
Part 1

General Topology



The goal of this part of the book is to teach the language of mathemat-
ics. More specifically, one of its most important components: the language
of set-theoretic topology, which treats the basic notions related to continu-
ity. The term general topology means: this is the topology that is needed
and used by most mathematicians. A permanent usage in the capacity
of a common mathematical language has polished its system of definitions
and theorems. Nowadays, studying general topology really more resembles
studying a language rather than mathematics: one needs to learn a lot of
new words, while proofs of most theorems are extremely simple. On the
other hand, the theorems are numerous because they play the role of rules
regulating usage of words.

We have to warn the students for whom this is one of the first mathemat-
ical subjects. Do not hurry to fall in love with it, do not let an imprinting
happen. This field may seem to be charming, but it is not very active. It
hardly provides as much room for exciting new research as many other fields.



Chapter I

Structures and Spaces

1. Digression on Sets

We begin with a digression, which we would like to consider unnecessary. Its
subject is the first basic notions of the naive set theory. This is a part of the
common mathematical language, too, but even more profound than general
topology. We would not be able to say anything about topology without this
part (look through the next section to see that this is not an exaggeration).
Naturally, it may be expected that the naive set theory becomes familiar to
a student when she or he studies Calculus or Algebra, two subjects usually
preceding topology. If this is what really happened to you, then, please,
glance through this section and move to the next one.

1◦1. Sets and Elements

In any intellectual activity, one of the most profound actions is gathering
objects into groups. The gathering is performed in mind and is not accom-
panied with any action in the physical world. As soon as the group has been
created and assigned a name, it can be a subject of thoughts and arguments
and, in particular, can be included into other groups. Mathematics has an
elaborated system of notions, which organizes and regulates creating those
groups and manipulating them. This system is the naive set theory , which is
a slightly misleading name because this is rather a language than a theory.

The first words in this language are set and element. By a set we
understand an arbitrary collection of various objects. An object included
into the collection is an element of the set. A set consists of its elements. It
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4 I. Structures and Spaces

is also formed by them. To diversify wording, the word set is replaced by the
word collection. Sometimes other words, such as class, family , and group,
are used in the same sense, but this is not quite safe because each of these
words is associated in modern mathematics with a more special meaning,
and hence should be used instead of the word set with caution.

If x is an element of a set A, then we write x ∈ A and say that x belongs

to A and A contains x. The sign ∈ is a variant of the Greek letter epsilon,
which is the first letter of the Latin word element . To make notation more
flexible, the formula x ∈ A is also allowed to be written in the form A ∋ x.
So, the origin of notation is sort of ignored, but a more meaningful similarity
to the inequality symbols < and > is emphasized. To state that x is not
an element of A, we write x 6∈ A or A 6∋ x.

1◦2. Equality of Sets

A set is determined by its elements. It is nothing but a collection of
its elements. This manifests most sharply in the following principle: two

sets are considered equal if and only if they have the same elements. In this
sense, the word set has slightly disparaging meaning. When something is
called a set, this shows, maybe unintentionally, a lack of interest to whatever
organization of the elements of this set.

For example, when we say that a line is a set of points, we assume that
two lines coincide if and only if they consist of the same points. On the
other hand, we commit ourselves to consider all relations between points on
a line (e.g., the distance between points, the order of points on the line, etc.)
separately from the notion of line.

We may think of sets as boxes that can be built effortlessly around
elements, just to distinguish them from the rest of the world. The cost of
this lightness is that such a box is not more than the collection of elements
placed inside. It is a little more than just a name: it is a declaration of our
wish to think about this collection of things as of entity and not to go into
details about the nature of its members-elements. Elements, in turn, may
also be sets, but as long as we consider them elements, they play the role of
atoms, with their own original nature ignored.

In modern Mathematics, the words set and element are very common
and appear in most texts. They are even overused. There are instances
when it is not appropriate to use them. For example, it is not good to use
the word element as a replacement for other, more meaningful words. When
you call something an element , then the set whose element is this one should
be clear. The word element makes sense only in combination with the word
set , unless we deal with a nonmathematical term (like chemical element), or
a rare old-fashioned exception from the common mathematical terminology
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(sometimes the expression under the sign of integral is called an infinitesimal
element ; in old texts lines, planes, and other geometric images are also called
elements). Euclid’s famous book on Geometry is called Elements, too.

1◦3. The Empty Set

Thus, an element may not be without a set. However, a set may have
no elements. Actually, there is a such set. This set is unique because a set
is completely determined by its elements. It is the empty set denoted1 by ∅.

1◦4. Basic Sets of Numbers

Besides ∅, there are few other sets so important that they have their
own unique names and notation. The set of all positive integers, i.e., 1,
2, 3, 4, 5, . . . , etc., is denoted by N. The set of all integers, both positive,
negative, and the zero, is denoted by Z. The set of all rational numbers (add
to the integers those numbers which can be presented by fractions, like 2

3

and −7
5 ) is denoted by Q. The set of all real numbers (obtained by adjoining

to rational numbers the numbers like
√

2 and π = 3.14 . . . ) is denoted by R.
The set of complex numbers is denoted by C.

1◦5. Describing a Set by Listing Its Elements

A set presented by a list a, b, . . . , x of its elements is denoted by the
symbol {a, b, . . . , x}. In other words, the list of objects enclosed in curly
brackets denotes the set whose elements are listed. For example, {1, 2, 123}
denotes the set consisting of the numbers 1, 2, and 123. The symbol {a, x,A}
denotes the set consisting of three elements: a, x, and A, whatever objects
these three letters are.

1.1. What is {∅}? How many elements does it contain?

1.2. Which of the following formulas are correct:

1) ∅ ∈ {∅, {∅}}; 2) {∅} ∈ {{∅}}; 3) ∅ ∈ {{∅}}?

A set consisting of a single element is a singleton. This is any set which
can be presented as {a} for some a.

1.3. Is {{∅}} a singleton?

Notice that sets {1, 2, 3} and {3, 2, 1, 2} are equal since they consist of
the same elements. At first glance, lists with repetitions of elements are
never needed. There arises even a temptation to prohibit usage of lists with
repetitions in such a notation. However, as it often happens to temptations
to prohibit something, this would not be wise. In fact, quite often one
cannot say a priori whether there are repetitions or not. For example, the

1Other notation, like Λ, is also in use, but ∅ has become common one.
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elements in the list may depend on a parameter, and under certain values of
the parameter some entries of the list coincide, while for other values they
don’t.

1.4. How many elements do the following sets contain?

1) {1, 2, 1}; 2) {1, 2, {1, 2}}; 3) {{2}};
4) {{1}, 1}; 5) {1, ∅}; 6) {{∅}, ∅};
7) {{∅}, {∅}}; 8) {x, 3x − 1} for x ∈ R.

1◦6. Subsets

If A and B are sets and every element of A also belongs to B, then we
say that A is a subset of B, or B includes A, and write A ⊂ B or B ⊃ A.

The inclusion signs ⊂ and ⊃ resemble the inequality signs < and
> for a good reason: in the world of sets, the inclusion signs are obvious
counterparts for the signs of inequalities.

1.A. Let a set A consist of a elements, and a set B of b elements. Prove
that if A ⊂ B, then a ≤ b.

1◦7. Properties of Inclusion

1.B Reflexivity of Inclusion. Any set includes itself: A ⊂ A holds true
for any A.

Thus, the inclusion signs are not completely true counterparts of the
inequality signs < and >. They are closer to ≤ and ≥. Notice that no
number a satisfies the inequality a < a.

1.C The Empty Set Is Everywhere. ∅ ⊂ A for any set A. In other
words, the empty set is present in each set as a subset.

Thus, each set A has two obvious subsets: the empty set ∅ and A itself.
A subset of A different from ∅ and A is a proper subset of A. This word
is used when we do not want to consider the obvious subsets (which are
improper).

1.D Transitivity of Inclusion. If A, B, and C are sets, A ⊂ B, and
B ⊂ C, then A ⊂ C.

1◦8. To Prove Equality of Sets, Prove Two Inclusions

Working with sets, we need from time to time to prove that two sets,
say A and B, which may have emerged in quite different ways, are equal.
The most common way to do this is provided by the following theorem.

1.E Criterion of Equality for Sets.

A = B if and only if A ⊂ B and B ⊂ A.
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1◦9. Inclusion Versus Belonging

1.F. x ∈ A if and only if {x} ⊂ A.

Despite this obvious relation between the notions of belonging ∈ and
inclusion ⊂ and similarity of the symbols ∈ and ⊂, the concepts are
quite different. Indeed, A ∈ B means that A is an element in B (i.e., one of
the indivisible pieces comprising B), while A ⊂ B means that A is made of
some of the elements of B.

In particular, A ⊂ A, while A 6∈ A for any reasonable A. Thus, belonging
is not reflexive. One more difference: belonging is not transitive, while
inclusion is.

1.G Nonreflexivity of Belonging. Construct a set A such that A 6∈ A.
Cf. 1.B.

1.H Non-Transitivity of Belonging. Construct sets A, B, and C such
that A ∈ B and B ∈ C, but A 6∈ C. Cf. 1.D.

1◦10. Defining a Set by a Condition

As we know (see 1◦5), a set can be described by presenting a list of
its elements. This simplest way may be not available or, at least, be not
the easiest one. For example, it is easy to say: “the set of all solutions of
the following equation” and write down the equation. This is a reasonable
description of the set. At least, it is unambiguous. Having accepted it, we
may start speaking on the set, studying its properties, and eventually may
be lucky to solve the equation and obtain the list of its solutions. However,
the latter may be difficult and should not prevent us from discussing the
set.

Thus, we see another way for description of a set: to formulate properties
that distinguish the elements of the set among elements of some wider and
already known set. Here is the corresponding notation: the subset of a set
A consisting of the elements x that satisfy a condition P (x) is denoted by
{x ∈ A | P (x)}.

1.5. Present the following sets by lists of their elements (i.e., in the form {a, b, . . . })
(a) {x ∈ N | x < 5}, (b) {x ∈ N | x < 0}, (c) {x ∈ Z | x < 0}.

1◦11. Intersection and Union

The intersection of sets A and B is the set consisting of their common
elements, i.e., elements belonging both to A and B. It is denoted by A ∩B
and can be described by the formula

A ∩B = {x | x ∈ A and x ∈ B}.
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Two sets A and B are disjoint if their intersection is empty, i.e., A∩B =
∅.

The union of two sets A and B is the set consisting of all elements that
belong to at least one of these sets. The union of A and B is denoted by
A ∪B. It can be described by the formula

A ∪B = {x | x ∈ A or x ∈ B}.
Here the conjunction or should be understood in the inclusive way: the
statement “x ∈ A or x ∈ B” means that x belongs to at least one of the
sets A and B, but, maybe, to both of them.

A B A B A B

A ∩B A ∪B
Figure 1. The sets A and B, their intersection A∩ B, and their union
A ∪ B.

1.I Commutativity of ∩ and ∪. For any two sets A and B, we have

A ∩B = B ∩A and A ∪B = B ∪A.
1.6. Prove that for any set A we have

A ∩ A = A, A ∪ A = A, A ∪ ∅ = A, and A ∩ ∅ = ∅.

1.7. Prove that for any sets A and B we have

A ⊂ B, iff A ∩ B = A, iff A ∪ B = B.

1.J Associativity of ∩ and ∪. For any sets A, B, and C, we have

(A ∩B) ∩C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

Associativity allows us not to care about brackets and sometimes even
omit them. We define A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) and
A∪B∪C = (A∪B)∪C = A∪ (B∪C). However, intersection and union of
an arbitrarily large (in particular, infinite) collection of sets can be defined
directly, without reference to intersection or union of two sets. Indeed, let Γ
be a collection of sets. The intersection of the sets in Γ is the set formed by
the elements that belong to every set in Γ. This set is denoted by

⋂
A∈ΓA.

Similarly, the union of the sets in Γ is the set formed by elements that belong
to at least one of the sets in Γ. This set is denoted by

⋃
A∈ΓA.

1.K. The notions of intersection and union of an arbitrary collection of sets
generalize the notions of intersection and union of two sets: for Γ = {A,B},
we have ⋂

C∈Γ

C = A ∩B and
⋃

C∈Γ

C = A ∪B.
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1.8. Riddle. How do the notions of system of equations and intersection of sets
related to each other?

1.L Two Distributivities. For any sets A, B, and C, we have

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C), (1)

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C). (2)

A A BB

C C C

(A ∩B) ∪ C (A ∪ C) (B ∪ C)= ∩

= ∩

Figure 2. The left-hand side (A ∩ B) ∪ C of equality (1) and the sets
A∪C and B ∪C, whose intersection is the right-hand side of the equal-

ity (1).

In Figure 2, the first equality of Theorem 1.L is illustrated by a sort
of comics. Such comics are called Venn diagrams or Euler circles. They
are quite useful and we strongly recommend to try to draw them for each
formula about sets (at least, for formulas involving at most three sets).

1.M. Draw a Venn diagram illustrating (2). Prove (1) and (2) by tracing all
details of the proofs in the Venn diagrams. Draw Venn diagrams illustrating
all formulas below in this section.

1.9. Riddle. Generalize Theorem 1.L to the case of arbitrary collections of sets.

1.N Yet Another Pair of Distributivities. Let A be a set and Γ be a
set consisting of sets. Then we have

A ∩
⋃

B∈Γ

B =
⋃

B∈Γ

(A ∩B) and A ∪
⋂

B∈Γ

B =
⋂

B∈Γ

(A ∪B).

1◦12. Different Differences

The difference ArB of two sets A and B is the set of those elements of
A which do not belong to B. Here we do not assume that A ⊃ B.

If A ⊃ B, then the set ArB is also called the complement of B in A.

1.10. Prove that for any sets A and B their union A ∪ B is the union of the
following three sets: A r B, B r A, and A ∩ B, which are pairwise disjoint.

1.11. Prove that A r (A r B) = A ∩ B for any sets A and B.

1.12. Prove that A ⊂ B if and only if A r B = ∅.

1.13. Prove that A ∩ (B r C) = (A ∩ B) r (A ∩ C) for any sets A, B, and C.
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A B A B A B

B rA ArB A △ B

Figure 3. Differences of the sets A and B.

The set (ArB) ∪ (B rA) is the symmetric difference of the sets A and
B. It is denoted by A △ B.

1.14. Prove that for any sets A and B

A △ B = (A ∪ B) r (A ∩ B)

1.15 Associativity of Symmetric Difference. Prove that for any sets A, B,
and C we have

(A △ B) △ C = A △ (B △ C).

1.16. Riddle. Find a symmetric definition of the symmetric difference (A △ B) △

C of three sets and generalize it to arbitrary finite collections of sets.

1.17 Distributivity. Prove that (A △ B) ∩ C = (A ∩ C) △ (B ∩ C) for any sets
A, B, and C.

1.18. Does the following equality hold true for any sets A, B, and C:

(A △ B) ∪ C = (A ∪ C) △ (B ∪ C)?
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2. Topology in a Set

2◦1. Definition of Topological Space

Let X be a set. Let Ω be a collection of its subsets such that:

(1) the union of any collection of sets that are elements of Ω belongs
to Ω;

(2) the intersection of any finite collection of sets that are elements of
Ω belongs to Ω;

(3) the empty set ∅ and the whole X belong to Ω.

Then

• Ω is a topological structure or just a topology2 in X;

• the pair (X,Ω) is a topological space;

• elements of X are points of this topological space;

• elements of Ω are open sets of the topological space (X,Ω).

The conditions in the definition above are the axioms of topological struc-

ture.

2◦2. Simplest Examples

A discrete topological space is a set with the topological structure con-
sisting of all subsets.

2.A. Check that this is a topological space, i.e., all axioms of topological
structure hold true.

An indiscrete topological space is the opposite example, in which the
topological structure is the most meager. It consists only of X and ∅.

2.B. This is a topological structure, is it not?

Here are slightly less trivial examples.

2.1. Let X be the ray [0, +∞), and let Ω consist of ∅, X, and all rays (a, +∞)
with a ≥ 0. Prove that Ω is a topological structure.

2.2. Let X be a plane. Let Σ consist of ∅, X, and all open disks with center at
the origin. Is this a topological structure?

2.3. Let X consist of four elements: X = {a, b, c, d}. Which of the following
collections of its subsets are topological structures in X, i.e., satisfy the axioms of
topological structure:

2Thus Ω is important: it is called by the same word as the whole branch of mathematics.
Certainly, this does not mean that Ω coincides with the subject of topology, but nearly everything
in this subject is related to Ω.
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(1) ∅, X, {a}, {b}, {a, c}, {a, b, c}, {a, b};
(2) ∅, X, {a}, {b}, {a, b}, {b, d};
(3) ∅, X, {a, c, d}, {b, c, d}?

The space of 2.1 is the arrow . We denote the space of 2.3 (1) by . It is a
sort of toy space made of 4 points. Both spaces, as well as the space of 2.2, are
not too important, but they provide good simple examples.

2◦3. The Most Important Example: Real Line

Let X be the set R of all real numbers, Ω the set of unions of all intervals
(a, b) with a, b ∈ R.

2.C. Check whether Ω satisfies the axioms of topological structure.

This is the topological structure which is always meant when R is consid-
ered as a topological space (unless another topological structure is explicitly
specified). This space is usually called the real line, and the structure is
referred to as the canonical or standard topology in R.

2◦4. Additional Examples

2.4. Let X be R, and let Ω consist of the empty set and all infinite subsets of R.
Is Ω a topological structure?

2.5. Let X be R, and let Ω consists of the empty set and complements of all finite
subsets of R. Is Ω a topological structure?

The space of 2.5 is denoted by RT1 and called the line with T1-topology .

2.6. Let (X, Ω) be a topological space, Y the set obtained from X by adding a
single element a. Is

{{a} ∪ U | U ∈ Ω} ∪ {∅}
a topological structure in Y ?

2.7. Is the set {∅, {0}, {0, 1}} a topological structure in {0, 1}?

If the topology Ω in Problem 2.6 is discrete, then the topology in Y is called
a particular point topology or topology of everywhere dense point. The topology
in Problem 2.7 is a particular point topology; it is also called the topology of

connected pair of points or Sierpiński topology .

2.8. List all topological structures in a two-element set, say, in {0, 1}.

2◦5. Using New Words: Points, Open Sets, Closed Sets

We recall that, for a topological space (X,Ω), elements of X are points,
and elements of Ω are open sets.3

2.D. Reformulate the axioms of topological structure using the words open
set wherever possible.

3The letter Ω stands for the letter O which is the initial of the words with the same meaning:
Open in English, Otkrytyj in Russian, Offen in German, Ouvert in French.
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A set F ⊂ X is closed in the space (X,Ω) if its complement X r F is
open (i.e., X r F ∈ Ω).

2◦6. Set-Theoretic Digression: De Morgan Formulas

2.E. Let Γ be an arbitrary collection of subsets of a set X. Then

X r
⋃

A∈Γ

A =
⋂

A∈Γ

(X rA), (3)

X r
⋂

A∈Γ

A =
⋃

A∈Γ

(X rA). (4)

Formula (4) is deduced from (3) in one step, is it not? These formulas are
nonsymmetric cases of a single formulation, which contains in a symmetric way
sets and their complements, unions, and intersections.

2.9. Riddle. Find such a formulation.

2◦7. Properties of Closed Sets

2.F. Prove that:

(1) the intersection of any collection of closed sets is closed;

(2) the union of any finite number of closed sets is closed;

(3) the empty set and the whole space (i.e., the underlying set of the
topological structure) are closed.

2◦8. Being Open or Closed

Notice that the property of being closed is not the negation of the prop-
erty of being open. (They are not exact antonyms in everyday usage, too.)

2.G. Find examples of sets that are

(1) both open and closed simultaneously (open-closed);

(2) neither open, nor closed.

2.10. Give an explicit description of closed sets in
(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) ;
(e) RT1 .

2.H. Is a closed segment [a, b] closed in R?

The concepts of closed and open sets are similar in a number of ways.
The main difference is that the intersection of an infinite collection of open
sets is not necessarily open, while the intersection of any collection of closed
sets is closed. Along the same lines, the union of an infinite collection of
closed sets is not necessarily closed, while the union of any collection of open
sets is open.
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2.11. Prove that the half-open interval [0, 1) is neither open nor closed in R, but
is both a union of closed sets and an intersection of open sets.

2.12. Prove that the set A = {0} ∪
˘

1
n
| n ∈ N

¯
is closed in R.

2◦9. Characterization of Topology in Terms of Closed Sets

2.13. Suppose a collection F of subsets of X satisfies the following conditions:

(1) the intersection of any family of sets from F belongs to F ;
(2) the union of any finite number sets from F belongs to F ;
(3) ∅ and X belong to F .

Prove that then F is the set of all closed sets of a topological structure (which
one?).

2.14. List all collections of subsets of a three-element set such that there exist
topologies where these collections are complete sets of closed sets.

2◦10. Neighborhoods

A neighborhood of a point is any open set containing this point. Analysts
and French mathematicians (following N. Bourbaki) prefer a wider notion
of neighborhood: they use this word for any set containing a neighborhood
in the above sense.

2.15. Give an explicit description of all neighborhoods of a point in
(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) ;
(e) connected pair of points; (f) particular point topology.

2◦11x. Open Sets on Line

2.Ax. Prove that every open subset of the real line is a union of disjoint
open intervals.

At first glance, Theorem 2.Ax suggests that open sets on the line are
simple. However, an open set may lie on the line in a quite complicated
manner. Its complement can be not that simple. The complement of an
open set is a closed set. One can naively expect that a closed set on R is
a union of closed intervals. The next important example shows that this is
far from being true.

2◦12x. Cantor Set

Let K be the set of real numbers that are sums of series of the form∑∞
k=1

ak

3k
with ak = 0 or 2. In other words, K is the set of real numbers

that are presented as 0.a1a2 . . . ak . . . without the digit 1 in the positional
system with base 3.

2.Bx. Find a geometric description of K.
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2.Bx.1. Prove that

(1) K is contained in [0, 1],

(2) K does not intersect
(

1
3 ,

2
3

)
,

(3) K does not intersect
(

3s+1
3k , 3s+2

3k

)
for any integers k and s.

2.Bx.2. Present K as [0, 1] with an infinite family of open intervals removed.

2.Bx.3. Try to sketch K.

The set K is the Cantor set. It has a lot of remarkable properties and is
involved in numerous problems below.

2.Cx. Prove that K is a closed set in the real line.

2◦13x. Topology and Arithmetic Progressions

2.Dx*. Consider the following property of a subset F of the set N of
positive integers: there exists N ∈ N such that F contains no arithmetic
progressions of length greater than N . Prove that subsets with this prop-
erty together with the whole N form a collection of closed subsets in some
topology in N.

When solving this problem, you probably will need the following com-
binatorial theorem.

2.Ex Van der Waerden’s Theorem*. For every n ∈ N, there exists N ∈
N such that for any subset A ⊂ {1, 2, . . . , N}, either A or {1, 2, . . . , N} rA
contains an arithmetic progression of length n.

See [2].
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3. Bases

3◦1. Definition of Base

The topological structure is usually presented by describing its part
which is sufficient to recover the whole structure. A collection Σ of open
sets is a base for a topology if each nonempty open set is a union of sets
belonging to Σ. For instance, all intervals form a base for the real line.

3.1. Can two distinct topological structures have the same base?

3.2. Find some bases of topology of
(a) a discrete space; (b) ;
(c) an indiscrete space; (d) the arrow.

Try to choose the smallest possible bases.

3.3. Prove that any base of the canonical topology in R can be decreased.

3.4. Riddle. What topological structures have exactly one base?

3◦2. When a Collection of Sets is a Base

3.A. A collection Σ of open sets is a base for the topology iff for every open
set U and every point x ∈ U there is a set V ∈ Σ such that x ∈ V ⊂ U .

3.B. A collection Σ of subsets of a set X is a base for a certain topology in
X iff X is a union of sets in Σ and the intersection of any two sets in Σ is
a union of sets in Σ.

3.C. Show that the second condition in 3.B (on the intersection) is equiva-
lent to the following: the intersection of any two sets in Σ contains, together
with any of its points, some set in Σ containing this point (cf. 3.A).

3◦3. Bases for Plane

Consider the following three collections of subsets of R2:

• Σ2, which consists of all possible open disks (i.e., disks without
their boundary circles);

• Σ∞, which consists of all possible open squares (i.e., squares with-
out their sides and vertices) with sides parallel to the coordinate
axis;

• Σ1, which consists of all possible open squares with sides parallel
to the bisectors of the coordinate angles.

(The squares in Σ∞ and Σ1 are determined by the inequalities max{|x−
a|, |y − b|} < ρ and |x− a| + |y − b| < ρ, respectively.)
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3.5. Prove that every element of Σ2 is a union of elements of Σ∞.

3.6. Prove that the intersection of any two elements of Σ1 is a union of elements
of Σ1.

3.7. Prove that each of the collections Σ2, Σ∞, and Σ1 is a base for some topological
structure in R2, and that the structures determined by these collections coincide.

3◦4. Subbases

Let (X, Ω) be a topological space. A collection ∆ of its open subsets is a
subbase for Ω provided that the collection

Σ = {V | V = ∩k
i=1Wi, k ∈ N, Wi ∈ ∆}

of all finite intersections of sets in ∆ is a base for Ω.

3.8. Let for any set X ∆ be a collection of its subsets. Prove that ∆ is a subbase
for a topology in X iff X = ∪W∈∆W .

3◦5. Infiniteness of the Set of Prime Numbers

3.9. Prove that all infinite arithmetic progressions consisting of positive integers
form a base for some topology in N.

3.10. Using this topology, prove that the set of all prime numbers is infinite.

3◦6. Hierarchy of Topologies

If Ω1 and Ω2 are topological structures in a set X such that Ω1 ⊂ Ω2,
then Ω2 is finer than Ω1, and Ω1 is coarser than Ω2. For instance, the
indiscrete topology is the coarsest topology among all topological structures
in the same set, while the discrete topology is the finest one, is it not?

3.11. Show that the T1-topology in the real line (see 2◦4) is coarser than the
canonical topology.

Two bases determining the same topological structure are equivalent.

3.D. Riddle. Formulate a necessary and sufficient condition for two bases
to be equivalent without explicitly mentioning the topological structures
determined by the bases. (Cf. 3.7: the bases Σ2, Σ∞, and Σ1 must satisfy
the condition you are looking for.)
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4. Metric Spaces

4◦1. Definition and First Examples

A function ρ : X ×X → R+ = {x ∈ R | x ≥ 0 } is a metric (or distance

function) in X if

(1) ρ(x, y) = 0 iff x = y;

(2) ρ(x, y) = ρ(y, x) for any x, y ∈ X;

(3) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

The pair (X, ρ), where ρ is a metric in X, is a metric space. Condition
(3) is the triangle inequality .

4.A. Prove that the function

ρ : X ×X → R+ : (x, y) 7→
{

0 if x = y,

1 if x 6= y

is a metric for any set X.

4.B. Prove that R × R → R+ : (x, y) 7→ |x− y| is a metric.

4.C. Prove that Rn × Rn → R+ : (x, y) 7→
√∑n

i=1(xi − yi)2 is a metric.

The metrics of4.B and 4.C are always meant when R and Rn are con-
sidered as metric spaces unless another metric is specified explicitly. The
metric of 4.B is a special case of the metric of 4.C. All these metrics are
called Euclidean.

4◦2. Further Examples

4.1. Prove that Rn × Rn → R + : (x, y) 7→ maxi=1,...,n |xi − yi| is a metric.

4.2. Prove that Rn × Rn → R + : (x, y) 7→Pn
i=1 |xi − yi| is a metric.

The metrics in Rn introduced in 4.C–4.2 are members of an infinite series
of the metrics:

ρ(p) : (x, y) 7→
( n∑

i=1

|xi − yi|p
)1

p
, p ≥ 1.

4.3. Prove that ρ(p) is a metric for any p ≥ 1.

4.3.1 Hölder Inequality. Prove that

n∑

i=1

xiyi ≤
(

n∑

i=1

xp
i

)1/p( n∑

i=1

yq
i

)1/q

if xi, yi ≥ 0, p, q > 0, and 1
p + 1

q = 1.



4. Metric Spaces 19

The metric of 4.C is ρ(2), that of 4.2 is ρ(1), and that of 4.1 can be denoted
by ρ(∞) and appended to the series since

lim
p→+∞

„ nX

i=1

ap
i

«1/p

= max ai,

for any positive a1, a2, . . . , an.

4.4. Riddle. How is this related to Σ2, Σ∞, and Σ1 from Section 3?

For a number p ≥ 1 denote by l(p) the set of sequences x = {xi}i=1,2,... such
that the series

P
∞

i=1 |x|p converges.

4.5. Prove that for any two sequences x, y ∈ l(p) the series
P

∞

i=1 |xi−yi|p converges
and that

(x, y) 7→
„ ∞X

i=1

|xi − yi|p
«1/p

, p ≥ 1

is a metric in l(p).

4◦3. Balls and Spheres

Let (X, ρ) be a metric space, a ∈ X a point, r a positive real number.
Then the sets

Br(a) = {x ∈ X | ρ(a, x) < r }, (5)

Dr(a) = {x ∈ X | ρ(a, x) ≤ r }, (6)

Sr(a) = {x ∈ X | ρ(a, x) = r } (7)

are, respectively, the open ball , closed ball , and sphere of the space (X, ρ)
with center a and radius r.

4◦4. Subspaces of a Metric Space

If (X, ρ) is a metric space and A ⊂ X, then the restriction of the metric
ρ to A×A is a metric in A, and so (A, ρ A×A) is a metric space. It is called
a subspace of (X, ρ).

The disk D1(0) and the sphere S1(0) in Rn (with Euclidean metric,
see 4.C) are denoted by Dn and Sn−1 and called the (unit) n-disk and
(n−1)-sphere. They are regarded as metric spaces (with the metric induced
from Rn).

4.D. Check that D1 is the segment [−1, 1], D2 is a plane disk, S0 is the
pair of points {−1, 1}, S1 is a circle, S2 is a sphere, and D3 is a ball.
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The last two assertions clarify the origin of the terms sphere and ball (in
the context of metric spaces).

Some properties of balls and spheres in an arbitrary metric space re-
semble familiar properties of planar disks and circles and spatial balls and
spheres.

4.E. Prove that for any points x and a of any metric space and any r >
ρ(a, x) we have

Br−ρ(a,x)(x) ⊂ Br(a) and Dr−ρ(a,x)(x) ⊂ Dr(a).

4.6. Riddle. What if r < ρ(x, a)? What is an analog for the statement of
Problem 4.E in this case?

4◦5. Surprising Balls

However, balls and spheres in other metric spaces may have rather sur-
prising properties.

4.7. What are balls and spheres in R2 equipped with the metrics of 4.1 and 4.2?
(Cf. 4.4.)

4.8. Find D1(a), D 1
2
(a), and S 1

2
(a) in the space of 4.A.

4.9. Find a metric space and two balls in it such that the ball with the smaller
radius contains the ball with the bigger one and does not coincide with it.

4.10. What is the minimal number of points in the space which is required to be
constructed in 4.9?

4.11. Prove that in 4.9 the largest radius does not exceed double the smaller
radius.

4◦6. Segments (What Is Between)

4.12. Prove that the segment with endpoints a, b ∈ Rn can be described as

{x ∈ R
n | ρ(a, x) + ρ(x, b) = ρ(a, b) },

where ρ is the Euclidean metric.

4.13. How does the set defined as in 4.12 look like if ρ is the metric defined in
4.1 or 4.2? (Consider the case, where n = 2 if it seems to be easier.)
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4◦7. Bounded Sets and Balls

A subset A of a metric space (X, ρ) is bounded if there is a number d > 0
such that ρ(x, y) < d for any x, y ∈ A. The greatest lower bound for such d
is the diameter of A, it is denoted by diam(A).

4.F. Prove that a set A is bounded iff A is contained in a ball.

4.14. What is the relation between the minimal radius of such a ball and diam(A)?

4◦8. Norms and Normed Spaces

Let X be a vector space (over R). A function X → R + : x 7→ ||x|| is a norm if

(1) ||x|| = 0 iff x = 0;
(2) ||λx|| = |λ|||x|| for any λ ∈ R and x ∈ X;
(3) ||x + y|| ≤ ||x|| + ||y|| for any x, y ∈ X.

4.15. Prove that if x 7→ ||x|| is a norm, then

ρ : X × X → R + : (x, y) 7→ ||x − y||
is a metric.

A vector space equipped with a norm is a normed space. The metric deter-
mined by the norm as in 4.15 transforms the normed space into a metric space in
a canonical way.

4.16. Look through the problems of this section and figure out which of the metric
spaces involved are, in fact, normed vector spaces.

4.17. Prove that every ball in a normed space is a convex4 set symmetric with
respect to the center of the ball.

4.18*. Prove that every convex closed bounded set in Rn that has a center of
symmetry and is not contained in any affine space except Rn itself is a unit ball
with respect to a certain norm, which is uniquely determined by this ball.

4◦9. Metric Topology

4.G. The collection of all open balls in the metric space is a base for some
topology

This topology is the metric topology . This topological structure is always
meant whenever the metric space is regarded as a topological space (for
instance, when we speak about open and closed sets, neighborhoods, etc. in
this space).

4.H. Prove that the standard topological structure in R introduced in Sec-
tion 2 is generated by the metric (x, y) 7→ |x− y|.

4Recall that a set A is convex if for any x, y ∈ A the segment connecting x and y is contained
in A. Certainly, this definition involves the notion of segment, so it makes sense only for subsets
of those spaces where the notion of segment connecting two points makes sense. This is the case
in vector and affine spaces over R.
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4.19. What topological structure is generated by the metric of 4.A?

4.I. A set A is open in a metric space iff, together with each of its points,
A contains a ball centered at this point.

4◦10. Openness and Closedness of Balls and Spheres

4.20. Prove that a closed ball is closed (with respect to the metric topology).

4.21. Find a closed ball that is open (with respect to the metric topology).

4.22. Find an open ball that is closed (with respect to the metric topology).

4.23. Prove that a sphere is closed.

4.24. Find a sphere that is open.

4◦11. Metrizable Topological Spaces

A topological space is metrizable if its topological structure is generated
by a certain metric.

4.J. An indiscrete space is not metrizable unless it is one-point (it has too
few open sets).

4.K. A finite space X is metrizable iff it is discrete.

4.25. Which of the topological spaces described in Section 2 are metrizable?

4◦12. Equivalent Metrics

Two metrics in the same set are equivalent if they generate the same
topology.

4.26. Are the metrics of 4.C, 4.1, and 4.2 equivalent?

4.27. Prove that two metrics ρ1 and ρ2 in X are equivalent if there are numbers
c, C > 0 such that

cρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y)

for any x, y ∈ X.

D′

2

D′

1

D2

D1

4.28. Generally speaking, the converse is not true.
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4.29. Riddle. Hence, the condition of equivalence of metrics formulated in 4.27

can be weakened. How?

4.30. The metrics ρ(p) in Rn defined right before Problem 4.3 are equivalent.

4.31*. Prove that the following two metrics ρ1 and ρC in the set of all continuous
functions [0, 1] → R are not equivalent:

ρ1(f, g) =

Z 1

0

˛̨
f(x) − g(x)

˛̨
dx, ρC(f, g) = max

x∈[0,1]

˛̨
f(x) − g(x)

˛̨
.

Is it true that one of the topological structures generated by them is finer than
another?

4◦13. Operations With Metrics

4.32. 1) Prove that if ρ1 and ρ2 are two metrics in X, then ρ1+ρ2 and max{ρ1, ρ2}
also are metrics. 2) Are the functions min{ρ1, ρ2}, ρ1

ρ2
, and ρ1ρ2 metrics? By

definition, for ρ =
ρ1

ρ2
we put ρ(x, x) = 0.

4.33. Prove that if ρ : X × X → R + is a metric, then

(1) the function

(x, y) 7→ ρ(x, y)

1 + ρ(x, y)

is a metric;
(2) the function

(x, y) 7→ min{ρ(x, y), 1}

is a metric;
(3) the function

(x, y) 7→ f
`
ρ(x, y)

´

is a metric if f satisfies the following conditions:
(a) f(0) = 0,
(b) f is a monotone increasing function, and
(c) f(x + y) ≤ f(x) + f(y) for any x, y ∈ R.

4.34. Prove that the metrics ρ and
ρ

1 + ρ
are equivalent.

4◦14. Distances Between Points and Sets

Let (X, ρ) be a metric space, A ⊂ X, b ∈ X. The number ρ(b,A) =
inf{ ρ(b, a) | a ∈ A } is the distance from the point b to the set A.

4.L. Let A be a closed set. Prove that ρ(b,A) = 0 iff b ∈ A.

4.35. Prove that |ρ(x,A)− ρ(y,A)| ≤ ρ(x, y) for any set A and any points x and
y in a metric space.
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4◦15x. Distance Between Sets

Let A and B be two bounded subsets in a metric space (X, ρ). Put

dρ(A,B) = max
{
sup
a∈A

ρ(a,B), sup
b∈B

ρ(b,A)
}
.

This number is the Hausdorff distance between A and B.

4.Ax. Prove that the Hausdorff distance between bounded subsets of a
metric space satisfies conditions (2) and (3) in the definition of a metric.

4.Bx. Prove that for every metric space the Hausdorff distance is a metric
in the set of its closed bounded subsets.

Let A and B be two bounded polygons in the plane.5 We define

d∆(A,B) = S(A) + S(B) − 2S(A ∩B),

where S(C) is the area of the polygon C.

4.Cx. Prove that d∆ is a metric in the set of all bounded plane polygons.

We will call d∆ the area metric .

4.Dx. Prove that the area metric is not equivalent to the Hausdorff metric
in the set of all bounded plane polygons.

4.Ex. Prove that the area metric is equivalent to the Hausdorff metric in
the set of convex bounded plane polygons.

4◦16x. Ultrametrics and p-Adic Numbers

A metric ρ is an ultrametric if it satisfies the ultrametric triangle inequality :

ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)}
for any x, y, and z.

A metric space (X, ρ), where ρ is an ultrametric, is an ultrametric space.

5Although we assume that the notion of bounded polygon is well known from elementary
geometry, nevertheless, we recall the definition. A bounded plane polygon is the set of the points
of a simple closed polygonal line γ and the points surrounded by γ. A simple closed polygonal
line is a cyclic sequence of segments each of which starts at the point where the previous one ends
and these are the only pairwise intersections of the segments.
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4.Fx. Check that only one metric in 4.A–4.2 is an ultrametric. Which one?

4.Gx. Prove that all triangles in an ultrametric space are isosceles (i.e., for
any three points a, b, and c two of the three distances ρ(a, b), ρ(b, c), and
ρ(a, c) are equal).

4.Hx. Prove that spheres in an ultrametric space are not only closed (see
4.23), but also open.

The most important example of an ultrametric is the p-adic metric in
the set Q of rational numbers. Let p be a prime number. For x, y ∈ Q,
present the difference x − y as r

sp
α, where r, s, and α are integers, and r

and s are co-prime with p. Put ρ(x, y) = p−α.

4.Ix. Prove that this is an ultrametric.

4◦17x. Asymmetrics

A function ρ : X ×X → R+ is an asymmetric in a set X if

(1) ρ(x, y) = 0 and ρ(y, x) = 0, iff x = y;

(2) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

Thus, an asymmetric satisfies conditions 1 and 3 of the definition of a
metric, but, maybe, does not satisfy condition 2.

Here is example of an asymmetric taken from “the real life”: the shortest
length of path from one point to another by car in a city where there exist
one-way streets.

4.Jx. Prove that if ρ : X ×X → R+ is an asymmetric, then the function

(x, y) 7→ ρ(x, y) + ρ(y, x)

is a metric in X.

Let A and B be two bounded subsets of a metric space (X, ρ). The
number aρ(A,B) = supb∈B ρ(b,A) is the asymmetric distance from A to B.

4.Kx. The function aρ on the set of bounded subsets of a metric space
satisfies the triangle inequality in the definition of an asymmetric.

4.Lx. Let (X, ρ) be a metric space. A set B ⊂ X is contained in all closed
sets containing A ⊂ X iff aρ(A,B) = 0.

4.Mx. Prove that aρ is an asymmetric in the set of all bounded closed
subsets of a metric space (X, ρ).

Let A and B be two polygons on the plane. Put

a∆(A, B) = S(B) − S(A ∩ B) = S(B r A),

where S(C) is the area of polygon C.
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4.1x. Prove that a∆ is an asymmetric in the set of all planar polygons.

A pair (X, ρ), where ρ is an asymmetric in X, is an asymmetric space.
Of course, any metric space is an asymmetric space, too. In an asymmetric
space, balls (open and closed) and spheres are defined like in a metric space,
see 4◦3.

4.Nx. The set of all open balls of an asymmetric space is a base of a certain
topology.

This topology is generated by the asymmetric.

4.2x. Prove that the formula a(x, y) = max{x − y, 0} determines an asymmetric
in [0,∞), and the topology generated by this asymmetric is the arrow topology,
see 2◦2.
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5. Subspaces

5◦1. Topology for a Subset of a Space

Let (X,Ω) be a topological space, A ⊂ X. Denote by ΩA the collection
of sets A ∩ V , where V ∈ Ω: ΩA = {A ∩ V | V ∈ Ω}.
5.A. ΩA is a topological structure in A.

The pair (A,ΩA) is a subspace of the space (X,Ω). The collection ΩA is
the subspace topology , the relative topology , or the topology induced on A
by Ω, and its elements are said to be sets open in A.
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5.B. The canonical topology in R1 coincides with the topology induced on
R1 as on a subspace of R2.

5.1. Riddle. How to construct a base for the topology induced on A by using a
base for the topology in X?

5.2. Describe the topological structures induced

(1) on the set N of positive integers by the topology of the real line;
(2) on N by the topology of the arrow;
(3) on the two-point set {1, 2} by the topology of RT1 ;
(4) on the same set by the topology of the arrow.

5.3. Is the half-open interval [0, 1) open in the segment [0, 2] regarded as a sub-
space of the real line?

5.C. A set F is closed in a subspace A ⊂ X iff F is the intersection of A
and a closed subset of X.

5.4. If a subset of a subspace is open (respectively, closed) in the ambient space,
then it is also open (respectively, closed) in the subspace.

5◦2. Relativity of Openness and Closedness

Sets that are open in a subspace are not necessarily open in the ambient
space.

5.D. The unique open set in R1 which is also open in R2 is ∅.

However, the following is true.
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5.E. An open set of an open subspace is open in the ambient space, i.e., if
A ∈ Ω, then ΩA ⊂ Ω.

The same relation holds true for closed sets. Sets that are closed in
the subspace are not necessarily closed in the ambient space. However, the
following is true.

5.F. Closed sets of a closed subspace are closed in the ambient space.

5.5. Prove that a set U is open in X iff each point in U has a neighborhood V in
X such that U ∩ V is open in V .

This allows us to say that the property of being open is local. Indeed, we can
reformulate 5.5 as follows: a set is open iff it is open in a neighborhood of each of
its points.

5.6. Show that the property of being closed is not local.

5.G Transitivity of Induced Topology. Let (X,Ω) be a topological space,
X ⊃ A ⊃ B. Then (ΩA)B = ΩB, i.e., the topology induced on B by the
relative topology of A coincides with the topology induced on B directly from
X.

5.7. Let (X, ρ) be a metric space, A ⊂ X. Then the topology in A generated by
the metric ρ A×A coincides with the relative topology on A by the topology in X
generated by the metric ρ.

5.8. Riddle. The statement 5.7 is equivalent to a pair of inclusions. Which of
them is less obvious?

5◦3. Agreement on Notation of Topological Spaces

Different topological structures in the same set are not considered simul-
taneously very often. That is why a topological space is usually denoted by
the same symbol as the set of its points, i.e., instead of (X,Ω) we write just
X. The same applies to metric spaces: instead of (X, ρ) we write just X.
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6. Position of a Point with Respect to a

Set

This section is devoted to further expanding the vocabulary needed when
we speak about phenomena in a topological space.

6◦1. Interior, Exterior, and Boundary Points

Let X be a topological space, A ⊂ X a subset, and b ∈ X a point. The
point b is

• an interior point of A if b has a neighborhood contained in A;

• an exterior point of A if b has a neighborhood disjoint with A;

• a boundary point of A if each neighborhood of b intersects both A
and the complement of A.
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6◦2. Interior and Exterior

The interior of a set A in a topological space X is the greatest (with
respect to inclusion) open set in X contained in A, i.e., an open set that
contains any other open subset of A. It is denoted by IntA or, in more
detail, by IntX A.

6.A. Every subset of a topological space has interior. It is the union of all
open sets contained in this set.

6.B. The interior of a set A is the set of interior points of A.

6.C. A set is open iff it coincides with its interior.

6.D. Prove that in R:

(1) Int[0, 1) = (0, 1),

(2) Int Q = ∅ and

(3) Int(R r Q) = ∅.
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6.1. Find the interior of {a, b, d} in the space .

6.2. Find the interior of the interval (0, 1) on the line with the Zariski topology.

The exterior of a set is the greatest open set disjoint with A. It is obvious
that the exterior of A is Int(X rA).

6◦3. Closure

The closure of a set A is the smallest closed set containing A. It is
denoted ClA or, more specifically, ClX A.

