
α

)
,

whose submap Y1 → X1 is p1, and the maps
⊔

y∈Fα
D2

α → D2
α are identities

on each of the disks D2
α. It is clear that for each point x ∈ IntD2

α ⊂ X2 the
entire interior of the disk is a trivially covered neighborhood. Now assume
that for point x ∈ X1 the set U1 is a trivially covered neighborhood of x
with respect to the covering p1. Put U = U1 ∪ (

⋃
α′ ψα′(Bα′)), where Bα′ is

the open cone with vertex at the center of D2
α′ and base ϕ−1

α′ (U). The set U
is a trivially covered neighborhood of x with respect to p2.

43.G.4 First, we prove this for n = 3. So, let p : X → B be an
arbitrary covering, ϕ : S2 → B an arbitrary map. Consider the subset
A = S1×0∪1×I∪S1×1 of the cylinder S1×I, and let q : S1×I → S1 × I/A
be the factorization map. We easily see that S1 × I/A ∼= S2. Therefore, we
assume that q : S1 × I → S2. The composition h = ϕ ◦ q : S1 × I → B
is a homotopy between one and the same constant loop in the base of the
covering. By the Path Homotopy Lifting Theorem 34.C, the homotopy h

is covered by the map h̃, which also is a homotopy between two constant

paths, therefore, the quotient map of h̃ is the map ϕ̃ : S2 → X covering ϕ.
For n > 3, use 39.Yx.

43.G.5 The proof is similar to that of Lemma 3.

43.G.6 Since the loop in ◦s : I → X is null-homotopic, it is covered by
a loop, the image of which automatically lies in Y1.
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43.G.7 Let s be a loop in X1 such that [s] ∈ Ker(i1)∗. Lemma 6
implies that s is covered by a loop s̃ : I → Y1, whence [s] = (p1)∗([s̃ ]) ∈ N .
Therefore, Ker in∗ ⊂ N , whence N = Ker in∗ by Lemma 1.

43.I For example, RP 2 is obtained by attaching D2 to S1 via the map
ϕ : S1 → S1 : z 7→ z2. The class of the loop ϕ in π1(S

1) = Z is the doubled
generator, whence π1(RP

2) ∼= Z2, as it should have been expected. The
torus S1×S1 is obtained by attaching D2 to the bouquet S1 ∨S1 via a map
ϕ representing the commutator of the generators of π1(S

1 ∨S1). Therefore,
as it should have been expected, the fundamental group of the torus is Z2.

43.K See 40.12 (h).

43.L See 40.12 (i).

43.M.1 Indeed, the single relation in the fundamental group of the
sphere with g handles means that the product of g commutators of the
generators ai and bi equals 1, and so it “vanishes” after the abelianization.

43.N.1 Taking the elements a1, . . . , ag−1, and bn = a1a2 . . . ag as
generators in the commuted group, we obtain an Abelian group with a
single relation b2n = 1.

43.O This follows from 43.M.1.

43.O This follows from 43.N.1.

43.Q This follows from 43.M.1 and 43.N.1.

43.Ax We do not assume that you can prove this theorem on your own.
The proof can be found, for example, in [Massey].

43.Bx Draw a commutative diagram comprising all inclusion homo-
morphisms induced by all inclusions occurring in this situation.

43.Cx Since, as we will see in Section 43◦7x, the group presented as
above, actually, up to canonical isomorphism does not depend on the choice
of generators and relations in π1(A,x0) and π1(B,x0) and the choice of
generators in π1(C, x0), we can use the presentation which is most convenient
for us. We derive the theorem from Theorems 43.D and 43.G. First of
all, it is convenient to replace X, A, B, and C by homotopy equivalent
spaces with one-point 0-skeletons. We do this with the help of the following
construction. Let TC be a spanning tree in the 1-skeleton of C. We complete
TC to a spanning tree TA ⊃ TC in A, and also complete TC to a spanning
tree TB ⊃ TC . The union T = TA ∪ TB is a spanning tree in X. It remains
to replace each of the spaces under consideration with its quotient space
by a spanning tree. Thus, the 1-skeleton of each of the spaces X, A, B,
and C either coincides with the 0-cell x0, or is a bouquet of circles. Each
of the circles of the bouquets determines a generator of the fundamental
group of the corresponding space. The image of γi ∈ π1(C, x0) under the
inclusion homomorphism is one of the generators, let it be αi (βi) in π1(A,x0)
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(respectively, in π1(B,x0)). Thus, ξi = αi and ηi = βi. The relations ξi = ηi,
and, in this case, αi = βi, i = 1, . . . , t arise because each of the circles lying
in C determines a generator of π1(X,x0). All the remaining relations, as it
follows from assertion 43.G, are determined by the attaching maps of the
2-cells of X, each of which lies in at least one of the sets A or B, and hence is
a relation between the generators of the fundamental groups of these spaces.

43.Dx Let F be a free group with generators α1, . . . , αp, β1, . . . , βq. By
definition, the group X is the quotient group of F by the normal hull N of
the elements

{ρ1, . . . , ρr, σ1, . . . , σs, ξ(γ1)η(γ1)
−1, . . . , ξ(γt)η(γt)

−1}.

Since the first diagram is commutative, it follows that the subgroup N lies
in the kernel of the homomorphism F → X ′ : αi 7→ ϕ′(αi), βi 7→ ψ′(αi),
consequently, there is a homomorphism ζ : X → X ′. Its uniqueness is
obvious. Prove the last assertion of the theorem on your own.

43.Ex Construct a universal covering of X.