6.E. Every subset of topological space has closure. It is the intersection of
all closed sets containing this set.

6.3. Prove that if A is a subspace of X and B ⊂ A, then ClA B = (ClX B) ∩ A.
Is it true that IntA B = (IntX B) ∩ A?

A point b is an adherent point for a set A if all neighborhoods of b
intersect A.

6.F. The closure of a set A is the set of the adherent points of A.

6.G. A set A is closed iff A = ClA.

6.H. The closure of a set A is the complement of the exterior of A. In
formulas: ClA = X r Int(X rA), where X is the space and A ⊂ X.

6.I. Prove that in R we have:

(1) Cl[0, 1) = [0, 1],

(2) Cl Q = R,

(3) Cl(R r Q) = R.

6.4. Find the closure of {a} in .

6◦4. Closure in Metric Space

Let A be a subset and b a point of a metric space (X, ρ). Recall that
the distance ρ(b,A) from b to A is inf{ ρ(b, a) | a ∈ A } (see 4◦14).

6.J. Prove that b ∈ ClA iff ρ(b,A) = 0.

6◦5. Boundary

The boundary of a set A is the set ClA r IntA. It is denoted by FrA
or, in more detail, FrX A.

6.5. Find the boundary of {a} in .

6.K. The boundary of a set is the set of its boundary points.

6.L. Prove that a set A is closed iff FrA ⊂ A.
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6.6. 1) Prove that Fr A = Fr(X r A). 2) Find a formula for FrA which is
symmetric with respect to A and X r A.

6.7. The boundary of a set A equals the intersection of the closure of A and the
closure of the complement of A:

Fr A = Cl A ∩ Cl(X r A).

6◦6. Closure and Interior with Respect to a Finer Topology

6.8. Let Ω1 and Ω2 be two topological structures in X, and Ω1 ⊂ Ω2. Let Cli
denote the closure with respect to Ωi. Prove that Cl1 A ⊃ Cl2 A for any A ⊂ X.

6.9. Formulate and prove an analogous statement about interior.

6◦7. Properties of Interior and Closure

6.10. Prove that if A ⊂ B, then IntA ⊂ IntB.

6.11. Prove that Int IntA = IntA.

6.12. Do the following equalities hold true that for any sets A and B:

Int(A ∩ B) = IntA ∩ IntB, (8)

Int(A ∪ B) = IntA ∪ IntB? (9)

6.13. Give an example in where one of equalities (8) and (9) is wrong.

6.14. In the example that you found when solving Problem 6.12, an inclusion of
one side into another one holds true. Does this inclusion hold true for any A and
B?

6.15. Study the operator Cl in a way suggested by the investigation of Int under-
taken in 6.10–6.14.

6.16. Find Cl{1}, Int[0, 1], and Fr(2, +∞) in the arrow.

6.17. Find Int
`
(0, 1] ∪ {2}

´
, Cl{ 1

n
| n ∈ N }, and Fr Q in R.

6.18. Find Cl N, Int(0, 1), and Fr[0, 1] in RT1 . How to find the closure and interior
of a set in this space?

6.19. Does a sphere contain the boundary of the open ball with the same center
and radius?

6.20. Does a sphere contain the boundary of the closed ball with the same center
and radius?

6.21. Find an example in which a sphere is disjoint with the closure of the open
ball with the same center and radius.

6◦8. Compositions of Closure and Interior

6.22 The Kuratowski Problem. How many pairwise distinct sets can one obtain
from of a single set by using the operators Cl and Int?

The following problems will help you to solve problem 6.22.

6.22.1. Find a set A ⊂ R such that the sets A, ClA, and IntA would
be pairwise distinct.
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6.22.2. Is there a set A ⊂ R such that

(1) A, ClA, IntA, and Cl IntA are pairwise distinct;
(2) A, ClA, IntA, and IntClA are pairwise distinct;
(3) A, ClA, IntA, Cl IntA, and IntClA are pairwise distinct?

If you find such sets, keep on going in the same way, and when you
fail to proceed, try to formulate a theorem explaining the failure.

6.22.3. Prove that Cl IntCl IntA = Cl IntA.

6◦9. Sets with Common Boundary

6.23*. Find three open sets in the real line that have the same boundary. Is it
possible to increase the number of such sets?

6◦10. Convexity and Int, Cl, Fr

Recall that a set A ⊂ Rn is convex if together with any two points it contains
the entire segment connecting them (i.e., for any x, y ∈ A every point z belonging
to the segment [x, y] belongs to A).

Let A be a convex set in Rn.

6.24. Prove that Cl A and IntA are convex.

6.25. Prove that A contains a ball, unless A is contained in an (n−1)-dimensional
affine subspace of Rn.

6.26. When is Fr A convex?

6◦11. Characterization of Topology by Closure and Interior Op-
erations

6.27*. Suppose that Cl∗ is an operator in the set of all subsets of a set X, which
has the following properties:

(1) Cl∗ ∅ = ∅,
(2) Cl∗ A ⊃ A,
(3) Cl∗(A ∪ B) = Cl∗ A ∪ Cl∗ B,
(4) Cl∗ Cl∗ A = Cl∗ A.

Prove that Ω = {U ⊂ X | Cl∗(X r U) = X r U } is a topological structure
and Cl∗ A is the closure of a set A in the space (X, Ω).

6.28. Find an analogous system of axioms for Int.

6◦12. Dense Sets

Let A and B be two sets in a topological space X. A is dense in B if
ClA ⊃ B, and A is everywhere dense if ClA = X.

6.M. A set is everywhere dense iff it intersects any nonempty open set.

6.N. The set Q is everywhere dense in R.
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6.29. Give a characterization of everywhere dense sets 1) in an indiscrete space,
2) in the arrow, and 3) in RT1 .

6.30. Prove that a topological space is discrete iff it has a unique everywhere
dense set. (By the way, which one?)

6.31. Formulate a necessary and sufficient condition on the topology of a space
which has an everywhere-dense point. Find spaces satisfying this condition in 2.

6.32. 1) Is it true that the union of everywhere dense sets is everywhere dense?
2) Is it true that the intersection of two everywhere-dense sets is everywhere dense?

6.33. Prove that the intersection of two open everywhere-dense sets is everywhere
dense.

6.34. Which condition in the Problem 6.33 is redundant?

6.35*. 1) Prove that a countable intersection of open everywhere-dense sets in R

is everywhere dense. 2) Is it possible to replace R here by an arbitrary topological
space?

6.36*. Prove that Q is not an intersection of a countable collection of open sets
in R.

6◦13. Nowhere Dense Sets

A set is nowhere dense if its exterior is everywhere dense.

6.37. Can a set be everywhere dense and nowhere dense simultaneously?

6.O. A set A is nowhere dense in X iff each neighborhood of each point
x ∈ X contains a point y such that the complement of A contains y together
with a neighborhood of y.

6.38. Riddle. What can you say about the interior of a nowhere dense set?

6.39. Is R nowhere dense in R2?

6.40. Prove that if A is nowhere dense, then IntCl A = ∅.

6.41. 1) Prove that the boundary of a closed set is nowhere dense. 2) Is this true
for the boundary of an open set? 3) Is this true for the boundary of an arbitrary
set?

6.42. Prove that a finite union of nowhere dense sets is nowhere dense.

6.43. Prove that for every set A there exists a greatest open set B in which A is
dense. The extreme cases B = X and B = ∅ mean that A is either everywhere
dense or nowhere dense respectively.

6.44*. Prove that R is not a union of a countable collection of nowhere-dense
sets in R.

6◦14. Limit Points and Isolated Points

A point b is a limit point of a set A, if each neighborhood of b intersects
Ar b.

6.P. Every limit point of a set is its adherent point.
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6.45. Give an example where an adherent point is not a limit one.

A point b is an isolated point of a set A if b ∈ A and b has a neighborhood
disjoint with Ar b.

6.Q. A set A is closed iff A contains all of its limit points.

6.46. Find limit and isolated points of the sets (0, 1]∪{2}, { 1
n
| n ∈ N } in Q and

in R.

6.47. Find limit and isolated points of the set N in RT1 .

6◦15. Locally Closed Sets

A subset A of a topological space X is locally closed if each point of A has a
neighborhood U such that A ∩ U is closed in U (cf. 5.5–5.6).

6.48. Prove that the following conditions are equivalent:

(1) A is locally closed in X;
(2) A is an open subset of its closure Cl A;
(3) A is the intersection of open and closed subsets of X.
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7. Ordered Sets

This section is devoted to orders. They are structures in sets and occupy in
Mathematics a position almost as profound as topological structures. After
a short general introduction, we will focus on relations between structures
of these two types. Like metric spaces, partially ordered sets possess natural
topological structures. This is a source of interesting and important exam-
ples of topological spaces. As we will see later (in Section 20), practically
all finite topological spaces appear in this way.

7◦1. Strict Orders

A binary relation in a set X is a set of ordered pairs of elements of X,
i.e., a subset R ⊂ X ×X. Many relations are denoted by special symbols,
like ≺, ⊢, ≡, or ∼. In the case where such a notation is used, there is a
tradition to write xRy instead of writing (x, y) ∈ R. So, we write x ⊢ y, or
x ∼ y, or x ≺ y, etc. This generalizes the usual notation for the classical
binary relations =, <, >, ≤, ⊂, etc.

A binary relation ≺ in a set X is a strict partial order , or just a strict

order if it satisfies the following two conditions:

• Irreflexivity : There is no a ∈ X such that a ≺ a.

• Transitivity : a ≺ b and b ≺ c imply a ≺ c for any a, b, c ∈ X.

7.A Antisymmetry. Let ≺ be a strict partial order in a set X. There are
no x, y ∈ X such that x ≺ y and y ≺ x simulteneously.

7.B. Relation < in the set R of real numbers is a strict order.

Formula a ≺ b is read sometimes as “a is less than b” or “b is greater than
a”, but it is often read as “b follows a” or “a precedes b”. The advantage of
the latter two ways of reading is that then the relation ≺ is not associated
too closely with the inequality between real numbers.

7◦2. Nonstrict Orders

A binary relation � in a set X is a nonstrict partial order , or just nonstrict

order , if it satisfies the following three conditions:

• Transitivity : If a � b and b � c, then a � c for any a, b, c ∈ X.

• Antisymmetry : If a � b and b � a, then a = b for any a, b ∈ X.

• Reflexivity : a � a for any a ∈ X.

7.C. Relation ≤ in R is a nonstrict order.
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7.D. In the set N of positive integers, the relation a|b (a divides b) is a
nonstrict partial order.

7.1. Is the relation a|b a nonstrict partial order in the set Z of integers?

7.E. In the set of subsets of a set X, inclusion is a nonstrict partial order.

7◦3. Relation between Strict and Nonstrict Orders

7.F. For each strict order ≺, there is a relation � defined in the same set
as follows: a � b if either a ≺ b, or a = b. This relation is a nonstrict order.

The nonstrict order � of 7.F is associated with the original strict order
≺.

7.G. For each nonstrict order �, there is a relation ≺ defined in the same
set as follows: a ≺ b if a � b and a 6= b. This relation is a strict order.

The strict order ≺ of 7.G is associated with the original nonstrict order
�.

7.H. The constructions of Problems 7.F and 7.G are mutually inverse: ap-
plied one after another in any order, they give the initial relation.

Thus, strict and nonstrict orders determine each other. They are just
different incarnations of the same structure of order. We have already met a
similar phenomenon in topology: open and closed sets in a topological space
determine each other and provide different ways for describing a topological
structure.

A set equipped with a partial order (either strict or nonstrict) is a par-

tially ordered set or poset. More formally speaking, a partially ordered set is
a pair (X,≺) formed by a set X and a strict partial order ≺ in X. Certainly,
instead of a strict partial order ≺ we can use the corresponding nonstrict
order �.

Which of the orders, strict or nonstrict, prevails in each specific case is a
matter of convenience, taste, and tradition. Although it would be handy to
keep both of them available, nonstrict orders conquer situation by situation.
For instance, nobody introduces notation for strict divisibility. Another ex-
ample: the symbol ⊆, which is used to denote nonstrict inclusion, is replaced
by the symbol ⊂, which is almost never understood as notation solely for
strict inclusion.

In abstract considerations, we will use both kinds of orders: strict partial
order are denoted by symbol ≺, nonstrict ones by symbol �.

7◦4. Cones

Let (X,≺) be a poset and let a ∈ X. The set {x ∈ X | a ≺ x} is
the upper cone of a, and the set {x ∈ X | x ≺ a} the lower cone of a.
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The element a does not belong to its cones. Adding a to them, we obtain
completed cones: the upper completed cone or star C+

X(a) = {x ∈ X | a � x}
and the lower completed cone C−

X(a) = {x ∈ X | x � a}.
7.I Properties of Cones. Let (X,≺) be a poset.

(1) C+
X(b) ⊂ C+

X(a), provided that b ∈ C+
X(a);

(2) a ∈ C+
X(a) for each a ∈ X.

(3) C+
X(a) = C+

X(b) implies a = b;

7.J Cones Determine an Order. Let X be an arbitrary set. Suppose for
each a ∈ X we fix a subset Ca ⊂ X so that

(1) b ∈ Ca implies Cb ⊂ Ca,

(2) a ∈ Ca for each a ∈ X, and

(3) Ca = Cb implies a = b.

We write a ≺ b if b ∈ Ca. Then the relation ≺ is a nonstrict order in X,
and for this order we have C+

X(a) = Ca.

7.2. Let C ⊂ R3 be a set. Consider the relation ⊳C in R3 defined as follows:
a ⊳C b if b− a ∈ C. What properties of C imply that ⊳C is a partial order in R3?
What are the upper and lower cones in the poset (R3, ⊳C)?

7.3. Prove that any convex cone C in R3 with vertex (0, 0, 0) such that P ∩ C =
{(0, 0, 0)} for some plane P satisfies the conditions found in the solution of Problem
7.2.

7.4. The space-time R4 of special relativity theory (where points represent mo-
ment point events, the first three coordinates x1, x2, x3 are the spatial coordinates,
while the fourth one, t, is the time) carries a relation the event (x1, x2, x3, t) pre-

cedes (and may influence) the event (ex1, ex2, ex3,et). This relation is defined by the
inequality

c(t̃ − t) ≥
p

(ex1 − x1)2 + (ex2 − x2)2 + (ex3 − x3)2.

Is this a partial order? If yes, then what are the upper and lower cones of an
event?

7.5. Answer the versions of questions of the preceding problem in the case two-
dimensional and three-dimensional analogues of this space, where the number of
spatial coordinates is 1 and 2, respectively.

7◦5. Position of an Element with Respect to a Set

Let (X,≺) be a poset, A ⊂ X a subset. Then b is the greatest element

of A if b ∈ A and c � b for every c ∈ A. Similarly, b is the smallest element

of A if b ∈ A and b � c for every c ∈ A.

7.K. An element b ∈ A is the smallest element of A iff A ⊂ C+
X(b); an

element b ∈ A is the greatest element of A iff A ⊂ C−
X(b).

7.L. Each set has at most one greatest and at most one smallest element.
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An element b of a set A is a maximal element of A if A contains no
element c such that b ≺ c. An element b is a minimal element of A if A
contains no element c such that c ≺ b.

7.M. An element b of A is maximal iff A∩C−
X(b) = b; an element b of A is

minimal iff A ∩ C+
X(b) = b.

7.6. Riddle. 1) How are the notions of maximal and greatest elements related?
2) What can you say about a poset in which these notions coincide for each subset?

7◦6. Linear Orders

Please, notice: the definition of a strict order does not require that for
any a, b ∈ X we have either a ≺ b, or b ≺ a, or a = b. This condition is
called a trichotomy . In terms of the corresponding nonstrict order, it can be
reformulated as follows: any two elements a, b ∈ X are comparable: either
a � b, or b � a.

A strict order satisfying trichotomy is linear . The corresponding poset is
linearly ordered. It is also called just an ordered set.6 Some orders do satisfy
trichotomy.

7.N. The order < in the set R of real numbers is linear.

This is the most important example of a linearly ordered set. The words
and images rooted in it are often extended to all linearly ordered sets. For
example, cones are called rays, upper cones become right rays, while lower
cones become left rays.

7.7. A poset (X,≺) is linearly ordered iff X = C+
X(a) ∪ C−

X(a) for each a ∈ X.

7.8. In the set N of positive integers, the order a|b is not linear.

7.9. For which X is the relation of inclusion in the set of all subsets of X a linear
order?

7◦7. Topologies Determined by Linear Order

7.O. Let (X,≺) be a linearly ordered set. Then set of all right rays of X,
i.e., sets of the form {x ∈ X | a ≺ x}, where a runs through X, and the set
X itself constitute a base for a topological structure in X.

6Quite a bit of confusion was brought into the terminology by Bourbaki. Then total orders
were called orders, non-total orders were called partial orders, and in occasions when it was not
known if the order under consideration was total, the fact that this was unknown was explicitly
stated. Bourbaki suggested to withdraw the word partial . Their motivation for this was that a
partial order, as a phenomenon more general than a linear order, deserves a shorter and simpler
name. In French literature, this suggestion was commonly accepted, but in English it would imply
abolishing a nice short word poset , which seems to be an absolutely impossible thing to do.
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The topological structure determined by this base is the right ray topology

of the linearly ordered set (X,≺). The left ray topology is defined similarly: it
is generated by the base consisting of X and sets of the form {x ∈ X | x ≺ a}
with a ∈ X.

7.10. The topology of the arrow (see 2) is the right ray topology of the half-line
[0,∞) equipped with the order <.

7.11. Riddle. To what extent is the assumption that the order is linear nec-
essary in Theorem 7.O? Find a weaker condition that implies the conclusion of
Theorem 7.O and allows us to speak about the topological structure described in
Problem 2.2 as the right ray topology of an appropriate partial order on the plane.

7.P. Let (X,≺) be a linearly ordered set. Then the subsets of X having the
forms

• {x ∈ X | a ≺ x}, where a runs through X,

• {x ∈ X | x ≺ a}, where a runs through X,

• {x ∈ X | a ≺ x ≺ b}, where a and b run through X

constitute a base for a topological structure in X.

The topological structure determined by this base is the interval topology

of the linearly ordered set (X,≺).

7.12. Prove that the interval topology is the smallest topological structure con-
taining the right ray and left ray topological structures.

7.Q. The canonical topology of the line is the interval topology of (R, <).

7◦8. Poset Topology

7.R. Let (X,�) be a poset. Then the subsets of X having the form {x ∈
X | a � x}, where a runs through the entire X, constitute a base of for
topological structure in X.

The topological structure generated by this base is the poset topology .

7.S. In the poset topology, each point a ∈ X has the smallest (with respect
to inclusion) neighborhood. This is {x ∈ X | a � x}.

7.T. The following properties of a topological space are equivalent:

(1) each point has a smallest neighborhood,

(2) the intersection of any collection of open sets is open,

(3) the union of any collection of closed sets is closed.
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A space satisfying the conditions of Theorem 7.T is a smallest neighbor-

hood space.7 In a smallest neighborhood space, open and closed sets satisfy
the same conditions. In particular, the set of all closed sets of a small-
est neighborhood space also is a topological structure, which is dual to the
original one. It corresponds to the opposite partial order.

7.13. How to characterize points open in the poset topology in terms of the partial
order? The same question about closed points.

7.14. Directly describe open sets in the poset topology of R with order <.

7.15. Consider a partial order in the set {a, b, c, d} where the strict inequalities
are: c ≺ a, d ≺ c, d ≺ a, and d ≺ b. Check that this is a partial order and the
corresponding poset topology is the topology of described in Problem 2.3 (1).

7.16. Describe the closure of a point in a poset topology.

7.17. Which singletons are dense in a poset topology?

7◦9. How to Draw a Poset

Now we can explain the pictogram , which we use to denote the space
introduced in Problem 2.3 (1). It describes the partial order in {a, b, c, d}
that determines the topology of this space by 7.15. Indeed, if we place a, b, c,
and d the elements of the set under consideration at vertices of the graph

of the pictogram, as shown in the picture, then the vertices
corresponding to comparable elements are connected by a
segment or ascending broken line, and the greater element
corresponds to the higher vertex. d

c

a

b

In this way, we can represent any finite poset by a diagram. Elements
of the poset are represented by points. We have a ≺ b if and only if the fol-
lowing two conditions are fulfilled: 1) the point representing b lies above the
point representing a and 2) those points are connected either by a segment
or by a broken line consisting of segments which connect points representing
intermediate elements of a chain a ≺ c1 ≺ c2 ≺ · · · ≺ cn ≺ b. We could
have connected by a segment any two points corresponding to comparable
elements, but this would make the diagram excessively cumbersome. This
is why the segments that can be recovered from the others by transitivity
are not drawn. Such a diagram representing a poset is its Hasse diagram.

7.U. Prove that any finite poset can be determined by a Hasse diagram.

7.V. Describe the poset topology in the set Z of integers defined by the
following Hasse diagram:

7This class of topological spaces was introduced and studied by P. S. Alexandrov in 1935.
Alexandrov called them discrete. Nowadays, the term discrete space is used for a much narrower
class of topological spaces (see Section 2). The term smallest neighborhood space was introduced
by Christer Kiselman.
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The space of Problem 7.V is the digital line, or Khalimsky line. In this
space, each even number is closed and each odd one is open.

7.18. Associate with each even integer 2k the interval (2k− 1, 2k + 1) of length 2
centered at this point, and with each odd integer 2k − 1, the singleton {2k − 1}.
Prove that a set of integers is open in the Khalimsky topology iff the union of sets
associated to its elements is open in R with the standard topology.

7.19. Among the topological spaces described in Section 2, find all thhose can be
obtained as posets with the poset topology. In the cases of finite sets, draw Hasse
diagrams describing the corresponding partial orders.

7◦10. Cyclic Orders in Finite Sets

Recall that a cyclic order in a finite set X is a linear order considered
up to cyclic permutation. The linear order allows us to enumerate elements
of the set X by positive integers, so that X = {x1, x2, . . . , xn}. A cyclic
permutation transposes the first k elements with the last n − k elements
without changing the order inside each of the two parts of the set:

(x1, x2, . . . , xk, xk+1, xk+2, . . . , xn) 7→ (xk+1, xk+2, . . . , xn, x1, x2, . . . , xk).

When we consider a cyclic order, it makes no sense to say that one of its
elements is greater than another one, since an appropriate cyclic permuta-
tion put the two elements in the opposite order. However, it makes sense
to say that an element is immediately followed by another one. Certainly,
the very last element is immediately followed by the very first: indeed, any
non-identity cyclic permutation puts the first element immediately after the
last one.

In a cyclicly ordered finite set, each element a has a unique element b
next to a, i.e., which follows a immediately. This determines a map of the
set onto itself, namely the simplest cyclic permutation

xi 7→
{
xi+1 if i < n,

x1 if i = n.

This permutation acts transitively (i.e., any element is mapped to any other
one by an appropriate iteration of it).

7.W. Any map T : X → X that acts transitively in X determines a cyclic
order in X such that each a ∈ X is followed by T (a).
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7.X. A set consisting of n elements possesses exactly (n− 1)! pairwise dis-
tinct cyclic orders.

In particular, a two-element set has only one cyclic order (which is so
uninteresting that sometimes it is said to make no sense), while any three-
element set possesses two cyclic orders.

7◦11x. Cyclic Orders in Infinite Sets

One can consider cyclic orders in an infinite set. However, most of what
was said above does not apply to cyclic orders in infinite sets without an
adjustment. In particular, most of them cannot be described by showing
pairs of elements that are next to each other. For example, points of a
circle can be cyclically ordered clockwise (or counter-clockwise), but no point
immediately follows another point with respect to this cyclic order.

Such “continuous” cyclic orders can be defined almost in the same way
as cyclic orders in finite sets were defined above. The difference is that
sometimes it is impossible to define cyclic permutations of the set in neces-
sary quantity, and they have to be replaced by cyclic transformations of the
linear orders. Namely, a cyclic order is defined as a linear order considered
up to cyclic transformations, where by a cyclic transformation of a linear
order ≺ in a set X we mean a passage from ≺ to a linear order ≺′ such that
X splits into subsets A and B such that the restrictions of ≺ and ≺′ to each
of them coincide, while a ≺ b and b ≺′ a for any a ∈ A and b ∈ B.

7.Ax. Existence of a cyclic transformation transforming linear orders to
each other determines an equivalence relation on the set of all linear orders
in a set.

A cyclic order in a set is an equivalence class of linear orders under the
relation of existence of a cyclic transformation.

7.Bx. Prove that for a finite set this definition is equivalent to the definition
in the preceding Section.

7.Cx. Prove that the cyclic “counter-clockwise” order on a circle can be
defined along the definition of this Section, but cannot be defined as a linear
order modulo cyclic transformations of the set for whatever definition of
cyclic transformations of circle. Describe the linear orders on the circle that
determine this cyclic order up to cyclic transformations of orders.

7.Dx. Let A be a subset of a set X. If two linear orders ≺′ and ≺ on X are
obtained from each other by a cyclic transformation, then their restrictions
to A are also obtained from each other by a cyclic transformation.

7.Ex Corollary. A cyclic order in a set induces a well-defined cyclic order
in every subset of this set.
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7.Fx. A cyclic order in a set X can be recovered from the cyclic orders
induced by it in all three-element subsets of X.

7.Fx.1. A cyclic order in a setX can be recovered from the cyclic orders induced
by it in all three-element subsets of X containing a fixed element a ∈ X .

Theorem 7.Fx allows us to describe a cyclic order as a ternary relation.
Namely, let a, b, c be elements of a cyclically ordered set. Then we write
[a ≺ b ≺ c] if the induced cyclic order on {a, b, c} is determined by the linear
order in which the inequalities in the brackets hold true (i.e., b follows a and
c follows b).

7.Gx. Let X be a cyclically ordered set. Then the ternary relation [a ≺ b ≺
c] on X has the following properties:

(1) for any pairwise distinct a, b, c ∈ X, we have either [a ≺ b ≺ c], or
[b ≺ a ≺ c] is true, but not both;

(2) [a ≺ b ≺ c], iff [b ≺ c ≺ a], iff [c ≺ a ≺ b], for any a, b, c ∈ X;

(3) if [a ≺ b ≺ c] and [a ≺ c ≺ d], then [a ≺ b ≺ d].

Vice versa, a ternary relation having these four properties in a set X deter-
mines a cyclic order in X.

7◦12x. Topology of Cyclic Order

7.Hx. Let X be a cyclically ordered set. Then the sets that belong to the
interval topology of every linear order determining the cyclic order on X
constitute a topological structure in X.

The topology defined in 7.Hx is the cyclic order topology .

7.Ix. The cyclic order topology determined by the cyclic counterclockwise
order of S1 is the topology generated by the metric ρ(x, y) = |x − y| on
S1 ⊂ C.
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Proofs and Comments

1.A The question is so elementary that it is difficult to find more elementary
facts which we could use in the proof. What does it mean that A consists of
a elements? This means, say, that we can count elements of A one by one
assigning to them numbers 1, 2, 3, and the last element will receive number
a. It is known that the result does not depend on the order in which we
count. (In fact, one can develop a set theory which would include a theory of
counting, and in which this is a theorem. However, since we have no doubts
in this fact, let us use it without proof.) Therefore we can start counting of
elements of B with counting the elements of A. The counting of elements of
A will be done first, and then, if there are some elements of B that are not
in A, counting will be continued. Thus, the number of elements in A is less
than or equal to the number of elements in B.

1.B Recall that, by the definition of an inclusion, A ⊂ B means that
each element of A is an element of B. Therefore, the statement that we
must prove can be rephrased as follows: each element of A is an element of
A. This is a tautology.

1.C Recall that, by the definition of an inclusion, A ⊂ B means that
each element of A is an element of B. Thus we need to prove that any
element of ∅ belongs to A. This is correct because there are no elements in
∅. If you are not satisfied with this argument (since it sounds too crazy),
then let us resort to the question whether this can be wrong. How can
it happen that ∅ is not a subset of A? This is possible only if there is
an element of ∅ which is not an element of A. However, there is no such
elements in ∅ because ∅ has no elements at all.

1.D We must prove that each element of A is an element of C. Let
x ∈ A. Since A ⊂ B, it follows that x ∈ B. Since B ⊂ C, the latter
belonging (i.e., x ∈ B) implies x ∈ C. This is what we had to prove.

1.E We have already seen that A ⊂ A. Hence if A = B, then, indeed,
A ⊂ B and B ⊂ A. On the other hand, A ⊂ B means that each element of
A belongs to B, while B ⊂ A means that each element of B belongs to A.
Hence A and B have the same elements, i.e., they are equal.

1.G It is easy to construct a set A with A 6∈ A. Take A = ∅, or A = N,
or A = {1}, . . .

1.H Take A = {1}, B = {{1}}, and C = {{{1}}}. It is more difficult
to construct sets A, B, and C such that A ∈ B, B ∈ C, and A ∈ C. Take
A = {1}, B = {{1}}, and C = {{1}, {{1}}}.
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2.A What should we check? The first axiom reads here that the union
of any collection of subsets of X is a subset of X. Well, this is true. If
A ⊂ X for each A ∈ Γ, then, obviously,

⋃
A∈ΓA ⊂ X. Exactly in the same

way we check the second axiom. Finally, of course, ∅ ⊂ X and X ⊂ X.

2.B Yes, it is. If one of the united sets is X, then the union is X,
otherwise the union in empty. If one of the sets to intersect is ∅, then the
intersection is ∅. Otherwise, the intersection equals X.

2.C First, show that
⋃

A∈Γ
A ∩ ⋃

B∈Σ
B =

⋃
A∈Γ,B∈Σ

(A ∩ B). Therefore, if

A and B are intervals, then the right-hand side is a union of intervals.

If you think that a set which is a union of intervals is too simple, then,
please, try to answer the following question (which has nothing to do with
the problem under consideration, though). Let {rn}∞n=1 = Q (i.e., we num-
bered all rational numbers). Prove that

⋃
(r − 2−n, r + 2−n) 6= R, although

this is a union of some intervals, that contains all (!) rational numbers.

2.D The union of any collection of open sets is open. The intersection
of any finite collection of open sets is open. The empty set and the whole
space are open.

2.E

(a)

x ∈
⋂

A∈Γ

(X rA) ⇐⇒ ∀A ∈ Γ : x ∈ X rA

⇐⇒ ∀A ∈ Γ : x /∈ A ⇐⇒ x /∈
⋃

A∈Γ

A ⇐⇒ x ∈ X r
⋃

A∈Γ

A.

(b) Replace both sides of the formula by their complements in X and put
B = X rA.

2.F (a) Let Γ = {Fα} be a collection of closed sets. We must verify
that

⋂
Fα is closed, i.e. Xr

⋂
Fα is open. Indeed, by the second De Morgan

formula we have

X r
⋂
Fα =

⋃
(X r Fα),

which is open by the first axiom of topological structure.
(b) Similar to (a); use the first De Morgan formula and the second axiom of
topological structure.
(c) Obvious.

2.G In any topological space, the empty set and the whole space are
both open and closed. Any set in a discrete space is both open and closed.
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Half-open intervals on the line are neither open nor closed. Cf. the next
problem.

2.H Yes, it is, because its complement R r [a, b] = (−∞, a) ∪ (b,+∞)
is open.

2.Ax Let U ⊂ R be an open set. For each x ∈ U , let (mx,Mx) ⊂ U be
the largest open interval containing x (take the union of all open intervals
in U that contain x). Since U is open, such intervals exist. Any two such
intervals either coincide or are disjoint.

2.Dx Conditions (a) and (c) from 2.13 are obviously fulfilled. To prove
(b), let us use 2.Ex and argue by contradiction. Suppose that sets A and B
contain no arithmetic progressions of length at least n. If A ∪B contains a
sufficiently long progression, then A or B contains a progression of length
more than n, a contradiction.

3.A Present U as a union of elements of Σ. Each point x ∈ U
is contained in at least one of these sets. Such a set can be chosen as V . It
is contained in U since it participates in a union equal to U .

We must prove that each U ∈ Ω is a union of elements of Σ. For each
point x ∈ U , choose according to the assumption a set Vx ∈ Σ such that
x ∈ Vx ⊂ U and consider ∪x∈UVx. Notice that ∪x∈UVx ⊂ U because Vx ⊂ U
for each x ∈ U . On the other hand, each point x ∈ U is contained in its
own Vx and hence in ∪x∈UVx. Therefore, U ⊂ ∪x∈UVx. Thus, U = ∪x∈UVx.

3.B X, being an open set in any topology, is a union of some
sets in Σ. The intersection of any two sets in to Σ is open, therefore it
also is a union of base sets. Let us prove that the set of unions of
all collections of elements of Σ satisfies the axioms of topological structure.
The first axiom is obviously fulfilled since the union of unions is a union.
Let us prove the second axiom (the intersection of two open sets is open).
Let U = ∪αAα and V = ∪βBβ, where Aα, Bβ ∈ Σ. Then

U ∩ V = (∪αAα) ∩ (∪βBβ) = ∪α,β(Aα ∩Bβ),

and since, by assumption, Aα ∩ Bβ is a union of elements of Σ, so is the
intersection U ∩ V . In the third axiom, we need to check only the part
concerning the entire X. By assumption, X is a union of sets belonging to
Σ.

3.D Let Σ1 and Σ2 be bases of topological structures Ω1 and Ω2 in a
set X. Obviously, Ω1 ⊂ Ω2 iff ∀U ∈ Σ1 ∀x ∈ U ∃V ∈ Σ2 : x ∈ V ⊂ U .
Now recall that Ω1 = Ω2 iff Ω1 ⊂ Ω2 and Ω2 ⊂ Ω1.

4.A Indeed, it makes sense to check that all conditions in the definition
of a metric are fulfilled for each triple of points x, y, and z.
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4.B The triangle inequality in this case takes the form |x− y| ≤ |x −
z| + |z − y|. Putting a = x − z and b = z − y, we transform the triangle
inequality into the well-known inequality |a+ b| ≤ |a| + |b|.

4.C As in the solution of Problem 4.B, the triangle inequality takes the

form:
√∑n

i=1(ai + bi)2 ≤
√∑n

i=1 a
2
i +

√∑n
i=1 b

2
i . Two squarings followed

by an obvious simplification reduce this inequality to the well-known Cauchy
inequality (

∑
aibi)

2 ≤∑ a2
i

∑
b2i .

4.E We must prove that every point y ∈ Br−ρ(a,x)(x) belongs to Br(a).
In terms of distances, this means that ρ(y, a) < r if ρ(y, x) < r−ρ(a, x) and
ρ(a, x) < r. By the triangle inequality, ρ(y, a) ≤ ρ(y, x)+ρ(x, a). Replacing
the first summand on the right-hand side of the latter inequality by a greater
number r− ρ(a, x), we obtain the required inequality. The second inclusion
is proved similarly.

4.F Show that if d = diamA and a ∈ A, then A ⊂ Dd(a).
Use the fact that diamDd(a) ≤ 2d. (Cf. 4.11.)

4.G This follows from Problem 4.E, Theorem 3.B and Assertion 3.C.

4.H For this metric, the balls are open intervals. Each open interval
in R is as a ball. The standard topology in R is determined by the base
consisting of all open intervals.

4.I If a ∈ A, then a ∈ Br(x) ⊂ A and Br−ρ(a,x)(a) ∈ Br(x) ⊂ U ,

see 4.E. A is a union of balls, therefore, A is open in the metric
topology.

4.J An indiscrete space does not have sufficiently many open sets. For
x, y ∈ X and r = ρ(x, y) > 0, the ball Dr(x) is nonempty and does not
coincide with the whole space (it does not contain y).

4.K For x ∈ X, put r = min{ρ(x, y) | y ∈ Xrx}. Which points
are in Br(x)? Obvious. (Cf. 4.19.)

4.L The condition ρ(b,A) = 0 means that each ball centered at
b meets A, i.e., b does not belong to the complement of A (since A is closed,
the complement of A is open). Obvious.

4.Ax Condition (2) is obviously fulfilled. Put r(A,B) = sup
a∈A

ρ(a,B), so

that dρ(A,B) = max{r(A,B), r(B,A)}. To prove that (3) is also fulfilled, it
suffices to prove that r(A,C) ≤ r(A,B) + r(B,C) for any A,B,C ⊂ X. We
easily see that ρ(a,C) ≤ ρ(a, b) + ρ(b, C) for all a ∈ A and b ∈ B. Hence,
ρ(a,C) ≤ ρ(a, b) + r(B,C), whence

ρ(a,C) ≤ inf
b∈B

ρ(a, b) + r(B,C) = ρ(a,B) + r(B,C) ≤ r(A,B) + r(B,C),
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which implies the required inequality.

4.Bx By 4.Ax, dρ satisfies conditions (2) and (3) from the definition
of a metric. From 4.L it follows that if the Hausdorff distance between two
closed sets A and B equals zero, then A ⊂ B and B ⊂ A, i.e., A = B. Thus,
dρ satisfies the condition (1).

4.Cx d∆(A,B) is the area of the symmetric difference A△B = (A r

B) ∪ (B r A) of A and B. The first two axioms of metric are obviously
fulfilled. Prove the triangle inequality by using the inclusion A r B ⊂
(C rB) ∪ (Ar C).

4.Fx Clearly, the metric in 4.A is an ultrametric. The other metrics
are not: for each of them you can find points x, y, and z such that ρ(x, y) =
ρ(x, z) + ρ(z, y).

4.Gx The definition of an ultrametric implies that none of the pairwise
distances between the points a, b, and c is greater than each of the other
two.

4.Hx By 4.Gx, if y ∈ Sr(x) and r > s > 0, then Bs(y) ⊂ Sr(x).

4.Ix Let x − z = r1
s1
pα1 and z − y = r2

s2
pα2 , where α1 ≤ α2. Then we

have

x− y = pα1
(

r1
s1

+ r2
s2
pα2−α1

)
= pα1

r1s2 + r2s1p
α2−α1

s1s2
,

whence p(x, y) ≤ p−α1 = max{ρ(x, z), ρ(z, y)}.
5.A We must check that ΩA satisfies the axioms of topological struc-

ture. Consider the first axiom. Let Γ ⊂ ΩA be a collection of sets in ΩA.
We must prove that

⋃
U∈Γ U ∈ ΩA. For each U ∈ Γ, find UX ∈ Ω such that

U = A ∩ UX . This is possible due to the definition of ΩA. Transform the
union under consideration:

⋃
U∈Γ U =

⋃
U∈Γ(A∩UX) = A∩⋃U∈Γ UX . The

union
⋃

U∈Γ UX belongs to Ω (i.e., is open in X) as the union of sets open
in X. (Here we use the fact that Ω, being a topology in X, satisfies the first
axiom of topological structure.) Therefore, A ∩ ⋃U∈Γ UX belongs to ΩA.
Similarly we can check the second axiom. The third axiom: A = A ∩ X,
and ∅ = A ∩ ∅.

5.B Let us prove that a subset of R1 is open in the relative topology
iff it is open in the canonical topology. The intersection of an open
disk with R1 is either an open interval or the empty set. Any open set in
the plane is a union of open disks. Therefore the intersection of any open
set of the plane with R1 is a union of open intervals. Thus, it is open in R1.

Prove this part on your own.

5.C The complement Ar F is open in A, i.e., Ar F = A ∩ U ,
where U is open in X. What closed set cuts F on A? It is cut by X r U .
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Indeed, A ∩ (X r U) = A r (A ∩ U) = A r (A r F ) = F . This is
proved in a similar way.

5.D No disk of R2 is contained in R.

5.E If A ∈ Ω and B ∈ ΩA, then B = A ∩ U , where U ∈ Ω. Therefore,
B ∈ Ω as the intersection of two sets, A and U , belonging to Ω.

5.F Act as in the solution of the preceding problem 5.E, but use 5.C
instead of the definition of the relative topology.

5.G The core of the proof is the equality (U ∩ A) ∩ B = U ∩ B.
It holds true because B ⊂ A, and we apply it to U ∈ Ω. As U runs
through Ω, the right-hand side of the equality (U ∩ A) ∩ B = U ∩ B runs
through ΩB , while the left-hand side runs through (ΩA)B . Indeed, elements
of ΩB are intersections U ∩ B with U ∈ Ω, and elements of (ΩA)B are
intersections V ∩ B with V ∈ ΩA, but V , in turn, being an element of ΩA,
is the intersection U ∩A with U ∈ Ω.

6.A The union of all open sets contained in A, firstly, is open (as a
union of open sets), and, secondly, contains every open set that is contained
in A (i.e., it is the greatest one among those sets).

6.B Let x be an interior point of A (i.e., there exists an open set Ux

such that x ∈ Ux ⊂ A). Then Ux ⊂ IntA (because IntA is the greatest open
set contained in A), whence x ∈ IntA. Vice versa, if x ∈ IntA, then the set
IntA itself is a neighborhood of x contained in A.

6.C If U is open, then U is the greatest open subset of U , and
hence coincides with the interior ofU . A set coinciding with its
interior is open since the interior is open.

6.D

(1) [0, 1) is not open in the line, while (0, 1) is. Therefore Int[0, 1) =
(0, 1).

(2) Since any interval contains an irrational point, Q does not contain
a nonempty sets open in the classical topology of R. Therefore,
Int Q = ∅.

(3) Since any interval contains rational points, R r Q does not contain
a nonempty set open in the classical topology of R. Therefore,
Int(R r Q) = ∅.

6.E The intersection of all closed sets containing A, firstly, is closed
(as an intersection of closed sets), and, secondly, is contained in every closed
set that contains A (i.e., it is the smallest one among those sets). Cf. the
proof of Theorem 6.A. In general, properties of closure can be obtained
from properties of interior by replacing unions with intersections and vice
versa.
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6.F If x /∈ ClA, then there exists a closed set F such that F ⊃ A and
x /∈ F , whence x ∈ U = X r F . Thus, x is not an adherent point for A.
Prove the inverse implication on your own, cf. 6.H.

6.G Cf. the proof of Theorem 6.C.

6.H The intersection of all closed sets containing A is the complement
of the union of all open sets contained in X rA.

6.I (a) The half-open interval [0, 1) is not closed, and [0, 1] is closed;
(b)–(c) The exterior of each of the sets Q and R r Q is empty since each
interval contains both rational and irrational numbers.

6.J If b is an adherent point for A, then ∀ ε > 0 ∃ a ∈ A∩Dε(b),
whence ∀ ε > 0 ∃ a ∈ A : ρ(a, b) < ε. Thus, ρ(b,A) = 0. This is an
easy exercise.

6.K If x ∈ FrA, then x ∈ ClA and x /∈ IntA. Hence, firstly, each
neighborhood of x meets A, secondly, no neighborhood of x is contained
in A, and therefore each neighborhood of x meets X r A. Thus, x is a
boundary point of A. Prove the converse on your own.

6.L Since IntA ⊂ A, it follows that ClA = A iff FrA ⊂ A.

6.M Argue by contradiction. A set A disjoint with an open set
U is contained in the closed set X r U . Therefore, if U is nonempty, then
A is not everywhere dense. A set meeting each nonempty open set is
contained in only one closed set: the entire space. Hence, its closure is the
whole space, and this set is everywhere dense.

6.N This is 6.I(b).

6.O The condition means that each neighborhood of each point con-
tains an exterior point of A. This, in turn, means that the exterior of A is
everywhere dense.

6.Q This is 6.P. Hint: any point of ClA r A is a limit
point of A.

7.F We need to check that the relation “a ≺ b or a = b” satisfies the
three conditions from the definition of a nonstrict order. Doing this, we
can use only the fact that ≺ satisfies the conditions from the definition of
a strict order. Let us check the transitivity. Suppose that a � b and b � c.
This means that either 1) a ≺ b ≺ c, or 2) a = b ≺ c, or 3) a ≺ b = c, or 4)
a = b = c.
1) In this case, a ≺ c by transitivity of ≺, and so a � c. 2) We have a ≺ c,
whence a � c. 3) We have a ≺ c, whence a � c. 4) Finally, a = c, whence
a � c. Other conditions are checked similarly.

7.I Assertion (a) follows from transitivity of the order. Indeed, consider
an arbitrary an c ∈ C+

X(b). By the definition of a cone, we have b � c, while
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the condition b ∈ C+
X(a) means that a � b. By transitivity, this implies that

a � c, i.e., c ∈ C+
X(a). We have thus proved that each element of C+

X(b)

belongs to C+
X(a). Hence, C+

X(b) ⊂ C+
X(a), as required.

Assertion (b) follows from the definition of a cone and the reflexivity of
order. Indeed, by definition, C+

X(a) consists of all b such that a � b, and,
by reflexivity of order, a � a.
Assertion (c) follows similarly from antisymmetry: the assumption C+

X(a) =

C+
X(b) together with assertion (b) implies that a � b and b � a, which

together with antisymmetry implies that a = b.

7.J By Theorem 7.I, cones in a poset have the properties that form
the hypothesis of the theorem to be proved. When proving Theorem 7.I,
we showed that these properties follow from the corresponding conditions
in the definition of a partial nonstrict order. In fact, they are equivalent
to these conditions. Permuting words in the proof of Theorem 7.I, we to
obtain a proof of Theorem 7.J.

7.O By Theorem 3.B, it suffices to prove that the intersection of any
two right rays is a union of right rays. Let a, b ∈ X. Since the order is
linear, either a ≺ b, or b ≺ a. Let a ≺ b. Then

{x ∈ X | a ≺ x} ∩ {x ∈ X | b ≺ x} = {x ∈ X | b ≺ x}.

7.R By Theorem 3.C, it suffices to prove that each element of the inter-
section of two cones, say, C+

X(a) and C+
X(b), is contained in the intersection

together with a whole cone of the same kind. Assume that c ∈ C+
X(a)∩C+

X(b)

and d ∈ C+
X(c). Then a � c � d and b � c � d, whence a � d and b � d.

Therefore d ∈ C+
X(a) ∩ C+

X(b). Hence, C+
X(c) ⊂ C+

X(a) ∩ C+
X(b).

7.T Equivalence of the second and third properties follows from the
De Morgan formulas, as in 2.F. Let us prove that the first property implies
the second one. Consider the intersection of an arbitrary collection of open
sets. For each of its points, every set of this collection is a neighborhood.
Therefore, its smallest neighborhood is contained in each of the sets to be
intersected. Hence, the smallest neighborhood of the point is contained
in the intersection, which we denote by U . Thus, each point of U lies in U
together with its neighborhood. Since U is the union of these neighborhoods,
it is open.
Now let us prove that if the intersection of any collection of open sets is
open, then any point has a smallest neighborhood. Where can one get such a
neighborhood from? How to construct it? Take all neighborhoods of a point
x and consider their intersection U . By assumption, U is open. It contains
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x. Therefore, U is a neighborhood of x. This neighborhood, being the
intersection of all neighborhoods, is contained in each of the neighborhoods.
Thus, U is the smallest neighborhood.

7.V The minimal base of this topology consists of singletons of the form
{2k − 1} with k ∈ Z and three-point sets of the form {2k − 1, 2k, 2k + 1},
where again k ∈ Z.



Chapter II

Continuity

8. Set-Theoretic Digression: Maps

8◦1. Maps and Main Classes of Maps

A map f of a set X to a set Y is a triple consisting of X, Y , and a rule,1

which assigns to every element of X exactly one element of Y . There are
other words with the same meaning: mapping , function, etc.

If f is a map of X to Y , then we write f : X → Y , or X
f→ Y . The

element b of Y assigned by f to an element a of X is denoted by f(a) and
called the image of a under f , or the f -image of a. We write b = f(a), or

a
f7→ b, or f : a 7→ b.

A map f : X → Y is a surjective map, or just a surjection if every element
of Y is the image of at least one element of X. A map f : X → Y is an
injective map, injection, or one-to-one map if every element of Y is the image
of at most one element of X. A map is a bijective map, bijection, or invertible

map if it is both surjective and injective.

1Certainly, the rule (as everything in set theory) may be thought of as a set. Namely, we
consider the set of the ordered pairs (x, y) with x ∈ X and y ∈ Y such that the rule assigns y to
x. This is the graph of f . It is a subset of X × Y . (Recall that X × Y is the set of all ordered

pairs (x, y) with x ∈ X and y ∈ Y .)

53
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8◦2. Image and Preimage

The image of a set A ⊂ X under a map f : X → Y is the set of images
of all points of A. It is denoted by f(A). Thus

f(A) = {f(x) | x ∈ A}.

The image of the entire set X (i.e., the set f(X)) is the image of f , it is
denoted by Im f .

The preimage of a set B ⊂ Y under a map f : X → Y is the set of
elements of X whith images in to B. It is denoted by f−1(B). Thus

f−1(B) = {a ∈ X | f(a) ∈ B}.

Be careful with these terms: their etymology can be misleading. For
example, the image of the preimage of a set B can differ from B. And even
if it does not differ, it may happen that the preimage is not the only set
with this property. Hence, the preimage cannot be defined as a set whose
image is the given set.

8.A. We have f
(
f−1(B)

)
⊂ B for any map f : X → Y and any B ⊂ Y .

8.B. f
(
f−1(B)

)
= B iff B ⊂ Im f .

8.C. Let f : X → Y be a map and let B ⊂ Y be such that f
(
f−1(B)

)
= B.

Then the following statements are equivalent:

(1) f−1(B) is the unique subset of X whose image equals B;

(2) for any a1, a2 ∈ f−1(B) the equality f(a1) = f(a2) implies a1 = a2.

8.D. A map f : X → Y is an injection iff for each B ⊂ Y such that
f
(
f−1(B)

)
= B the preimage f−1(B) is the unique subset of X with image

equal to B.

8.E. We have f−1
(
f(A)

)
⊃ A for any map f : X → Y and any A ⊂ X.

8.F. f−1
(
f(A)

)
= A iff f(A) ∩ f(X rA) = ∅.

8.1. Do the following equalities hold true for any A, B ⊂ Y and f : X → Y :

f−1(A ∪ B) = f−1(A) ∪ f−1(B), (10)

f−1(A ∩ B) = f−1(A) ∩ f−1(B), (11)

f−1(Y r A) = X r f−1(A)? (12)
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8.2. Do the following equalities hold true for any A, B ⊂ X and any f : X → Y :

f(A ∪ B) = f(A) ∪ f(B), (13)

f(A ∩ B) = f(A) ∩ f(B), (14)

f(X r A) = Y r f(A)? (15)

8.3. Give examples in which two of the above equalities (13)–(15) are false.

8.4. Replace false equalities of 8.2 by correct inclusions.

8.5. Riddle. What simple condition on f : X → Y should be imposed in order
to make correct all equalities of 8.2 for any A, B ⊂ X ?

8.6. Prove that for any map f : X → Y and any subsets A ⊂ X and B ⊂ Y we
have:

B ∩ f(A) = f
`
f−1(B) ∩ A

´
.

8◦3. Identity and Inclusion

The identity map of a set X is the map idX : X → X : x 7→ x. It is
denoted just by id if there is no ambiguity. If A is a subset of X, then the
map in : A→ X : x 7→ x is the inclusion map, or just inclusion, of A into X.
It is denoted just by in when A and X are clear.

8.G. The preimage of a set B under the inclusion in : A→ X is B ∩A.

8◦4. Composition

The composition of maps f : X → Y and g : Y → Z is the map
g ◦ f : X → Z : x 7→ g

(
f(x)

)
.

8.H Associativity. h ◦ (g ◦ f) = (h ◦ g) ◦ f for any maps f : X → Y ,
g : Y → Z, and h : Z → U .

8.I. f ◦ idX = f = idY ◦f for any f : X → Y .

8.J. A composition of injections is injective.

8.K. If the composition g ◦ f is injective, then so is f .

8.L. A composition of surjections is surjective.

8.M. If the composition g ◦ f is surjective, then so is g.

8.N. A composition of bijections is a bijection.

8.7. Let a composition g ◦ f be bijective. Is then f or g necessarily bijective?

8◦5. Inverse and Invertible

A map g : Y → X is inverse to a map f : X → Y if g ◦ f = idX and
f ◦ g = idY . A map having an inverse map is invertible.

8.O. A map is invertible iff it is a bijection.

8.P. If an inverse map exists, then it is unique.
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8◦6. Submaps

If A ⊂ X and B ⊂ Y , then for every f : X → Y such that f(A) ⊂ B we
have a map ab(f) : A → B : x 7→ f(x), which is called the abbreviation of
f to A and B, a submap, or a submapping . If B = Y , then ab(f) : A → Y
is denoted by f A and called the restriction of f to A. If B 6= Y , then
ab(f) : A→ B is denoted by f A,B or even simply f |.
8.Q. The restriction of a map f : X → Y to A ⊂ X is the composition of
the inclusion in : A→ X and f . In other words, f |A = f ◦ in.

8.R. Any submap (in particular, any restriction) of an injection is injective.

8.S. If a map possesses a surjective restriction, then it is surjective.
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9. Continuous Maps

9◦1. Definition and Main Properties of Continuous Maps

Let X and Y be two topological spaces. A map f : X → Y is continuous

if the preimage of any open subset of Y is an open subset of X.

9.A. A map is continuous iff the preimage of each closed set is closed.

9.B. The identity map of any topological space is continuous.

9.1. Let Ω1 and Ω2 be two topological structures in a space X. Prove that the
identity map

id : (X, Ω1) → (X, Ω2)

is continuous iff Ω2 ⊂ Ω1.

9.2. Let f : X → Y be a continuous map. Find out whether or not it is continuous
with respect to

(1) a finer topology in X and the same topology in Y ,
(2) a coarser topology in X and the same topology in Y ,
(3) a finer topology in Y and the same topology in X,
(4) a coarser topology in Y and the same topology in X.

9.3. Let X be a discrete space and Y an arbitrary space. 1) Which maps X → Y
are continuous? 2) Which maps Y → X are continuous?

9.4. Let X be an indiscrete space and Y an arbitrary space. 1) Which maps
X → Y are continuous? 2) Which maps Y → X are continuous?

9.C. Let A be a subspace of X. The inclusion in : A→ X is continuous.

9.D. The topology ΩA induced on A ⊂ X by the topology of X is the
coarsest topology in A with respect to which the inclusion in : A → X is
continuous.

9.5. Riddle. The statement 9.D admits a natural generalization with the inclu-
sion map replaced by an arbitrary map f : A → X of an arbitrary set A. Find
this generalization.

9.E. A composition of continuous maps is continuous.

9.F. A submap of a continuous map is continuous.

9.G. A map f : X → Y is continuous iff ab f : X → f(X) is continuous.

9.H. Any constant map (i.e., a map with image consisting of a single point)
is continuous.
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9◦2. Reformulations of Definition

9.6. Prove that a map f : X → Y is continuous iff

Cl f−1(A) ⊂ f−1(Cl A)

for any A ⊂ Y .

9.7. Formulate and prove similar criteria of continuity in terms of Int f−1(A) and
f−1(IntA). Do the same for Cl f(A) and f(Cl A).

9.8. Let Σ be a base for topology in Y . Prove that a map f : X → Y is continuous
iff f−1(U) is open for each U ∈ Σ.

9◦3. More Examples

9.9. Consider the map

f : [0, 2] → [0, 2] : f(x) =

(
x if x ∈ [0, 1),

3 − x if x ∈ [1, 2].

Is it continuous (with respect to the topology induced from the real line)?

9.10. Consider the map f from the segment [0, 2] (with the relative topology
induced by the topology of the real line) into the arrow (see Section 2) defined by
the formula

f(x) =

(
x if x ∈ [0, 1],

x + 1 if x ∈ (1, 2].

Is it continuous?

9.11. Give an explicit characterization of continuous maps of RT1 (see Section 2)
to R.

9.12. Which maps RT1 → RT1 are continuous?

9.13. Give an explicit characterization of continuous maps of the arrow to itself.

9.14. Let f be a map of the set Z + of nonnegative numbers onto R defined by
formula

f(x) =

(
1
x

if x 6= 0,

0 if x = 0.

Let g : Z + → f(Z +) be its submap. Induce a topology on Z + and f(Z +) from
R. Are f and the map g−1 inverse to g continuous?

9◦4. Behavior of Dense Sets

9.15. Prove that the image of an everywhere dense set under a surjective contin-
uous map is everywhere dense.

9.16. Is it true that the image of nowhere dense set under a continuous map is
nowhere dense?

9.17*. Do there exist a nowhere dense set A of [0, 1] (with the topology induced
from the real line) and a continuous map f : [0, 1] → [0, 1] such that f(A) = [0, 1]?
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9◦5. Local Continuity

A map f from a topological space X to a topological space Y is said to
be continuous at a point a ∈ X if for every neighborhood V of f(a) there
exists a neighborhood U of a such that f(U) ⊂ V .

9.I. A map f : X → Y is continuous iff it is continuous at each point of X.

9.J. Let X and Y be two metric spaces, a ∈ X. A map f : X → Y is
continuous at a iff for every ball with center at f(a) there exists a ball with
center at a whose image is contained in the first ball.

9.K. Let X and Y be two metric spaces. A map f : X → Y is continuous
at a point a ∈ X iff for every ε > 0 there exists δ > 0 such that for every
point x ∈ X the inequality ρ(x, a) < δ implies ρ

(
f(x), f(a)

)
< ε.

Theorem 9.K means that the definition of continuity usually studied in
Calculus, when applicable, is equivalent to the above definition stated in
terms of topological structures.

9◦6. Properties of Continuous Functions

9.18. Let f, g : X → R be continuous. Prove that the maps X → R defined by
formulas

x 7→f(x) + g(x), (16)

x 7→f(x)g(x), (17)

x 7→f(x) − g(x), (18)

x 7→
˛̨
f(x)

˛̨
, (19)

x 7→max{f(x), g(x)}, (20)

x 7→min{f(x), g(x)} (21)

are continuous.

9.19. Prove that if 0 /∈ g(X), then the map

X → R : x 7→ f(x)

g(x)

is continuous.

9.20. Find a sequence of continuous functions fi : R → R, (i ∈ N), such that the
function

R → R : x 7→ sup{ fi(x) | i ∈ N }
is not continuous.

9.21. Let X be a topological space. Prove that a function f : X → Rn : x 7→
(f1(x), . . . , fn(x)) is continuous iff so are all functions fi : X → R with i = 1, . . . , n.

Real p × q-matrices form a space Mat(p × q, R), which differs from Rpq only
in the way of numeration of its natural coordinates (they are numerated by pairs
of indices).
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9.22. Let f : X → Mat(p× q,R) and g : X → Mat(q× r,R) be continuous maps.
Prove that then

X → Mat(p × r,R) : x 7→ g(x)f(x)

is a continuous map.

Recall that GL(n; R) is the subspace of Mat(n×n, R) consisting of all invert-
ible matrices.

9.23. Let f : X → GL(n; R) be a continuous map. Prove that X → GL(n; R) :
x 7→ (f(x))−1 is continuous.

9◦7. Continuity of Distances

9.L. For every subset A of a metric space X, the function X → R : x 7→
ρ(x,A) (see Section 4) is continuous.

9.24. Prove that a topology of a metric space is the coarsest topology with respect
to which the function X → R : x 7→ ρ(x,A) is continuous for every A ⊂ X.

9◦8. Isometry

A map f of a metric space X into a metric space Y is an isometric

embedding if ρ
(
f(a), f(b)

)
= ρ(a, b) for any a, b ∈ X. A bijective isometric

embedding is an isometry .

9.M. Every isometric embedding is injective.

9.N. Every isometric embedding is continuous.

9◦9. Contractive Maps

A map f : X → X of a metric space X is contractive if there exists α ∈ (0, 1)
such that ρ

`
f(a), f(b)

´
≤ αρ(a, b) for any a, b ∈ X.

9.25. Prove that every contractive map is continuous.

Let X and Y be metric spaces. A map f : X → Y is a Hölder map if there
exist C > 0 and α > 0 such that ρ

`
f(a), f(b)

´
≤ Cρ(a, b)α for any a, b ∈ X.

9.26. Prove that every Hölder map is continuous.

9◦10. Sets Defined by Systems of Equations and Inequalities

9.O. Let fi (i = 1, . . . , n) be continuous maps X → R. Then the subset of
X consisting of solutions of the system of equations

f1(x) = 0, . . . , fn(x) = 0

is closed.
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9.P. Let fi (i = 1, . . . , n) be continuous maps X → R. Then the subset of
X consisting of solutions of the system of inequalities

f1(x) ≥ 0, . . . , fn(x) ≥ 0

is closed, while the set consisting of solutions of the system of inequalities

f1(x) > 0, . . . , fn(x) > 0

is open.

9.27. Where in 9.O and 9.P a finite system can be replaced by an infinite one?

9.28. Prove that in Rn (n ≥ 1) every proper algebraic set (i.e., a set defined by
algebraic equations) is nowhere dense.

9◦11. Set-Theoretic Digression: Covers

A collection Γ of subsets of a set X is a cover or a covering of X if X is
the union of sets belonging to Γ, i.e., X =

⋃
A∈ΓA. In this case, elements

of Γ cover X.

There is also a more general meaning of these words. A collection Γ of
subsets of a set Y is a cover or a covering of a set X ⊂ Y if X is contained in
the union of the sets in Γ, i.e., X ⊂ ⋃A∈ΓA. In this case, the sets belonging
to Γ are also said to cover X.

9◦12. Fundamental Covers

Consider a cover Γ of a topological space X. Each element of Γ inherits
a topological structure from X. When are these structures sufficient for
recovering the topology of X? In particular, under what conditions on Γ
does the continuity of a map f : X → Y follow from that of its restrictions
to elements of Γ? To answer these questions, solve Problems 9.29–9.30
and 9.Q–9.V.

9.29. Find out whether or not this is true for the following covers:

(1) X = [0, 2], and Γ = {[0, 1], (1, 2]};
(2) X = [0, 2], and Γ = {[0, 1], [1, 2]};
(3) X = R, and Γ = {Q, R r Q};
(4) X = R, and Γ is a set of all one-point subsets of R.

A cover Γ of a space X is fundamental if a set U ⊂ X is open iff for
every A ∈ Γ the set U ∩A is open in A.

9.Q. A cover Γ of a space X is fundamental iff a set U ⊂ X is open, provided
U ∩A is open in A for every A ∈ Γ.

9.R. A cover Γ of a space X is fundamental iff a set F ⊂ X is closed,
provided F ∩A is closed A for every A ∈ Γ.
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9.30. The cover of a topological space by singletons is fundamental iff the space
is discrete.

A cover of a topological space is open if it consists of open sets, and it
is closed if it consists of closed sets. A cover of a topological space is locally

finite if every point of the space has a neighborhood intersecting only a finite
number of elements of the cover.

9.S. Every open cover is fundamental.

9.T. A finite closed cover is fundamental.

9.U. Every locally finite closed cover is fundamental.

9.V. Let Γ be a fundamental cover of a topological space X, and let f : X →
Y be a map. If the restriction of f to each element of Γ is continuous, then
so is f .

A cover Γ′ is a refinement of a cover Γ if every element of Γ′ is contained in
an element of Γ.

9.31. Prove that if a cover Γ′ is a refinement of a cover Γ and Γ′ is fundamental,
then so is Γ.

9.32. Let ∆ be a fundamental cover of a topological space X, and Γ be a cover
of X such that ΓA = {U ∩A | U ∈ Γ } is a fundamental cover for subspace A ⊂ X
for every A ∈ ∆. Prove that Γ is a fundamental cover.

9.33. Prove that the property of being fundamental is local, i.e., if every point of
a space X has a neighborhood V such that ΓV = {U ∩V | U ∈ Γ } is fundamental,
then Γ is fundamental.

9◦13x. Monotone Maps

Let (X,≺) and (Y,≺) be posets. A map f : X → Y is

• (non-strictly) monotonically increasing or just monotone if
f(a) � f(b) for any a, b ∈ X with a � b;

• (non-strictly) monotonically decreasing or antimonotone if
f(b) � f(a) for any a, b ∈ X with a � b;

• strictly monotonically increasing or just strictly monotone if
f(a) ≺ f(b) for any a, b ∈ X with a ≺ b;

• strictly monotonically decreasing or strictly antimonotone if
f(b) ≺ f(a) for any a, b ∈ X with a ≺ b.

9.Ax. Let X and Y be linearly ordered sets. With respect to the interval
topology in X and Y any surjective strictly monotone or antimonotone map
X → Y is continuous.

9.1x. Show that the surjectivity condition in 9.Ax is needed.
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9.2x. Is it possible to remove the word strictly from the hypothesis of Theo-
rem 9.Ax?

9.3x. Under conditions of Theorem 9.Ax, is f continuous with respect to the
right-ray or left-ray topologies?

9.Bx. A map of a poset to a poset is monotone iff it is continuous with
respect to the poset topologies.

9◦14x. Gromov–Hausdorff Distance

9.Cx. For any metric spaces X and Y , there exists a metric space Z such
that X and Y can be isometrically embedded into Z.

Having isometrically embedded two metric space in a single one, we can
consider the Hausdorff distance between their images (see. 4◦15x). The
infimum of such Hausdorff distances over all pairs of isometric embeddings
of metric spacesX and Y into metric spaces is the Gromov–Hausdorff distance

between X and Y .

9.Dx. Does there exist metric spaces with infinite Gromov–Hausdorff dis-
tance?

9.Ex. Prove that the Gromov–Hausdorff distance is symmetric and satisfies
the triangle inequality.

9.Fx. Riddle. In what sense the Gromov–Hausdorff distance can satisfy
the first axiom of metric?

9◦15x. Functions on the Cantor Set and Square-Filling Curves

Recall that the Cantor set K is the set of real numbers that can be
presented as sums of series of the form

∑∞
n=1

an
3n with an ∈ {0, 2}.

9.Gx. Consider the map

γ1 : K → [0, 1] :

∞∑

n=1

an

3n
7→ 1

2

∞∑

n=1

an

2n
.

Prove that it is a continuous surjection. Sketch the graph of γ1.

9.Hx. Prove that the function

K → K :

∞∑

n=1

an

3n
7→

∞∑

n=1

a2n

3n

is continuous.

Denote by K2 the set {(x, y) ∈ R2 | x ∈ K, y ∈ K}.
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9.Ix. Prove that the map

γ2 : K → K2 :

∞∑

n=1

an

3n
7→
(

∞∑

n=1

a2n−1

3n
,

∞∑

n=1

a2n

3n

)

is a continuous surjection.

The unit segment [0, 1] is denoted by I, the set

{(x1, . . . , xn) ⊂ Rn | 0 ≤ xi ≤ 1 for each i}
is denoted by In and called the (unit) n-cube.

9.Jx. Prove that the map γ3 : K → I2 defined as the composition of γ2 :
K → K2 and K2 → I2 : (x, y) 7→ (γ1(x), γ1(y)) is a continuous surjection.

9.Kx. Prove that the map γ3 : K → I2 is a restriction of a continuous map.
(Cf. 2.Bx.2.)

The latter map is a continuous surjection I → I2. Thus, this is a
curve filling the square. A curve with this property was first constructed by
G. Peano in 1890. Though the construction sketched above involves the same
ideas as the original Peano’s construction, the two constructions are slightly
different. Since then a lot of other similar examples have been found. You
may find a nice survey of them in Hans Sagan’s book Space-Filling Curves,
Springer-Verlag 1994. Here is a sketch of Hilbert’s construction.

9.Lx. Prove that there exists a sequence of polygonal maps fn : I → I2

such that

(1) fn connects all centers of the squares forming the obvious subdivi-
sion of I2 into 4n equal squares with side 1/2n;

(2) dist(fn(x), fn−1(x)) ≤
√

2/2n+1 for any x ∈ I (here dist denotes
the metric induced on I2 from the standard Euclidean metric of
R2).

9.Mx. Prove that any sequence of paths fn : I → I2 satisfying the condi-
tions of 9.Lx converges to a map f : I → I2 (i.e., for any x ∈ I there exists a
limit f(x) = limn→∞ fn(x)), this map is continuous, and its image is dense
in I2.

9.Nx.2 Prove that any continuous map I → I2 with dense image is surjec-
tive.

9.Ox. Generalize 9.Ix – 9.Kx, 9.Lx – 9.Nx to obtain a continuous surjection
of I onto In.

2Although this problem can be solved by using theorems that are well known from Calculus,
we have to mention that it would be more appropriate to solve it after Section 16. Cf. Prob-
lems 16.P, 16.U, and 16.K.
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10. Homeomorphisms

10◦1. Definition and Main Properties of Homeomorphisms

An invertible map is a homeomorphism if both this map and its inverse
are continuous.

10.A. Find an example of a continuous bijection which is not a homeomor-
phism.

10.B. Find a continuous bijection [0, 1) → S1 which is not a homeomor-
phism.

10.C. The identity map of a topological space is a homeomorphism.

10.D. A composition of homeomorphisms is a homeomorphism.

10.E. The inverse of a homeomorphism is a homeomorphism.

10◦2. Homeomorphic Spaces

A topological space X is homeomorphic to a space Y if there exists a
homeomorphism X → Y .

10.F. Being homeomorphic is an equivalence relation.

10.1. Riddle. How is Theorem 10.F related to 10.C–10.E?

10◦3. Role of Homeomorphisms

10.G. Let f : X → Y be a homeomorphism. Then U ⊂ X is open (in X)
iff f(U) is open (in Y ).

10.H. f : X → Y is a homeomorphism iff f is a bijection and determines a
bijection between the topological structures of X and Y .

10.I. Let f : X → Y be a homeomorphism. Then for every A ⊂ X

(1) A is closed in X iff f(A) is closed in Y ;

(2) f(ClA) = Cl(f(A));

(3) f(IntA) = Int(f(A));

(4) f(FrA) = Fr(f(A));

(5) A is a neighborhood of a point x ∈ X iff f(A) is a neighborhood of
the point f(x);

(6) etc.
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Therefore, from the topological point of view, homeomorphic spaces are
completely identical: a homeomorphism X → Y establishes a one-to-one
correspondence between all phenomena in X and Y that can be expressed
in terms of topological structures. 3

10◦4. More Examples of Homeomorphisms

10.J. Let f : X → Y be a homeomorphism. Prove that for every A ⊂ X
the submap ab(f) : A→ f(A) is also a homeomorphism.

10.K. Prove that every isometry (see Section 9) is a homeomorphism.

10.L. Prove that every nondegenerate affine transformation of Rn is a home-
omorphism.

10.M. Let X and Y be two linearly ordered sets. Any strictly monotone
surjection f : X → Y is a homeomorphism with respect to the interval
topological structures in X and Y .

10.N Corollary. Any strictly monotone surjection f : [a, b] → [c, d] is a
homeomorphism.

10.2. Let R be a positive real. Prove that the inversion

τ : R
n

r 0 → R
n

r 0 : x 7→ Rx

|x|2

is a homeomorphism.

10.3. Let H = { z ∈ C | Im z > 0 } be the upper half-plane, let a, b, c, d ∈ R, and

let

˛̨
˛̨a b
c d

˛̨
˛̨ > 0. Prove that

f : H → H : z 7→ az + b

cz + d

is a homeomorphism.

10.4. Let f : R → R be a bijection. Prove that f is a homeomorphism iff f is a
monotone function.

10.5. 1) Prove that every bijection of an indiscrete space onto itself is a homeo-
morphism. Prove the same 2) for a discrete space and 3) RT1 .

10.6. Find all homeomorphisms of the space (see Section 2) to itself.

3This phenomenon was used as a basis for a definition of the subject of topology in the
first stages of its development, when the notion of topological space had not been developed yet.
Then mathematicians studied only subspaces of Euclidean spaces, their continuous maps, and
homeomorphisms. Felix Klein in his famous Erlangen Program classified various geometries that
had emerged up to that time, like Euclidean, Lobachevsky, affine, and projective geometries, and
defined topology as a part of geometry that deals with properties preserved by homeomorphisms.
In fact, it was not assumed to be a program in the sense of being planned, although it became a
kind of program. It was a sort of dissertation presented by Klein for getting a professor position
at the Erlangen University.
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10.7. Prove that every continuous bijection of the arrow onto itself is a homeo-
morphism.

10.8. Find two homeomorphic spaces X and Y and a continuous bijection X → Y
which is not a homeomorphism.

10.9. Is γ2 : K → K2 considered in Problem 9.Ix a homeomorphism? Recall that
K is the Cantor set, K2 = {(x, y) ∈ R2 | x ∈ K, y ∈ K} and γ2 is defined by

∞X

k=1

ak

3k
7→
 

∞X

k=1

a2k−1

3k
,

∞X

k=1

a2k

3k

!

10◦5. Examples of Homeomorphic Spaces

Below the homeomorphism relation is denoted by ∼=. This notation it is
not commonly accepted. In other textbooks, any sign close to, but distinct
from =, e.g., ∼, ≃, ≈, is used.

10.O. Prove that

(1) [0, 1] ∼= [a, b] for any a < b;

(2) [0, 1) ∼= [a, b) ∼= (0, 1] ∼= (a, b] for any a < b;

(3) (0, 1) ∼= (a, b) for any a < b;

(4) (−1, 1) ∼= R;

(5) [0, 1) ∼= [0,+∞) and (0, 1) ∼= (0,+∞).

1x

a

b

x 1−1

10.P. Let N = (0, 1) ∈ S1 be the North Pole of the unit circle. Prove that
S1 rN ∼= R1.
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10.Q. The graph of a continuous real-valued function defined on an interval
is homeomorphic to the interval.

10.R. Sn r point ∼= Rn. (The first space is the “punctured sphere”.)

10.10. Prove that the following plane domains are homeomorphic. (Here and
below, our notation is sometimes slightly incorrect: in the curly brackets, we drop
the initial part “(x, y) ∈ R2 |”.)

(1) The whole plane R2;
(2) open square Int I2 = {x, y ∈ (0, 1) };
(3) open strip {x ∈ (0, 1) };
(4) open half-plane H = { y > 0 };
(5) open half-strip {x > 0, y ∈ (0, 1) };
(6) open disk B2 = {x2 + y2 < 1 };
(7) open rectangle { a < x < b, c < y < d };
(8) open quadrant {x, y > 0 };
(9) open angle { x > y > 0 };

(10) { y2 + |x| > x }, i.e., plane without the ray { y = 0 ≤ x };
(11) open half-disk {x2 + y2 < 1, y > 0 };
(12) open sector {x2 + y2 < 1, x > y > 0 }.

10.S. Prove that

(1) the closed disk D2 is homeomorphic to the square I2 = { (x, y) ∈
R2 | x, y ∈ [0, 1] };

(2) the open disk B2 = { (x, y) ∈ R2 | x2 + y2 < 1 } is homeomorphic
to the open square Int I2 = { (x, y) ∈ R2 | x, y ∈ (0, 1) };

(3) the circle S1 is homeomorphic to the boundary ∂I2 = I2 r Int I2

of the square.

10.T. Let ∆ ⊂ R2 be a planar bounded closed convex set with nonempty
interior U . Prove that

(1) ∆ is homeomorphic to the closed disk D2;

(2) U is homeomorphic to the open disk B2;

(3) Fr ∆ = FrU is homeomorphic to S1.

10.11. In which of the assertions in 10.T can we omit the assumption that the
closed convex set ∆ be bounded?

10.12. Classify up to homeomorphism all (nonempty) closed convex sets in the
plane. (Make a list without repeats; prove that every such a set is homeomor-
phic to one in the list; postpone a proof of nonexistence of homeomorphisms till
Section 11.)

10.13*. Generalize the previous three problems to the case of sets in Rn with
arbitrary n.

The latter four problems show that angles are not essential in topology,
i.e., for a line or the boundary of a domain the property of having angles is
not preserved by homeomorphism. Here are two more problems on this.
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10.14. Prove that every simple (i.e., without self-intersections) closed polygon
in R2 (as well as in Rn with n > 2) is homeomorphic to the circle S1.

10.15. Prove that every nonclosed simple finite unit polyline in R2 (as well as
in Rn with n > 2) is homeomorphic to the segment [0, 1].

The following problem generalizes the technique used in the previous two
problems and is used more often than it may seem at first glance.

10.16. Let X and Y be two topological spaces equipped with fundamental covers:
X =

S
α Xα and Y =

S
α Yα. Suppose f : X → Y is a map such that f(Xα) = Yα

for each α and the submap ab(f) : Xα → Yα is a homeomorphism. Then f is a
homeomorphism.

10.17. Prove that R2 r { |x|, |y| > 1 } ∼= I2 r {x, y ∈ {0, 1}}. (An “infinite cross”
is homeomorphic to a square without vertices.)

10.18*. A nonempty set Σ ⊂ R2 is “star-shaped with respect to a point c” if Σ
is a union of segments and rays with an endpoint at c. Prove that if Σ is open,
then Σ ∼= B2. (What can you say about a closed star-shaped set with nonempty
interior?)

10.19. Prove that the following plane figures are homeomorphic to each other.
(See 10.10 for our agreement about notation.)

(1) A half-plane: {x ≥ 0 };
(2) a quadrant: {x, y ≥ 0 };
(3) an angle: {x ≥ y ≥ 0 };
(4) a semi-open strip: { y ∈ [0, 1) };
(5) a square without three sides: { 0 < x < 1, 0 ≤ y < 1 };
(6) a square without two sides: { 0 ≤ x, y < 1 };
(7) a square without a side: { 0 ≤ x ≤ 1, 0 ≤ y < 1 };
(8) a square without a vertex: { 0 ≤ x, y ≤ 1 } r (1, 1);
(9) a disk without a boundary point: {x2 + y2 ≤ 1, y 6= 1 };

(10) a half-disk without the diameter: {x2 + y2 ≤ 1, y > 0 };
(11) a disk without a radius: { x2 + y2 ≤ 1 } r [0, 1];
(12) a square without a half of the diagonal: { |x| + |y| ≤ 1 } r [0, 1].

10.20. Prove that the following plane domains are homeomorphic to each other:

(1) punctured plane R2 r (0, 0);
(2) punctured open disk B2 r (0, 0) = { 0 < x2 + y2 < 1 };
(3) annulus { a < x2 + y2 < b }, where 0 < a < b;
(4) plane without a disk: R2 r D2;
(5) plane without a square: R2 r I2;
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(6) plane without a segment: R2 r [0, 1];
(7) R2 r ∆, where ∆ is a closed bounded convex set with Int∆ 6= ∅.

10.21. Let X ⊂ R2 be an union of several segments with a common endpoint.
Prove that the complement R2 r X is homeomorphic to the punctured plane.

10.22. Let X ⊂ R2 be a simple nonclosed finite polyline. Prove that its comple-
ment R2 r X is homeomorphic to the punctured plane.

10.23. Let K = {a1, . . . , an} ⊂ R2 be a finite set. The complement R2 r K
is a plane with n punctures. Prove that any two planes with n punctures are
homeomorphic, i.e., the position of a1, . . . , an in R2 does not affect the topological
type of R2 r {a1, . . . , an}.

10.24. Let D1, . . . , Dn ⊂ R2 be pairwise disjoint closed disks. Prove that the
complement of their union is homeomorphic to a plane with n punctures.

10.25. Let D1, . . . , Dn ⊂ R2 be pairwise disjoint closed disks. The complement
of the union of its interiors is said to be plane with n holes. Prove that any two
planes with n holes are homeomorphic, i.e., the location of disks D1, . . . , Dn does
not affect the topological type of R2 r ∪n

i=1 IntDi.

10.26. Let f, g : R → R be two continuous functions such that f < g. Prove
that the “strip” { (x, y) ∈ R2 | f(x) ≤ y ≤ g(x)} bounded by their graphs is
homeomorphic to the closed strip { (x, y) | y ∈ [0, 1] }.

10.27. Prove that a mug (with a handle) is homeomorphic to a doughnut.

10.28. Arrange the following items to homeomorphism classes: a cup, a saucer,
a glass, a spoon, a fork, a knife, a plate, a coin, a nail, a screw, a bolt, a nut, a
wedding ring, a drill, a flower pot (with a hole in the bottom), a key.

10.29. In a spherical shell (the space between two concentric spheres), one drilled
out a cylindrical hole connecting the boundary spheres. Prove that the rest is
homeomorphic to D3.

10.30. In a spherical shell, one made a hole connecting the boundary spheres and
having the shape of a knotted tube (see Figure).Prove that the rest of the shell is
homeomorphic to D3.

10.31. Prove that surfaces shown in the Figure are homeomorphic (they are called
handles).
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10.32. Prove that surfaces shown in the the Figure are homeomorphic. (They are
homeomorphic to a Klein bottle with two holes. More details about this is given in
Section 21.)

10.33*. Prove that R3 r S1 ∼= R3 r
`
R1 ∪ (0, 0, 1)

´
. (What can you say in the

case of Rn?)

10.34. Prove that the subset of Sn defined in the standard coordinates in Rn+1 by
the inequality x2

1 +x2
2 + · · ·+x2

k < x2
k+1 + · · ·+x2

n is homeomorphic to Rn r Rn−k.

10◦6. Examples of Nonhomeomorphic Spaces

10.U. Spaces consisting of different number of points are not homeomor-
phic.

10.V. A discrete space and an indiscrete space (having more than one point)
are not homeomorphic.

10.35. Prove that the spaces Z, Q (with topology induced from R), R, RT1 , and
the arrow are pairwise not homeomorphic.

10.36. Find two spaces X and Y that are not homeomorphic, but there exist
continuous bijections X → Y and Y → X.

10◦7. Homeomorphism Problem and Topological Properties

One of the classical problems in topology is the homeomorphism problem:
to find out whether two given topological spaces are homeomorphic. In each
special case, the character of solution depends mainly on the answer. In
order to prove that two spaces are homeomorphic, it suffices to present a
homeomorphism between them. Essentially this is what one usually does



72 II. Continuity

in this case (see the examples above). To prove that two spaces are not
homeomorphic, it does not suffice to consider any special map, and usually
it is impossible to review all the maps. Therefore, for proving the nonexis-
tence of a homeomorphism one uses indirect arguments. In particular, we
can find a property or a characteristic shared by homeomorphic spaces and
such that one of the spaces has it, while the other does not. Properties and
characteristics that are shared by homeomorphic spaces are called topologi-

cal properties and invariants. Obvious examples are the cardinality (i.e., the
number of elements) of the set of points and the set of open sets (cf. Prob-
lems 10.34 and 10.U). Less obvious properties are the main object of the
next chapter.

10◦8. Information: Nonhomeomorphic Spaces

Euclidean spaces of different dimensions are not homeomorphic. The
disks Dp and Dq with p 6= q are not homeomorphic. The spheres Sp, Sq

with p 6= q are not homeomorphic. Euclidean spaces are homeomorphic
neither to balls, nor to spheres (of any dimension). Letters A and B are
not homeomorphic (if the lines are absolutely thin!). The punctured plane
R2rpoint is not homeomorphic to the plane with a hole: R2r{x2+y2 < 1 }.

These statements are of different degrees of difficulty. Some of them will
be considered in the next section. However, some of them can not be proved
by techniques of this course. (See, e.g., [6].)

10◦9. Embeddings

A continuous map f : X → Y is a (topological) embedding if the submap
ab(f) : X → f(X) is a homeomorphism.

10.W. The inclusion of a subspace into a space is an embedding.

10.X. Composition of embeddings is an embedding.

10.Y. Give an example of a continuous injection which is not a topological
embedding. (Find such an example above and create a new one.)

10.37. Find topological spaces X and Y such that X can be embedded into Y ,
Y can be embedded into X, but X 6∼= Y .

10.38. Prove that Q cannot be embedded into Z.

10.39. 1) Can a discrete space be embedded into an indiscrete space? 2) How
about vice versa?

10.40. Prove that the spaces R, RT1 , and the arrow cannot be embedded into
each other.

10.41 Corollary of Inverse Function Theorem. Deduce from the Inverse
Function Theorem (see, e.g., any course of advanced calculus) the following state-
ment:
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Let f : Rn → Rn be a continuously differentiable map whose Jacobian
det(∂fi/∂xj) does not vanish at the origin 0 ∈ Rn. Then there exists a neigh-
borhood U of the origin such that the restriction f |U : U → Rn is an embedding
and f(U) is open.

It is of interest that if U ⊂ Rn is an open set, then any continuous injection
f : U → Rn is an embedding and f(U) is also open in Rn.

10◦10. Equivalence of Embeddings

Two embeddings f1, f2 : X → Y are equivalent if there exist homeomor-
phisms hX : X → X and hY : Y → Y such that f2 ◦ hX = hY ◦ f1. (The
latter equality may be stated as follows: the diagram

X
f1−−−−→ Y

hX

y
yhY

X
f2−−−−→ Y

is commutative.)

An embedding S1 → R3 is called a knot.

10.42. Prove that knots f1, f2 : S1 → R3 with f1(S
1) = f2(S

1) are equivalent.

10.43. Prove that knots with images

are equivalent.

Information: There are nonequivalent knots. For instance, those with
images

and
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Proofs and Comments

8.A If x ∈ f−1(B), then f(x) ∈ B.

8.B Obvious. For each y ∈ B, there exists an element x
such that f(x) = y. By the definition of the preimage, x ∈ f−1(B), whence
y ∈ f(f−1(B)). Thus, B ⊂ f(f−1(B)). The opposite inclusion holds true
for any set, see 8.A.

8.C (a) =⇒ (b) Assume that f(C) = B implies C = f−1(B). If
there exist distinct a1, a2 ∈ f−1(B) such that f(a1) = f(a2), then also
f(f−1(B) r a2) = B, which contradicts the assumption.
(b) =⇒ (a) Assume now that there exists C 6= f−1(B) such that f(C) =
B. Clearly, C ⊂ f−1(B). Therefore, C can differ from f−1(B) only if
f−1(B) r C 6= ∅. Take a1 ∈ f−1(B) r C, let b = f(a1). Since f(C) = B,
there exists a2 ∈ C with f(a2) = f(a1), but a2 6= a1 because a2 ∈ C, while
a1 6∈ C.

8.D This follows from 8.C.

8.E Let x ∈ A. Then f(x) = y ∈ f(A), whence x ∈ f−1(f(A)).

8.F Both equalities are obviously equivalent to the following statement:
f(x) /∈ f(A) for each x /∈ A.

8.G in−1(B) = {x ∈ A | x ∈ B} = A ∩B.

8.H Let x ∈ X. Then

h ◦ (g ◦ f)(x) = h(g ◦ f)(x)) = h(g(f(x))) = (h ◦ g)(f(x)) = (h ◦ g) ◦ f(x).

8.J Let x1 6= x2. Then f(x1) 6= f(x2), because f is injective, and
g(f(x1)) 6= g(f(x2)), because g is injective.

8.K If f is not injective, then there exist x1 6= x2 with f(x1) = f(x2).
However, then (g ◦ f)(x1) = (g ◦ f)(x2), which contradicts the injectivity of
g ◦ f .

8.L Let f : X → Y and g : Y → Z be surjective. Then we have
f(X) = Y , whence g(f(X)) = g(Y ) = Z.

8.M This follows from the obvious inclusion Im(g ◦ f) ⊂ Im g.

8.N This follows from 8.J and 8.L.

8.O Use 8.K and 8.M. Let f : X → Y be a bijection.
Then, by the surjectivity, for each y ∈ Y there exists x ∈ X such that
y = f(x), and, by the injectivity, such an element of X is unique. Putting
g(y) = x, we obtain a map g : Y → X. It is easy to check (please, do it!)
that g is inverse to f .
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8.P This is actually obvious. On the other hand, it is interesting
to look at “mechanical” proof.Let two maps g, h : Y → X be inverse to
a map f : X → Y . Consider the composition g ◦ f ◦ h : Y → X. On
the one hand, g ◦ f ◦ h = (g ◦ f) ◦ h = idX ◦h = h. On the other hand,
g ◦ f ◦ h = g ◦ (f ◦ h) = g ◦ idY = g.

9.A Let f : X → Y be a map. If f : X → Y is continuous,
then, for each closed set F ⊂ Y , the set X r f−1(F ) = f−1(Y rF ) is open,
and therefore f−1(F ) is closed. Exchange the words open and closed
in the above argument.

9.C If a set U is open in X, then its preimage in−1(U) = U ∩A is open
in A by the definition of the relative topology.

9.D If U ∈ ΩA, then U = V ∩ A for some V ∈ Ω. If the map
in : (A,Ω′) → (X,Ω) is continuous, then the preimage U = in−1(V ) = V ∩A
of a set V ∈ Ω belongs to Ω′. Thus, ΩA ⊂ Ω′.

9.E Let f : X → Y and g : Y → Z be continuous maps. We must
show that for every U ⊂ Z which is open in Z its preimage (g ◦ f)−1(U) =
f−1(g−1(U)) is open in X. The set g−1(U) is open in Y by continuity of g.
In turn, its preimage f−1(g−1(U)) is open in X by the continuity of f .

9.F (f |A,B)−1(V ) = (f |A,B)−1(U ∩B) = A ∩ f−1(U).

9.G Use 9.F. Use the fact that f = inf(X) ◦ ab f .

9.H The preimage of any set under a continuous map either is empty
or coincides with the whole space.

9.I Let a ∈ X. Then for any neighborhood U of f(a) we
can construct a desired neighborhood V of a just by putting V = f−1(U):
indeed, f(V ) = f(f−1(U)) ⊂ U . We must check that the preimage of
each open set is open. Let U ⊂ Y be an open set in Y . Take a ∈ f−1(U). By
continuity of f at a, there exists a neighborhood V of a such that f(V ) ⊂ U .
Then, obviously, V ⊂ f−1(U). This proves that any point of f−1(U) is
internal, and hence f−1(U) is open.

9.J Proving each of the implications, use Theorem 4.I, according to
which any neighborhood of a point in a metric space contains a ball centered
at the point.

9.K The condition “for every point x ∈ X the inequality ρ(x, a) < δ
implies ρ

(
f(x), f(a)

)
< ε” means that f(Bδ(a)) ⊂ BGe(f(a)). Now, ap-

ply 9.J.

9.L This immediately follows from the inequality of Problem 4.35.

9.M If f(x) = f(y), then ρ(f(x), f(y)) = 0, whence ρ(x, y) = 0.

9.N Use the obvious fact that the primage of any open ball under
isometric embedding is an open ball of the same radius.
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9.O The set of solutions of the system is the intersection of the preim-
ages of the point 0 ∈ R. As the maps are continuos and the point is closed,
the preimages of the point are closed, and hence the intersection of the
preimages is closed.

9.P The set of solutions of a system of nonstrict inequalities is the
intersection of preimages of closed ray [0,+∞), the set of solutions of a
system of strict inequalities is the intersection of the preimages of open ray
(0,+∞).

9.Q Indeed, it makes no sense to require the necessity: the intersection
of an open set with any set A is open in A anyway.

9.R Consider the complement X r F of F and apply 9.Q.

9.S Let Γ be an open cover of a space X. Let U ⊂ X be a set such
that U ∩ A is open in A for any A ∈ Γ. By 5.E, open subset of open
subspace is open in the whole space. Therefore, A ∩ U is open in X. Then
U =

⋃
A∈ΓA ∩ U is open as a union of open sets.

9.T Argue as in the preceding proof, but instead of the definition of
a fundamental cover use its reformulation 9.R, and instead of Theorem 5.E
use Theorem 5.F, according to which a closed set of a closed subspace is
closed in the entire space.

9.U Denote the space by X and the cover by Γ. As Γ is locally finite,
each point a ∈ X has a neighborhood Ua meeting only a finite number of
elements of Γ. Form the cover Σ = {Ua | a ∈ X} of X. Let U ⊂ X be a
set such that U ∩A is open for each A ∈ Γ. By 9.T, {A ∩ Ua | A ∈ Γ} is a
fundamental cover of Ua for any a ∈ X. Hence Ua∩U is open in Ua. By 9.S,
Σ is fundamental. Hence, U is open.

9.V Let U be a set open in Y . As the restrictions of f to elements of
Γ are continuous, the preimage of U under restriction of f to any A ∈ Γ is
open. Obviously, (f |A)−1(U) = f−1(U)∩A. Hence f−1(U)∩A is open in A
for any A ∈ Γ. By hypothesis, Γ is fundamental. Therefore f−1(U) is open
in X. We have proved that the preimage of any open set under f is open.
Thus f is continuous.

9.Ax It suffices to prove that the preimage of any base open set is
open. The proof is quite straight-forward. For instance, the preimage of
{x | a ≺ x ≺ b} is {x | c ≺ x ≺ d}, where f(c) = a and f(d) = b, which is a
base open set.

9.Bx Let X and Y be two posets, f : X → Y a map. Assume
that f : X → Y is monotone. To prove the continuity of f it suffices to
prove that the preimage of each base open set is open. Put U = C+

Y (b) and

V = f−1(U). If x ∈ V (i.e., b ≺ f(x)), then for any y ∈ C+
X(x) (i.e., x ≺ y)
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we have y ∈ V . Therefore, V =
⋃

f(x)∈U

C+
X(x). This set is open as a union

of open base sets (in the poset topology of X).
Let a, b ∈ X and a ≺ b. Then b is contained in any neighborhood of a.

The set C+
Y (f(a)) is a neighborhood of f(a) in Y . By continuity of f , a has a

neighborhood in X whose f -image is contained in C+
Y (f(a)). However, then

the minimal neighborhood of a in X (i.e., C+
X(a)) also has this property.

Therefore, f(b) ∈ f(C+
X(a)) ⊂ C+

Y (f(a)), and hence f(a) ≺ f(b).

9.Cx Construct Z as the disjoint union of X and Y . In the union, put
the distance between two points in (the copy of) X (respectively, Y ) to be
equal to the distance between the corresponding points in X (respectively,
Y ). To define the distance between points of different copies, choose points
x0 ∈ X and y0 ∈ Y , and put ρ(a, b) = ρX(a, x0) + ρY (y0, b) + 1 for a ∈ X
and b ∈ Y . Check (this is easy, really), that this defines a metric.

9.Dx Yes. For example, consider a singleton and any unbounded space.

9.Ex Although, as we have seen solving the previous problem, the
Gromov–Hausdorff distance can be infinite, while symmetricity and the tri-
angle inequality were formulated above only for functions with finite values,
these two properties make sense if infinite values are admitted. (The trian-
gle inequality should be considered fulfilled if two or three of the quantities
involved are infinite, and not fulfilled if only one of them is infinite.) The
following construction helps to prove the triangle inequality. Let metric
spaces X and Y are isometrically embedded into a metric space A, and
metric spaces Y and Z are isometrically embedded into a metric space B.
Construct a new metric space in which A and B would be isometrically
embedded meeting in Y . To do this, add to A all points of B r A. Put
distances between these points to be equal to the distances between them
in B. Put the distance between x ∈ A r B and z ∈ B r A equal to
inf{ρA(x, y) + ρB(y, z) | y ∈ A ∩ B}. Compare this construction with the
construction from the solution of Problem 9.Cx. Prove that this gives a met-
ric space and use the triangle inequality for the Hausdorff distance between
X, Y , and Z in this space.

9.Fx Partially, the answer is obvious. Certainly, the Gromov–Hausdorff
distance is nonnegative! But what if it is zero, in what sense the spaces
should be equal then? First, the most optimistic idea is that then there
should exist an isometric bijection between the spaces. But this is not true,
as we can see looking at the spaces Q and R with standard distances in
them. However, it is true for compact metric spaces.
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10.A For example, consider the identity map of a discrete topological
space X onto the same set but equipped with indiscrete topology. For
another example, see 10.B.

10.B Consider the map x 7→ (cos 2πx, sin 2πx).

10.C This and the next two statements directly follow from the defi-
nition of a homeomorphism.

10.F See the solution of 10.1.

10.G Denote f(U) ⊂ Y by V . Since f is a bijection, we have U =
f−1(V ). We also denote f−1 : Y → X by g. We have V = g−1(U),
which is open by continuity of g. If V = f(U) is open, then U = g(V )
is open as the preimage of an open set under a continuous map.

10.H See 10.G.

10.I (a) A homeomorphism establishes a one-to-one correspondence
between open sets of X and Y . Hence, it also establishes a one-to-one
correspondence between closed sets of X and Y .
(b)–(f) Use the fact that the definitions of the closure, interior, boundary,
etc. can be given in terms of open and closed sets.

10.J Obviously, ab(f) is a bijection. The continuity of ab(f) and
(ab f)−1 follows from the general theorem 9.F on the continuity of a submap
of a continuous map.

10.K Any isometry is continuous, see 9.N ; the map inverse to an
isometry is an isometry.

10.L Recall that an affine transformation f : Rn → Rn is given by
the formula y = f(x) = Ax + b, where A is a matrix and b a vector; f is
nondegenerate if A is invertible, whence x = A−1(y− b) = A−1(y)−A−1(b),
which means that f is a bijection and f−1 is also a nondegenerate affine
transformation. Finally, f and f−1 are continuous, e.g., because they are
given in coordinates by linear formulas (see 9.18 and 9.21).

10.M Prove that f is invertible and f−1 is also strictly monotone.
Then apply 9.Ax.

10.O Homeomorphisms of the form 〈0, 1〉 → 〈a, b〉 are defined, for
example, by the formula x 7→ a+ (b− a)x, and homeomorphisms (−1; 1) →
R1 and 〈0, 1) → 〈0,+∞) by the formula x 7→ tan(πx/2). (In the latter case,
you can easily find, e.g., a rational formula, but it is of interest that the
above homeomorphism also arises quite often!)

10.P Observe that (1/4, 5/4) → S1 r N : t 7→ (cos 2πt, sin 2πt) is a
homeomorphism and use assertions (c) and (d) of the preceding problem.
Here is another, more sophisticated construction, which can be of use in
higher dimensions. The restriction f of the central projection R2 rN → R1
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(the x axis) to S1rN is a homeomorphism. Indeed, f is obviously invertible:
f−1 is a restriction of the central projection R2 r N → S1 r N . The map
S1 rN → R is presented by formula (x, y) 7→ x

1−y , and the inverse map by

formula x 7→ ( 2x
x2+1

, x2−1
x2+1

). (Why are these maps continuous?)

10.Q Check that the vertical projection to the x axis determines a
homeomorphism.

10.R As usual, we identify Rn and {x ∈ Rn+1 | xn+1 = 0}. Then the
restriction of the central projection

Rn+1 r (0, . . . , 0, 1) → Rn

to Sn r (0, . . . , 0, 1) is a homeomorphism, which is called the stereographic
projection. For n = 2, it is used in cartography. It is invertible: the inverse
map is the restriction of the central projection Rn+1 r (0, . . . , 0, 1) → Sn r

(0, . . . , 0, 1) to Rn. The first map is defined by formula

x = (x1, . . . , xn+1) 7→
(

x2

1 − xn+1
, . . . ,

xn

1 − xn+1

)
,

and the second one by

x = (x1, . . . , xn) 7→
(

2x1

|x|2 + 1
, . . . ,

2xn

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)
.

Check this. (Why are these maps continuous?) Explain how we can ob-
tain a solution of this problem geometrically from the second solution to
Problem 10.P.

10.S After reading the proof, you may see that sometimes formulas are
cumbersome, while a clearer verbal description is possible.
(a) Instead of I2 it is convenient to consider the homeomorphic square K =
{(x, y) | |x| ≤ 1, |y| ≤ 1} of double size centered at the origin. (There is
a linear homeomorphism I2 → K : (x, y) 7→ (2x − 1, 2y − 1).) We have a
homeomorphism

K → D2 : (x, y) 7→
(
xmax{|x|, |y|}√

x2 + y2
,
ymax{|x|, |y|}√

x2 + y2

)
.

Geometrically, this means that each segment joining the origin with a point
on the contour of the square is linearly mapped to the part of the segment
that lies within the circle.
(b), (c) Take suitable submaps of the above homeomorphism K → D2.
Certainly, assertion (b) follows from the previous problem. It is also of
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interest that in case (c) we can use a much simpler formula:

∂K → S1 : (x, y) 7→
(

x√
x2 + y2

,
y√

x2 + y2

)
.

(This is simply a central projection!) We can also divide the circle into four
arcs and map each of them to a side of K, cf. below.

10.T (a) For simplicity, assume that D2 ⊂ ∆. For x ∈ R2 r 0, let a(x)
be the (unique) positive number such that a(x) x

|x| ∈ Fr ∆. Then we have a

homeomorphism

∆ → D2 : x 7→ x

a(x)
if x 6= 0, while 0 7→ 0.

(Observe that in the case where ∆ is the square K, we obtain the homeo-
morphism described in the preceding problem.)
(b), (c) Take suitable submaps of the above homeomorphism ∆ → D2.

10.U There is no bijection between them.

10.V These spaces have different numbers of open sets.

10.W Indeed, if in : A → X is an inclusion, then the submap ab(in) :
A→ A is the identity homeomorphism.

10.X Let f : X → Y and g : Y → Z be two embeddings. Then the
submap ab(g◦f) : X → g(f(X)) is the composition of the homeomorphisms
ab(f) : X → f(X) and ab(g) : f(X) → g(f(X)).

10.Y The previous examples are [0, 1) → S1 and Z+ → {0} ∪
{

1
n

}∞
n=1

.
Here is another one: Let f : Z → Q be a bijection and inQ : Q → R the
inclusion. Then the composition inQ ◦f : Z → R is a continuous injection,
but not an embedding.



Chapter III

Topological Properties

11. Connectedness

11◦1. Definitions of Connectedness and First Examples

A topological space X is connected if X has only two subsets that are
both open and closed: the empty set ∅ and the entire X. Otherwise, X is
disconnected .

A partition of a set is a cover of this set with pairwise disjoint subsets.
To partition a set means to construct such a cover.

11.A. A topological space is connected, iff it has no partition into two
nonempty open sets, iff it has no partition into two nonempty closed sets.

11.1. 1) Is an indiscrete space connected? The same question for 2) the arrow
and 3) RT1 .

11.2. Describe explicitly all connected discrete spaces.

11.3. Describe explicitly all disconnected two-point spaces.

11.4. 1) Is the set Q of rational numbers (with the relative topology induced from
R) connected? 2) The same question for the set of irrational numbers.

11.5. Let Ω1 and Ω2 be two topologies in a set X, and let Ω2 be finer than Ω1

(i.e., Ω1 ⊂ Ω2). 1) If (X, Ω1) is connected, is (X, Ω2) connected? 2) If (X, Ω2) is
connected, is (X, Ω1) connected?

11◦2. Connected Sets

When we say that a set A is connected, this means that A lies in some
topological space (which should be clear from the context) and, equipped
with the relative topology, A a connected space.

81
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11.6. Characterize disconnected subsets without mentioning the relative topology.

11.7. Is the set {0, 1} connected 1) in R, 2) in the arrow, 3) in RT1?

11.8. Describe explicitly all connected subsets 1) of the arrow, 2) of RT1 .

11.9. Show that the set [0, 1] ∪ (2, 3] is disconnected in R.

11.10. Prove that every nonconvex subset of the real line is disconnected. (In
other words, each connected subset of the real line is a singleton or an interval.)

11.11. Let A be a subset of a space X. Prove that A is disconnected iff A has
two nonempty subsets B and C such that A = B ∪ C, B ∩ ClX C = ∅, and
C ∩ ClX B = ∅.

11.12. Find a space X and a disconnected subset A ⊂ X such that if U and V
are any two open sets partitioning X, then we have either U ⊃ A, or V ⊃ A.

11.13. Prove that for every disconnected set A in Rn there are disjoint open sets
U, V ⊂ Rn such that A ⊂ U ∪ V , U ∩ A 6= ∅, and V ∩ A 6= ∅.

Compare 11.11–11.13 with 11.6.

11◦3. Properties of Connected Sets

11.14. Let X be a space. If a set M ⊂ X is connected and A ⊂ X is open-closed,
then either M ⊂ A, or M ⊂ X r A.

11.B. The closure of a connected set is connected.

11.15. Prove that if a set A is connected and A ⊂ B ⊂ Cl A, then B is connected.

11.C. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that any two sets in this family intersect. Then

⋃
λ∈ΛAλ is connected. (In

other words: the union of pairwise intersecting connected sets is connected.)

11.D Special case. If A,B ⊂ X are two connected sets with A ∩ B 6= ∅,
then A ∪B is also connected.

11.E. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. Assume
that each set in this family intersects Aλ0 for some λ0 ∈ Λ. Then

⋃
λ∈ΛAλ

is connected.

11.F. Let {Ak}k∈Z be a family of connected sets such that Ak ∩Ak+1 6= ∅

for any k ∈ Z. Prove that
⋃

k∈ZAk is connected.

11.16. Let A and B be two connected sets such that A ∩ Cl B 6= ∅. Prove that
A ∪ B is also connected.

11.17. Let A be a connected subset of a connected space X, and let B ⊂ X r A
be an open-closed set in the relative topology of X r A. Prove that A ∪ B is
connected.

11.18. Does the connectedness of A ∪ B and A ∩ B imply that of A and B?
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11.19. Let A and B be two sets such that both their union and intersection are
connected. Prove that A and B are connected if both of them are 1) open or 2)
closed.

. . .

. . .

11.20. Let A1 ⊃ A2 ⊃ · · · be an infinite decreasing sequence of closed connected
sets in the plane R2. Is

T
∞

k=1 Ak a connected set?

11◦4. Connected Components

A connected component of a space X is a maximal connected subset of
X, i.e., a connected subset that is not contained in any other (strictly) larger
connected subset of X.

11.G. Every point belongs to some connected component. Furthermore, this
component is unique. It is the union of all connected sets containing this
point.

11.H. Two connected components either are disjoint or coincide.

A connected component of a spaceX is also called just a component ofX.
Theorems 11.G and 11.H mean that connected components constitute a
partition of the whole space. The next theorem describes the corresponding
equivalence relation.

11.I. Prove that two points lie in the same component iff they belong to the
same connected set.

11.J Corollary. A space is connected iff any two of its points belong to the
same connected set.

11.K. Connected components are closed.

11.21. If each point of a space X has a connected neighborhood, then each con-
nected component of X is open.

11.22. Let x and y belong to the same component. Prove that any open-closed
set contains either both x and y, or none of them (cf. 11.36).

11◦5. Totally Disconnected Spaces

A topological space is totally disconnected if all of its components are
singletons.

11.L Obvious Example. Any discrete space is totally disconnected.

11.M. The space Q (with the topology induced from R) is totally discon-
nected.

Note that Q is not discrete.
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11.23. Give an example of an uncountable closed totally disconnected subset of
the line.

11.24. Prove that Cantor set (see 2.Bx) is totally disconnected.

11◦6. Boundary and Connectedness

11.25. Prove that if A is a proper nonempty subset of a connected space, then
FrA 6= ∅.

11.26. Let F be a connected subset of a space X. Prove that if A ⊂ X and
neither F ∩ A, nor F ∩ (X r A) is empty, then F ∩ Fr A 6= ∅.

11.27. Let A be a subset of a connected space. Prove that if Fr A is connected,
then so is Cl A.

11◦7. Connectedness and Continuous Maps

A continuous image of a space is its image under a continuous map.

11.N. A continuous image of a connected space is connected. (In other
words, if f : X → Y is a continuous map and X is connected, then f(X) is
also connected.)

11.O Corollary. Connectedness is a topological property.

11.P Corollary. The number of connected components is a topological in-
variant.

11.Q. A space X is disconnected iff there is a continuous surjection X →
S0.

11.28. Theorem 11.Q often yields shorter proofs of various results concerning
connected sets. Apply it for proving, e.g., Theorems 11.B–11.F and Problems 11.D

and 11.16.

11.29. Let X be a connected space and f : X → R a continuous function. Then
f(X) is an interval of R.

11.30. Suppose a space X has a group structure and the multiplication by any
element of the group is a continuous map. Prove that the component of unity is
a normal subgroup.

11◦8. Connectedness on Line

11.R. The segment I = [0, 1] is connected.

There are several ways to prove Theorem 11.R. One of them is suggested
by 11.Q, but refers to a famous Intermediate Value Theorem from calculus,
see 12.A. However, when studying topology, it would be more natural to
find an independent proof and deduce Intermediate Value Theorem from The-
orems 11.R and 11.Q. Two problems below provide a sketch of basically the
same proof of 11.R. Cf. 2.Ax below.
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11.R.1 Bisection Method. Let U , V be subsets of I with V = I r U . Let
a ∈ U , b ∈ V , and a < b. Prove that there exists a nondecreasing sequence an

with a1 = a, an ∈ U , and a nonincreasing sequence bn with b1 = b, bn ∈ V ,
such that bn − an = b−a

2n−1 .

11.R.2. Under assumptions of 11.R.1, if U and V are closed in I, then which
of them contains c = sup{an} = inf{bn}?

11.31. Deduce 11.R from the result of Problem 2.Ax.

11.S. Prove that an open set in R has countably many connected compo-
nents.

11.T. Prove that R1 is connected.

11.U. Each convex set in Rn is connected. (In particular, so are Rn itself,
the ball Bn, and the disk Dn.)

11.V Corollary. Intervals in R1 are connected.

11.W. Every star-shaped set in Rn is connected.

11.X Connectedness on Line. A subset of a line is connected iff it is an
interval.

11.Y. Describe explicitly all nonempty connected subsets of the real line.

11.Z. Prove that the n-sphere Sn is connected. In particular, the circle S1

is connected.

11.32. Consider the union of spiral

r = exp

„
1

1 + ϕ2

«
, with ϕ ≥ 0

(r,ϕ are the polar coordinates) and circle S1. 1) Is this set connected? 2) Will the
answer change if we replace the entire circle by some of its subsets? (Cf. 11.15.)

11.33. Are the following subsets of the plane R2 connected:

(1) the set of points with both coordinates rational;
(2) the set of points with at least one rational coordinate;
(3) the set of points whose coordinates are either both irrational, or both

rational?

11.34. Prove that for any ε > 0 the ε-neighborhood of a connected subset of
Euclidean space is connected.

11.35. Prove that each neighborhood U of a connected subset A of Euclidean
space contains a connected neighborhood of A.

. . .
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11.36. Find a space X and two points belonging to distinct components of X
such that each simultaneously open and closed set contains either both points, or
neither of them. (Cf. 11.22.)
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12. Application of Connectedness

12◦1. Intermediate Value Theorem and Its Generalizations

The following theorem is usually included in Calculus. You can easily
deduce it from the material of this section. In fact, in a sense it is equivalent
to connectedness of the segment.

12.A Intermediate Value Theorem. A continuous function

f : [a, b] → R

takes every value between f(a) and f(b).

Many problems that can be solved by using Intermediate Value Theorem can
be found in Calculus textbooks. Here are few of them.

12.1. Prove that any polynomial of odd degree in one variable with real coefficients
has at least one real root.

12.B Generalization of 12.A. Let X be a connected space and f : X →
R a continuous function. Then f(X) is an interval of R.

12.C Corollary. Let J ⊂ R be an interval of the real line, f : X → R a
continuous function. Then f(J) is also an interval of R. (In other words,
continuous functions map intervals to intervals.)

12◦2. Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected
components is a topological invariant (see Section 10).

12.D. [0, 2] and [0, 1] ∪ [2, 3] are not homeomorphic.

Simple constructions assigning homeomorphic spaces to homeomorphic
ones (e.g., deleting one or several points), allow us to use connectedness for
proving that some connected spaces are not homeomorphic.

12.E. I, [0,∞), R1, and S1 are pairwise nonhomeomorphic.

12.2. Prove that a circle is not homeomorphic to a subspace of R1.

12.3. Give a topological classification of the letters of the alphabet: A, B, C, D,
. . . , regarded as subsets of the plane (the arcs comprising the letters are assumed
to have zero thickness).

12.4. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto square,
which are called Peano curves, see Section 9.

12.F. R1 and Rn are not homeomorphic if n > 1.
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Information. Rp and Rq are not homeomorphic unless p = q. This
follows, for instance, from the Lebesgue–Brouwer Theorem on the invariance
of dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension Theory ,
Princeton, NJ, 1941).

12.5. The statement “Rp is not homeomorphic to Rq unless p = q” implies that
Sp is not homeomorphic to Sq unless p = q.

12◦3x. Induction on Connectedness

A map f is locally constant if each point of its source space has a neighborhood
U such that the restriction of f to U is constant.

12.1x. Prove that any locally constant map is continuous.

12.2x. A locally constant map on a connected set is constant.

12.3x. Riddle. How are 11.26 and 12.2x related?

12.4x. Let G be a group equipped with a topology such that for any g ∈ G the
map G → G : x 7→ xgx−1 is continuous, and let G with this topology be connected.
Prove that if the topology induced in a normal subgroup H of G is discrete, then
H is contained in the center of G (i.e., hg = gh for any h ∈ H and g ∈ G).

12.5x Induction on Connectedness. Let E be a property of subsets of a topo-
logical space X such that the union of sets with nonempty pairwise intersections
inherits this property from the sets involved. Prove that if X is connected and
each point in X has a neighborhood with property E , then X also has property E .

12.6x. Prove 12.2x and solve 12.4x using 12.5x.

For more applications of induction on connectedness, see 13.T, 13.4x, 13.6x,
and 13.8x.

12◦4x. Dividing Pancakes

12.7x. Any irregularly shaped pancake can be cut in half by one stroke of the
knife made in any prescribed direction. In other words, if A is a bounded open
set in the plane and l is a line in the plane, then there exists a line L parallel to l
that divides A in half by area.

12.8x. If, under the assumptions of 12.7x, A is connected, then L is unique.

12.9x. Suppose two irregularly shaped pancakes lie on the same platter; show
that it is possible to cut both exactly in half by one stroke of the knife. In other
words: if A and B are two bounded regions in the plane, then there exists a line
in the plane that halves each region by area.

12.10x. Prove that a plane pancake of any shape can be divided to four pieces of
equal area by two straight cuts orthogonal to each other. In other words, if A is a
bounded connected open set in the plane, then there are two perpendicular lines
that divide A into four parts having equal areas.

12.11x. Riddle. What if the knife is curved and makes cuts of a shape different
from the straight line? For what shapes of the cuts can you formulate and solve
problems similar to 12.7x–12.10x?
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12.12x. Riddle. Formulate and solve counterparts of Problems 12.7x–12.10x for
regions in three-space. Can you increase the number of regions in the counterpart
of 12.7x and 12.9x?

12.13x. Riddle. What about pancakes in Rn?
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13. Path-Connectedness

13◦1. Paths

A path in a topological space X is a continuous map of the segment
I = [0, 1] to X. The point s(0) is the initial point of a path s : I → X,
while s(1) is the final point of s. We say that the path s connects s(0) with
s(1). This terminology is inspired by an image of a moving point: at the
moment t ∈ [0, 1], the point is at s(t). To tell the truth, this is more than
what is usually called a path, since besides information on the trajectory
of the point it contains a complete account on the movement: the schedule
saying when the point goes through each point.

13.1. If s : I → X is a path, then the image s(I) ⊂ X is connected.

13.2. Let s : I → X be a path connecting a point in a set A ⊂ X with a point in
X r A. Prove that s(I) ∩ Fr(A) 6= ∅.

s(1)
s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)s(0)

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

13.3. Let A be a subset of a space X, inA : A → X the inclusion. Prove that
u : I → A is a path in A iff the composition inA ◦u : I → X is a path in X.

A constant map sa : I → X : x 7→ a is a stationary path. For a path s,
the inverse path is defined by t 7→ s(1 − t). It is denoted by s−1. Although,
strictly speaking, this notation is already used (for the inverse map), the
ambiguity of notation usually leads to no confusion: as a rule, inverse maps
do not appear in contexts involving paths.

Let u : I → X and v : I → X be paths such that u(1) = v(0). We define

uv : I → X : t 7→
{
u(2t) if t ∈ [0, 1

2 ],

v(2t− 1) if t ∈ [12 , 1].
(22)

u(0)

v(1)

u(1)=v(0)

13.A. Prove that the above map uv : I → X is continuous (i.e., it is a
path). Cf. 9.T and 9.V.

The path uv is the product of u and v. Recall that it is defined only if
the final point u(1) of u is the initial point v(0) of v.
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13◦2. Path-Connected Spaces

A topological space is path-connected (or arcwise connected) if any two
points can be connected in it by a path.

13.B. Prove that I is path-connected.

13.C. Prove that the Euclidean space of any dimension is path-connected.

13.D. Prove that the n-sphere Sn with n > 0 is path-connected.

13.E. Prove that the 0-sphere S0 is not path-connected.

13.4. Which of the following spaces are path-connected:

(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) RT1 ;
(e) ?

13◦3. Path-Connected Sets

A path-connected set (or arcwise connected set) is a subset of a topological
space (which should be clear from the context) that is path-connected as a
space with the relative topology.

13.5. Prove that a subset A of a space X is path-connected iff any two points in
A are connected by a path s : I → X with s(I) ⊂ A.

13.6. Prove that a convex subset of Euclidean space is path-connected.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

13.7. Every star-shaped set in Rn is path-connected.

13.8. The image of a path is a path-connected set.

13.9. Prove that the set of plane convex polygons with topology generated by the
Hausdorff metric is path-connected. (What can you say about the set of convex
n-gons with fixed n?)

13.10. Riddle. What can you say about the assertion of Problem 13.9 in the
case of arbitrary (not necessarily convex) polygons?

13◦4. Properties of Path-Connected Sets

Path-connectedness is very similar to connectedness. Further, in some
important situations it is even equivalent to connectedness. However, some
properties of connectedness do not carry over to the path-connectedness
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(see 13.Q and 13.R). For the properties that do carry over, proofs are
usually easier in the case of path-connectedness.

13.F. The union of a family of pairwise intersecting path-connected sets is
path-connected.

13.11. Prove that if two sets A and B are both closed or both open and their
union and intersection are path-connected, then A and B are also path-connected.

13.12. 1) Prove that the interior and boundary of a path-connected set may not
be path-connected. 2) Connectedness shares this property.

13.13. Let A be a subset of Euclidean space. Prove that if FrA is path-connected,
then so is Cl A.

13.14. Prove that the same holds true for a subset of an arbitrary path-connected
space.

13◦5. Path-Connected Components

A path-connected component or arcwise connected component of a space
X is a path-connected subset of X that is not contained in any other path-
connected subset of X.

13.G. Every point belongs to a path-connected component.

13.H. Two path-connected components either coincide or are disjoint.

Theorems 13.G and 13.H mean that path-connected components con-
stitute a partition of the entire space. The next theorem describes the
corresponding equivalence relation.

13.I. Prove that two points belong to the same path-connected component
iff they can be connected by a path (cf. 11.I).

Unlike to the case of connectedness, path-connected components are not
necessarily closed. (See 13.Q, cf. 13.P and 13.R.)

13◦6. Path-Connectedness and Continuous Maps

13.J. A continuous image of a path-connected space is path-connected.

13.K Corollary. Path-connectedness is a topological property.

13.L Corollary. The number of path-connected components is a topological
invariant.

13◦7. Path-Connectedness Versus Connectedness

13.M. Any path-connected space is connected.

Put

A = { (x, y) ∈ R2 | x > 0, y = sin(1/x) }, X = A ∪ (0, 0).

13.15. Sketch A.
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13.N. Prove that A is path-connected and X is connected.

13.O. Prove that deleting any point from A makes A and X disconnected
(and hence, not path-connected).

13.P. X is not path-connected.

13.Q. Find an example of a path-connected set, whose closure is not path-
connected.

13.R. Find an example of a path-connected component that is not closed.

13.S. If each point of a space has a path-connected neighborhood, then each
path-connected component is open. (Cf. 11.21.)

13.T. Assume that each point of a space X has a path-connected neighbor-
hood. Then X is path-connected iff X is connected.

13.U. For open subsets of Euclidean space connectedness is equivalent to
path-connectedness.

13.16. For subsets of the real line path-connectedness and connectedness are
equivalent.

13.17. Prove that for any ε > 0 the ε-neighborhood of a connected subset of
Euclidean space is path-connected.

13.18. Prove that any neighborhood U of a connected subset A of Euclidean
space contains a path-connected neighborhood of A.

13◦8x. Polygon-Connectedness

A subset A of Euclidean space is polygon-connected if any two points of A are
connected by a finite polyline contained in A.

13.1x. Each polygon-connected set in Rn is path-connected, and thus also con-
nected.

13.2x. Each convex set in Rn is polygon-connected.

13.3x. Each star-shaped set in Rn is polygon-connected.

13.4x. Prove that for open subsets of Euclidean space connectedness is equivalent
to polygon-connectedness.

13.5x. Construct a path-connected subset A of Euclidean space such that A con-
sists of more than one point and no two distinct points of A can be connected by
a polygon in A.

13.6x. Let X ⊂ R2 be a countable set. Prove that then R2 r X is polygon-
connected.

13.7x. Let X ⊂ Rn be the union of a countable collection of affine subspaces with
dimensions not greater than n− 2. Prove that then Rn r X is polygon-connected.

13.8x. Let X ⊂ Cn be the union of a countable collection of algebraic subsets
(i.e., subsets defined by systems of algebraic equations in the standard coordinates
of Cn). Prove that then Cn r X is polygon-connected.
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13◦9x. Connectedness of Some Sets of Matrices

Recall that real n×n-matrices constitute a space, which differs from Rn2

only
in the way of enumerating its natural coordinates (they are numerated by pairs of
indices). The same relation holds true between the set of complex n × n-matrix

and Cn2

(homeomorphic to R2n2

).

13.9x. Find connected and path-connected components of the following subspaces
of the space of real n × n-matrices:

(1) GL(n; R) = {A | det A 6= 0};
(2) O(n; R) = {A | A · (tA) = E};
(3) Symm(n;R) = {A | tA = A};
(4) Symm(n;R) ∩ GL(n; R);
(5) {A | A2 = E}.

13.10x. Find connected and path-connected components of the following sub-
spaces of the space of complex n × n-matrices:

(1) GL(n; C) = {A | det A 6= 0};
(2) U(n; C) = {A | A · (tĀ) = E};
(3) Herm(n;C) = {A | tA = Ā};
(4) Herm(n;C) ∩ GL(n; C).
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14. Separation Axioms

The aim of this section is to consider natural restrictions on the topological
structure making the structure closer to being metrizable. A lot of sepa-
ration axioms are known. We restrict ourselves to the five most important
of them. They are numerated, and denoted by T0, T1, T2, T3, and T4,
respectively.1

14◦1. The Hausdorff Axiom

We start with the second axiom, which is most important. Besides
the notation T2, it has a name: the Hausdorff axiom. A topological space
satisfying T2 is a Hausdorff space. This axiom is stated as follows: any two
distinct points possess disjoint neighborhoods. We can state it more formally:
∀x, y ∈ X, x 6= y ∃Ux, Vy : Ux ∩ Vy = ∅.
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14.A. Any metric space is Hausdorff.

14.1. Which of the following spaces are Hausdorff:

(1) a discrete space;
(2) an indiscrete space;
(3) the arrow;
(4) RT1 ;
(5) ?

If the next problem holds you up even for a minute, we advise you to
think over all definitions and solve all simple problems.

14.B. Is the segment [0, 1] with the topology induced from R a Hausdorff
space? Do the points 0 and 1 possess disjoint neighborhoods? Which if any?

14.C. A space X is Hausdorff iff for each x ∈ X we have {x} =
⋂

U∋x

ClU .

1Letter T in these notation originates from the German word Trennungsaxiom, which means
separation axiom.
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14◦2. Limits of Sequence

Let {an} be a sequence of points of a topological space X. A point
b ∈ X is the limit of the sequence if for any neighborhood U of b there exists
a number N such that an ∈ U for any n ≥ N .2 In this case, we say that the
sequence converges or tends to b as n tends to infinity.

14.2. Explain the meaning of the statement “b is not a limit of sequence an”,
using as few negations (i.e., the words no, not , none, etc.) as you can.

14.3. The limit of a sequence does not depend on the order of the terms. More
precisely, let an be a convergent sequence: an → b, and let φ : N → N be a
bijection. Then the sequence aφ(n) is also convergent and has the same limit:
aφ(n) → b. For example, if the terms in the sequence are pairwise distinct, then
the convergence and the limit depend only on the set of terms, which shows that
these notions actually belong to geometry.

14.D. In a Hausdorff space any sequence has at most one limit.

14.E. Prove that in the space RT1 each point is a limit of the sequence
an = n.

14◦3. Coincidence Set and Fixed Point Set

Let f, g : X → Y be maps. Then the set C(f, g) = {x ∈ X | f(x) = g(x)} is
the coincidence set of f and g.

14.4. Prove that the coincidence set of two continuous maps from an arbitrary
space to a Hausdorff space is closed.

14.5. Construct an example proving that the Hausdorff condition in 14.4 is es-
sential.

A point x ∈ X is a fixed point of a map f : X → X if f(x) = x. The set of all
fixed points of a map f is the fixed point set of f .

14.6. Prove that the fixed-point set of a continuous map from a Hausdorff space
to itself is closed.

14.7. Construct an example showing that the Hausdorff condition in 14.6 is es-
sential.

14.8. Prove that if f, g : X → Y are two continuous maps, Y is Hausdorff, A is
everywhere dense in X, and f |A = g|A, then f = g.

14.9. Riddle. How are problems 14.4, 14.6, and 14.8 related to each other?

14◦4. Hereditary Properties

A topological property is hereditary if it carries over from a space to its
subspaces, i.e., if a space X has this property, then each subspace of X also
has it.

2You can also rephrase this as follows: each neighborhood of b contains all members of the
sequence that have sufficiently large indices.
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14.10. Which of the following topological properties are hereditary:

(1) finiteness of the set of points;
(2) finiteness of the topological structure;
(3) infiniteness of the set of points;
(4) connectedness;
(5) path-connectedness?

14.F. The property of being a Hausdorff space is hereditary.

14◦5. The First Separation Axiom

A topological space X satisfies the first separation axiom T1 if each one
of any two points of X has a neighborhood that does not contain the other
point.3 More formally: ∀x, y ∈ X, x 6= y ∃Uy : x /∈ Uy.
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14.G. A space X satisfies the first separation axiom,

• iff all one-point sets in X are closed,

• iff all finite sets in X are closed.

14.11. Prove that a space X satisfies the first separation axiom iff every point of
X is the intersection of all of its neighborhoods.

14.12. Any Hausdorff space satisfies the first separation axiom.

14.H. In a Hausdorff space any finite set is closed.

14.I. A metric space satisfies the first separation axiom.

14.13. Find an example showing that the first separation axiom does not imply
the Hausdorff axiom.

14.J. Show that RT1 meets the first separation axiom, but is not a Hausdorff
space (cf. 14.13).

14.K. The first separation axiom is hereditary.

14.14. Suppose that for any two distinct points a and b of a space X there exists
a continuous map f from X to a space with the first separation axiom such that
f(a) 6= f(b). Prove that then X also satisfies the first separation axiom.

14.15. Prove that a continuous map of an indiscrete space to a space satisfying
axiom T1 is constant.

14.16. Prove that in every set there exists a coarsest topological structure satis-
fying the first separation axiom. Describe this structure.

3T1 is also called the Tikhonov axiom.



98 III. Topological Properties

14◦6. The Kolmogorov Axiom

The first separation axiom emerges as a weakened Hausdorff axiom.

14.L. Riddle. How can the first separation axiom be weakened?

A topological space satisfies the Kolmogorov axiom or the zeroth separa-

tion axiom T0 if at least one of any two distinct points of this space has a
neighborhood that does not contain the other of these points.

14.M. An indiscrete space containing at least two points does not satisfy
T0.

14.N. The following properties of a space X are equivalent:

(1) X satisfies the Kolmogorov axiom;

(2) any two different points of X has different closures;

(3) X contains no indiscrete subspace consisting of two points.

(4) X contains no indiscrete subspace consisting of more than one
point;

14.O. A topology is a poset topology iff it is a smallest neighborhood topology
satisfying the Kolmogorov axiom.

Thus, on the one hand, posets give rise to numerous examples of topo-
logical spaces, among which we see the most important spaces, like the line
with the standard topology. On the other hand, all posets are obtained from
topological spaces of a special kind, which are quite far away from the class
of metric spaces.

14◦7. The Third Separation Axiom

A topological space X satisfies the third separation axiom if every closed
set in X and every point of its complement have disjoint neighborhoods, i.e.,
for every closed set F ⊂ X and every point b ∈ X rF there exist open sets
U, V ⊂ X such that U ∩ V = ∅, F ⊂ U , and b ∈ V .
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A space is regular if it satisfies the first and third separation axioms.

14.P. A regular space is a Hausdorff space.
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14.Q. A space is regular iff it satisfies the second and third separation
axioms.

14.17. Find a Hausdorff space which is not regular.

14.18. Find a space satisfying the third, but not the second separation axiom.

14.19. Prove that a space X satisfies the third separation axiom iff every neigh-
borhood of every point x ∈ X contains the closure of a neighborhood of x.

14.20. Prove that the third separation axiom is hereditary.

14.R. Any metric space is regular.

14◦8. The Fourth Separation Axiom

A topological space X satisfies the fourth separation axiom if any two
disjoint closed sets in X have disjoint neighborhoods, i.e., for any two closed
sets A,B ⊂ X with A ∩ B = ∅ there exist open sets U, V ⊂ X such that
U ∩ V = ∅, A ⊂ U , and B ⊂ V .

U

V
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A space is normal if it satisfies the first and fourth separation axioms.

14.S. A normal space is regular (and hence Hausdorff).

14.T. A space is normal iff it satisfies the second and fourth separation
axioms.

14.21. Find a space which satisfies the fourth, but not second separation axiom.

14.22. Prove that a space X satisfies the fourth separation axiom iff every neigh-
borhood of every closed set F ⊂ X contains the closure of some neighborhood of
F .

14.23. Prove that any closed subspace of a normal space is normal.

14.24. Find two closed disjoint subsets A and B of some metric space such that
inf{ρ(a, b) | a ∈ A, b ∈ B} = 0.

14.U. Any metric space is normal.

14.25. Let f : X → Y be a continuous surjection such that the image of any
closed set is closed. Prove that if X is normal, then so is Y .
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14◦9x. Niemytski’s Space

Denote by H the open upper half-plane {(x, y) ∈ R2 | y > 0} equipped with
the topology generated by the Euclidean metric. Denote by N the union of H and
the boundary line R1: N = H ∪ R1, but equip it with the topology obtained by
adjoining to the Euclidean topology the sets of the form x∪D, where x ∈ R1 and
D is an open disk in H touching R1 at the point x. This is the Niemytski space.
It can be used to clarify properties of the fourth separation axiom.

14.1x. Prove that the Niemytski space is Hausdorff.

14.2x. Prove that the Niemytski space is regular.

14.3x. What topological structure is induced on R1 from N ?

14.4x. Prove that the Niemytski space is not normal.

14.5x Corollary. There exists a regular space which is not normal.

14.6x. Embed the Niemytski space into a normal space in such a way that the
complement of the image would be a single point.

14.7x Corollary. Theorem 14.23 does not extend to nonclosed subspaces, i.e.,
the property of being normal is not hereditary, is it?

14◦10x. Urysohn Lemma and Tietze Theorem

14.8x. Let A and B be two disjoint closed subsets of a metric space X. Then there
exists a continuous function f : X → I such that f−1(0) = A and f−1(1) = B.

14.9x. Let F be a closed subset of a metric space X. Then any continuous
function f : X → [−1, 1] can be extended over the whole X.

14.9x.1. Let F be a closed subset of a metric space X . For any contin-
uous function f : F → [−1, 1] there exists a function g : X →

[
− 1

3 ,
1
3 ]

such that |f(x) − g(x)| ≤ 2
3 for each x ∈ F .

14.Ax Urysohn Lemma. Let A and B be two disjoint closed subsets of a
normal space X. Then there exists a continuous function f : X → I such
that f(A) = 0 and f(B) = 1.

14.Ax.1. Let A and B be two disjoint closed subsets of a normal space X .
Consider the set Λ =

{
k
2n | k, n ∈ Z+, k ≤ 2n

}
. There exists a collection

{Up}p∈Λ of open subsets of X such that for any p, q ∈ Λ we have: 1) A ⊂ U0

and B ⊂ X r U1 and 2) if p < q then ClUp ⊂ Uq.

14.Bx Tietze Extension Theorem. Let A be a closed subset of a normal
space X. Let f : A → [−1, 1] be a continuous function. Prove that there
exists a continuous function F : X → [−1, 1] such that F A = f .

14.Cx Corollary. Let A be a closed subset of a normal space X. Any
continuous function A → R can be extended to a function on the whole
space.
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14.10x. Will the statement of the Tietze theorem remain true if in the hypothesis
we replace the segment [−1, 1] by R, Rn, S1, or S2?

14.11x. Derive the Urysohn Lemma from the Tietze Extension Theorem.
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15. Countability Axioms

In this section, we continue to study topological properties that are addi-
tionally imposed on a topological structure to make the abstract situation
under consideration closer to special situations and hence richer in contents.
The restrictions studied in this section bound a topological structure from
above: they require that something be countable.

15◦1. Set-Theoretic Digression: Countability

Recall that two sets have equal cardinality if there exists a bijection of
one of them onto the other. A set of the same cardinality as a subset of the
set N of positive integers is countable.

15.1. A set X is countable iff there exists an injection X → N (or, more generally,
an injection of X into another countable set).

Sometimes this term is used only for infinite countable sets, i.e., for sets
of the cardinality of the whole set N of positive integers, while sets countable
in the above sense are said to be at most countable. This is less convenient.
In particular, if we adopted this terminology, this section would be called
“At Most Countability Axioms”. This would also lead to other more serious
inconveniences as well. Our terminology has the following advantageous
properties.

15.A. Any subset of a countable set is countable.

15.B. The image of a countable set under any map is countable.

15.C. Z is countable.

15.D. The set N2 = {(k, n) | k, n ∈ N} is countable.

15.E. The union of a countable family of countable sets is countable.

15.F. Q is countable.

15.G. R is not countable.

15.2. Prove that any set Σ of disjoint figure eight curves in the plane is countable.
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15◦2. Second Countability and Separability

In this section, we study three restrictions on the topological structure.
Two of them have numbers (one and two), the third one has no number. As
in the previous section, we start from the restriction having number two.

A topological space X satisfies the second axiom of countability or is
second countable if X has a countable base. A space is separable if it contains
a countable dense set. (This is the countability axiom without a number
that we mentioned above.)

15.H. The second axiom of countability implies separability.

15.I. The second axiom of countability is hereditary.

15.3. Are the arrow and RT1 second countable?

15.4. Are the arrow and RT1 separable?

15.5. Construct an example proving that separability is not hereditary.

15.J. A metric separable space is second countable.

15.K Corollary. For metrizable spaces, separability is equivalent to the
second axiom of countability.

15.L. (Cf. 15.5.) Prove that for metrizable spaces separability is hereditary.

15.M. Prove that Euclidean spaces and all their subspaces are separable
and second countable.

15.6. Construct a metric space which is not second countable.

15.7. Prove that in a separable space any collection of pairwise disjoint open sets
is countable.

15.8. Prove that the set of components of an open set A ⊂ Rn is countable.

15.N. A continuous image of a separable space is separable.

15.9. Construct an example proving that a continuous image of a second countable
space may be not second countable.

15.O Lindelöf Theorem. Any open cover of a second countable space
contains a countable part that also covers the space.

15.10. Prove that each base of a second countable space contains a countable
part which is also a base.

15.11 Brouwer Theorem*. Let {Kλ} be a family of closed sets of a second
countable space and assume that for every decreasing sequence K1 ⊃ K2 ⊃ . . .
of sets belonging to this family the intersection ∩∞

1 Kn also belongs to the family.
Then the family contains a minimal set A, i.e., a set such that no proper subset
of A belongs to the family.
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15◦3. Bases at a Point

Let X be a space, a a point of X. A neighborhood base at a or just
a base of X at a is a collection Σ of neighborhoods of a such that each
neighborhood of a contains a neighborhood from Σ.

15.P. If Σ is a base of a space X, then {U ∈ Σ | a ∈ U} is a base of X at
a.

15.12. In a metric space the following collections of balls are neighborhood bases
at a point a:

• the set of all open balls of center a;
• the set of all open balls of center a and rational radii;
• the set of all open balls of center a and radii rn, where {rn} is any

sequence of positive numbers converging to zero.

15.13. What are the minimal bases at a point in the discrete and indiscrete
spaces?

15◦4. First Countability

A topological space X satisfies the first axiom of countability or is a first

countable space if X has a countable neighborhood base at each point.

15.Q. Any metric space is first countable.

15.R. The second axiom of countability implies the first one.

15.S. Find a first countable space which is not second countable. (Cf. 15.6.)

15.14. Which of the following spaces are first countable:

(a) the arrow; (b) RT1 ;
(c) a discrete space; (d) an indiscrete space?

15.15. Find a first countable separable space which is not second countable.

15.16. Prove that if X is a first countable space, then at each point it has a
decreasing countable neighborhood base: U1 ⊃ U2 ⊃ . . . .

15◦5. Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits.
Moreover, they like to talk about all topological notions relying on the no-
tions of sequence and its limit. This tradition has almost no mathematical
justification, except for a long history descending from the XIX century
studies on the foundations of analysis. In fact, almost always4 it is more
convenient to avoid sequences, provided you deal with topological notions,
except summing of series, where sequences are involved in the underlying

4The exceptions which one may find in the standard curriculum of a mathematical depart-
ment can be counted on two hands.
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definitions. Paying a tribute to this tradition, here we explain how and in
what situations topological notions can be described in terms of sequences.

Let A be a subset of a space X. The set SClA of limits of all sequences
an with an ∈ A is the sequential closure of A.

15.T. Prove that SClA ⊂ ClA.

15.U. If a space X is first countable, then the for any A ⊂ X the opposite
inclusion ClA ⊂ SClA also holds true, whence SClA = ClA.

Therefore, in a first countable space (in particular, any metric spaces)
we can recover (hence, define) the closure of a set provided it is known which
sequences are convergent and what the limits are. In turn, the knowledge
of closures allows one to determine which sets are closed. As a consequence,
knowledge of closed sets allows one to recover open sets and all other topo-
logical notions.

15.17. Let X be the set of real numbers equipped with the topology consisting
of ∅ and complements of all countable subsets. (Check that this is actually a
topology.) Describe convergent sequences, sequential closure and closure in X.
Prove that in X there exists a set A with SCl A 6= Cl A.

15◦6. Sequential Continuity

Now we consider the continuity of maps along the same lines. A map
f : X → Y is sequentially continuous if for each b ∈ X and each sequence
an ∈ X converging to b the sequence f(an) converges to f(b).

15.V. Any continuous map is sequentially continuous.

an b

a1

f(an) f(b)

V
f−1(V )

15.W. The preimage of a sequentially closed set under a sequentially con-
tinuous map is sequentially closed.

15.X. If X is a first countable space, then any sequentially continuous map
f : X → Y is continuous.

Thus for maps of a first countable space continuity and sequential con-
tinuity are equivalent.

15.18. Construct a sequentially continuous, but discontinuous map. (Cf. 15.17)
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15◦7x. Embedding and Metrization Theorems

15.Ax. Prove that the space l2 is separable and second countable.

15.Bx. Prove that a regular second countable space is normal.

15.Cx. Prove that a normal second countable space can be embedded into
l2. (Use the Urysohn Lemma 14.Ax.)

15.Dx. Prove that a second countable space is metrizable iff it is regular.
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16. Compactness

16◦1. Definition of Compactness

This section is devoted to a topological property playing a very special
role in topology and its applications. It is a sort of topological counterpart
for the property of being finite in the context of set theory. (It seems though
that this analogy has never been formalized.)

A topological space X is compact if each open cover of X contains a
finite part that also covers X.

If Γ is a cover of X and Σ ⊂ Γ is a cover of X, then Σ is a subcover

(or subcovering) of Γ. Thus, a space X is compact if every open cover of X
contains a finite subcovering.

16.A. Any finite space and indiscrete space are compact.

16.B. Which discrete spaces are compact?

16.1. Let Ω1 ⊂ Ω2 be two topological structures in X. 1) Does the compactness
of (X, Ω2) imply that of (X, Ω1)? 2) And vice versa?

16.C. The line R is not compact.

16.D. A space X is not compact iff it has an open cover containing no finite
subcovering.

16.2. Is the arrow compact? Is RT1 compact?

16◦2. Terminology Remarks

Originally the word compactness was used for the following weaker prop-
erty: any countable open cover contains a finite subcovering.

16.E. For a second countable space, the original definition of compactness
is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexandrov
(1896–1982) and P. S. Urysohn (1898–1924). They suggested for it the term
bicompactness. This notion appeared to be so successful that it has dis-
placed the original one and even took its name, i.e., compactness. The term
bicompactness is sometimes used (mainly by topologists of Alexandrov’s
school).

Another deviation from the terminology used here comes from Bourbaki:
we do not include the Hausdorff property into the definition of compactness,
which Bourbaki includes. According to our definition, RT1 is compact, ac-
cording to Bourbaki it is not.
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16◦3. Compactness in Terms of Closed Sets

A collection of subsets of a set is said to have the finite intersection

property if the intersection of any finite subcollection is nonempty.

16.F. A collection Σ of subsets of a setX has the finite intersection property
iff there exists no finite Σ1 ⊂ Σ such that the complements of the sets in Σ1

cover X.

16.G. A space is compact iff for every collection of its closed sets having
the finite intersection property its intersection is nonempty.

16◦4. Compact Sets

A compact set is a subset A of a topological space X (the latter must be
clear from the context) provided A is compact as a space with the relative
topology induced from X.

16.H. A subset A of a space X is compact iff each cover of A with sets open
in X contains a finite subcovering.

16.3. Is [1, 2) ⊂ R compact?

16.4. Is the same set [1, 2) compact in the arrow?

16.5. Find a necessary and sufficient condition (formulated not in topological
terms) for a subset of the arrow to be compact?

16.6. Prove that any subset of RT1 is compact.

16.7. Let A and B be two compact subsets of a space X. 1) Does it follow that
A ∪ B is compact? 2) Does it follow that A ∩ B is compact?

16.8. Prove that the set A = 0 ∪
˘

1
n

¯
∞

n=1
in R is compact.

16◦5. Compact Sets Versus Closed Sets

16.I. Is compactness hereditary?

16.J. Any closed subset of a compact space is compact.

16.K. Any compact subset of a Hausdorff space is closed.

A

b
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16.L Lemma to 16.K, but not only . . . . Let A be a compact subset of
a Hausdorff space X and b a point of X that does not belong to A. Then
there exist open sets U, V ⊂ X such that b ∈ V , A ⊂ U , and U ∩ V = ∅.

16.9. Construct a nonclosed compact subset of some topological space. What is
the minimal number of points needed?

16◦6. Compactness and Separation Axioms

16.M. A compact Hausdorff space is regular.

16.N. Prove that a compact Hausdorff space is normal.

16.O Lemma to 16.N. In a Hausdorff space, any two disjoint compact
subsets possess disjoint neighborhoods.

16.10. Prove that the intersection of any family of compact subsets of a Hausdorff
space is compact. (Cf. 16.7.)

16.11. Let X be a Hausdorff space, let {Kλ}λ∈Λ be a family of its compact
subsets, and let U be an open set containing

T
λ∈Λ Kλ. Prove that for some finite

A ⊂ Λ we have U ⊃ Tλ∈A Kλ.

16.12. Let {Kn}∞1 be a decreasing sequence of nonempty compact connected
sets in a Hausdorff space. Prove that the intersection

T
∞

1 Kn is nonempty and
connected. (Cf. 11.20)

16◦7. Compactness in Euclidean Space

16.P. The segment I is compact.

Recall that n-dimensional cube is the set

In = {x ∈ Rn | xi ∈ [0, 1] for i = 1, . . . , n}.
16.Q. The cube In is compact.

16.R. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded
(see Theorems 14.A, 16.K, and 16.R).

16.S. Construct a closed and bounded, but noncompact set in a metric
space.

16.13. Are the metric spaces of Problem 4.A compact?

16.T. A subset of a Euclidean space is compact iff it is closed and bounded.

16.14. Which of the following sets are compact:

(a) [0, 1); (b) ray R+ = {x ∈ R | x ≥ 0}; (c) S1;
(d) Sn; (e) one-sheeted hyperboloid; (f) ellipsoid;
(g) [0, 1] ∩ Q?
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An (n×k)-matrix (aij) with real entries can be regarded as a point in Rnk. To
do this, we only need to enumerate somehow (e.g., lexicographically) the entries
of (aij) by numbers from 1 to nk. This identifies the set L(n, k) of all matrices

like that with Rnk and endows it with a topological structure. (Cf. Section 13.)

16.15. Which of the following subsets of L(n, n) are compact:

(1) GL(n) = {A ∈ L(n, n) | detA 6= 0};
(2) SL(n) = {A ∈ L(n, n) | detA = 1};
(3) O(n) = {A ∈ L(n, n) | A is an orthogonal matrix};
(4) {A ∈ L(n, n) | A2 = E}, where E is the unit matrix?

16◦8. Compactness and Continuous Maps

16.U. A continuous image of a compact space is compact. (In other words,
if X is a compact space and f : X → Y is a continuous map, then f(X) is
compact.)

16.V. A continuous numerical function on a compact space is bounded and
attains its maximal and minimal values. (In other words, if X is a compact
space and f : X → R is a continuous function, then there exist a, b ∈ X
such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.) Cf. 16.U and 16.T.

16.16. Prove that if f : I → R is a continuous function, then f(I) is a segment.

16.17. Let A be a subset of Rn. Prove that A is compact iff each continuous
numerical function on A is bounded.

16.18. Prove that if F and G are disjoint subsets of a metric space, F is closed,
and G is compact, then ρ(G, F ) = inf {ρ(x, y) | x ∈ F, y ∈ G} > 0.

16.19. Prove that any open set U containing a compact set A of a metric space
X contains an ε-neighborhood of A (i.e., the set {x ∈ X | ρ(x, A) < ε}) for some
ε > 0.

16.20. Let A be a closed connected subset of Rn and let V be the closed ε-
neighborhood of A (i.e., V = {x ∈ Rn | ρ(x,A) ≤ ε}). Prove that V is path-
connected.

16.21. Prove that if the closure of each open ball in a compact metric space is
the closed ball with the same center and radius, then any ball in this space is
connected.

16.22. Let X be a compact metric space, and let f : X → X be a map such that
ρ(f(x), f(y)) < ρ(x, y) for any x, y ∈ X with x 6= y. Prove that f has a unique
fixed point. (Recall that a fixed point of f is a point x such that f(x) = x, see
14.6.)

16.23. Prove that for any open cover of a compact metric space there exists a
(sufficiently small) number r > 0 such that each open ball of radius r is contained
in an element of the cover.

16.W Lebesgue Lemma. Let f : X → Y be a continuous map from a
compact metric space X to a topological space Y , and let Γ be an open cover
of Y . Then there exists a number δ > 0 such that for any set A ⊂ X with
diameter diam(A) < δ the image f(A) is contained in an element of Γ.



16. Compactness 111

16◦9. Closed Maps

A continuous map is closed if the image of each closed set under this
map is closed.

16.24. A continuous bijection is a homeomorphism iff it is closed.

16.X. A continuous map of a compact space to a Hausdorff space is closed.

Here are two important corollaries of this theorem.

16.Y. A continuous bijection of a compact space onto a Hausdorff space is
a homeomorphism.

16.Z. A continuous injection of a compact space into a Hausdorff space is
a topological embedding.

16.25. Show that none of the assumptions in 16.Y can be omitted without making
the statement false.

16.26. Does there exist a noncompact subspace A of the Euclidian space such that
any continuous map of A to a Hausdorff space is closed? (Cf. 16.V and 16.X.)

16.27. A restriction of a closed map to a closed subset is a also closed map.

16◦10x. Norms in Rn

16.1x. Prove that each norm Rn → R (see Section 4) is a continuous function
(with respect to the standard topology of Rn).

16.2x. Prove that any two norms in Rn are equivalent (i.e., determine the same
topological structure). See 4.27, cf. 4.31.

16.3x. Does the same hold true for metrics in Rn?

16◦11x. Induction on Compactness

A function f : X → R is locally bounded if for each point a ∈ X there exist a
neighborhood U and a number M > 0 such that |f(x)| ≤ M for x ∈ U (i.e., each
point has a neighborhood U such that the restriction of f to U is bounded).

16.4x. Prove that if a space X is compact and a function f : X → R is locally
bounded, then f is bounded.

This statement is a simplest application of a general principle formulated be-
low in 16.5x. This principle may be called induction on compactness (cf. induction
on connectedness, which was discussed in Section 11).

Let X be a topological space, C a property of subsets of X. We say that C is
additive if the union of any finite family of sets having C also has C. The space X
possesses C locally if each point of X has a neighborhood with property C.

16.5x. Prove that a compact space which locally possesses an additive property
has this property itself.

16.6x. Using induction on compactness, deduce the statements of Problems 16.R,
17.M, and 17.N.
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17. Sequential Compactness

17◦1. Sequential Compactness Versus Compactness

A topological space is sequentially compact if every sequence of its points
contains a convergent subsequence.

17.A. If a first countable space is compact, then it is sequentially compact.

A point b is an accumulation point of a set A if each neighborhood of b
contains infinitely many points of A.

17.A.1. Prove that in a space satisfying the first separation axiom a point is
an accumulation point iff it is a limit point.

17.A.2. In a compact space, any infinite set has an accumulation point.

17.A.3. A space in which each infinite set has an accumulation point is se-
quentially compact.

17.B. A sequentially compact second countable space is compact.

17.B.1. In a sequentially compact space a decreasing sequence of nonempty
closed sets has a nonempty intersection.

17.B.2. Prove that each nested sequence of nonempty closed sets in a space X
has nonempty intersection iff each countable collection of closed sets in Xthe
finite intersection property has nonempty intersection.

17.B.3. Derive Theorem 17.B from 17.B.1 and 17.B.2.

17.C. For second countable spaces, compactness and sequential compactness
are equivalent.

17◦2. In Metric Space

A subset A of a metric space X is an ε-net (where ε is a positive number)
if ρ(x,A) < ε for each point x ∈ X.

17.D. Prove that in any compact metric space for any ε > 0 there exists a
finite ε-net.

17.E. Prove that in any sequentially compact metric space for any ε > 0
there exists a finite ε-net.

17.F. Prove that a subset A of a metric space is everywhere dense iff A is
an ε-net for each ε > 0.

17.G. Any sequentially compact metric space is separable.

17.H. Any sequentially compact metric space is second countable.
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17.I. For metric spaces compactness and sequential compactness are equiv-
alent.

17.1. Prove that a sequentially compact metric space is bounded. (Cf. 17.E

and 17.I.)

17.2. Prove that in any metric space for any ε > 0 there exists

(1) a discrete ε-net and even
(2) an ε-net such that the distance between any two of its points is greater

than ε.

17◦3. Completeness and Compactness

A sequence {xn}n∈N of points of a metric space is a Cauchy sequence if
for every ε > 0 there exists a number N such that ρ(xn, xm) < ε for any
n,m ≥ N . A metric space X is complete if every Cauchy sequence in X
converges.

17.J. A Cauchy sequence containing a convergent subsequence converges.

17.K. Prove that a metric space M is complete iff every nested decreas-
ing sequence of closed balls in M with radii tending to 0 has nonempty
intersection.

17.L. Prove that a compact metric space is complete.

17.M. Prove that a complete metric space is compact iff for each ε > 0 it
contains a finite ε-net.

17.N. Prove that a complete metric space is compact iff for any ε > 0 it
contains a compact ε-net.

17◦4x. Noncompact Balls in Infinite Dimension

By l∞ denote the set of all bounded sequences of real numbers. This is a
vector space with respect to the component-wise operations. There is a natural
norm in it: ||x|| = sup{|xn| | n ∈ N}.
17.1x. Are closed balls of l∞ compact? What about spheres?

17.2x. Is the set {x ∈ l∞ | |xn| ≤ 2−n, n ∈ N} compact?

17.3x. Prove that the set {x ∈ l∞ | |xn| = 2−n, n ∈ N} is homeomorphic to the
Cantor set K introduced in Section 2.

17.4x*. Does there exist an infinitely dimensional normed space in which closed
balls are compact?
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17◦5x. p-Adic Numbers

Fix a prime integer p. By Zp denote the set of series of the form a0 + a1p +
· · · + anpn + . . . with 0 ≤ an < p, an ∈ N. For x, y ∈ Zp, put ρ(x, y) = 0 if x = y,
and ρ(x, y) = p−m if m is the smallest number such that the mth coefficients in
the series x and y differ.

17.5x. Prove that ρ is a metric in Zp.

This metric space is the space of integer p-adic numbers. There is an injection
Z → Zp assigning to a0 + a1p + · · · + anpn ∈ Z with 0 ≤ ak < p the series

a0 + a1p + · · · + anpn + 0pn+1 + 0pn+2 + · · · ∈ Zp

and to −(a0 + a1p + · · · + anpn) ∈ Z with 0 ≤ ak < p the series

b0 + b1p + · · · + bnpn + (p − 1)pn+1 + (p − 1)pn+2 + . . . ,

where

b0 + b1p + · · · + bnpn = pn+1 − (a0 + a1p + · · · + anpn).

Cf. 4.Ix.

17.6x. Prove that the image of the injection Z → Zp is dense in Zp.

17.7x. Is Zp a complete metric space?

17.8x. Is Zp compact?

17◦6x. Spaces of Convex Figures

Let D ⊂ R2 be a closed disk of radius p. Consider the set Pn of all convex
polygons P with the following properties:

• the perimeter of P is at most p;
• P is contained in D;
• P has at most n vertices (the cases of one and two vertices are not

excluded; the perimeter of a segment is twice its length).

See 4.Ax, cf. 4.Cx.

17.9x. Equip Pn with a natural topological structure. For instance, define a
natural metric on Pn.

17.10x. Prove that Pn is compact.

17.11x. Prove that there exists a polygon belonging to Pn and having the maximal
area.

17.12x. Prove that this polygon is a regular n-gon.

Consider now the set P∞ of all convex polygons that have perimeter at most
p and are contained in D. In other words, P∞ =

S
∞

n=1 Pn.

17.13x. Construct a topological structure in P∞ inducing the structures intro-
duced above in the spaces Pn.

17.14x. Prove that the space P∞ is not compact.

Consider now the set P of all convex closed subsets of the plane that have
perimeter at most p and are contained in D. (Observe that all sets in P are
compact.)
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17.15x. Construct a topological structure in P that induces the structure intro-
duced above in the space P∞.

17.16x. Prove that the space P is compact.

17.17x. Prove that there exists a convex plane set with perimeter at most p having
a maximal area.

17.18x. Prove that this is a disk of radius p
2π

.
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18x. Local Compactness and

Paracompactness

18◦1x. Local Compactness

A topological space X is locally compact if each point of X has a neigh-
borhood with compact closure.

18.1x. Compact spaces are locally compact.

18.2x. Which of the following spaces are locally compact: (a) R; (b) Q; (c) Rn;
(d) a discrete space?

18.3x. Find two locally compact sets on the line such that their union is not
locally compact.

18.Ax. Is the local compactness hereditary?

18.Bx. A closed subset of a locally compact space is locally compact.

18.Cx. Is it true that an open subset of a locally compact space is locally
compact?

18.Dx. A Hausdorff locally compact space is regular.

18.Ex. An open subset of a locally compact Hausdorff space is locally com-
pact.

18.Fx. Local compactness is a local property for a Hausdorff space, i.e., a
Hausdorff space is locally compact iff each of its points has a locally compact
neighborhood.

18◦2x. One-Point Compactification

Let (X,Ω) be a Hausdorff topological space. Let X∗ be the set obtained
by adding a point x∗ to X (of course, x∗ does not belong to X). Let Ω∗ be
the collection of subsets of X∗ consisting of

• sets open in X and

• sets of the form X∗ r C, where C ⊂ X is a compact set:

Ω∗ = Ω ∪ {X∗ r C | C ⊂ X is a compact set}.

18.Gx. Prove that Ω∗ is a topological structure on X∗.

18.Hx. Prove that the space (X∗,Ω∗) is compact.

18.Ix. Prove that the inclusion (X,Ω) →֒ (X∗,Ω∗) is a topological embed-
ding.
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18.Jx. Prove that if X is locally compact, then the space (X∗,Ω∗) is Haus-
dorff. (Recall that in the definition of X∗ we assumed that X is Hausdorff.)

A topological embedding of a space X into a compact space Y is a
compactification of X if the image of X is dense in Y . In this situation, Y
is also called a compactification of X. (To simplify the notation, we identify
X with its image in Y .)

18.Kx. Prove that if X is a locally compact Hausdorff space and Y is a com-
pactification of X with one-point Y rX, then there exists a homeomorphism
Y → X∗ which is the identity on X.

Any space Y of Problem 18.Kx is called a one-point compactification

or Alexandrov compactification of X. Problem 18.Kx says Y is essentially
unique.

18.Lx. Prove that the one-point compactification of the plane is homeo-
morphic to S2.

18.4x. Prove that the one-point compactification of Rn is homeomorphic to Sn.

18.5x. Give explicit descriptions of one-point compactifications of the following
spaces:

(1) annulus {(x, y) ∈ R2 | 1 < x2 + y2 < 2};
(2) square without vertices {(x, y) ∈ R2 | x, y ∈ [−1, 1], |xy| < 1};
(3) strip {(x, y) ∈ R2 | x ∈ [0, 1]};
(4) a compact space.

18.Mx. Prove that a locally compact Hausdorff space is regular.

18.6x. Let X be a locally compact Hausdorff space, K a compact subset of X,
U a neighborhood of K. Then there exists a neighborhood V of K such that the
closure Cl V is compact and contained in U .

18◦3x. Proper Maps

A continuous map f : X → Y is proper if each compact subset of Y has
compact preimage.

Let X, Y be Hausdorff spaces. Any map f : X → Y obviously extends
to the map

f∗ : X∗ → Y ∗ : x 7→
{
f(x) if x ∈ X,

y∗ if x = x∗.

18.Nx. Prove that f∗ is continuous iff f is a proper continuous map.

18.Ox. Prove that any proper map of a Hausdorff space to a Hausdorff
locally compact space is closed.

Problem 18.Ox is related to Theorem 16.X.
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18.Px. Extend this analogy: formulate and prove statements corresponding
to Theorems 16.Z and 16.Y.

18◦4x. Locally Finite Collections of Subsets

A collection Γ of subsets of a space X is locally finite if each point b ∈ X
has a neighborhood U such that A∩U = ∅ for all sets A ∈ Γ except, maybe,
a finite number.

18.Qx. A locally finite cover of a compact space is finite.

18.7x. If a collection Γ of subsets of a space X is locally finite, then so is {Cl A |
A ∈ Γ}.
18.8x. If a collection Γ of subsets of a space X is locally finite, then each compact
set A ⊂ X intersects only a finite number of elements of Γ.

18.9x. If a collection Γ of subsets of a space X is locally finite and each A ∈ Γ
has compact closure, then each A ∈ Γ intersects only a finite number of elements
of Γ.

18.10x. Any locally finite cover of a sequentially compact space is finite.

18.Rx. Find an open cover of Rn that has no locally finite subcovering.

Let Γ and ∆ be two covers of a set X. The cover ∆ is a refinement of Γ
if for each A ∈ ∆ there exists B ∈ Γ such that A ⊂ B.

18.Sx. Prove that any open cover of Rn has a locally finite open refinement.

18.Tx. Let {Ui}i∈N be a (locally finite) open cover of Rn. Prove that there
exists an open cover {Vi}i∈N of Rn such that ClVi ⊂ Ui for each i ∈ N.

18◦5x. Paracompact Spaces

A space X is paracompact if every open cover of X has a locally finite
open refinement.

18.Ux. Any compact space is paracompact.

18.Vx. Rn is paracompact.

18.Wx. Let X =
⋃∞

i=1Xi, where Xi are compact sets such that Xi ⊂
IntXi+1. Then X is paracompact.

18.Xx. Let X be a locally compact space. If X has a countable cover by
compact sets, then X is paracompact.

18.11x. Prove that if a locally compact space is second countable, then it is
paracompact.

18.12x. A closed subspace of a paracompact space is paracompact.

18.13x. A disjoint union of paracompact spaces is paracompact.
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18◦6x. Paracompactness and Separation Axioms

18.14x. Let X be a paracompact topological space, and let F and M be two
disjoint subsets of X, where F is closed. Suppose that F is covered by open sets
Uα whose closures are disjoint with M : Cl Uα ∩ M = ∅. Then F and M have
disjoint neighborhoods.

18.15x. A Hausdorff paracompact space is regular.

18.16x. A Hausdorff paracompact space is normal.

18.17x. Let X be a Hausdorff locally compact and paracompact space, Γ a locally
finite open cover of X. Then X has a locally finite open cover ∆ such that the
closures Cl V , where V ∈ ∆, are compact sets and {Cl V | V ∈ ∆} is a refinement
of Γ.

Here is a more general (though formally weaker) fact.

18.18x. Let X be a normal space, Γ a locally finite open cover of X. Then X has
a locally finite open cover ∆ such that {Cl V | V ∈ ∆} is a refinement of Γ.

Information. Metrizable spaces are paracompact.

18◦7x. Partitions of Unity

Let X be a topological space, f : X → R a function. Then the set
supp f = Cl{x ∈ X | f(x) 6= 0} is the support of f .

18.19x. Let X be a topological space, and let {fα : X → R}α∈Λ be a family of
continuous functions whose supports supp(fα) constitute a locally finite cover of
X. Prove that the formula

f(x) =
X

α∈Λ

fα(x)

determines a continuous function f : X → R.

A family of nonnegative functions fα : X → R+ is a partition of unity if
the supports supp(fα) constitute a locally finite cover of the space X and∑

α∈Λ fα(x) = 1.

A partition of unity {fα} is subordinate to a cover Γ if supp(fα) is con-
tained in an element of Γ for each α. We also say that Γ dominates {fα}.

18.Yx. Let X be a normal space. Then each locally finite open cover of X
dominates a certain partition of unity.

18.20x. Let X be a Hausdorff space. If each open cover of X dominates a certain
partition of unity, then X is paracompact.

Information. A Hausdorff space X is paracompact iff each open cover
of X dominates a certain partition of unity.
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18◦8x. Application: Making Embeddings From Pieces

18.21x. Let X be a topological space, {Ui}k
i=1 an open cover of X. If Ui can be

embedded in Rn for each i = 1, . . . , k, then X can be embedded in Rk(n+1).

18.21x.1. Let hi : Ui → Rn, i = 1, . . . , k, be embeddings, and let
fi : X → R form a partition of unity subordinate to the cover {Ui}k

i=1.

We put ĥi(x) = (hi(x), 1) ∈ Rn+1. Show that the map X → Rk(n+1) :

x 7→ (fi(x)ĥi(x))
k
i=1 is an embedding.

18.22x. Riddle. How can you generalize 18.21x?
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Proofs and Comments

11.A A set A is open and closed, iff A and X r A are open, iff A and
X rA are closed.

11.B It suffices to prove the following apparently less general assertion:
A space having a connected everywhere dense subset is connected . (See 6.3.)
Let X ⊃ A be the space and the subset. To prove that X is connected, let
X = U ∪V , where U and V are disjoint sets open in X, and prove that one
of them is empty (cf. 11.A). U ∩ A and V ∩ A are disjoint sets open in A,
and

A = X ∩A = (U ∪ V ) ∩A = (U ∩A) ∪ (V ∩A).

Since A is connected, one of these sets, say U ∩ A, is empty. Then U is
empty since A is dense, see 6.M.

11.C To simplify the notation, we may assume that X =
⋃

λAλ.
By Theorem 11.A, it suffices to prove that if U and V are two open sets
partitioning X, then either U = ∅ or V = ∅. For each λ ∈ Λ, since Aλ is
connected, we have either Aλ ⊂ U or Aλ ⊂ V (see 11.14). Fix a λ0 ∈ Λ. To
be definite, let Aλ0 ⊂ U . Since each of the sets Aλ meets Aλ0 , all sets Aλ

also lie in U , and so none of them meets V , whence

V = V ∩X = V ∩
⋃

λ

Aλ =
⋃

λ

(V ∩Aλ) = ∅.

11.E Apply Theorem 11.C to the family {Aλ∪Aλ0}λ∈Λ, which consists
of connected sets by 11.D. (Or just repeat the proof of Theorem 11.C.)

11.F Using 11.D, prove by induction that
⋃n

−nAk is connected, and
apply Theorem 11.C.

11.G The union of all connected sets containing a given point is con-
nected (by 11.C) and obviously maximal.

11.H Let A and B be two connected components with A∩B 6= ∅. Then
A ∪ B is connected by 11.D. By the maximality of connected components,
we have A ⊃ A ∪B ⊂ B, whence A = A ∪B = B.

11.I This is obvious since the component is connected.
Since the components of the points are not disjoint, they coincide.

11.K If A is a connected component, then its closure ClA is connected
by 11.B. Therefore, ClA ⊂ A by the maximality of connected components.
Hence, A = ClA, because the opposite inclusion holds true for any set A.

11.M See 11.10.
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11.N Passing to the map ab f : X → f(X), we see that it suffices to
prove the following theorem:

If X is a connected space and f : X → Y is a continuous surjection,
then Y is also connected .

Consider a partition of Y in two open sets U and V and prove that one
of them is empty. The preimages f−1(U) and f−1(V ) are open by continuity
of f and constitute a partition of X. Since X is connected, one of them, say
f−1(U), is empty. Since f is surjective, we also have U = ∅.

11.Q Let X = U ∪ V , where U and V are nonempty disjoint
sets open in X. Set f(x) = −1 for x ∈ U and f(x) = 1 for x ∈ V . Then f
is continuous and surjective, is it not? Assume the contrary: let X
be connected. Then S0 is also connected by 11.N, a contradiction.

11.R By Theorem 11.Q, this statement follows from Cauchy Interme-
diate Value Theorem. However, it is more natural to deduce Intermediate
Value Theorem from 11.Q and the connectedness of I.

Thus assume the contrary: let I = [0, 1] be disconnected. Then [0, 1] =
U ∪ V , where U and V are disjoint and open in [0, 1]. Suppose 0 ∈ U ,
consider the set C = {x ∈ [0, 1] | [0, x) ⊂ U} and put c = supC. Show
that each of the possibilities c ∈ U and c ∈ V gives rise to contradiction.
A slightly different proof of Theorem 11.R is sketched in Lemmas 11.R.1
and 11.R.2.

11.R.1 Use induction: for n = 1, 2, 3, . . . , put

(an+1, bn+1) :=

{
(an+bn

2 , bn) if an+bn
2 ∈ U ,

(an,
an+bn

2 ) if an+bn
2 ∈ V .

11.R.2 On the one hand, we have c ∈ U since c ∈ Cl{an | n ∈ N}, and
an belong to U , which is closed in I. On the other hand, we have c ∈ V
since c ∈ Cl{bn | n ∈ N}, and bn belong to V , which is also closed in I.
The contradiction means that U and V cannot be both closed, i.e., I is
connected.

11.S Every open set on a line is a union of disjoint open intervals
(see 2.Ax), each of which contains a rational point. Therefore each open
subset U of a line is a union of a countable collection of open intervals.
Each of them is open and connected, and thus is a connected component of
U (see 11.T).

11.T Apply 11.R and 11.J. (Cf. 11.U and 11.X.)

11.U Apply 11.R and 11.J. (Recall that a set K ⊂ Rn is said to be
convex if for any p, q ∈ K we have [p, q] ⊂ K.)
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11.V Combine 11.R and 11.C.

11.X This is 11.10. This is 11.V.

11.Y Singletons and all kinds of intervals (including open and closed
rays and the whole line).

11.Y Use 10.R, 11.U, and, say Theorem 11.B (or 11.I).

12.A Since the segment [a, b] is connected by 11.R, its image is an
interval by 11.29. Therefore, it contains all points between f(a) and f(b).

12.B Combine 11.N and 11.10.

12.C Combine 11.V and 11.29.

12.D One of them is connected, while the other one is not.

12.E For each of the spaces, find the number of points with connected
complement. (This is obviously a topological invariant.)

12.F Cf. 12.4.

13.A Since the cover
{
[0, 1

2 ], [12 , 1]
}

of [0, 1] is fundamental and the
restriction of uv to each element of the cover is continuous, the entire map
uv is also continuous.

13.B If x, y ∈ I, then I → I : t 7→ (1 − t)x+ ty is a path connecting x
and y.

13.C If x, y ∈ Rn, then [0, 1] → Rn : t 7→ (1 − t)x + ty is a path
connecting x and y.

13.D Use 10.R and 13.C.

13.E Combine 11.R and 11.Q.

13.7 Use (the formula of) 13.C, 13.A, and 13.5.

13.F Let x and y be two points in the union, and let A and B be the
sets in the family that contain x and y. If A = B, there is nothing to prove.
If A 6= B, take z ∈ A ∩ B, join x with z in A by a path u, and join y with
z in B by a path v. Then the path uv joins x and y in the union, and it
remains to use 13.5.

13.G Consider the union of all path-connected sets containing the point
and use 13.F. (Cf. 11.G.)

13.H Similarly to 11.H, only instead of 11.D use 13.F.

13.I Recall the definition of a path-connected component.
This follows from (the proof of) 13.G.

13.J Let X be path-connected, let f : X → Y be a continuous map,
and let y1, y2 ∈ f(X). If yi = f(xi), i = 1, 2, and u is a path joining x1 and
x2, then how can you construct a path joining y1 and y2?

13.M Combine 13.8 and 11.J.
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13.N By 10.Q, A is homeomorphic to (0,+∞) ∼= R, which is path-
connected by 13.C, and so A is also path-connected by 13.K. Since A
is connected (combine 11.T and 11.O, or use 13.M) and, obviously, A ⊂
X ⊂ ClA (what is ClA, by the way?), it follows form 11.15 that X is also
connected.

13.O This is especially obvious for A since A ∼= (0,∞) (you can also
use 11.2).

13.P Prove that any path in X starting at (0, 0) is constant.

13.Q Let A and X be as above. Check that A is dense in X (cf. the
solution to 13.N) and plug in Problems 13.N and 13.P.

13.R See 13.Q.

13.S Let C be a path-connected component of X, x ∈ C an arbitrary
point. If Ux is a path-connected neighborhood of x, then Ux lies entirely in
C (by the definition of a path-connected component!), and so x is an interior
point of C, which is thus open.

13.T This is 13.M. Since path-connected components of
X are open (see Problem 13.S) and X is connected, there can be only one
path-connected component.

13.U This follows from 13.T because spherical neighborhoods in Rn

(i.e., open balls) are path-connected (by 13.6 or 13.7).

14.A If r1 + r2 ≤ ρ(x1, x2), then the balls Br1(x1) and Br2(x2) are
disjoint.

14.B Certainly, I is Hausdorff since it is metrizable. The intervals[
0, 1

2

)
and

(
1
2 , 1
]

are disjoint neighborhoods of 0 and 1, respectively.

14.C If y 6= x, then there exist disjoint neighborhoods Ux and
Vy. Therefore, y /∈ ClUx, whence y /∈ ⋂

U∋x
ClU .

If y 6= x, then y /∈ ⋂
U∋x

ClU , it follows that there exists a neighborhood

Ux such that y /∈ ClUx. Set Vy = X r ClUx.

14.D Assume the contrary: let xn → a and xn → b, where a 6= b.
Let U and V be disjoint neighborhoods of a and b, respectively. Then for
sufficiently large n we have xn ∈ U ∩ V = ∅, a contradiction.

14.E A neighborhood of a point in RT1 has the form U = R r

{x1, . . . , xN}, where, say, x1 < x2 < · · · < xN . Then, obviously, an ∈ U for
each n > xN .
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14.F Assume that X is a space, A ⊂ X is a subspace, and x, y ∈ A are
two distinct points. If X is Hausdorff, then x and y have disjoint neighbor-
hoods U and V inX. In this case, U∩A and V ∩A are disjoint neighborhoods
of x and y in A. (Recall the definition of the relative topology!)

14.G (a) Let X satisfy T1 and let x ∈ X. By Axiom T1,
each point y ∈ X r x has a neighborhood U that does not contain x, i.e.,
U ⊂ Xrx, which means that all points in Xrx are inner. Therefore, Xrx
is open, and so its complement {x} is closed. If singletons in X are
closed and x, y ∈ X are two distinct points, then X r x is a neighborhood
of y that does not contain x, as required in T1.

(b) If singletons in X are closed, then so are finite subsets of X,
which are finite unions of singletons. Obvious.

14.H Combine 14.12 and 14.G.

14.I Combine 14.A and 14.12.

14.J Each point in RT1 is closed, as required by T1, but any two
nonempty sets intersect, which contradicts T2.

14.K Combine 14.G and 5.4, and once more use 14.G; or just modify
the proof of 14.F.

14.N (a) ⇒ (b) Actually, T0 precisely says that at least one of the
points does not lie in the closure of the other (to see this, use Theorem 6.F).
(b) ⇒ (a) Use the above reformulation of T0 and the fact that if x ∈ Cl{y}
and y ∈ Cl{x}, then Cl{x} = Cl{y}.
(a) ⇔ (c) This is obvious. (Recall the definition of the relative topology!)
(c) ⇔ (d) This is also obvious.

14.O This is obvious. Let X be a T0 space such
that each point x ∈ X has a smallest neighborhood Cx. Then we say that
x � y if y ∈ Cx. Let us verify the axioms of order. Reflexivity is obvious.
Transitivity: assume that x � y and y � z. Then Cx is a neighborhood
of y, whence Cy ⊂ Cx, and so also z ∈ Cx, which means that x � z.
Antisymmetry: if x � y and y � x, then y ∈ Cx and x ∈ Cy, whence
Cx = Cy. By T0, this is possible only if x = y. Verify that this order
generates the initial topology.

14.P Let X be a regular space, and let x, y ∈ X be two distinct points.
Since X satisfies T1, the singleton {y} is closed, and so we can apply T3 to
x and {y}.

14.Q See Problem 14.P. See Problem 14.12.

14.R Let X be a metric space, x ∈ X, and r > 0. Prove that, e.g.,
ClBr(x) ⊂ B2r(x), and use 14.19.
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14.S Apply T4 to a closed set and a singleton, which is also closed by
T1.

14.T See Problem 14.S. See Problem 14.12.

14.U Let A and B be two disjoint closed sets in a metric space (X, ρ).
Then, obviously, A ⊂ U = {x ∈ X | ρ(x,A) < ρ(x,B)} and B ⊂ V = {x ∈
X | ρ(x,A) > ρ(x,B)}. U and V are open (use 9.L) and disjoint.

14.Ax.1 Put U1 = X r B. Since X is normal, there exists an open
neighborhood U0 ⊃ A such that ClU0 ⊂ U1. Let U1/2 be an open neighbor-
hood of ClU0 such that ClU1/2 ⊂ U1. Repeating the process, we obtain the
required collection {Up}p∈Λ.

14.Ax Put f(x) = inf{λ ∈ Λ | x ∈ ClUλ}. We easily see that f
continuous.

14.Bx Slightly modify the proof of 14.9x, using Urysohn Lemma 14.Ax

instead of 14.9x.1.

15.A Let f : X → N be an injection and let A ⊂ X. Then the
restriction f |A : A→ N is also an injection. Use 15.1.

15.B Let X be a countable set, and let f : X → Y be a map. Taking
each y ∈ f(X) to a point in f−1(y) , we obtain an injection f(X) → X.
Hence, f(X) is countable by 15.1.

15.D Suggest an algorithm (or even a formula!) for enumerating ele-
ments in N2.

15.E Use 15.D.

15.G Derive this from 6.44.

15.H Construct a countable set A intersecting each base set (at least)
at one point and prove that A is everywhere dense.

15.I Let X be a second countable space, A ⊂ X a subspace. If {Ui}∞1
is a countable base in X, then {Ui∩A}∞1 is a countable base in A. (See 5.1.)

15.J Show that if the set A = {xn}∞n=1 is everywhere dense, then the
collection {Br(x) | x ∈ A, r ∈ Q, r > 0} is a countable base of X. (Use
Theorems 4.I and 3.A to show that this is a base and 15.E to show that it
is countable.)

15.L Use 15.K and 15.I.

15.M By 15.K and 15.I (or, more to the point, combine 15.J, 15.I,
and 15.H), it is sufficient to find a countable everywhere-dense set in Rn.
For example, take Qn = {x ∈ Rn | xi ∈ Q, i = 1, . . . , n}. To see that Qn

is dense in Rn, use the metric ρ(∞). To see that Qn is countable, use 15.F
and 15.E.

15.N Use 9.15.
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15.O Let X be the space, let {U} be a countable base in X, and let
Γ = {V } be a cover of X. Let {Ui}∞i=1 be the base sets that are contained
in at least element of the cover: let Ui ⊂ Vi. Using the definition of a base,
we easily see that {Ui}∞i=1 is a cover of X. Then {Vi}∞i=1 is the required
countable subcovering of Γ.

15.P Use 3.A.

15.Q Use 15.12

15.R Use 15.P and 15.A.

15.S Consider an uncountable discrete space.

15.T If xn ∈ A and xn → a, then, obviously, a is an adherent point for
A.

15.U Let a ∈ ClA, and let {Un}n∈N be a decreasing neighborhood
base at a (see 15.16). For each n, there is xn ∈ Un ∩ A, and we easily see
that xn → a.

15.V Indeed, let f : X → Y be a continuous map, let b ∈ X, and let
an → b in X. We must prove that f(an) → f(b) in Y . Let V ⊂ Y be a
neighborhood of f(b). Since f is continuous, f−1(V ) ⊂ X is a neighborhood
of b, and since an → b, we have an ∈ f−1(V ) for n > N . Then also f(an) ∈ V
for n > N , as required.

15.W Assume that f : X → Y is a sequentially continuous map and
A ⊂ Y is a sequentially closed set. To prove that f−1(A) is sequentially
closed, we must prove that if {xn} ⊂ f−1(A) and xn → a, then a ∈ f−1(A).
Since f is sequentially continuous, we have f(xn) → f(a), and since A is
sequentially closed, we have f(a) ∈ A, whence a ∈ f−1(A), as required.

15.X It suffices to check that if F ⊂ Y is a closed set, then so is the
preimage f−1(F ) ⊂ X, i.e., Cl(f−1(F )) ⊂ f−1(F ). Let a ∈ Cl(f−1(F )).
Since X is first countable, we also have a ∈ SCl(f−1(F )) (see 15.U), and so
there is a sequence {xn} ⊂ f−1(F ) such that xn → a, whence f(xn) → f(a)
because f is sequentially continuous. Since F is closed, we have f(a) ∈ F
(by 15.T), i.e., a ∈ f−1(F ), as required.

15.Ax Since l2 is a metric space, it is sufficient to prove that l2 is
separable (see 15.K), i.e., to find a countable everywhere dense set A ⊂ l2.
The first idea here might be to consider the set of sequences with rational
components, but this set is uncountable! Instead of this, let A be the set of
all rational sequences {xi} such that xi = 0 for all sufficiently large i. (To
show that A is countable, use 15.F and 15.E. To show that A is everywhere
dense, use the fact that if a series

∑
x2

i converges, then for each ε > 0 there
is k such that

∑∞
i=k x

2
i < ε.)

16.A Each of the spaces has only a finite number of open sets, and so
each open cover is finite.
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16.B Only the finite ones. (Consider the cover consisting of all single-
tons.)

16.C Consider the cover of R by the open intervals (−n, n), n ∈ N.

16.D The latter condition is precisely the negation of compactness.

16.E This follows from the Lindelöf theorem 15.O.

16.F This follows from the second De Morgan formula (see 2.E). In-
deed,

⋂
Aλ 6= ∅ iff

⋃
(X rAλ) = X r

⋂
Aλ 6= X.

16.G Let X be a compact space and let Γ = {Fλ} be a family
of closed subsets of X with the finite intersection property. Assume the
contrary: let

⋂
Fλ = ∅. Then by the second De Morgan formula we have⋃

(X r Fλ) = X r
⋂
Fλ = X, i.e., {X r Fλ} is an open cover of X. Since

X is compact, this cover contains a finite subcovering:
⋃n

1 (X r Fi) = X,
whence

⋂n
1 Fi = ∅, which contradicts the finite intersection property of Γ.

Prove the converse implication on your own.

16.H Let Γ = {Uα} be a cover of A by open subsets of X. Since
A is a compact set, the cover of A with the sets A ∩ Uα contains a finite
subcovering {A ∩ Uαi}n

1 . Hence {Uαi} is a finite subcovering of Γ.
Prove the converse implication on your own.

16.I Certainly not.

16.J Let X be a compact space, F ⊂ X a closed subset, and {Uα}
an open cover of A. Then {X r F} ∪ {Uα} is an open cover of X, which
contains a finite subcovering {X r F} ∪ {Ui}n

1 . Clearly, {Ui}n
1 is a cover of

F .

16.K This follows from 16.L.

16.L Since X is Hausdorff, for each x ∈ A the points x and b possess
disjoint neighborhoods Ux and Vb(x). Obviously, {Ux}x∈A is an open cover
of A. Since A is compact, the cover contains a finite subcovering {Uxi}n

1 .
Put U =

⋃n
1 Uxi and V =

⋂n
1 Vb(xi). Then U and V are the required sets.

(Check that they are disjoint.)

16.M Combine 16.J and 16.L.

16.N This follows from 16.O.

16.O (Cf. the proof of Lemma 16.L.) Let X be a Hausdorff space,
and let A,B ⊂ X be two compact sets. By Lemma 16.L, each x ∈ B has a
neighborhood Vx disjoint with a certain neighborhood U(x) of A. Obviously,
{Vx}x∈B is an open cover of B. Since B is compact, the cover contains a
finite subcovering {Uxi}n

1 . Put V =
⋃n

1 Vxi and U =
⋂n

1 Ub(xi). Then U
and V are the required neighborhoods. (Check that they are disjoint.)

16.P Let us argue by contradiction. If I is not compact, then I has
a cover Γ0 such that no finite part of Γ0 covers I (see 16.D). We bisect I
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and denote by I1 the half that also is not covered by any finite part of Γ0.
Then we bisect I1, etc. As a result, we obtain a sequence of nested segments
In, where the length of In is equal to 2−n. By the completeness axiom,
they have a unique point in common:

⋂∞
1 In = {x0}. Consider an element

U0 ∈ Γ0 containing x0. Since U0 is open, we have In ⊂ U0 for sufficiently
large n, in contradiction to the fact that, by construction, In is covered by
no finite part of Γ0.

16.Q Repeat the argument used in the proof of Theorem 16.P, only
instead of bisecting the segment each time subdivide the current cube into
2n equal smaller cubes.

16.R Consider the cover by open balls, {Bn(x0)}∞n=1.

16.S Let, e.g., X = [0, 1) ∪ [2, 3]. (Or just put X = [0, 1).) The set
[0, 1) is bounded, it is also closed in X, but it is not compact.

16.T Combine Theorems 14.A, 16.K, and 16.R.
If a subset F ⊂ Rn is bounded, then F lies in a certain cube, which

is compact (see Theorem 16.Q). If, in addition, F is closed, then F is also
compact by 16.J.

16.U We use Theorem 16.H. Let Γ = {Uλ} be a cover of f(X) by
open subsets of Y . Since f is continuous, {f−1(Uλ)} is an open cover of X.
Since X is compact, this cover has a finite subcovering {f−1(Uλi

)}n
i=1. Then

{Uλi
}n

i=1 is a finite subcovering of Γ.

16.V By 16.U and 16.T, the set f(X) ⊂ R is closed and bounded.
Since f(X) is bounded, there exist finite numbers m = inf f(X) and M =
sup f(X), whence, in particular, m ≤ f(x) ≤ M . Since f(X) is closed, we
have m,M ∈ f(X), whence it follows that there are a, b ∈ X with f(a) = m
and f(b) = M , as required.

16.W This follows from 16.23: consider the cover {f−1(U) | U ∈ Γ} of
X.

16.X This immediately follows from 16.J, 16.K, and 16.U.

16.Y Combine 16.X and 16.24.

16.Z See Problem 16.Y.

17.A.1 This is obvious. Let x be a limit point. If x is
not an accumulation point of A, then x has a neighborhood Ux such that
the set Ux ∩ A is finite. Show that x has a neighborhood Wx such that
(Wx r x) ∩A = ∅.

17.A.2 Argue by contradiction: consider the cover of the space by
neighborhoods having finite intersections with the infinite set.

17.A.3 Let X be a space, and let {an} be a sequence of points in X.
Let A be the set of all points in the sequence. If A is finite, there is not
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much to prove. So, we assume that A is infinite. By Theorem 17.A.2, A
has an accumulation point x0. Let {Un} be a countable neighborhood base
of x0 and xn1 ∈ U1 ∩ A. Since the set U2 ∩ A is infinite, there is n2 > n1

such that xn2 ∈ U2 ∩A. Prove that the subsequence {xnk
} thus constructed

converges to x0. If A is finite, then the argument simplifies a great deal.

17.B.1 Consider a sequence {xn}, xn ∈ Fn and show that if xnk
→ x0,

then xn ∈ Fn for all n ∈ N.

17.B.2 Let {Fk} ⊂ X be a sequence of closed sets the finite
intersection property. Then

{⋂n
1 Fk

}
is a nested sequence of nonempty

closed sets, whence
⋂∞

1 Fk 6= ∅. This is obvious.

17.B.3 By the Lindelöf theorem 15.O, it is sufficient to consider count-
able covers {Un}. If no finite collection of sets in this cover is not a cover,
then the closed sets Fn = XrUn form a collection with the finite intersection
property.

17.C This follows from 17.B and 17.A.

17.D Reformulate the definition of an ε-net: A is an ε-net if {Bε(x)}x∈A

is a cover of X. Now the proof is obvious.

17.E We argue by contradiction. If {xi}k−1
i=1 is not an ε-net, then there

is a point xk such that ρ(xi, xk) ≥ ε, i = 1, . . . , k− 1. As a result, we obtain
a sequence in which the distance between any two points is at least ε, and
so it has no convergent subsequences.

17.F This is obvious because open balls in a metric space are
open sets. Use the definition of the metric topology.

17.G The union of finite 1
n -nets of the space is countable and every-

where dense. (see 17.E).

17.H Use 13.82.

17.I If X is compact, then X is sequentially compact by 17.A. If X
is sequentially compact, then X is separable, and hence X has a countable
base. Then 17.C implies that X is compact.

17.J Assume that {xn} is a Cauchy sequence and its subsequence xnk

converges to a point a. Find a numberm such that ρ(xl, xk) <
ε
2 for k, l ≥ m,

and i such that ni > m and ρ(xni , a) <
ε
2 . Then for all l ≥ m we have the

inequality ρ(xl, a) ≤ ρ(xl, xni) + ρ(xni , a) < ε.

17.K Obvious. Let {xn} be a Cauchy sequence. Let n1 be
such that ρ(xn, xm) < 1

2 for all n,m ≥ n1. Therefore, xn ∈ B1/2(xn1) for all

n ≥ n1. Further, take n2 > n1 so that ρ(xn, xm) < 1
4 for all n,m ≥ n2, then

B1/4(xn2) ⊂ B1/2(xn1). Proceeding the construction, we obtain a sequence
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of decreasing disks such that their unique common point x0 satisfies xn →
x0.

17.L Let {xn} be a Cauchy sequence of points of a compact metric
space X. Since X is also sequentially compact, {xn} contains a convergent
subsequence, and then the initial sequence also converges.

17.M Each compact space contains a finite ε-net.
Let us show that the space is sequentially compact. Consider an

arbitrary sequence {xn}. We denote by An a finite 1
n -net in X. Since

X =
⋃

x∈A1
B1(x), one of the balls contains infinitely many points of the

sequence; let xn1 be the first of them. From the remaining members lying
in the first ball, we let xn2 be the first one of those lying in the ball B1/2(x),
x ∈ A2. Proceeding with this construction, we obtain a subsequence {xnk

}.
Let us show that the latter is fundamental. Since by assumption the space
is complete, the constructed sequence has a limit. We have thus proved that
the space is sequentially compact, hence, it is also compact.

17.N Obvious. This follows from assertion 17.M because
an ε

2 -net for a ε
2 -net is an ε-net for the entire space.

18.Ax No, it is not: consider Q ⊂ R.

18.Bx Let X be a locally compact space, F ⊂ X a closed subset space,
x ∈ F . Let Ux ⊂ X be a neighborhood of x with compact closure. Then
Ux ∩F is a neighborhood of x in F . Since F is closed, the set ClF (U ∩F ) =
(ClU) ∩ F (see 6.3) is compact as a closed subset of a compact set.

18.Cx No, this is wrong in general. Take any space (X,Ω) that is not
locally compact (e.g., let X = Q). We put X∗ = X∪x∗ and Ω∗ = {X∗}∪Ω.
The space (X∗,Ω∗) is compact for a trivial reason (which one?), hence, it
is locally compact. Now, X is an open subset of X∗, but it is not locally
compact by our choice of X.

18.Dx Let X be the space, W be a neighborhood of a point x ∈ X. Let
U0 be a neighborhood of x with compact closure. Since X is Hausdorff, it
follows that {x} =

⋂
U∋x ClU , whence {x} =

⋂
U∋x

(
ClU0∩ClU

)
. Since each

of the sets ClU0 ∩ClU is compact, 16.11 implies that x has neighborhoods
U1, . . . , Un such that ClU0 ∩ ClU1 ∩ . . . ∩ ClUn ⊂ W . Put V = U0 ∩ U1 ∩
. . . ∩ Un. Then ClV ⊂ W . Therefore, each neighborhood of x contains the
closure of a certain neighborhood (a “closed neighborhood”) of x. By 14.19,
X is regular.

18.Ex Let X be the space, V ⊂ X the open subset, x ∈ V a point. Let
U be a neighborhood of x such that ClU is compact. By 18.Dx and 14.19, x
has a neighborhood W such that ClW ⊂ U ∩ V . Therefore, ClV W = ClW
is compact, and so the space V is locally compact.

18.Fx Obvious. See the idea used in 18.Ex.
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18.Gx Since ∅ is both open and compact in X, we have ∅,X∗ ∈ Ω∗.
Let us verify that unions and finite intersections of subsets in Ω∗ lie in Ω∗.
This is obvious for subsets in Ω. Let X∗ r Kλ ∈ Ω∗, where Kλ ⊂ X are
compact sets, λ ∈ Λ. Then we have

⋃
(X∗rKλ) = X∗r

⋂
Kλ ∈ Ω∗ because

X is Hausdorff and so
⋂
Kλ is compact. Similarly, if Λ is finite, then we

also have
⋂

(X∗ rKλ) = X∗ r
⋃
Kλ ∈ Ω∗. Therefore, it suffices to consider

the case where a set in Ω∗ and a set in Ω are united (intersected). We leave
this as an exercise.

18.Hx Let U = X∗ rK0 be an element of the cover that contains the
added point. Then the remaining elements of the cover provide an open
cover of the compact set K0.

18.Ix In other words, the topology of X∗ induced on X the initial
topology of X (i.e., Ω∗ ∩ 2X = Ω). We must check that there arise no new
open sets in X. This is true because compact sets in the Hausdorff space X
are closed.

18.Jx If x, y ∈ X, this is obvious. If, say, y = x∗ and Ux is a neighbor-
hood of x with compact closure, then Ux and X r ClUx are neighborhoods
separating x and x∗.

18.Kx Let X∗ r X = {x∗} and Y r X = {y}. We have an obvious
bijection

f : Y → X∗ : x 7→
{
x if x ∈ X,

x∗ if x = y.

If U ⊂ X∗ and U = X∗ rK, where K is a compact set in X, then the set
f−1(U) = Y r K is open in Y . Therefore, f is continuous. It remains to
apply 16.Y.

18.Lx Verify that if an open set U ⊂ S2 contains the “North Pole”
(0, 0, 1) of S2, then the complement of the image of U under the stereo-
graphic projection is compact in R2.

18.Mx X∗ is compact and Hausdorff by 18.Hx and 18.Jx, therefore,
X∗ is regular by 16.M. Since X is a subspace of X∗ by 18.Ix, it remains to
use the fact that regularity is hereditary by 14.20. (Also try to prove the
required assertion without using the one-point compactification.)

18.Nx If1 f∗ is continuous, then, obviously, so is f (by 18.Ix).
Let K ⊂ Y be a compact set, and let U = Y r K. Since f∗ is continuous,
the set (f∗)−1(U) = X∗ r f−1(K) is open in X∗, i.e., f−1(K) is compact in
X. Therefore, f is proper. Use a similar argument.

18.Ox Let f∗ : X∗ → Y ∗ be the canonical extension of a map f : X →
Y . Prove that if F is closed in X, then F ∪ {x∗} is closed in X∗, and hence
compact. After that, use 18.Nx, 16.X, and 18.Ix.
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18.Px A proper injection of a Hausdorff space into a locally compact
Hausdorff space is a topological embedding. A proper bijection of a Haus-
dorff space onto a locally compact Hausdorff space is a homeomorphism.

18.Qx Let Γ be a locally finite cover, and let ∆ be a cover of X by
neighborhoods each of which meets only a finite number of sets in Γ. Since
X is compact, we can assume that ∆ is finite. In this case, obviously, Γ is
also finite.

18.Rx Cover Rn by the balls Bn(0), n ∈ N.

18.Sx Use a locally finite covering of Rn by equal open cubes.

18.Tx Cf. 18.17x.

18.Ux This is obvious.

18.Vx This is 18.Sx.

18.Wx Let Γ be an open cover of X. Since each of the sets Ki =
Xi r IntXi−1 is compact, Γ contains a finite subcovering Γi of Ki. Observe
that the sets Wi = IntXi+1 rXi−2 ⊃ Ki form a locally finite open cover of
X. Intersecting for each i elements of Γi with Wi, we obtain a locally finite
refinement of Γ.

18.Xx Using assertion 18.6x, construct a sequence of open sets Ui such
that for each i the closure Xi := ClUi is compact and lies in Ui+1 ⊂ IntXi+1.
After that, apply 18.Wx.

18.Yx Let Γ = {Uα} be the cover. By 18.18x, there exists an open
cover ∆ = {Vα} such that ClVα ⊂ Uα for each α. Let ϕα : X → I be an
Urysohn function with suppϕα = X r Uα and ϕ−1

α (1) = ClVα (see 14.Ax).
Put ϕ(x) =

∑
α ϕα(x). Then the collection {ϕα(x)/ϕ(x)} is the required

partition of unity.





Chapter IV

Topological

Constructions

19. Multiplication

19◦1. Set-Theoretic Digression: Product of Sets

Let X and Y be sets. The set of ordered pairs (x, y) with x ∈ X and
y ∈ Y is called the direct product or Cartesian product or just product of X
and Y and denoted by X × Y . If A ⊂ X and B ⊂ Y , then A×B ⊂ X × Y .
Sets X×b with b ∈ Y and a×Y with a ∈ X are fibers of the product X×Y .

19.A. Prove that for any A1, A2 ⊂ X and B1, B2 ⊂ Y we have

(A1 ∪A2) × (B1 ∪B2) = (A1 ×B1) ∪ (A1 ×B2) ∪ (A2 ×B1) ∪ (A2 ×B2),

(A1 ×B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩B2),

(A1 ×B1) r (A2 ×B2) =
(
(A1 rA2) ×B1

)
∩
(
A1 × (B1 rB2)

)
.

A1 A2

B1

B2

A1 A2

B1

B2

A1 A2

B1

B2

The natural maps

prX : X × Y → X : (x, y) 7→ x and prY : X × Y → Y : (x, y) 7→ y

135
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are (natural) projections.

19.B. Prove that pr−1
X (A) = A× Y for any A ⊂ X.

19.1. Find the corresponding formula for B ⊂ Y .

19◦2. Graphs

A map f : X → Y determines a subset Γf of X × Y defined by Γf =
{(x, f(x)) | x ∈ X}, it is called the graph of f .

19.C. A set Γ ⊂ X × Y is the graph of a map X → Y iff for each a ∈ X
the intersection Γ ∩ (a× Y ) is one-point.

19.2. Prove that for any map f : X → Y and any set A ⊂ X, we have

f(A) = prY (Γf ∩ (A × Y )) = prY (Γf ∩ pr−1
X (A))

and f−1(B) = prX(Γ ∩ (X × B)) for any B ⊂ Y .

The set ∆ = {(x, x) | x ∈ X} = {(x, y) ∈ X × X | x = y} is the diagonal of
X × X.

19.3. Let A and B be two subsets of X. Prove that (A×B)∩∆ = ∅ iff A∩B = ∅.

19.4. Prove that the map prX

˛̨
Γf

is bijective.

19.5. Prove that f is injective iff prY

˛̨
Γf

is injective.

19.6. Consider the map T : X × Y → Y × X : (x, y) 7→ (y, x). Prove that
Γf−1 = T (Γf ) for any invertible map f : X → Y .

19◦3. Product of Topologies

Let X and Y be two topological spaces. If U is an open set of X and B
is an open set of Y , then we say that U × V is an elementary set of X × Y .

19.D. The set of elementary sets of X×Y is a base of a topological structure
in X × Y .

The product of two spaces X and Y is the set X×Y with the topological
structure determined by the base consisting of elementary sets.

19.7. Prove that for any subspaces A and B of spaces X and Y the product
topology on A × B coincides with the topology induced from X × Y via the
natural inclusion A × B ⊂ X × Y .

19.E. Y ×X is canonically homeomorphic to X × Y .

The word canonically means here that a homeomorphism between X×Y
and Y ×X, which exists according to the statement, can be chosen in a nice
special (or even obvious?) way, so that we may expect that it has additional
pleasant properties.

19.F. The canonical bijection X × (Y ×Z) → (X ×Y )×Z is a homeomor-
phism.
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19.8. Prove that if A is closed in X and B is closed in Y , then A×B is closed in
X × Y .

19.9. Prove that Cl(A × B) = Cl A × Cl B for any A ⊂ X and B ⊂ Y .

19.10. Is it true that Int(A × B) = IntA × IntB?

19.11. Is it true that Fr(A × B) = Fr A × Fr B?

19.12. Is it true that Fr(A × B) = (Fr A × B) ∪ (A × Fr B)?

19.13. Prove that Fr(A × B) = (Fr A × B) ∪ (A × Fr B) for closed A and B.

19.14. Find a formula for Fr(A × B) in terms of A, Fr A, B, and FrB.

19◦4. Topological Properties of Projections and Fibers

19.G. The natural projections prX : X × Y → X and prY : X × Y → Y
are continuous for any topological spaces X and Y .

19.H. The topology of product is the coarsest topology with respect to
which prX and prY are continuous.

19.I. A fiber of a product is canonically homeomorphic to the corresponding
factor. The canonical homeomorphism is the restriction to the fiber of the
natural projection of the product onto the factor.

19.J. Prove that R1×R1 = R2, (R1)n = Rn, and (I)n = In. (We remind
the reader that In is the n-dimensional unit cube in Rn.)

19.15. Let ΣX and ΣY be bases of spaces X and Y . Prove that the sets U × V
with U ∈ ΣX and V ∈ ΣY constitute a base for X × Y .

19.16. Prove that a map f : X → Y is continuous iff prX |Γf
: Γf → X is a

homeomorphism.

19.17. Prove that if W is open in X × Y , then prX(W ) is open in X.

A map from a space X to a space Y is open (closed) if the image of any open
set under this map is open (respectively, closed). Therefore, 19.17 states that
prX : X × Y → X is an open map.

19.18. Is prX a closed map?

19.19. Prove that for each space X and each compact space Y the map prX :
X × Y → X is closed.

19◦5. Cartesian Products of Maps

Let X, Y , and Z be three sets. A map f : Z → X × Y determines the
compositions f1 = prX ◦f : Z → X and f2 = prY ◦f : Z → Y , which are
called the factors (or components) of f . Indeed, f can be recovered from
them as a sort of product.

19.K. Prove that for any maps f1 : Z → X and f2 : Z → Y there exists a
unique map f : Z → X × Y with prX ◦f = f1 and prY ◦f = f2.
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19.20. Prove that f−1(A × B) = f−1
1 (A) ∩ f−1

2 (B) for any A ⊂ X and B ⊂ Y .

19.L. Let X, Y , and Z be three spaces. Prove that f : Z → X × Y is
continuous iff so are f1 and f2.

Any two maps g1 : X1 → Y1 and g2 : X2 → Y2 determine a map

g1 × g2 : X1 ×X2 → Y1 × Y2 : (x1, x2) 7→ (g1(x1), g2(x2)),

which is their (Cartesian) product.

19.21. Prove that (g1 × g2)(A1 × A2) = g1(A1) × g2(A2) for any A1 ⊂ X1 and
A2 ⊂ X2.

19.22. Prove that (g1 × g2)
−1(B1 × B2) = g−1

1 (B1) × g−1
2 (B2) for any B1 ⊂ Y1

and B2 ⊂ Y2.

19.M. Prove that the Cartesian product of continuous maps is continuous.

19.23. Prove that the Cartesian product of open maps is open.

19.24. Prove that a metric ρ : X × X → R is continuous with respect to the
topology generated by the metric.

19.25. Let f : X → Y be a map. Prove that the graph Γf is the preimage of the
diagonal ∆Y = {(y, y) | y ∈ Y } ⊂ Y ×Y under the map f × idY : X ×Y → Y ×Y .

19◦6. Properties of Diagonal and Other Graphs

19.26. Prove that a space X is Hausdorff iff the diagonal ∆ = {(x, x) | x ∈ X} is
closed in X × X.

x

y

f(x)

19.27. Prove that if Y is a Hausdorff space and f : X → Y is a continuous map,
then the graph Γf is closed in X × Y .

19.28. Let Y be a compact space. Prove that if a map f : X → Y has closed
graph Γf , then f is continuous.

19.29. Prove that the hypothesis on compactness in 19.28 is necessary.

19.30. Let f : R → R be a continuous function. Prove that its graph is:

(1) closed;
(2) connected;
(3) path connected;
(4) locally connected;
(5) locally compact.
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19.31. Consider the following functions

1) R → R : x 7→
(

0 if x = 0,
1
x
, otherwise.

; 2) R → R : x 7→
(

0 if x = 0,

sin 1
x
, otherwise.

Do their

graphs possess the properties listed in 19.30?

19.32. Does any of the properties of the graph of a function f that are mentioned
in 19.30 imply that f is continuous?

19.33. Let Γf be closed. Then the following assertions are equivalent:

(1) f is continuous;
(2) f is locally bounded;
(3) the graph Γf of f is connected;
(4) the graph Γf of f is path-connected.

19.34. Prove that if Γf is connected and locally connected, then f is continuous.

19.35. Prove that if Γf is connected and locally compact, then f is continuous.

19.36. Are some of the assertions in Problems 19.33–19.35 true for maps f :
R2 → R?

19◦7. Topological Properties of Products

19.N. The product of Hausdorff spaces is Hausdorff.

19.37. Prove that the product of regular spaces is regular.

19.38. The product of normal spaces is not necessarily normal.

19.38.1*. Prove that the space R formed by real numbers with the
topology determined by the base consisting of all semi-open intervals
[a, b) is normal.

19.38.2. Prove that in the Cartesian square of the space introduced
in 19.38.1 the subspace {(x, y) | x = −y} is closed and discrete.

19.38.3. Find two disjoint subsets of {(x, y) | x = −y} that have no
disjoint neighborhoods in the Cartesian square of the space of 19.38.1.

19.O. The product of separable spaces is separable.

19.P. First countability of factors implies first countability of the product.

19.Q. The product of second countable spaces is second countable.

19.R. The product of metrizable spaces is metrizable.

19.S. The product of connected spaces is connected.

19.39. Prove that for connected spaces X and Y and any proper subsets A ⊂ X,
B ⊂ Y the set X × Y r A × B is connected.

19.T. The product of path-connected spaces is path-connected.

19.U. The product of compact spaces is compact.
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19.40. Prove that the product of locally compact spaces is locally compact.

19.41. If X is a paracompact space and Y is compact, then X×Y is paracompact.

19.42. For which of the topological properties studied above is it true that if
X × Y possesses the property, then so does X?

19◦8. Representation of Special Spaces as Products

19.V. Prove that R2 r 0 is homeomorphic to S1 × R.

19.43. Prove that Rn r Rk is homeomorphic to Sn−k−1 × Rk+1.

19.44. Prove that Sn ∩ {x ∈ Rn+1 | x2
1 + · · · + x2

k ≤ x2
k+1 + · · · + x2

n+1} is

homeomorphic to Sk−1 × Dn−k+1.

19.45. Prove that O(n) is homeomorphic to SO(n) × O(1).

19.46. Prove that GL(n) is homeomorphic to SL(n) × GL(1).

19.47. Prove that GL+(n) is homeomorphic to SO(n) × R
n(n+1)

2 , where

GL+(n) = {A ∈ L(n, n) | det A > 0}.
19.48. Prove that SO(4) is homeomorphic to S3 × SO(3).

The space S1 × S1 is a torus.

19.W. Construct a topological embedding of the torus to R3.

The product S1 × · · · × S1 of k factors is the k-dimensional torus.

19.X. Prove that the k-dimensional torus can be topologically embedded
into Rk+1.

19.Y. Find topological embeddings of S1 × D2, S1 × S1 × I, and S2 × I
into R3.
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20. Quotient Spaces

20◦1. Set-Theoretic Digression:
Partitions and Equivalence Relations

Recall that a partition of a set A is a cover of A consisting of pairwise
disjoint sets.

Each partition of a set X determines an equivalence relation (i.e., a rela-
tion, which is reflexive, symmetric, and transitive): two elements of X are
said to be equivalent if they belong to the same element of the partition.
Vice versa, each equivalence relation in X determines the partition of X
into classes of equivalent elements. Thus, partitions of a set into nonempty
subsets and equivalence relations in the set are essentially the same. More
precisely, they are two ways of describing the same phenomenon.

Let X be a set, S a partition. The set whose elements are members of
the partition S (which are subsets of X) is the quotient set or factor set of
X by S, it is denoted by X/S. 1

20.1. Riddle. How does this operation relate to division of numbers? Why is
there a similarity in terminology and notation?

The setX/S is also called the set of equivalence classes for the equivalence
relation corresponding to the partition S.

The map pr : X → X/S that maps x ∈ X to the element of S containing
x is the (canonical) projection or factorization map. A subset of X which is
a union of elements of a partition is saturated . The smallest saturated set
containing a subset A of X is the saturation of A.

20.2. Prove that A ⊂ X is an element of a partition S of X iff A = pr−1(point),
where pr : X → X/S is the natural projection.

20.A. Prove that the saturation of a set A equals pr−1
(
pr(A)

)
.

20.B. Prove that a set is saturated iff it is equal to its saturation.

1At first glance, the definition of a quotient set contradicts one of the very profound principles
of the set theory, which states that a set is determined by its elements. Indeed, according to this
principle, we have X/S = S since S and X/S have the same elements. Hence, there seems to
be no need to introduce X/S. The real sense of the notion of quotient set is not in its literal
set-theoretic meaning, but in our way of thinking of elements of partitions. If we remember that
they are subsets of the original set and want to keep track of their internal structure (at least, of
their elements), then we speak of a partition. If we think of them as atoms, getting rid of their
possible internal structure, then we speak about the quotient set.
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20◦2. Quotient Topology

A quotient set X/S of a topological space X with respect to a partition S
into nonempty subsets is provided with a natural topology: a set U ⊂
X/S is said to be open in X/S if its preimage pr−1(U) under the canonical
projection pr : X → X/S is open.

20.C. The collection of these sets is a topological structure in the quotient
set X/S.

This topological structure is the quotient topology . The set X/S with
this topology is the quotient space of X by partition S.

20.3. Give an explicit description of the quotient space of the segment [0, 1] by
the partition consisting of [0, 1

3
], ( 1

3
, 2

3
], ( 2

3
, 1].

[ ]( ]( ]

a b c

20.4. What can you say about a partition S of a space X if the quotient space X/S
is known to be discrete?

20.D. A subset of a quotient space X/S is open iff it is the image of an
open saturated set under the canonical projection pr.

20.E. A subset of a quotient space X/S is closed, iff its preimage under pr
is closed in X, iff it is the image of a closed saturated set.

20.F. The canonical projection pr : X → X/S is continuous.

20.G. Prove that the quotient topology is the finest topology in X/S such
that the canonical projection pr is continuous with respect to it.

20◦3. Topological Properties of Quotient Spaces

20.H. A quotient space of a connected space is connected.

20.I. A quotient space of a path-connected space is path-connected.

20.J. A quotient space of a separable space is separable.

20.K. A quotient space of a compact space is compact.

20.L. The quotient space of the real line by partition R+, R r R+ is not
Hausdorff.

20.M. The quotient space of a space X by a partition S is Hausdorff iff
any two elements of S have disjoint saturated neighborhoods.
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20.5. Formulate similar necessary and sufficient conditions for a quotient space
to satisfy other separation axioms and countability axioms.

20.6. Give an example showing that the second countability can may get lost
when we pass to a quotient space.

20◦4. Set-Theoretic Digression: Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let f : X → Y
be a map which is constant on each element of S. Then there is a map
X/S → Y which sends each element A of S to the element f(a), where
a ∈ A. This map is denoted by f/S and called the quotient map or factor

map of f (by the partition S).

20.N. 1) Prove that a map f : X → Y is constant on each element of a
partition S of X iff there exists a map g : X/S → Y such that the following
diagram is commutative:

X
f−−−−→ Y

pr

y ր g

X/S

2) Prove that such a map g coincides with f/S.

More generally, if S and T are partitions of sets X and Y , then every
map f : X → Y that maps each element of S to an element of T determines
a map X/S → Y/T which sends an element A of partition S to the element
of partition T containing f(A). This map is denoted by f/S, T and called

the quotient map or factor map of f (with respect to S and T ).

20.O. Formulate and prove for f/S, T a statement generalizing 20.N.

A map f : X → Y determines a partition of the set X into nonempty
preimages of the elements of Y . This partition is denoted by S(f).

20.P. The map f/S(f) : X/S(f) → Y is injective.

This map is the injective factor (or injective quotient) of f .

20◦5. Continuity of Quotient Maps

20.Q. Let X and Y be two spaces, S a partition of X into nonempty sets,
and f : X → Y a continuous map constant on each element of S. Then the
factor f/S of f is continuous.

20.7. If the map f is open, then so is the quotient map f/S.

20.8. Let X and Y be two spaces, S a partition of X into nonempty sets. Prove
that the formula f 7→ f/S determines a bijection from the set of all continuous
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maps X → Y that are constant on each element of S onto the set of all continuous
maps X/S → Y .

20.R. Let X and Y be two spaces, S and T partitions of X and Y , respec-
tively, and f : X → Y a continuous map which maps each element of S into
an element of T . Then the map f/S, T : X/S → Y/T is continuous.

20◦6x. Closed Partitions

A partition S of a space X is closed if the saturation of each closed set
is closed.

20.1x. Prove that a partition is closed iff the canonical projection X → X/S is a
closed map.

20.2x. Prove that if a partition S contains only one element consisting of more
than one point, then S is closed if this element is a closed set.

20.Ax. Let X be a space satisfying the first separation axiom, S a closed
partition of X. Then the quotient space X/S also satisfies the first separa-
tion axiom.

20.Bx. The quotient space of a normal space with respect to a closed parti-
tion is normal.

20◦7x. Open Partitions

A partition S of a space X is open if the saturation of each open set is
open.

20.3x. Prove that a partition S is open iff the canonical projection X → X/S is
an open map.

20.4x. Prove that if a set A is saturated with respect to an open partition, then
IntA and Cl A are also saturated.

20.Cx. The quotient space of a second countable space with respect to an
open partition is second countable.

20.Dx. The quotient space of a first countable space with respect to an open
partition is first countable.

20.Ex. Let X and Y be two spaces, and let S and T be their open partitions.
Denote by S × T the partition of X × Y consisting of A × B with A ∈ S
and B ∈ T . Then the injective factor X × Y/S × T → X/S × Y/T of
pr× prX × Y → X/S × Y/T is a homeomorphism.
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21. Zoo of Quotient Spaces

21◦1. Tool for Identifying a Quotient Space with
a Known Space

21.A. If X is a compact space, Y is a Hausdorff space, and f : X → Y
is a continuous map, then the injective factor f/S(f) : X/S(f) → Y is a

homeomorphism.

21.B. The injective factor of a continuous map from a compact space to a
Hausdorff one is a topological embedding.

21.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all letters of the alphabet.

21.2. Prove that there exists a partition of a segment I with the quotient space
homeomorphic to square I × I .

21◦2. Tools for Describing Partitions

An accurate literal description of a partition can often be somewhat
cumbersome, but usually it can be shortened and made more understand-
able. Certainly, this requires a more flexible vocabulary with lots of words
having almost the same meanings. For instance, such words as factorize and
pass to a quotient can be replaced by attach, glue together , identify , contract,
paste, and other words accompanying these ones in everyday life.

Some elements of this language are easy to formalize. For instance,
factorization of a space X with respect to a partition consisting of a set
A and one-point subsets of the complement of A is the contraction (of the
subset A to a point), and the result is denoted by X/A.

21.3. Let A,B ⊂ X form a fundamental cover of a space X. Prove that the
quotient map A/A ∩ B → X/B of the inclusion A →֒ X is a homeomorphism.

If A and B are two disjoint subspaces of a space X and f : A → B is
a homeomorphism, then passing to the quotient of X by the partition into
singletons in X r (A ∪ B) and two-point sets {x, f(x)}, where x ∈ A, we
glue or identify the sets A and B via the homeomorphism f .

A rather convenient and flexible way for describing partitions is to de-
scribe the corresponding equivalence relations. The main advantage of this
approach is that, by transitivity, it suffices to specify only some pairs of
equivalent elements: if one states that x ∼ y and y ∼ z, then it is not
necessary to state that x ∼ z since this already follows.

Hence, a partition is represented by a list of statements of the form
x ∼ y that are sufficient for recovering the equivalence relation. We denote
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the corresponding partition by such a list enclosed into square brackets. For
example, the quotient of a space X obtained by identifying subsets A and B
by a homeomorphism f : A → B is denoted by X/[a ∼ f(a) for any a ∈ A]

or just X/[a ∼ f(a)].

Some partitions are easily described by a picture, especially if the original
space can be embedded in the plane. In such a case, as in the pictures below,
we draw arrows on the segments to be identified to show the directions to
be identified.

Below we introduce all these kinds of descriptions for partitions and give
examples of their usage, simultaneously providing literal descriptions. The
latter are not that nice, but they may help the reader to remain confident
about the meaning of the new words. On the other hand, the reader will
appreciate the improvement the new words bring in.

21◦3. Welcome to the Zoo

21.C. Prove that I/[0 ∼ 1] is homeomorphic to S1.

∼=

In other words, the quotient space of segment I by the partition consist-
ing of {0, 1} and {a} with a ∈ (0, 1) is homeomorphic to a circle.

21.C.1. Find a surjective continuous map I → S1 such that the corresponding
partition into preimages of points consists of one-point subsets of the interior
of the segment and the pair of boundary points of the segment.

21.D. Prove that Dn/Sn−1 is homeomorphic to Sn.

In 21.D, we deal with the quotient space of the n-diskDn by the partition
{Sn−1} ∪ {{x} | x ∈ Bn}.

Here is a reformulation of 21.D: Contracting the boundary of an n-
dimensional ball to a point, we obtain gives rise an n-dimensional sphere.

21.D.1. Find a continuous map of the n-disk Dn to the n-sphere Sn that maps
the boundary of the disk to a single point and bijectively maps the interior of
the disk onto the complement of this point.

21.E. Prove that I2/[(0, t) ∼ (1, t) for t ∈I] is homeomorphic to S1 × I.

Here the partition consists of pairs of points {(0, t), (1, t)} where t ∈ I,
and one-point subsets of (0, 1) × I.
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Reformulation of 21.E: If we glue the side edges of a square by identifying
points on the same hight, then we obtain a cylinder.

21.F. S1 × I/[(z, 0) ∼ (z, 1) for z ∈ S1] is homeomorphic to S1 × S1.

Here the partition consists of one-point subsets of S1 × (0, 1), and pairs
of points of the basis circles lying on the same generatrix of the cylinder.

Here is a reformulation of 21.F: If we glue the base circles of a cylinder
by identifying points on the same generatrix, then we obtain a torus.

21.G. I2/[(0, t) ∼ (1, t), (t, 0) ∼ (t, 1)] is homeomorphic to S1 × S1.

In 21.G , the partition consists of

• one-point subsets of the interior (0, 1) × (0, 1) of the square,

• pairs of points on the vertical sides that are the same distance from
the bottom side (i.e., pairs {(0, t), (1, t)} with t ∈ (0, 1)),

• pairs of points on the horizontal sides that lie on the same vertical
line (i.e., pairs {(t, 0), (t, 1)} with t ∈ (0, 1)),

• the four vertices of the square

Reformulation of 21.G: Identifying the sides of a square according to
the picturewe obtain a torus.

21◦4. Transitivity of Factorization

A solution of Problem 21.G can be based on Problems 21.E and 21.F
and the following general theorem.

21.H Transitivity of Factorization. Let S be a partition of a space
X, and let S′ be a partition of the space X/S. Then the quotient space
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(X/S)/S′ is canonically homeomorphic to X/T , where T is the partition of
X into preimages of elements of S′ under the projection X → X/S.

21◦5. Möbius Strip

The Möbius strip or Möbius band is defined as I2/[(0, t) ∼ (1, 1 − t)]. In

other words, this is the quotient space of the square I2 by the partition into
centrally symmetric pairs of points on the vertical edges of I2, and singletons
that do not lie on the vertical edges. The Möbius strip is obtained, so to
speak, by identifying the vertical sides of a square in such a way that the
directions shown on them by arrows are superimposed:

21.I. Prove that the Möbius strip is homeomorphic to the surface that is
swept in R3 by a segment rotating in a half-plane around the midpoint, while
the half-plane rotates around its boundary line. The ratio of the angular
velocities of these rotations is such that the rotation of the half-plane through
360◦ takes the same time as the rotation of the segment through 180◦. See
Figure.

21◦6. Contracting Subsets

21.4. Prove that [0, 1]/[ 1
3
, 2

3
] is homeomorphic to [0, 1], and [0, 1]/{ 1

3
, 1} is home-

omorphic to letter P.

21.5. Prove that the following spaces are homeomorphic:
(a) R2; (b) R2/I; (c) R2/D2; (d) R2/I2;

(e) R2/A, where A is a union of several segments with a common end point;
(f) R2/B, where B is a simple finite polygonal line, i.e., a union of a finite

sequence of segments I1, . . . , In such that the initial point of Ii+1 is the
final point of Ii.



21. Zoo of Quotient Spaces 149

21.6. Prove that if f : X → Y is a homeomorphism, then the quotient spaces
X/A and Y/f(A) are homeomorphic.

21.7. Let A ⊂ R2 be a ray {(x, y) | x ≥ 0, y = 0}. Is R2/A homeomorphic to
IntD2 ∪ {(0, 1)}?

21◦7. Further Examples

21.8. Prove that S1/[z ∼ e2πi/3z] is homeomorphic to S1.

The partition in 21.8 consists of triples of points that are vertices of equilateral
inscribed triangles.

21.9. Prove that the following quotient spaces of the disk D2 are homeomorphic
to D2:

(1) D2/[(x, y) ∼ (−x,−y)],

(2) D2/[(x, y) ∼ (x,−y)],

(3) D2/[(x, y) ∼ (−y, x)].

21.10. Find a generalization of 21.9 with Dn substituted for D2.

21.11. Describe explicitly the quotient space of line R1 by equivalence relation
x ∼ y ⇔ x − y ∈ Z.

21.12. Represent the Möbius strip as a quotient space of cylinder S1 × I .

21◦8. Klein Bottle

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words, this

is the quotient space of square I2 by the partition into

• one-point subsets of its interior,

• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same
vertical line,

• pairs of points (0, t), (1, 1− t) symmetric with respect to the center
of the square that lie on the vertical edges, and

• the quadruple of vertices.

21.13. Present the Klein bottle as a quotient space of

(1) a cylinder;
(2) the Möbius strip.

21.14. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphic to the Klein bot-

tle. (Here w̄ denotes the complex number conjugate to w.)

21.15. Embed the Klein bottle into R4 (cf. 21.I and 19.W).

21.16. Embed the Klein bottle into R4 so that the image of this embedding under
the orthogonal projection R4 → R3 would look as follows:
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21◦9. Projective Plane

Let us identify each boundary point of the disk D2 with the antipodal
point, i.e., factorize the disk by the partition consisting of one-point subsets
of the interior of the disk and pairs of points on the boundary circle sym-
metric with respect to the center of the disk. The result is the projective

plane. This space cannot be embedded in R3, too. Thus we are not able to
draw it. Instead, we present it in other way.

21.J. A projective plane is a result of gluing together a disk and a Möbius
strip via a homeomorphism between their boundary circles.

21◦10. You May Have Been Provoked to Perform
an Illegal Operation

Solving the previous problem, you did something that did not fit into the
theory presented above. Indeed, the operation with two spaces called gluing

in 21.J has not appeared yet. It is a combination of two operations: first, we
make a single space consisting of disjoint copies of the original spaces, and
then we factorize this space by identifying points of one copy with points of
another. Let us consider the first operation in detail.

21◦11. Set-Theoretic Digression: Sums of Sets

The (disjoint) sum of a family of sets {Xα}α∈A is the set of pairs (xα, α)
such that xα ∈ Xα. The sum is denoted by

⊔
α∈AXα. So, we can write

⊔

α∈A

Xα =
⋃

α∈A

(Xα × {α}).

For each β ∈ A, we have a natural injection

inβ : Xβ →
⊔

α∈A

Xα : x 7→ (x, β).

If only two sets X and Y are involved and they are distinct, then we can
avoid indices and define the sum by setting

X ⊔ Y = {(x,X) | x ∈ X} ∪ {(y, Y ) | y ∈ Y }.
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21◦12. Sums of Spaces

21.K. Let {Xα}α∈A be a collection of topological spaces. Then the collec-
tion of subsets of

⊔
α∈AXα whose preimages under all inclusions inα, α ∈ A,

are open is a topological structure.

The sum
⊔

α∈AXα with this topology is the (disjoint) sum of the topo-

logical spaces Xα (α ∈ A).

21.L. The topology described in 21.K is the finest topology with respect to
which all inclusions inα are continuous.

21.17. The maps inβ : Xβ → F
α∈A Xα are topological embedding, and their

images are both open and closed in
F

α∈A Xα.

21.18. Which of the standard topological properties are inherited from summands
Xα by the sum

F
α∈A Xα? Which are not?

21◦13. Attaching Space

LetX and Y be two spaces, A a subset of Y , and f : A→ X a continuous
map. The quotient space X ∪f Y = (X ⊔ Y )/[a ∼ f(a) for a ∈ A] is said to

be the result of attaching or gluing the space Y to the space X via f . The
map f is the attaching map.

Here the partition of X ⊔ Y consists of one-point subsets of in2(Y rA)
and in1(X r f(A)), and sets in1(x) ∪ in2

(
f−1(x)

)
with x ∈ f(A).

21.19. Prove that the composition of inclusion X → X⊔Y and projection X⊔Y →
X ∪f Y is a topological embedding.

21.20. Prove that if X is a point, then X ∪f Y is Y/A.

21.M. Prove that attaching the n-disk Dn to its copy via the identity map
of the boundary sphere Sn−1 we obtain a space homeomorphic to Sn.

21.21. Prove that the Klein bottle is a result of gluing together two copies of the
Möbius strip via the identity map of the boundary circle.

a1 b1

a2 b2

a b

21.22. Prove that the result of gluing together two copies of a cylinder via the
identity map of the boundary circles (of one copy to the boundary circles of the
other) is homeomorphic to S1 × S1.
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21.23. Prove that the result of gluing together two copies of the solid torus S1×D2

via the identity map of the boundary torus S1 × S1 is homeomorphic to S1 × S2.

21.24. Obtain the Klein bottle by gluing two copies of the cylinder S1×I to each
other.

21.25. Prove that the result of gluing together two copies of the solid torus S1×D2

via the map

S1 × S1 → S1 × S1 : (x, y) 7→ (y, x)

of the boundary torus to its copy is homeomorphic to S3.

21.N. Let X and Y be two spaces, A a subset of Y , and f, g : A→ X two
continuous maps. Prove that if there exists a homeomorphism h : X → X
such that h ◦ f = g, then X ∪f Y and X ∪g Y are homeomorphic.

21.O. Prove that Dn∪hD
n is homeomorphic to Sn for any homeomorphism

h : Sn−1 → Sn−1.

21.26. Classify up to homeomorphism those spaces which can be obtained from
a square by identifying a pair of opposite sides by a homeomorphism.

21.27. Classify up to homeomorphism the spaces that can be obtained from two
copies of S1 × I by identifying the copies of S1 × {0, 1} by a homeomorphism.

21.28. Prove that the topological type of the space resulting from gluing together
two copies of the Möbius strip via a homeomorphism of the boundary circle does
not depend on the homeomorphism.

21.29. Classify up to homeomorphism the spaces that can be obtained from S1×I
by identifying S1 × 0 and S1 × 1 via a homeomorphism.

21◦14. Basic Surfaces

A torus S1 × S1 with the interior of an embedded disk deleted is a
handle. A two-sphere with the interior of n disjoint embedded disks deleted
is a sphere with n holes.

21.P. A sphere with a hole is homeomorphic to the disk D2.

21.Q. A sphere with two holes is homeomorphic to the cylinder S1 × I.

∼= ∼=

A sphere with three holes has a special name. It is called pantaloons or
just pants .
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∼=

The result of attaching p copies of a handle to a sphere with p holes via
embeddings homeomorphically mapping the boundary circles of the handles
onto those of the holes is a sphere with p handles, or, in a more ceremonial
way (and less understandable, for a while), an orientable connected closed

surface of genus p.

21.30. Prove that a sphere with p handles is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

21.R. A sphere with one handle is homeomorphic to the torus S1 × S1.

∼=

21.S. A sphere with two handles is homeomorphic to the result of gluing
together two copies of a handle via the identity map of the boundary circle.

∼=

A sphere with two handles is a pretzel . Sometimes, this word also denotes
a sphere with more handles.

The space obtained from a sphere with q holes by attaching q copies
of the Möbius strip via embeddings of the boundary circles of the Möbius
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strips onto the boundary circles of the holes (the boundaries of the holes) is
a sphere with q crosscaps, or a nonorientable connected closed surface of genus

q.

21.31. Prove that a sphere with q crosscaps is well defined up to homeomorphism
(i.e., the topological type of the result of gluing does not depend on the attaching
embeddings).

21.T. A sphere with a crosscap is homeomorphic to the projective plane.

21.U. A sphere with two crosscaps is homeomorphic to the Klein bottle.

A sphere, spheres with handles, and spheres with crosscaps are basic

surfaces.

21.V. Prove that a sphere with p handles and q crosscaps is homeomorphic
to a sphere with 2p + q crosscaps (here q > 0).

21.32. Classify up to homeomorphism those spaces which are obtained by attach-
ing p copies of S1 × I to a sphere with 2p holes via embeddings of the boundary
circles of the cylinders onto the boundary circles of the sphere with holes.
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22. Projective Spaces

This section can be considered as a continuation of the previous one. The
quotient spaces described here are of too great importance to regard them
just as examples of quotient spaces.

22◦1. Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere Sn by the
partition into pairs of antipodal points, and denoted by RPn.

22.A. The space RPn is homeomorphic to the quotient space of the n-
disk Dn by the partition into one-point subsets of the interior of Dn, and
pairs of antipodal point of the boundary sphere Sn−1.

22.B. RP 0 is a point.

22.C. The space RP 1 is homeomorphic to the circle S1.

22.D. The space RP 2 is homeomorphic to the projective plane defined in
the previous section.

22.E. The space RPn is canonically homeomorphic to the quotient space
of Rn+1 r 0 by the partition into one-dimensional vector subspaces of Rn+1

punctured at 0.

A point of the space Rn+1 r 0 is a sequence of real numbers, which are
not all zeros. These numbers are the homogeneous coordinates of the cor-
responding point of RPn. The point with homogeneous coordinates x0, x1,
. . . , xn is denoted by (x0 : x1 : · · · : xn). Homogeneous coordinates deter-
mine a point of RPn, but are not determined by this point: proportional
vectors of coordinates (x0, x1, . . . , xn) and (λx0, λx1, . . . , λxn) determine the
same point of RPn.

22.F. The space RPn is canonically homeomorphic to the metric space,
whose points are lines of Rn+1 through the origin 0 = (0, . . . , 0) and the
metric is defined as the angle between lines (which takes values in [0, π

2 ]).
Prove that this is really a metric.

22.G. Prove that the map

i : Rn → RPn : (x1, . . . , xn) 7→ (1 : x1 : · · · : xn)

is a topological embedding. What is its image? What is the inverse map of
its image onto Rn?

22.H. Construct a topological embedding RPn−1 → RPn with image RPnr

i(Rn), where i is the embedding from Problem 22.G.
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Therefore the projective space RPn can be considered as the result of
extending Rn by adjoining “improper” or “infinite” points, which constitute
a projective space RPn−1.

22.1. Introduce a natural topological structure in the set of all lines on the plane
and prove that the resulting space is homeomorphic to a) RP 2 r {pt}; b) open
Möbius strip (i.e., a Möbius strip with the boundary circle removed).

22.2. Prove that the set of all rotations of the space R3 around lines passing
through the origin equipped with the natural topology is homeomorphic to RP 3.

22◦2x. Complex Projective Space of Dimension n

This space is defined as the quotient space of the unit sphere S2n+1 in
Cn+1 by the partition into circles cut by (complex) lines of Cn+1 passing
through the point 0. It is denoted by CPn.

22.Ax. CPn is homeomorphic to the quotient space of the unit 2n-disk D2n

of the space Cn by the partition whose elements are one-point subsets of the
interior of D2n and circles cut on the boundary sphere S2n−1 by (complex)
lines of Cn passing through the origin 0 ∈ Cn.

22.Bx. CP 0 is a point.

The space CP 1 is a complex projective line.

22.Cx. The complex projective line CP 1 is homeomorphic to S2.

22.Dx. The space CPn is canonically homeomorphic to the quotient space
of the space Cn+1 r0 by the partition into complex lines of Cn+1 punctured
at 0.

Hence, CPn can be regarded as the space of complex-proportional non-
zero complex sequences (x0, x1, . . . , xn). The notation (x0 : x1 : · · · : xn)
and term homogeneous coordinates introduced for the real case are used in
the same way for the complex case.

22.Ex. The space CPn is canonically homeomorphic to the metric space,
whose points are the (complex) lines of Cn+1 passing through the origin 0,
and the metric is defined as the angle between lines (which takes values in
[0, π

2 ]).
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22◦3x. Quaternionic Projective Spaces

Recall that R4 bears a remarkable multiplication, which was discovered
by R. W. Hamilton in 1843. It can be defined by the formula

(x1, x1, x3, x4) × (y1, y2, y3, y4) =

(x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,

x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1).

It is bilinear, and to describe it in a shorter way it suffices to specify the
products of the basis vectors. The latter are traditionally denoted in this
case, following Hamilton, as follows:

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1).

In this notation, 1 is really a unity: (1, 0, 0, 0) × x = x for any x ∈ R4. The
rest of multiplication table looks as follows:

ij = k, jk = i, ki = j, ji = −k, kj = −i and ik = −j.
Together with coordinate-wise addition, this multiplication determines a
structure of algebra in R4. Its elements are quaternions.

22.Fx. Check that the quaternion multiplication is associative.

It is not commutative (e.g., ij = k 6= −k = ji). Otherwise, quaternions
are very similar to complex numbers. As in C, there is a transformation
called conjugation acting in the set of quaternions. As the conjugation of
complex numbers, it is also denoted by a bar: x 7→ x. It is defined by
the formula (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4) and has two remarkable
properties:

22.Gx. We have ab = ba for any two quaternions a and b.

22.Hx. We have aa = |a|2, i.e., the product of any quaternion a by the
conjugate quaternion a equals (|a|2, 0, 0, 0).

The latter property allows us to define, for any a ∈ R4, the inverse
quaternion

a−1 = |a|−2a

such that aa−1 = 1.

Hence, the quaternion algebra is a division algebra or a skew field . It is
denoted by H after Hamilton, who discovered it.

In the space Hn = R4n, there are right quaternionic lines, i.e., subsets
{(a1ξ, . . . , anξ) | ξ ∈ H}, and similar left quaternionic lines {(ξa1, . . . , ξan) |
ξ ∈ H}. Each of them is a real 4-dimensional subspace of Hn = R4n.
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22.Ix. Find a right quaternionic line that is not a left quaternionic line.

22.Jx. Prove that two right quaternionic lines in Hn either meet only at 0,
or coincide.

The quotient space of the unit sphere S4n+3 of the space Hn+1 = R4n+4

by the partition into its intersections with right quaternionic lines is the
(right) quaternionic projective space of dimension n. Similarly, but with left
quaternionic lines, we define the (left) quaternionic projective space of dimen-

sion n.

22.Kx. Are the right and left quaternionic projective space of the same
dimension homeomorphic?

The left quaternionic projective space of dimension n is denoted by HPn.

22.Lx. HP 0 consists of a single point.

22.Mx. HPn is homeomorphic to the quotient space of the closed unit disk
D4n in Hn by the partition into points of the interior ofD4n and the 3-spheres
that are intersections of the boundary sphere S4n−1 with (left quaternionic)
lines of Hn.

The space HP 1 is the quaternionic projective line.

22.Nx. Quaternionic projective line HP 1 is homeomorphic to S4.

22.Ox. HPn is canonically homeomorphic to the quotient space of Hn+1r0
by the partition to left quaternionic lines of Hn+1 passing through the origin
and punctured at it.

Hence, HPn can be presented as the space of classes of left proportional
(in the quaternionic sense) nonzero sequences (x0, . . . , xn) of quaternions.
The notation (x0 : x1 : . . . : xn) and the term homogeneous coordinates in-
troduced above in the real case are used in the same way in the quaternionic
situation.

22.Px. HPn is canonically homeomorphic to the set of (left quaternionic)
lines of Hn+1 equipped with the topology generated by the angular metric
(which takes values in

[
0, π

2

]
).
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23x. Finite Topological Spaces

23◦1x. Set-Theoretic Digression:
Splitting a Transitive Relation
Into Equivalence and Partial Order

In the definitions of equivalence and partial order relations, the condition
of transitivity seems to be the most important. Below, we supply a formal
justification of this feeling by showing that the other conditions are natural
companions of transitivity, although they are not its consequences.

23.Ax. Let ≺ be a transitive relation in a set X. Then the relation -

defined by
a - b if a ≺ b or a = b

is also transitive (and, furthermore, it is certainly reflexive, i.e., a - a for
each a ∈ X).

A binary relation - in a setX is a preorder if it is transitive and reflective,
i.e., satisfies the following conditions:

• Transitivity . If a - b and b - c, then a - c.

• Reflexivity . We have a - a for any a.

A set X equipped with a preorder is preordered .

If a preorder is antisymmetric, then this is a nonstrict order.

23.1x. Is the relation a|b a preorder in the set Z of integers?

23.Bx. If (X,-) is a preordered set, then the relation ∼ defined by

a ∼ b if a - b and b - a

is an equivalence relation (i.e., it is symmetric, reflexive, and transitive) in
X.

23.2x. What equivalence relation is defined in Z by the preorder a|b?

23.Cx. Let (X,-) be a preordered set and ∼ be an equivalence relation
defined in X by - according to 23.Bx. Then a′ ∼ a, a - b and b ∼ b′ imply
a′ - b′ and in this way - determines a relation in the set of equivalence
classes X/∼. This relation is a nonstrict partial order.

Thus any transitive relation generates an equivalence relation and a par-
tial order in the set of equivalence classes.

23.Dx. How this chain of constructions would degenerate if the original
relation was

(1) an equivalence relation, or
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(2) nonstrict partial order?

23.Ex. In any topological space, the relation - defined by

a - b if a ∈ Cl{b}
is a preorder.

23.3x. In the set of all subsets of an arbitrary topological space the relation

A - B if A ⊂ Cl B

is a preorder. This preorder determines the following equivalence relation: sets
are equivalent iff they have the same closure.

23.Fx. The equivalence relation defined by the preorder of Theorem 23.Ex

determines the partition of the space into maximal (with respect to inclusion)
indiscrete subspaces. The quotient space satisfies the Kolmogorov separation
axiom T0.

The quotient space of Theorem 23.Fx is the maximal T0-quotient of X.

23.Gx. A continuous image of an indiscrete space is indiscrete.

23.Hx. Prove that any continuous map X → Y induces a continuous map
of the maximal T0-quotient of X to the maximal T0-quotient of Y .

23◦2x. The Structure of Finite Topological Spaces

The results of the preceding subsection provide a key to understanding
the structure of finite topological spaces. Let X be a finite space. By
Theorem 23.Fx, X is partitioned to indiscrete clusters of points. By 23.Gx,
continuous maps between finite spaces respect these clusters and, by 23.Hx,
induce continuous maps between the maximal T0-quotient spaces.

This means that we can consider a finite topological space as its maximal
T0-quotient whose points are equipped with multiplicities, that are positive
integers: the numbers of points in the corresponding clusters of the original
space.

The maximal T0-quotient of a finite space is a smallest neighborhood
space (as a finite space). By Theorem 14.O, its topology is determined by
a partial order. By Theorem 9.Bx, homeomorphisms between spaces with
poset topologies are monotone bijections.

Thus, a finite topological space is characterized up to homeomorphism
by a finite poset whose elements are equipped with multiplicities (positive
integers). Two such spaces are homeomorphic iff there exists a monotone
bijection between the corresponding posets that preserves the multiplicities.
To recover the topological space from the poset with multiplicities, we must
equip the poset with the poset topology and then replace each of its ele-
ments by an indiscrete cluster of points, the number points in which is the
multiplicity of the element.
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23◦3x. Simplicial schemes

Let V be a set, Σ a set of some of subsets of V . A pair (V,Σ) is a
simplicial scheme with set of vertices V and set of simplices Σ if

• each subset of any element of Σ belongs to Σ,

• the intersection of any collection of elements of Σ belongs to Σ,

• each one-element subset of V belongs to Σ.

The set Σ is partially ordered by inclusion. When equipped with the poset
topology of this partial order, it is called the space of simplices of the sim-
plicial scheme (X,Σ).

A simplicial scheme gives rise also to another topological space. Namely,
for a simplicial scheme (V,Σ) consider the set S(V,Σ) of all functions c :
V → [0, 1] such that

Supp(c) = {v ∈ V | c(v) 6= 0} ∈ Σ

and
∑

v∈V c(v) = 1. Equip S(V,Σ) with the topology generated by metric

ρ(c1, c2) = sup
v∈V

|c1(v) − c2(v)|.

The space S(V,Σ) is a simplicial or triangulated space. It is covered by
the sets {c ∈ S | Supp(c) = σ}, where σ ∈ Σ, which are called its (open)
simplices.

23.4x. Which open simplices of a simplicial space are open sets, which are closed,
and which are neither closed nor open?

23.Ix. For each σ ∈ Σ, find a homeomorphism of the space

{c ∈ S | Supp(c) = σ} ⊂ S(V,Σ)

onto an open simplex whose dimension is one less than the number of vertices
belonging to σ. (Recall that the open n-simplex is the set {(x1, . . . , xn+1) ∈
Rn+1 | xj > 0 for j = 1, . . . , n+ 1 and

∑n+1
i=1 xi = 1}.)

23.Jx. Prove that for any simplicial scheme (V,Σ) the quotient space of the
simplicial space S(V,Σ) by its partition to open simplices is homeomorphic
to the space Σ of simplices of the simplicial scheme (V,Σ).

23◦4x. Barycentric Subdivision of a Poset

23.Kx. Find a poset which is not isomorphic to the set of simplices (ordered
by inclusion) of whatever simplicial scheme.

Let (X,≺) be a poset. Consider the set X ′ of all nonempty finite strictly
increasing sequences a1 ≺ a2 ≺ · · · ≺ an of elements of X. It can also be
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described as the set of all nonempty finite subsets of X in each of which ≺
determines a linear order. It is naturally ordered by inclusion.

The poset (X ′,⊂) is the barycentric subdivision of (X,≺).

23.Lx. For any poset (X,≺), pair (X,X ′) is a simplicial scheme.

There is a natural map X ′ → X that maps an element of X ′ (i.e., a
nonempty finite linearly ordered subset of X) to its greatest element.

23.Mx. Is this map monotone? Strictly monotone? The same questions
concerning a similar map that maps a nonempty finite linearly ordered sub-
set of X to its smallest element.

Let (V,Σ) be a simplicial scheme and Σ′ be the barycentric subdivision
of Σ (ordered by inclusion). The simplicial scheme (Σ,Σ′) is the barycentric

subdivision of the simplicial scheme (V,Σ).

There is a natural mapping Σ → S(V,Σ) that maps a simplex σ ∈ Σ (i.e.,
a subset {v0, v1, . . . , vn} of V ) to the function bσ : V → R with bσ(vi) = 1

n+1

and bσ(v) = 0 for any v 6∈ σ.

Define a map β : S(Σ,Σ′) → S(V,Σ) that maps a function ϕ : Σ → R

to the function
V → R : v 7→

∑

σ∈Σ

ϕ(σ)bσ(v).

23.Nx. Prove that the map β : S(Σ,Σ′) → S(V,Σ) is a homeomorphism
and constitutes, together with projections S(V,Σ) → Σ and S(Σ,Σ′) → Σ′

and the natural map Σ′ → Σ a commutative diagram

S(Σ,Σ′)
β−−−−→ S(V,Σ)

y
y

Σ′ −−−−→ Σ
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24x. Spaces of Continuous Maps

24◦1x. Sets of Continuous Mappings

By C(X,Y ) we denote the set of all continuous maps of a space X to a
space Y .

24.1x. Let X be non empty. Prove that C(X, Y ) consists of a single element iff
so does Y .

24.2x. Let X be non empty. Prove that there exists an injection Y → C(X, Y ).
In other words, the cardinality card C(X,Y ) of C(X,Y ) is greater than or equal to
card Y .

24.3x. Riddle. Find natural conditions implying that C(X,Y ) = Y .

24.4x. Let Y = {0, 1} equipped with topology {∅, {0}, Y }. Prove that there
exists a bijection between C(X, Y ) and the topological structure of X.

24.5x. Let X be a set of n points with discrete topology. Prove that C(X,Y ) can
be identified with Y × . . . × Y (n times).

24.6x. Let Y be a set of k points with discrete topology. Find necessary and
sufficient condition for the set C(X, Y ) contain k2 elements.

24◦2x. Topologies on Set of Continuous Mappings

Let X and Y be two topological spaces, A ⊂ X, and B ⊂ Y . We define
W (A,B) = {f ∈ C(X,Y ) | f(A) ⊂ B},

∆(pw) = {W (a,U) | a ∈ X, U is open in Y },
and

∆(co) = {W (C,U) | C ⊂ X is compact, U is open in Y }.

24.Ax. ∆(pw) is a subbase of a topological structure on C(X,Y ).

The topological structure generated by ∆(pw) is the topology of pointwise

convergence. The set C(X,Y ) equipped with this structure is denoted by

C(pw)(X,Y ).

24.Bx. ∆(co) is a subbase of a topological structures on C(X,Y ).

The topological structure determined by ∆(co) is the compact-open topol-

ogy . Hereafter we denote by C(X,Y ) the space of all continuous maps
X → Y with the compact-open topology, unless the contrary is specified
explicitly.

24.Cx Compact-Open Versus Pointwise. The compact-open topology
is finer than the topology of pointwise convergence.



164 IV. Topological Constructions

24.7x. Prove that C(I, I) is not homeomorphic to C(pw)(I, I).

Denote by Const(X, Y ) the set of all constant maps f : X → Y .

24.8x. Prove that the topology of pointwise convergence and the compact-open
topology of C(X, Y ) induce the same topological structure on Const(X, Y ), which,
with this topology, is homeomorphic Y .

24.9x. Let X be a discrete space of n points. Prove that C(pw)(X, Y ) is homeo-
morphic Y × . . . × Y (n times). Is this true for C(X,Y )?

24◦3x. Topological Properties of Mapping Spaces

24.Dx. Prove that if Y is Hausdorff, then C(pw)(X,Y ) is Hausdorff for any
space X. Is this true for C(X,Y )?

24.10x. Prove that C(I, X) is path connected iff X is path connected.

24.11x. Prove that C(pw)(I, I) is not compact. Is the space C(I, I) compact?

24◦4x. Metric Case

24.Ex. If Y is metrizable and X is compact, then C(X,Y ) is metrizable.

Let (Y, ρ) be a metric space and X a compact space. For continuous
maps f, g : X → Y put

d(f, g) = max{ρ(f(x), g(x)) | x ∈ X}.
24.Fx This is a Metric. If X is a compact space and Y a metric space,
then d is a metric on the set C(X,Y ).

LetX be a topological space, Y a metric space with metric ρ. A sequence
fn of maps X → Y uniformly converges to f : X → Y if for any ε > 0 there
exists a positive integer N such that ρ(fn(x), f(x)) < ε for any n > N and
x ∈ X. This is a straightforward generalization of the notion of uniform
convergence which is known from Calculus.

24.Gx Metric of Uniform Convergence. Let X be a compact space,
(Y, d) a metric space. A sequence fn of mapsX → Y converges to f : X → Y
in the topology generated by d iff fn uniformly converges to f .

24.Hx Completeness of C(X,Y ). Let X be a compact space, (Y, ρ) a
complete metric space. Then

(
C(X,Y ), d

)
is a complete metric space.

24.Ix Uniform Convergence Versus Compact-Open. Let X be a com-
pact space and Y a metric space. Then the topology generated by d on
C(X,Y ) is the compact-open topology.

24.12x. Prove that the space C(R, I) is metrizable.

24.13x. Let Y be a bounded metric space, X a topological space admitting a
presentation X =

S
∞

i=1 Xi, where Xi is compact and Xi ⊂ IntXi+1 for each
i = 1, 2, . . .. Prove that C(X,Y ) is metrizable.
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Denote by Cb(X,Y ) the set of all continuous bounded maps from a topo-
logical space X to a metric space Y . For maps f, g ∈ Cb(X,Y ), put

d∞(f, g) = sup{ρ(f(x), g(x)) | x ∈ X}.

24.Jx Metric on Bounded Maps. This is a metric in Cb(X,Y ).

24.Kx d∞ and Uniform Convergence. Let X be a topological space
and Y a metric space. A sequence fn of bounded maps X → Y converges
to f : X → Y in the topology generated by d∞ iff fn uniformly converge to
f .

24.Lx When Uniform Is Not Compact-Open. Find X and Y such
that the topology generated by d∞ on Cb(X,Y ) is not the compact-open
topology.

24◦5x. Interactions With Other Constructions

24.Mx. For any continuous maps ϕ : X ′ → X and ψ : Y → Y ′ the map
C(X,Y ) → C(X ′, Y ′) : f 7→ ψ ◦ f ◦ ϕ is continuous.

24.Nx Continuity of Restricting. Let X and Y be two spaces, A ⊂ X.
Prove that the map C(X,Y ) → C(A,Y ) : f 7→ f |A is continuous.

24.Ox Extending Target. For any spaces X and Y and any B ⊂ Y , the
map C(X,B) → C(X,Y ) : f 7→ iB ◦ f is a topological embedding.

24.Px Maps to Product. For any three spaces X, Y , and Z, the space
C(X,Y × Z) is canonically homeomorphic to C(X,Y ) × C(X,Z).

24.Qx Restricting to Sets Covering Source. Let {X1, . . . ,Xn} be a
closed cover of X. Prove that for any space Y

φ : C(X,Y ) →
n∏

i=1

C(Xi, Y ) : f 7→ (f |X1 , . . . , f |Xn)

is a topological embedding. What if the cover is not fundamental?

24.Rx. Riddle. Can you generalize assertion 24.Qx?

24.Sx Continuity of Composing. Let X be a space and Y a locally
compact Hausdorff space. Prove that the map

C(X,Y ) × C(Y,Z) → C(X,Z) : (f, g) 7→ g ◦ f

is continuous.

24.14x. Is local compactness of Y necessary in 24.Sx?
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24.Tx Factorizing Source. Let S be a closed partition2 of a Hausdorff
compact space X. Prove that for any space Y the map

φ : C(X/S, Y ) → C(X,Y )

is a topological embedding.

24.15x. Are the conditions imposed on S and X in 24.Tx necessary?

24.Ux The Evaluation Map. Let X and Y be two spaces. Prove that if
X is locally compact and Hausdorff, then the map

φ : C(X,Y ) ×X → Y : (f, x) 7→ f(x)

is continuous.

24.16x. Are the conditions imposed on X in 24.Ux necessary?

24◦6x. Mappings X × Y → Z and X → C(Y,Z)

24.Vx. Let X, Y , and Z be three topological spaces, f : X × Y → Z a
continuous map. Then the map

F : X → C(Y,Z) : F (x) : y 7→ f(x, y),

is continuous.

The converse assertion is also true under certain additional assumptions.

24.Wx. Let X and Z be two spaces, Y a Hausdorff locally compact space,
F : X → C(Y,Z) a continuous map. Then the map f : X × Y → Z :
(x, y) 7→ F (x)(y) is continuous.

24.Xx. If X is a Hausdorff space and the collection ΣY = {Uα} is a subbase
of the topological structure of Y , then the collection {W (K,U) | U ∈ Σ} is
a subbase of the compact-open topology in C(X,Y ).

24.Yx. Let X, Y , and Z be three spaces. Let

Φ : C(X × Y,Z) → C(X, C(Y,Z))

be defined by the relation

Φ(f)(x) : y 7→ f(x, y).

Then

(1) if X is a Hausdorff space, then Φ is continuous;

(2) if X is a Hausdorff space, while Y is locally compact and Hausdorff,
then Φ is a homeomorphism.

2Recall that a partition is closed if the saturation of each closed set is closed.
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24.Zx. Let S be a partition of a space X, and let pr : X → X/S be the
projection. The space X × Y bears a natural partition S′ = {A × y | A ∈
S, y ∈ Y }. If the space Y is Hausdorff and locally compact, then the natural
quotient map f : (X × Y )/S′ → X/S × Y of the projection pr× idY is a
homeomorphism.

24.17x. Try to prove Theorem 24.Zx directly.
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Proofs and Comments

19.A For example, let us prove the second relation:

(x, y) ∈ (A1 ×B1) ∩ (A2 ×B2) ⇐⇒ x ∈ A1, y ∈ B1, x ∈ A2, y ∈ B2

⇐⇒ x ∈ A1 ∩A2, y ∈ B1 ∩B2 ⇐⇒ (x, y) ∈ (A1 ∩A2) × (B1 ∩B2).

19.B Indeed,

pr−1
X (A) = {z ∈ X × Y | prX(z) ∈ A} = {(x, y) ∈ X × Y | x ∈ A} = A× Y.

19.C Indeed, Γf ∩ (x× Y ) = {(x, f(x))} is a singleton.
If Γ ∩ (x× Y ) is a singleton {(x, y)}, then we can put f(x) = y.

19.D This follows from 3.A because the intersection of elementary sets
is an elementary set.

19.E Verify that X×Y → Y ×X : (x, y) 7→ (y, x) is a homeomorphism.

19.F In view of a canonical bijection, we can identify two sets and
write

(X × Y ) × Z = X × (Y × Z) = {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z}.
However, elementary sets in the spaces (X × Y ) × Z and X × (Y × Z) are
different. Check that the collection {U × V ×W | U ∈ ΩX , V ∈ ΩY , W ∈
ΩZ} is a base of the topological structures in both spaces.

19.G Indeed, for each open set U ⊂ X the preimage pr−1
X (U) = U ×Y

is an elementary open set in X × Y .

19.H Let Ω′ be a topology in X×Y such that the projections prX and
prY are continuous. Then, for any U ∈ ΩX and V ∈ ΩY , we have

pr−1
X (U) ∩ pr−1

Y (V ) = (U × Y ) ∩ (X × V ) = U × V ∈ Ω′.

Therefore, each base set of the product topology lies in Ω′, whence it follows
that Ω′ contains the product topology of X and Y .

19.I Clearly, ab(prX) : X × y0 → X is a continuous bijection. To
see that the inverse map is continuous, we must show that each set open in
X × y0 as in a subspace of X ×Y has the form U × y0. Indeed, if W is open
in X × Y , then

W∩(X×y0) =
⋃

α

(Uα×Vα)∩(X×y0) =
⋃

α : y0∈Vα

(Uα×y0) =
( ⋃

α : y0∈Vα

Uα

)
×y0.

19.J From the point of view of set theory, we have R1 ×R1 = R2. The
collection of open rectangles is a base of topology in R1 × R1 (show this),
therefore, the topologies in R1 × R1 and R2 have one and the same base,



Proofs and Comments 169

and so they coincide. The second assertion is proved by induction and, in
turn, implies the third one by 19.7.

19.K Set f(z) = (f1(z), f2(z)). If f(z) = (x, y) ∈ X × Y , then x =
(prX ◦f)(z) = f1(z). We similarly have y = f2(z).

19.L The maps f1 = prX ◦f and f2 = prY ◦f are continuous as
compositions of continuous maps (use 19.G).

Recall the definition of the product topology and use 19.20.

19.M Recall the definition of the product topology and use 19.22.

19.N Let X and Y be two Hausdorff spaces, (x1, y1), (x2, y2) ∈ X × Y
two distinct points. Let, for instance, x1 6= x2. Since X is Hausdorff, x1 and
x2 have disjoint neighborhoods: Ux1 ∩ Ux2 = ∅. Then, e.g., Ux1 × Y and
Ux2 × Y are disjoint neighborhoods of (x1, y1) and (x2, y2) in X × Y .

19.O If A and B are countable and dense in X and Y , respectively,
then A×B is a dense countable set in X × Y .

19.P See the proof of Theorem 19.Q below.

19.Q If ΣXand ΣY are countable bases in X and Y , respectively, then
Σ = {U × V | U ∈ ΣX , V ∈ ΣY } is a base in X × Y by 19.15.

19.R Show that if ρ1 and ρ2 are metrics on X and Y , respectively,
then ρ

(
(x1, y1), (x2, y2)

)
= max{ρ1(x1, x2), ρ2(y1, y2)} is a metric in X × Y

generating the product topology. What form have the balls in the metric
space (X × Y, ρ)?

19.S For any two points (x1, y1), (x2, y2) ∈ X × Y , the set (X × y2) ∪
(x1 × Y ) is connected and contains these points.

19.T If u are v are paths joining x1 with x2 and y1 with y2, respectively,
then the path u× v joins (x1, y1) with (x2, y2).

19.U It is sufficient to consider a cover consisting of elementary sets.
Since Y is compact, each fiber x × Y has a finite subcovering {Ux

i × V x
i }.

Put W x = ∩Ux
i . Since X is compact, the cover {W x}x∈X has a finite

subcovering W xj . Then {Uxj

i × V
xj

i } is the required finite subcovering.

19.V Consider the map (x, y) 7→
((

x√
x2+y2

, x√
x2+y2

)
, ln(

√
x2 + y2)

)
.

20.A First, the preimage pr−1
(
pr(A)

)
is saturated, secondly, it is

the least because if B ⊃ A is a saturated set, then B = pr−1
(
pr(B)

)
⊃

pr−1
(
pr(A)

)
.

20.C Put Ω′ = {U ⊂ X/S | pr−1(U) ∈ Ω}. Let Uα ∈ Ω′. Since the
sets p−1(Uα) are open, the set p−1(∪Uα) = ∪p−1(Uα) is also open, whence
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∪Uα ∈ Ω′. Verify the remaining axioms of topological structure on your
own.

20.D If a set V ⊂ X is open and saturated, then V =
pr−1

(
p(V )

)
, hence, the set U = pr(V ) is open in X/S.

Conversely, if U ⊂ X/S is open, then U = pr
(
pr−1(U)

)
, where

V = pr−1(U) is open and saturated.

20.E The set F closed, iff X/S r F is open, iff pr−1(X/S r F ) =
X r pr−1(F ) is open, iff p−1(F ) is closed.

20.F This immediately follows from the definition of the quotient topol-
ogy.

20.G We must prove that if Ω′ is a topology in X/S such that the
factorization map is continuous, then Ω′ ⊂ ΩX/S . Indeed, if U ∈ Ω′, then

p−1(U) ∈ ΩX , whence U ∈ ΩX/S by the definition of the quotient topology.

20.H It is connected as a continuous image of a connected space.

20.I It is path-connected as a continuous image of a path-connected
space.

20.J It is separable as a continuous image of a separable space.

20.K It is compact as a continuous image of a compact space.

20.L This quotient space consists of two points, one of which is not
open in it.

20.M Let a, b ∈ X/S, and let A,B ⊂ X be the corresponding
elements of the partition. If Ua and Ub are disjoint neighborhoods of a and
b, then p−1(Ua) and p−1(Ub) are disjoint saturated neighborhoods of A and
B. This follows from 20.D.

20.N 1) Put g = f/S. The set f−1(y) = p−1(g−1(y))
is saturated, i.e., it consists of elements of the partition S. Therefore, f is
constant at each of the elements of the partition. 2) If A is an element of
S, a is the point of the quotient set corresponding to A, and x ∈ A, then
f/S(a) = f(A) = g(p(x)) = g(a).

20.O The map f maps elements of S to those of T iff there exists a
map g : X/S → Y/T such that the diagram

X
f−−−−→ Y

prX

y prY

y

X/S
g−−−−→ Y/T

is commutative. Then we have f/(S, T ) = g.
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20.P This is so because distinct elements of the partition S(f) are
preimages of distinct points in Y .

20.Q Since p−1((f/S)−1(U)) = (f/S◦p)−1(U) = f−1(U), the definition
of the quotient topology implies that for each U ∈ ΩY the set (f/S)−1(U)
is open, i.e., the map f/S is continuous.

20.R See 20.O and 20.8.

20.Ax Each singleton in X/S is the image of a singleton in X. Since
X satisfies T1, each singleton in X is closed, and its image, by 20.1x, is also
closed. Consequently, the quotient space also satisfies T1.

20.Bx This follows from 14.25.

20.Cx Let Un = p(Vn), n ∈ N, where {Vn}n∈N is a base X. Consider
an open set W in the quotient space. Since pr−1(W ) =

⋃
n∈A Vn, we have

W = pr
(
pr−1(W )

)
=
⋃

n∈A Un, i.e., the collection {Un} is a base in the
quotient space.

20.Dx For an arbitrary point y ∈ X/S, consider the image of a count-
able neighborhood base at a certain point x ∈ pr−1(y).

20.Ex Since the injective factor of a continuous surjection is a continu-
ous bijection, it only remains to prove that the factor is an open map, which
follows by 20.7 from the fact that the map X × Y → X/S × Y/T is open
(see 19.23).

21.A This follows from 20.P, 20.Q, 20.K, and 16.Y.

21.B Use 16.Z instead of 16.Y.

21.C.1 If f : t ∈ [0, 1] 7→ (cos 2πt, sin 2πt) ∈ S1, then f/S(f) is a home-

omorphism as a continuous bijection of a compact space onto a Hausdorff
space, and the partition S(f) is the initial one.

21.D.1 If f : x ∈ Rn 7→ (x
r sinπr,− cos πr) ∈ Sn ⊂ Rn+1, then the

partition S(f) is the initial one and f/S(f) is a homeomorphism.

21.E Consider the map g = f × id : I2 = I × I → S1 × I (f is
defined as in 21.C.1). The partition S(g) is the initial one, so that g/S(g)

a homeomorphism.

21.F Check that the partition S(idS1 ×f) is the initial one.

21.G The partition S(f × f) is the initial one.
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21.H Consider the commutative diagram

X
p1−−−−→ X/S

p

y p2

y

X/T
q−−−−→ X/S/S′

where the map q is obviously a bijection. The assertion of the problem
follows from the fact that a set U is open in X/S/S′ iff p−1

1

(
p−1
2 (U)

)
=

p−1
(
q−1(U)

)
is open in X iff q−1(U) is open in X/T .

21.I To simplify the formulas, we replace the square I2 ba a rectangle.
Here is a formal argument: consider the map

ϕ : [0, 2π] × [−1
2 ,

1
2 ] → R3 : (x, y) 7→

(
(1 + y sin x

2 ) cos x, (1 + y sin x
2 ) sinx, y sinx

)
.

Check that ϕ really maps the square onto the Möbius strip and that S(ϕ)
is the given partition. Certainly, the starting point of the argument is not
a specific formula. First of all, you should imagine the required map. We
map the horizontal midline of the unit square onto the mid-circle of the
Möbius strip, and we map each of the vertical segments of the square onto
a segment of the strip orthogonal to the the mid-circle. This mapping maps
the vertical sides of the square to one and the same segment, but here the
opposite vertices of the square are identified with each other (check this).

21.J See the following section.

21.K Actually, it is easier to prove a more general assertion. Assume
that we are given topological spaces Xα and maps fα : Xα → Y . Then
Ω = {U ⊂ Y | f−1

α (U) is open in Xα} is the finest topological structure in
Y with respect to which all maps fα are continuous.

21.L See the hint to 21.K.

21.M We map Dn
1 ⊔ Dn

2 to Sn so that the images of Dn
1 and Dn

2 are
the upper and the lower hemisphere, respectively. The partition into the
preimages is the partition with quotient spaceDn∪id |Sn−1

Dn. Consequently,

the corresponding quotient map is a homeomorphism.

21.N Consider the map F : X ⊔ Y → X ⊔ Y such that F |X = idX and
F |Y = h. This mapping maps an element of the partition corresponding
to the equivalence relation z ∼ f(x) to an element of the partition corre-
sponding to the equivalence relation x ∼ g(x). Consequently, there exists a
continuous bijection H : X ∪f Y → X ∪g Y . Since h−1 also is a homeomor-
phism, H−1 is also continuous.
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21.O By 21.N, it is sufficient to prove that any homeomorphism f :
Sn−1 → Sn−1 can be extended to a homeomorphism F : Dn → Dn, which
is obvious.

21.P For example, the stereographic projection from an inner point of
the hole maps the sphere with a hole onto a disk homeomorphically.

21.Q The stereographic projection from an inner point of one of the
holes homeomorphically maps the sphere with two holes onto a “disk with
a hole”. Prove that the latter is homeomorphic to a cylinder. (Another
option: if we take the center of the projection in the hole in an appropriate
way, then the projection maps the sphere with two holes onto a circular ring,
which is obviously homeomorphic to a cylinder.)

21.R By definition, the handle is homeomorphic to a torus with a hole,
while the sphere with a hole is homeomorphic to a disk, which precisely fills
in the hole.

21.S Cut a sphere with two handles into two symmetric parts each of
which is homeomorphic to a handle.

21.T Combine the results of 21.P 21.J.

21.U Consider the Klein bottle as a quotient space of a square and cut
the square into 5 horizontal (rectangular) strips of equal width. Then the
quotient space of the middle strip will be a Möbius band, the quotient space
of the union of the two extreme strips will be one more Möbius band, and
the quotient space of the remaining two strips will be a ring, i.e., precisely
a sphere with two holes. (Here is another, maybe more visual, description.
Look at the picture of the Klein bottle: it has a horizontal plane of symmetry.
Two horizontal planes close to the plane of symmetry cut the Klein bottle
into two Möbius bands and a ring.)

21.V The most visual approach here is as follows: single out one of
the handles and one of the films. Replace the handle by a “tube” whose
boundary circles are attached to those of two holes on the sphere, which
should be sufficiently small and close to each other. After that, start moving
one of the holes. (The topological type of the quotient space does not change
in the course of such a motion.) First, bring the hole to the boundary of
the film, then shift it onto the film, drag it once along the film, shift it from
the film, and, finally, return the hole to the initial spot. As a result, we
transform the initial handle (a torus with a hole) into a Klein bottle with a
hole, which splits into two Möbius bands (see Problem 21.U), i.e., into two
films.

22.A Consider the composition f of the embedding Dn in Sn onto a
hemisphere and of the projection pr : Sn → RPn. The partition S(f) is that
described in the formulation. Consequently, f/S(f) is a homeomorphism.
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22.C Consider f : S1 → S1 : z 7→ z2 ∈ C. Then S1/S(f) ∼= RP 1.

22.D See 22.A.

22.E Consider the composition f of the embedding of Sn in Rn r 0
and of the projection onto the quotient space by the described the partition.
It is clear that the partition S(f) is the partition factorizing by which we
obtain the projective space. Therefore, f/S(f) is a homeomorphism.

22.F To see that the described function is a metric, use the triangle
inequality between the plane angles of a trilateral angle. Now, take each
point x ∈ Sn the line l(x) through the origin with direction vector x. We
have thus defined a continuous (check this) map of Sn to the indicated space
of lines, whose injective factor is a homeomorphism.

22.G The image of this map is the set U0 = {(x0 : x1 : . . . : xn) | x0 6=
0}, and the inverse map j : U0 → Rn is defined by the formula

(x0 : x1 : . . . : xn) 7→
(
x1

x0
,
x2

x0
, . . . ,

xn

x0

)
.

Since both i and j are continuous, i is a topological embedding.

22.H Consider the embedding Sn−1 = Sn ∩ {xn+1 = 0} → Sn ⊂ Rn+1

and the induced embedding RPn−1 → RPn.

23.Ax If a - b - c, then we have a ≺ b ≺ c, a = b = c, a ≺ b = c, or
a = b ≺ c. In all four cases, we have a - c.

23.Bx The relation ∼ is obviously reflexive, symmetric, and also tran-
sitive.

23.Cx Indeed, if a′ ∼ a, a - b, and b ∼ b′, then a′ - a - b - b′, whence
a′ - b′. Clearly, the relation defined on the equivalence classes is transitive
and reflexive. Now, if two equivalence classes [a] and [b] satisfy both a - b
and b - a, then [a] = [b], i.e., the relation is anti-symmetric, hence, it is a
nonstrict order.

23.Dx (a) In this case, we obtain the trivial nonstrict order on a sin-
gleton; (b) In this case, we obtain the same nonstrict order on the same
set.

23.Ex The relation is obviously reflexive. Further, if a - b, then each
neighborhood U of a contains b, and so U also is a neighborhood of b, hence,
if b - c, then c ∈ U . Therefore, a ∈ Cl{c}, whence a - c, and thus the
relation is also transitive.

23.Fx Consider the element of the partition that consists by definition
of points each of which lies in the closure of any other point, so that each open
set in X containing one of the points also contains any other. Therefore,
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the topology induced on each element of the partition is indiscrete. It is
also clear that each element of the partition is a maximal subset which is an
indiscrete subspace. Now consider two points in the quotient space and two
points x, y ∈ X lying in the corresponding elements of the partition. Since
x 6∼ y, there is an open set containing exactly one of these points. Since
each open set U in X is saturated with respect to the partition, the image
of U in X/S is the required neighborhood.

23.Gx Obvious.

23.Hx This follows from 23.Fx, 23.Gx, and 20.R.

24.Ax It is sufficient to observe that the sets in ∆(pw) cover the entire
set C(X,Y ). (Actually, C(X,Y ) ∈ ∆(pw).)

24.Bx Similarly to 24.Ax

24.Cx Since each one-point subset is compact, it follows that ∆(pw) ⊂
∆(co), whence Ω(pw) ⊂ Ω(co).

24.Dx If f 6= g, then there is x ∈ X such that f(x) 6= g(x). Since Y is
Hausdorff, f(x) and g(x) have disjoint neighborhoods U and V , respectively.
The subbase elements W (x,U) and W (x, V ) are disjoint neighborhoods of

f and g in the space C(pw)(X,Y ). They also are disjoint neighborhoods of
f and g in C(X,Y ).

24.Ex See assertion 24.Ix.

24.Hx Consider functions fn ∈ C(X,Y ) such that {fn}∞1 is a Cauchy
sequence. For every point x ∈ X, the sequence {fn(x)} is a Cauchy sequence
in Y . Therefore, since Y is a complete space, this sequence converges. Put
f(x) = lim fn(x). We have thus defined a function f : X → Y .
Since {fn} is a Cauchy sequence, for each ε > 0 there exists a positive integer
N such that ρ

(
fn(x), fk(x)

)
< ε

4 for any n, k ≥ N and x ∈ X. Passing to

the limit as k → ∞, we see that ρ
(
fn(x), f(x)

)
≤ ε

4 <
ε
3 for any n ≥ N and

x ∈ X. Thus, to prove that fn → f as n → ∞, it remains to show that
f ∈ C(X,Y ). For each a ∈ X, there exists a neighborhood Ua such that
ρ
(
fN (x), fN (a)

)
< ε

3 for every x ∈ Ua. The triangle inequality implies that
for every x ∈ Ua we have

ρ
(
f(x), f(a)

)
≤ ρ
(
f(x), fN (x)

)
+ ρ
(
fN (x), fN (a)

)
+ ρ
(
fN (a), f(a)

)
< ε.

Therefore, the function f is a continuous limit of the considered Cauchy
sequence.

24.Ix Take an arbitrary set W (K,U) in the subbase. Let f ∈W (K,U).
If r = ρ(f(K), Y r U), then Dr(f) ⊂ W (K,U). As a consequence, we see
that each open set in the compact-open topology is open in the topology
generated by the metric of uniform convergence. To prove the converse
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assertion, it suffices to show that for each map f : X → Y and each r > 0
there are compact sets K1,K2, . . . ,Kn ⊂ X and open sets U1, U2, . . . , Un ⊂
Y such that

f ∈
n⋂

i=1

W (Ki, Ui) ⊂ Dr(f).

Cover f(X) by a finite number of balls with radius r/4 centered at certain
points f(x1), f(x2), . . . , f(xn). Let Ki be the f -preimage of a closed disk in
Y with radius r/4, and let Ui be the open ball with radius r/2. By construc-
tion, we have f ∈W (K1, U1)∩ . . .∩W (Kn, Un). Consider an arbitrary map
g in this intersection. For each x ∈ K1, we see that f(x) and g(x) lie in one
and the same open ball with radius r/2, whence ρ(f(x), g(x)) < r. Since,
by construction, the sets K1, . . . ,Kn cover X, we have ρ(f(x), g(x)) < r for
all x ∈ X, whence d(f, g) < r, and, therefore, g ∈ Dr(f).

24.Mx This follows from the fact that for each compact K ⊂ X ′ and
U ⊂ Y ′ the preimage of the subbase set W (K,U) ∈ ∆(co)(X ′, Y ′) is the

subbase set W (ϕ(K), ψ−1(U)) ∈ ∆(co)(X,Y ).

24.Nx This immediately follows from 24.Mx.

24.Ox It is clear that the indicated map is an injection. To simplify the
notation, we identify the space C(X,B) with its image under this injection.
for each compact set K ⊂ X and U ∈ ΩB we denote by WB(K,U) the
corresponding subbase set in C(X,B). If V ∈ ΩY and U = B ∩ V , then
we have WB(K,U) = C(X,B) ∩W (K,V ), whence it follows that C(X,Y )
induces the compact-open topology on C(X,B).

24.Px Verify that the natural mapping f 7→ (prY ◦f,prZ ◦f) is a home-
omorphism.

24.Qx The injectivity of φ follows from the fact that {Xi} is a cover,
while the continuity of φ follows from assertion 24.Nx. Once more, to sim-
plify the notation, we identify the set C(X,Y ) with its image under the
injection φ. Let K ⊂ X be a compact set, U ∈ ΩY . Put Ki = K ∩Xi and
denote by W i(Ki, U) the corresponding element in the subbase ∆(co)(Xi, Y ).
Since, obviously,

W (K,U) = C(X,Y ) ∩
(
W 1(K1, U) × . . . ×W n(Kn, U)

)
,

the continuous injection φ is indeed a topological embedding.

24.Sx Consider maps f : X → Y , g : Y → Z, a compact set K ⊂ X
and V ∈ ΩZ such that g(f(K)) ⊂ V , i.e., φ(f, g) ∈ W (K,V ). Then we
have an inclusion f(K) ⊂ g−1(V ) ∈ ΩY . Since Y is Hausdorff and locally
compact and the set f(K) is compact, f(K) has a neighborhood U whose
closure is compact and also contained in g−1(V ) (see, 18.6x.) In this case,



Proofs and Comments 177

we have φ(W (K,U)×W (ClU, V )) ⊂W (K,V ), and, consequently, the map
φ is continuous.

24.Tx The continuity of φ follows from 24.Mx, and its injectivity is
obvious. Let K ⊂ X/S be a compact set, U ∈ ΩY . The image of the open
subbase set W (K,U) ⊂ C(X/S, Y ) is the set of all maps g : X → Y constant
on all elements of the partitions and such that g(pr−1(K)) ⊂ U . It remains
to show that the set W (pr−1(K), U) is open in C(X,Y ). Since the quotient
space X/S is Hausdorff, it follows that the set K is closed. Therefore,
the preimage pr−1(K) is closed, and hence also compact. Consequently,
W (pr−1(K), U) is a subbase set in C(X,Y ).

24.Ux Let f0 ∈ C(X,Y ) and x0 ∈ X. To prove that φ is continuous at
the point (f0, x0), consider a neighborhood V of f0(x0) in Y . Since the map
f0 is continuous, the point x0 has a neighborhood U ′ such that f0(U

′) ⊂ V .
Since the space X is Hausdorff and locally compact, it follows that x0 has a
neighborhood U such that the closure ClU is a compact subset of U ′. Since,
obviously, f(x) ∈ V for any map f ∈W = W (ClU, V ) and any point x ∈ U ,
we see that φ(W × U) ⊂ V .

24.Vx Assume that x0 ∈ X, K ⊂ Y be a compact set, V ⊂ ΩZ ,
and F (x0) ∈ W (K,V ), i.e., f({x0} × K) ⊂ V . Let us show that the map
F is continuous. For this purpose, let us find a neighborhood U0 of x0 in
X such that F (U0) ⊂ W (K,V ). The latter inclusion is equivalent to the
fact that f(U0 × K) ∈ V . We cover the set {x0} × K by a finite number
of neighborhoods Ui × Vi such that f(Ui × Vi) ⊂ V . It remains to put
U0 =

⋂
i Ui.

24.Wx Let (x0, y0) ∈ X×Y , and let G be a neighborhood of the point
z0 = f(x0, y0) = F (x0)(y0). Since the map F (x0) : Y → Z is continuous,
y0 has a neighborhood W such that F (W ) ⊂ G. Since Y is Hausdorff and
locally compact, y0 has a neighborhood V with compact closure such that
ClV ⊂ W and, consequently, F (x0)(ClV ) ⊂ G, i.e., F (x0) ∈ W (ClV,G).
Since the map F is continuous, x0 has a neighborhood U such that F (U) ⊂
W (ClV,G). Then, if (x, y) ∈ U × V , we have F (x) ∈ W (ClV,G), whence
f(x, y) = F (x)(y) ∈ G. Therefore, f(U × V ) ⊂ G, i.e., f is continuous.

24.Xx It suffices to show that for each compact set K ⊂ X, each open
set U ⊂ Y , and each f ∈W (K,U) there are compact sets K1,K2, . . . ,Km ⊂
K and open sets U1, U2, . . . , Um ∈ ΣY such that

f ∈W (K1, U1) ∩W (K2, U2) ∩ . . . ∩W (Km, Um) ⊂W (K,U).

Let x ∈ K. Since f(x) ∈ U , there are sets Ux
1 , U

x
2 , . . . , U

x
nx

∈ ΣY such
that f(x) ∈ Ux

1 ∩ Ux
2 ∩ . . . ∩ Unx ⊂ U . Since f is continuous, x has a

neighborhood Gx such that f(x) ∈ Ux
1 ∩ Ux

2 ∩ · · · ∩ Unx . Since X is locally
compact and Hausdorff, X is regular, consequently, x has a neighborhood
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Vx such that ClVx is compact and ClVx ∈ Gx. Since the set K is compact,
K is covered by a finite number of neighborhoods Vxi , i = 1, 2, . . . , n. We
put Ki = K ∩ ClVxi , i = 1, 2, . . . , n, and Uij = Uxi

j , j = 1, 2, . . . , nxi . Then
the set

n⋂

i=1

ni⋂

j=1

W (Kj, Uij)

is the required one.

24.Yx First of all, we observe that assertion 24.Vx implies that the
map Φ is well defined (i.e., for f ∈ C(X, C(Y,Z)) we indeed have Φ(f) ∈
C(X, C(Y,Z))), while assertion 24.Wx implies that if Y is locally compact
and Hausdorff, then Φ is invertible.
1) Let K ⊂ X and L ⊂ Y be compact sets, V ∈ ΩZ . The sets of the form
W (L, V ) constitute a subbase in C(Y,Z). By 24.Xx, the sets of the form
W (K,W (L, V )) constitute a subbase in C(X, C(Y,Z)). It remains to observe

that Φ−1(W (K,W (L, V ))) = W (K × L, V ) ∈ ∆(co)(X × Y,Z). Therefore,
the map Φ is continuous.
2) Let Q ⊂ X × Y be a compact set and G ⊂∈ ΩZ . Let ϕ ∈ Φ(W (Q,G)),
so that ϕ(x) : y 7→ f(x, y) for a certain map f ∈ W (Q,G). For each
q ∈ Q, take a neighborhood Uq × Vq of q such that: the set ClVq is compact
and f(Uq × ClVq) ⊂ G. Since Q is compact, we have Q ⊂ ⋃n

i=1(Uqi ×
Vqi). The sets Wi = W (ClVqi , G) are open in C(Y,Z), hence, the sets Ti =
W (pX(Q)∩ClUqi ,Wi) are open in C(X, C(Y,Z)). Therefore, T =

⋂n
i=1 Ti is

a neighborhood of ϕ. Let us show that T ⊂ Φ(W (Q,G)). Indeed, if ψ ∈ T ,
then ψ = Φ(g), and we have g(x, y) ∈ G for (x, y) ∈ Q, so that g ∈W (Q,G),
whence ψ ∈ Φ(W (Q,G)). Therefore, the set Φ(W (Q,G)) is open, and so Φ
is a homeomorphism.

24.Zx It is obvious that the quotient map f is a continuous bijection.
Consider the factorization map p : X × Y → (X × Y )/S′. By 24.Vx, the
map Φ : X → C(Y, (X × Y )/S′), where Φ(x)(y) = p(x, y), is continuous. We
observe that Φ is constant on elements of the partition S, consequently, the

quotient map Φ̃ : X/S → C(Y, (X × Y )/S′) is continuous. By 24.Wx, the

map g : X/S×Y → (X × Y )/S′, where g(z, y) = Φ̃(z)(y), is also continuous.
It remains to observe that g and f are mutually inverse maps.



Chapter V

Topological Algebra

In this chapter, we study topological spaces strongly related to groups: either
the spaces themselves are groups in a nice way (so that all the maps coming
from group theory are continuous), or groups act on topological spaces and
can be thought of as consisting of homeomorphisms.

This material has interdisciplinary character. Although it plays impor-
tant roles in many areas of Mathematics, it is not so important in the frame-
work of general topology. Quite often, this material can be postponed till
the introductory chapters of the mathematical courses that really require it
(functional analysis, Lie groups, etc.). In the framework of general topology,
this material provides a great collection of exercises.

In the second part of the book, which is devoted to algebraic topology,
groups appear in a more profound way. So, sooner or later, the reader will
meet groups. At latest in the next chapter, when studying fundamental
groups.

Groups are attributed to Algebra. In the mathematics built on sets,
main objects are sets with additional structure. Above, we met a few of
the most fundamental of these structures: topology, metric, partial order.
Topology and metric evolved from geometric considerations. Algebra stud-
ied algebraic operations with numbers and similar objects and introduced
into the set-theoretic Mathematics various structures based on operations.
One of the simplest (and most versatile) of these structures is the structure
of a group. It emerges in an overwhelming majority of mathematical envi-
ronments. It often appears together with topology and in a nice interaction
with it. This interaction is a subject of Topological Algebra.

179
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The second part of this book is called Algebraic Topology. It also treats
interaction of Topology and Algebra, spaces and groups. But this is a com-
pletely different interaction. The structures of topological space and group
do not live there on the same set, but the group encodes topological prop-
erties of the space.
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25x. Digression. Generalities on Groups

This section is included mainly to recall the most elementary definitions and
statements concerning groups. We do not mean to present a self-contained
outline of the group theory. The reader is actually assumed to be familiar
with groups, homomorphisms, subgroups, quotient groups, etc.

If this is not yet so, we recommend to read one of the numerous algebraic
textbooks covering the elementary group theory. The mathematical culture,
which must be acquired for mastering the material presented above in this
book, would make this an easy and pleasant exercise.

As a temporary solution, the reader can read few definitions and prove
few theorems gathered in this section. They provide a sufficient basis for
most of what follows.

25◦1x. The Notion of Group

Recall that a group is a set G equipped with a group operation. A group

operation in a set G is a map ω : G×G → G satisfying the following three
conditions (known as group axioms):

• Associativity. ω(a, ω(b, c)) = ω(ω(a, b), c) for any a, b, c ∈ G.

• Existence of Neutral Element. There exists e ∈ G such that
ω(e, a) = ω(a, e) = a for every a ∈ G.

• Existence of Inverse Element. For any a ∈ G, there exists
b ∈ G such that ω(a, b) = ω(b, a) = e.

25.Ax Uniqueness of Neutral Element. A group contains a unique
neutral element.

25.Bx Uniqueness of Inverse Element. Each element of a group has a
unique inverse element.

25.Cx First Examples of Groups. In each of the following situations,
check if we have a group. What is its neutral element? How to calculate the
element inverse to a given one?

• The set G is the set Z of integers, and the group operation is
addition: ω(a, b) = a+ b.

• The set G is the set Q>0 of positive rational numbers, and the
group operation is multiplication: ω(a, b) = ab.

• G = R, and ω(a, b) = a+ b.

• G = C, and ω(a, b) = a+ b.

• G = R r 0, and ω(a, b) = ab.
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• G is the set of all bijections of a set A onto itself, and the group
operation is composition: ω(a, b) = a ◦ b.

25.1x Simplest Group. 1) Can a group be empty? 2) Can it consist of one
element?

A group consisting of one element is trivial .

25.2x Solving Equations. Let G be a set with an associative operation ω :
G×G → G. Prove that G is a group iff for any a, b ∈ G the set G contains a unique
element x such that ω(a, x) = b and a unique element y such that ω(y, a) = b.

25◦2x. Additive Versus Multiplicative

The notation above is never used! (The only exception may happen,
as here, when the definition of group is discussed.) Instead, one uses either
multiplicative or additive notation.

Under multiplicative notation, the group operation is called multiplica-

tion and denoted as multiplication: (a, b) 7→ ab. The neutral element is
called unity and denoted by 1 or 1G (or e). The element inverse to a is
denoted by a−1. This notation is borrowed, say, from the case of nonzero
rational numbers with the usual multiplication.

Under additive notation, the group operation is called addition and de-
noted as addition: (a, b) 7→ a + b. The neutral element is called zero and
denoted by 0. The element inverse to a is denoted by −a. This notation is
borrowed, say, from the case of integers with the usual addition.

An operation ω : G × G → G is commutative if ω(a, b) = ω(b, a) for
any a, b ∈ G. A group with commutative group operation is commutative

or Abelian. Traditionally, the additive notation is used only in the case
of commutative groups, while the multiplicative notation is used both in
the commutative and noncommutative cases. Below, we mostly use the
multiplicative notation.

25.3x. In each of the following situations, check if we have a group:

(1) a singleton {a} with multiplication aa = a,
(2) the set Sn of bijections of the set {1, 2, . . . , n} of the first n positive

integers onto itself with multiplication determined by composition (the
symmetric group of degree n),

(3) the sets Rn, Cn, and Hn with coordinate-wise addition,
(4) the set Homeo(X) of all homeomorphisms of a topological space X with

multiplication determined by composition,
(5) the set GL(n, R) of invertible real n×n matrices equipped with matrix

multiplication,
(6) the set Mn(R) of all real n × n matrices with addition determined by

addition of matrices,
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(7) the set of all subsets of a set X with multiplication determined by the
symmetric difference:

(A, B) 7→ A △ B = (A ∪ B) r (A ∩ B),

(8) the set Zn of classes of positive integers congruent modulo n with ad-
dition determined by addition of positive integers,

(9) the set of complex roots of unity of degree n equipped with usual mul-
tiplication of complex numbers,

(10) the set R>0 of positive reals with usual multiplication,
(11) S1 ⊂ C with standard multiplication of complex numbers,
(12) the set of translations of a plane with multiplication determined by

composition.

Associativity implies that every finite sequence of elements in a group
has a well-defined product, which can be calculated by a sequence of pairwise
multiplications determined by any placement of parentheses, say, abcde =
(ab)(c(de)). The distribution of the parentheses is immaterial. In the case of
a sequence of three elements, this is precisely the associativity: (ab)c = a(bc).

25.Dx. Derive from the associativity that the product of any length does
not depend on the position of the parentheses.

For an element a of a group G, the powers an with n ∈ Z are defined by
the following formulas: a0 = 1, an+1 = ana, and a−n = (a−1)n.

25.Ex. Prove that raising to a power has the following properties: apaq =
ap+q and (ap)q = apq.

25◦3x. Homomorphisms

Recall that a map f : G → H of a group to another one is a homomor-

phism if f(xy) = f(x)f(y) for any x, y ∈ G.

25.4x. In the above definition of a homomorphism, the multiplicative notation is
used. How does this definition look in the additive notation? What if one of the
groups is multiplicative, while the other is additive?

25.5x. Let a be an element of a multiplicative group G. Is the map Z → G : n 7→
an a homomorphism?

25.Fx. Let G and H be two groups. Is the constant map G→ H mapping
the entire G to the neutral element of H a homomorphism? Is any other
constant map G→ H a homomorphism?

25.Gx. A homomorphism maps the neutral element to the neutral element,
and it maps mutually inverse elements to mutually inverse elements.

25.Hx. The identity map of a group is a homomorphism. The composition
of homomorphisms is a homomorphism.

Recall that a homomorphism f is an epimorphism if f is surjective, f is
a monomorphism if f is injective, and f is an isomorphism if f is bijective.
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25.Ix. The map inverse to an isomorphism is also an isomorphism.

Two groups are isomorphic if there exists an isomorphism of one of them
onto another one.

25.Jx. Isomorphism is an equivalence relation.

25.6x. Show that the additive group R is isomorphic to the multiplicative group
R>0.

25◦4x. Subgroups

A subset A of a group G is a subgroup of G if A is invariant under the
group operation of G (i.e., for any a, b ∈ A we have ab ∈ A) and A equipped
with the group operation induced by that in G is a group.

For two subsets A and B of a multiplicative group G, we put AB = {ab |
a ∈ A, b ∈ B} and A−1 = {a−1 | a ∈ A}.
25.Kx. A subsetA of a multiplicative groupG is a subgroup ofG iff AA ⊂ G
and A−1 ⊂ A.

25.7x. The singleton consisting of the neutral element is a subgroup.

25.8x. Prove that a subset A of a finite group is a subgroup if AA ⊂ A. (The
condition A−1 ⊂ A is superfluous in this case.)

25.9x. List all subgroups of the additive group Z.

25.10x. Is GL(n, R) a subgroup of Mn(R)? (See 25.3x for notation.)

25.Lx. The image of a group homomorphism f : G → H is a subgroup of
H.

25.Mx. Let f : G → H be a group homomorphism, K a subgroup of H.
Then f−1(K) is a subgroup of G. In short:
The preimage of a subgroup under a group homomorphism is a subgroup.

The preimage of the neutral element under a group homomorphism f :
G→ H is called the kernel of f and denoted by Ker f .

25.Nx Corollary of 25.Mx. The kernel of a group homomorphism is a
subgroup.

25.Ox. A group homomorphism is a monomorphism iff its kernel is trivial.

25.Px. The intersection of any collection of subgroups of a group is also a
subgroup.

A subgroup H of a group G is generated by a subset S ⊂ G if H is the
smallest subgroup of G containing S.

25.Qx. The subgroup H generated by S is the intersection of all subgroups
of G that contain S. On the other hand, H is the set of all elements that
are products of elements in S and elements inverse to elements in S.
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The elements of a set that generates G are generators of G. A group
generated by one element is cyclic .

25.Rx. A cyclic (multiplicative) group consists of powers of its generator.
(I.e., if G is a cyclic group and a generates G, then G = {an | n ∈ Z}.) Any
cyclic group is commutative.

25.11x. A group G is cyclic iff there exists an epimorphism f : Z → G.

25.Sx. A subgroup of a cyclic group is cyclic.

The number of elements in a group G is the order of G. It is denoted by
|G|.
25.Tx. Let G be a finite cyclic group, d a positive divisor of |G|. Then
there exists a unique subgroup H of G with |H| = d.

Each element of a group generates a cyclic subgroup, which consists
of all powers of this element. The order of the subgroup generated by a
(nontrivial) element a ∈ G is the order of a. It can be a positive integer or
the infinity.

For each subgroup H of a group G, the right cosets of H are the sets
Ha = {xa | x ∈ H}, a ∈ G. Similarly, the sets aH are the left cosets of H.
The number of distinct right (or left) cosets of H is the index of H.

25.Ux Lagrange theorem. If H is a subgroup of a finite group G, then
the order of H divides that of G.

A subgroupH of a group G is normal if for any h ∈ H and a ∈ G we have
aha−1 ∈ H. Normal subgroups are also called normal divisors or invariant

subgroups.

In the case where the subgroup is normal, left cosets coincide with right
cosets, and the set of cosets is a group with multiplication defined by the
formula (aH)(bH) = abH. The group of cosets of H in G is called the
quotient group or factor group of G by H and denoted by G/H.

25.Vx. The kernel Ker f of a homomorphism f : G → H is a normal
subgroup of G.

25.Wx. The image f(G) of a homomorphism f : G → H is isomorphic to
the quotient group G/Ker f of G by the kernel of f .

25.Xx. The quotient group R/Z is canonically isomorphic to the group S1.
Describe the image of the group Q ⊂ R under this isomorphism.

25.Yx. Let G be a group, A a normal subgroup of G, and B an arbitrary
subgroup of G. Then AB also is a normal subgroup of G, while A ∩B is a
normal subgroup of B. Furthermore, we have AB/A ∼= B/A ∩B.
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26x. Topological Groups

26◦1x. Notion of Topological Group

A topological group is a set G equipped with both a topological structure
and a group structure such that the maps G × G → G : (x, y) 7→ xy and
G→ G : x 7→ x−1 are continuous.

26.1x. Let G be a group and a topological space simultaneously. Prove that the
maps ω : G × G → G : (x, y) 7→ xy and α : G → G : x 7→ x−1 are continuous iff so
is the map β : G × G → G : (x, y) 7→ xy−1.

26.2x. Prove that if G is a topological group, then the inversion G → G : x 7→ x−1

is a homeomorphism.

26.3x. Let G be a topological group, X a topological space, f, g : X → G two
maps continuous at a point x0 ∈ X. Prove that the maps X → G : x 7→ f(x)g(x)
and X → G : x 7→ (f(x))−1 are continuous at x0.

26.Ax. A group equipped with the discrete topology is a topological group.

26.4x. Is a group equipped with the indiscrete topology a topological group?

26◦2x. Examples of Topological Groups

26.Bx. The groups listed in 25.Cx equipped with standard topologies are
topological groups.

26.5x. The unit circle S1 = {|z| = 1} ⊂ C with the standard multiplication is a
topological group.

26.6x. In each of the following situations, check if we have a topological group.

(1) The spaces Rn, Cn, and Hn with coordinate-wise addition. (Cn is iso-
morphic to R2n, while Hn is isomorphic to C2n.)

(2) The sets Mn(R), Mn(C), and Mn(H) of all n×n matrices with real, com-
plex, and, respectively, quaternion elements, equipped with the prod-

uct topology and element-wise addition. (We identify Mn(R) with Rn2

,

Mn(C) with Cn2

, and Mn(H) with Hn2

.)
(3) The sets GL(n, R), GL(n, C), and GL(n, H) of invertible n×n matrices

with real, complex, and quaternionic entries, respectively, under the
matrix multiplication.

(4) SL(n, R), SL(n, C), O(n), O(n, C), U(n), SO(n), SO(n, C), SU(n), and
other subgroups of GL(n, K) with K = R, C, or H.

26.7x. Introduce a topological group structure on the additive group R that would
be distinct from the usual, discrete, and indiscrete topological structures.

26.8x. Find two nonisomorphic connected topological groups that are homeomor-
phic as topological spaces.

26.9x. On the set G = [0, 1) (equipped with the standard topology), we define
addition as follows: ω(x, y) = x + y (mod 1). Is (G, ω) a topological group?
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26◦3x. Translations and Conjugations

Let G be a group. Recall that the maps La : G → G : x 7→ ax and
Ra : G → G : x 7→ xa are left and right translations through a, respectively.
Note that La ◦Lb = Lab, while Ra ◦Rb = Rba. (To “repair” the last relation,
some authors define right translations by x 7→ xa−1.)

26.Cx. A translation of a topological group is a homeomorphism.

Recall that the conjugation of a group G by an element a ∈ G is the map
G→ G : x 7→ axa−1.

26.Dx. The conjugation of a topological group by any of its elements is a
homeomorphism.

The following simple observation allows a certain “uniform” treatment of
the topology in a group: neighborhoods of distinct points can be compared.

26.Ex. If U is an open set in a topological group G, then for any x ∈ G the
sets xU , Ux, and U−1 are open.

26.10x. Does the same hold true for closed sets?

26.11x. Prove that if U and V are subsets of a topological group G and U is
open, then UV and V U are open.

26.12x. Will the same hold true if we replace everywhere the word open by the
word closed?

26.13x. Are the following subgroups of the additive group R closed?

(1) Z,

(2)
√

2 Z,

(3) Z +
√

2 Z?

26.14x. Let G be a topological group, U ⊂ G a compact subset, V ⊂ G a closed
subset. Prove that UV and V U are closed.

26.14x.1. Let F and C be two disjoint subsets of a topological group
G. If F is closed and C is compact, then 1G has a neighborhood V such
that CV ∪ V C does not meet F . If G is locally compact, then V can be
chosen so that Cl(CV ∪ V C) be compact.

26◦4x. Neighborhoods

26.Fx. Let Γ be a neighborhood base of a topological group G at 1G. Then
Σ = {aU | a ∈ G, U ∈ Γ} is a base for topology of G.

A subset A of a group G is symmetric if A−1 = A.

26.Gx. Any neighborhood of 1 in a topological group contains a symmetric
neighborhood of 1.

26.Hx. For any neighborhood U of 1 in a topological group, 1 has a neigh-
borhood V such that V V ⊂ U .
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26.15x. Let G be a topological group, U a neighborhood of 1G, and n a positive
integer. Then 1G has a symmetric neighborhood V such that V n ⊂ U .

26.16x. Let V be a symmetric neighborhood of 1G in a topological group G. ThenS
∞

n=1 V n is an open-closed subgroup.

26.17x. Let G be a group, Σ be a collection of subsets of G. Prove that G carries
a unique topology Ω such that Σ is a neighborhood base for Ω at 1G and (G, Ω)
is a topological group, iff Σ satisfies the following five conditions:

(1) each U ∈ Σ contains 1G,
(2) for every x ∈ U ∈ Σ, there exists V ∈ Σ such that xV ⊂ U ,
(3) for each U ∈ Σ, there exists V ∈ Σ such that V −1 ⊂ U ,
(4) for each U ∈ Σ, there exists V ∈ Σ such that V V ⊂ U ,
(5) for any x ∈ G and U ∈ Σ, there exists V ∈ Σ such that V ⊂ x−1Ux.

26.Ix. Riddle. In what sense 26.Hx is similar to the triangle inequality?

26.Jx. Let C be a compact subset of G. Prove that for every neighborhood
U of 1G the unity 1G has a neighborhood V such that V ⊂ xUx−1 for every
x ∈ C.

26◦5x. Separation Axioms

26.Kx. A topological groupG is Hausdorff, iff G satisfies the first separation
axiom, iff the unity 1G (or, more precisely, the singleton {1G}) is closed.

26.Lx. A topological group G is Hausdorff iff the unity 1G is the intersection
of its neighborhoods.

26.Mx. If the unity of a topological group G is closed, then G is regular
(as a topological space).

Use the following fact.

26.Mx.1. Let G be a topological group, U ⊂ G a neighborhood of 1G. Then
1G has a neighborhood V with closure contained in U : ClV ⊂ U .

26.Nx Corollary. For topological groups, the first three separation axioms
are equivalent.

26.18x. Prove that a finite group carries as many topological group structures as
there are normal subgroups. Namely, each finite topological group G contains a
normal subgroup N such that the sets gN with g ∈ G form a base for the topology
of G.

26◦6x. Countability Axioms

26.Ox. If Γ is a neighborhood base at 1G in a topological group G and
S ⊂ G is a dense set, then Σ = {aU | a ∈ S,U ∈ Γ} is a base for the
topology of G. (Cf. 26.Fx and 15.J.)

26.Px. A first countable separable topological group is second countable.
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26.19x*. (Cf. 15.Dx) A first countable Hausdorff topological group G is metriz-
able. Furthermore, G can be equipped with a right (left) invariant metric.
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27x. Constructions

27◦1x. Subgroups

27.Ax. Let H be a subgroup of a topological group G. Then the topological
and group structures induced from G make H a topological group.

27.1x. Let H be a subgroup of an Abelian group G. Prove that, given a structure
of topological group in H and a neighborhood base at 1, G carries a structure of
topological group with the same neighborhood base at 1.

27.2x. Prove that a subgroup of a topological group is open iff it contains an
interior point.

27.3x. Prove that every open subgroup of a topological group is also closed.

27.4x. Prove that every closed subgroup of finite index is also open.

27.5x. Find an example of a subgroup of a topological group that

(1) is closed, but not open;
(2) is neither closed, nor open.

27.6x. Prove that a subgroup H of a topological group is a discrete subspace iff
H contains an isolated point.

27.7x. Prove that a subgroup H of a topological group G is closed, iff there exists
an open set U ⊂ G such that U ∩ H = U ∩ Cl H 6= ∅, i.e., iff H ⊂ G is locally
closed at one of its points.

27.8x. Prove that if H is a non-closed subgroup of a topological group G, then
Cl H r H is dense in Cl H .

27.9x. The closure of a subgroup of a topological group is a subgroup.

27.10x. Is it true that the interior of a subgroup of a topological group is a
subgroup?

27.Bx. A connected topological group is generated by any neighborhood of
1.

27.Cx. Let H be a subgroup of a group G. Define a relation: a ∼ b if
ab−1 ∈ H. Prove that this is an equivalence relation, and the right cosets of
H in G are the equivalence classes.

27.11x. What is the counterpart of 27.Cx for left cosets?

Let G be a topological group, H ⊂ G a subgroup. The set of left (re-
spectively, right) cosets of H in G is denoted by G/H (respectively, H\G).
The sets G/H and H\G carry the quotient topology. Equipped with these
topologies, they are called spaces of cosets.

27.Dx. For any topological group G and its subgroup H, the natural pro-
jections G → G/H and G → H\G are open (i.e., the image of every open
set is open).
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27.Ex. The space of left (or right) cosets of a closed subgroup in a topolog-
ical group is regular.

27.Fx. The group G is compact (respectively, connected) if so are H and
G/H.

27.12x. If H is a connected subgroup of a group G, then the preimage of any
connected component of G/H is a connected component of G.

27.13x. Let us regard the group SO(n − 1) as a subgroup of SO(n). If n ≥ 2,
then the space SO(n)/SO(n − 1) is homeomorphic to Sn−1.

27.14x. The groups SO(n), U(n), SU(n), and Sp(n) are 1) compact and 2)
connected for any n ≥ 1. 3) How many connected components do the groups O(n)
and O(p, q) have? (Here, O(p, q) is the group of linear transformations in Rp+q

preserving the quadratic form x2
1 + · · · + x2

p − y2
1 − · · · − y2

q .)

27◦2x. Normal Subgroups

27.Gx. Prove that the closure of a normal subgroup of a topological group
is a normal subgroup.

27.Hx. The connected component of 1 in a topological group is a closed
normal subgroup.

27.15x. The path-connected component of 1 in a topological group is a normal
subgroup.

27.Ix. The quotient group of a topological group is a topological group
(provided that it is equipped with the quotient topology).

27.Jx. The natural projection of a topological group onto its quotient group
is open.

27.Kx. If a topological group G is first (respectively, second) countable,
then so is any quotient group of G.

27.Lx. Let H be a normal subgroup of a topological group G. Then the
quotient group G/H is regular iff H is closed.

27.Mx. Prove that a normal subgroup H of a topological group G is open
iff the quotient group G/H is discrete.

The center of a group G is the set C(G) = {x ∈ G | xg = gx for each g ∈
G}.

27.16x. Each discrete normal subgroup H of a connected group G is contained
in the center of G.
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27◦3x. Homomorphisms

For topological groups, by a homomorphism one means a group homo-
morphism which is continuous.

27.Nx. Let G and H be two topological groups. A group homomorphism
f : G→ H is continuous iff f is continuous at 1G.

Besides similar modifications, which can be summarized by the follow-
ing principle: everything is assumed to respect the topological structures, the
terminology of group theory passes over without changes. In particular, an
isomorphism in group theory is an invertible homomorphism. Its inverse is
a homomorphism (and hence an isomorphism) automatically. In the theory
of topological groups, this must be included in the definition: an isomor-

phism of topological groups is an invertible homomorphism whose inverse
is also a homomorphism. In other words, an isomorphism of topological
groups is a map that is both a group isomorphism and a homeomorphism.
Cf. Section 10.

27.17x. Prove that the map [0, 1) → S1 : x 7→ e2πix is a topological group
homomorphism.

27.Ox. An epimorphism f : G → H is an open map iff the injective factor
f/S(f) : G/Ker f → H of f is an isomorphism.

27.Px. An epimorphism of a compact topological group onto a topological
group with closed unity is open.

27.Qx. Prove that the quotient group R/Z of the additive group R by the
subgroup Z is isomorphic to the multiplicative group S1 = {z ∈ C : |z| = 1}
of complex numbers with absolute value 1.

27◦4x. Local Isomorphisms

Let G andH be two topological groups. A local isomorphism fromG toH
is a homeomorphism f of a neighborhood U of 1G in G onto a neighborhood
V of 1H in H such that

• f(xy) = f(x)f(y) for any x, y ∈ U such that xy ∈ U ,

• f−1(zt) = f−1(z)f−1(t) for any z, t ∈ V such that zt ∈ V .

Two topological groups G and H are locally isomorphic if there exists a
local isomorphism from G to H.

27.Rx. Isomorphic topological groups are locally isomorphic.

27.Sx. The additive group R and the multiplicative group S1 ⊂ C are
locally isomorphic, but not isomorphic.
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27.18x. Prove that local isomorphism of topological groups is an equivalence
relation.

27.19x. Find neighborhoods of unities in R and S1 and a homeomorphism between
them that satisfies the first condition in the definition of local isomorphism, but
does not satisfy the second one.

27.20x. Prove that if a homeomorphism between neighborhoods of unities in
two topological groups satisfies only the first condition in the definition of local
isomorphism, then it has a submap that is a local isomorphism between these
topological groups.

27◦5x. Direct Products

Let G and H be two topological groups. In group theory, the product
G × H is given a group structure.1 In topology, it is given a topological
structure (see Section 19).

27.Tx. These two structures are compatible: the group operations in G×H
are continuous with respect to the product topology.

Thus, G×H is a topological group. It is called the direct product of the
topological groups G and H. There are canonical homomorphisms related
to this: the inclusions iG : G → G×H : x 7→ (x, 1) and iH : H → G×H :
x 7→ (1, x), which are monomorphisms, and the projections prG : G×H →
G : (x, y) 7→ x and prH : G×H → H : (x, y) 7→ y, which are epimorphisms.

27.21x. Prove that the topological groups (G × H)/iH(H) and G are isomorphic.

27.22x. The product operation is both commutative and associative: G × H is
(canonically) isomorphic to H × G, while G × (H × K) is canonically isomorphic
to (G × H) × K.

A topological group G decomposes into a direct product of two subgroups

A and B if the map A × B → G : (x, y) 7→ xy is a topological group
isomorphism. If this is the case, the groupsG and A×B are usually identified
via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The
only difference is that there an isomorphism is just an algebraic isomor-
phism. Furthermore, in that theory, G decomposes into a direct product
of its subgroups A and B iff A and B generate G, A and B are normal
subgroups, and A ∩ B = {1}. Therefore, if these conditions are fulfilled in
the case of topological groups, then A × B → G : (x, y) 7→ xy is a group
isomorphism.

27.23x. Prove that in this situation the map A × B → G : (x, y) 7→ xy is contin-
uous. Find an example where the inverse group isomorphism is not continuous.

1Recall that the multiplication in G × H is defined by the formula (x, u)(y, v) = (xy, uv).
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27.Ux. Prove that if a compact Hausdorff groupG decomposes algebraically
into a direct product of two closed subgroups, then G also decomposes into
a direct product of these subgroups as a topological group.

27.24x. Prove that the multiplicative group Rr0 of nonzero reals is isomorphic (as
a topological group) to the direct product of the multiplicative groups S0 = {1,−1}
and R>0 = {x ∈ R | x > 0}.
27.25x. Prove that the multiplicative group C r 0 of nonzero complex numbers
is isomorphic (as a topological group) to the direct product of the multiplicative
groups S1 = {z ∈ C : |z| = 1} and R>0.

27.26x. Prove that the multiplicative group H r 0 of nonzero quaternions is iso-
morphic (as a topological group) to the direct product of the multiplicative groups
S3 = {z ∈ H : |z| = 1} and R>0.

27.27x. Prove that the subgroup S0 = {1,−1} of S3 = {z ∈ H : |z| = 1} is not
a direct factor.

27.28x. Find a topological group homeomorphic to RP 3 (the three-dimensional
real projective space).

Let a group G contain a normal subgroup A and a subgroup B such
that AB = G and A ∩ B = {1G}. If B is also normal, then G is the direct
product A×B. Otherwise, G is a semidirect product of A and B.

27.Vx. Let a topological group G be a semidirect product of its subgroups
A and B. If for any neighborhoods of unity, U ⊂ A and V ⊂ B, their
product UV contains a neighborhood of 1G, then G is homeomorphic to
A×B.

27◦6x. Groups of Homeomorphisms

For any topological space X, the auto-homeomorphisms of X form a
group under composition as the group operation. We denote this group by
TopX. To make this group topological, we slightly enlarge the topological
structure induced on TopX by the compact-open topology of C(X,X).

27.Wx. The collection of the sets W (C,U) and (W (C,U))−1 taken over all
compact C ⊂ X and open U ⊂ X is a subbase for the topological structure
on TopX.

In what follows, we equip TopX with this topological structure.

27.Xx. If X is Hausdorff and locally compact, then TopX is a topological
group.

27.Xx.1. IfX is Hausdorff and locally compact, then the map TopX×TopX →
TopX : (g, h) 7→ g ◦ h is continuous.
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28x. Actions of Topological Groups

28◦1x. Action of a Group on a Set

A left action of a group G on a set X is a map G×X → X : (g, x) 7→ gx
such that 1x = x for any x ∈ X and (gh)x = g(hx) for any x ∈ X and
g, h ∈ G. A set X equipped with such an action is a left G-set. Right G-sets
are defined in a similar way.

28.Ax. If X is a left G-set, then G × X → X : (x, g) 7→ g−1x is a right
action of G on X.

28.Bx. If X is a left G-set, then for any g ∈ G the map X → X : x 7→ gx
is a bijection.

A left action of G on X is effective (or faithful) if for each g ∈ Gr 1 the
map G→ G : x 7→ gx is not equal to idG. Let X1 and X2 be two left G-sets.
A map f : X1 → X2 is G-equivariant if f(gx) = gf(x) for any x ∈ X and
g ∈ G.

We say that X is a homogeneous left G-set, or, what is the same, that
G acts on X transitively if for any x, y ∈ X there exists g ∈ G such that
y = gx.

The same terminology applies to right actions with obvious modifica-
tions.

28.Cx. The natural actions of G on G/H and H\G transform G/H and

H\G into homogeneous left and, respectively, right G-sets.

Let X be a homogeneous left G-set. Consider a point x ∈ X and the
set Gx = {g ∈ G | gx = x}. We easily see that Gx is a subgroup of G. It is
called the isotropy subgroup of x.

28.Dx. Each homogeneous left (respectively, right) G-set X is isomorphic
to G/H (respectively, H\G), where H is the isotropy group of a certain
point in X.

28.Dx.1. All isotropy subgroups Gx, x ∈ G, are pairwise conjugate.

Recall that the normalizer Nr(H) of a subgroup H of a group G consists
of all elements g ∈ G such that gHg−1 = H. This is the largest subgroup
of G containing H as a normal subgroup.

28.Ex. The group of all automorphisms of a homogeneous G-set X is iso-
morphic to N(H)/H , where H is the isotropy group of a certain point in
X.

28.Ex.1. If two points x, y ∈ X have the same isotropy group, then there exists
an automorphism of X that sends x to y.
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28◦2x. Continuous Action

We speak about a left G-space X if X is a topological space, G is a
topological group acting on X, and the action G × X → X is continuous
(as a map). All terminology (and definitions) concerning G-sets extends to
G-spaces literally.

Note that if G is a discrete group, then any action of G by homeomor-
phisms is continuous and thus provides a G-space.

28.Fx. Let X be a left G-space. Then the natural map φ : G → TopX
induced by this action is a group homomorphism.

28.Gx. If in the assumptions of Problem 28.Fx the G-space X is Hausdorff
and locally compact, then the induced homomorphism φ : G → TopX is
continuous.

28.1x. In each of the following situations, check if we have a continuous action
and a continuous homomorphism G → Top X:

(1) G is a topological group, X = G, and G acts on X by left (or right)
translations, or by conjugation;

(2) G is a topological group, H ⊂ G is a subgroup, X = G/H , and G acts
on X via g(aH) = (ga)H ;

(3) G = GL(n, K) (where K = R, C, or H)), and G acts on Kn via matrix
multiplication;

(4) G = GL(n, K) (where K = R, C, or H), and G acts on KP n−1 via
matrix multiplication;

(5) G = O(n, R), and G acts on Sn−1 via matrix multiplication;
(6) the (additive) group R acts on the torus S1 × · · · × S1 according to

formula (t, (w1, . . . , wr)) 7→ (e2πia1tw1, . . . , e
2πiartwr); this action is an

irrational flow if a1, . . . , ar are linearly independent over Q.

If the action of G on X is not effective, then we can consider its kernel

GKer = {g ∈ G | gx = x for all x ∈ X}.
This kernel is a closed normal subgroup of G, and the topological group
G/GKer acts naturally and effectively on X.

28.Hx. The formula gGKer(x) = gx determines an effective continuous ac-
tion of G/GKer on X.

A group G acts properly discontinuously on X if for any compact set
C ⊂ X the set {g ∈ G | (gC) ∩ C 6= ∅} is finite.

28.Ix. If G acts properly discontinuously and effectively on a Hausdorff
locally compact space X, then φ(G) is a discrete subset of TopX. (Here, as
before, φ : G → TopX is the monomorphism induced by the G-action.) In
particular, G is a discrete group.

28.2x. List, up to similarity, all triangles T ⊂ R2 such that the reflections in the
sides of T generate a group acting on R2 properly discontinuously.
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28◦3x. Orbit Spaces

Let X be a G-space. For x ∈ X, the set G(x) = {gx | g ∈ G} is the orbit

of x. In terms of orbits, the action of G on X is transitive iff it has only one
orbit. For A ⊂ X and E ⊂ G, we put E(A) = {ga | g ∈ E, a ∈ A}.
28.Jx. Let G be a compact topological group acting on a Hausdorff space X.
Then for any x ∈ X the canonical map G/Gx → G(x) is a homeomorphism.

28.3x. Give an example where X is Hausdorff, but G/Gx is not homeomorphic
to G(x).

28.Kx. If a compact topological group G acts on a compact Hausdorff space
X, then X/G is a compact Hausdorff space.

28.4x. Let G be a compact group, X a Hausdorff G-space, A ⊂ X. If A is closed
(respectively, compact), then so is G(A).

28.5x. Consider the canonical action of G = R r 0 on X = R (by multiplication).
Find all orbits and all isotropy subgroups of this action. Recognize X/G as a
topological space.

28.6x. Let G be the group generated by reflections in the sides of a rectangle
in R2. Recognize the quotient space R2/G as a topological space. Recognize the
group G.

28.7x. Let G be the group from Problem 28.6x, and let H ⊂ G be the subgroup
of index 2 constituted by the orientation-preserving elements in G. Recognize the
quotient space R2/H as a topological space. Recognize the groups G and H .

28.8x. Consider the (diagonal) action of the torus G = (S1)n+1 on X = CP n via
(z0, z1, . . . , zn) 7→ (θ0z0, θ1z1, . . . , θnzn). Find all orbits and isotropy subgroups.
Recognize X/G as a topological space.

28.9x. Consider the canonical action (by permutations of coordinates) of the
symmetric group G = Sn on X = Rn and X = Cn, respectively. Recognize X/G
as a topological space.

28.10x. Let G = SO(3) act on the space X of symmetric 3× 3 real matrices with
trace 0 by conjugation x 7→ gxg−1. Recognize X/G as a topological space. Find
all orbits and isotropy groups.

28◦4x. Homogeneous Spaces

A G-space is homogeneous it the action of G is transitive.

28.Lx. Let G be a topological group, H ⊂ G a subgroup. Then G is
a homogeneous H-space under the translation action of H. The quotient
space G/H is a homogeneous G-space under the induced action of G.

28.Mx. Let X be a Hausdorff homogeneous G-space. If X and G are locally
compact and G is second countable, then X is homeomorphic to G/Gx for
any x ∈ X.

28.Nx. LetX be a homogeneousG-space. Then the canonical mapG/Gx →
X, x ∈ X, is a homeomorphism iff it is open.
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28.11x. Show that O(n + 1)/O(n) = Sn and U(n)/U(n − 1) = S2n−1.

28.12x. Show that O(n + 1)/O(n) × O(1) = RP n and U(n)/U(n − 1) × U(1) =

CP n.

28.13x. Show that Sp(n)/Sp(n − 1) = S4n−1, where

Sp(n) = {A ∈ GL(H) | AA∗ = I}.
28.14x. Represent the torus S1×S1 and the Klein bottle as homogeneous spaces.

28.15x. Give a geometric interpretation of the following homogeneous spaces:
1) O(n)/O(1)n, 2) O(n)/O(k) × O(n − k), 3) O(n)/SO(k) × O(n − k), and 4)

O(n)/O(k).

28.16x. Represent S2 × S2 as a homogeneous space.

28.17x. Recognize SO(n, 1)/SO(n) as a topological space.
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Proofs and Comments

26.Ax Use the fact that any auto-homeomorphism of a discrete space is
continuous.

26.Cx Any translation is continuous, and the translations by a and
a−1 are mutually inverse.

26.Dx Any conjugation is continuous, and the conjugations by g and
g−1 are mutually inverse.

26.Ex The sets xU , Ux, and U−1 are the images of U under the
homeomorphisms Lx and Rx of the left and right translations through x
and passage to the inverse element (i.e., reversing), respectively.

26.Fx Let V ⊂ G be an open set, a ∈ V . If a neighborhood U ∈ Γ
is such that U ⊂ a−1V , then aU ⊂ V . By Theorem 3.A, Σ is a base for
topology of G.

26.Gx If U is a neighborhood of 1, then U ∩ U−1 is a symmetric
neighborhood of 1.

26.Hx By the continuity of multiplication, 1 has two neighborhoods
V1 and V2 such that V1V2 ⊂ U . Put V = V1 ∩ V2.

26.Jx Let W be a symmetric neighborhood such that 1G ∈ W and
W 3 ⊂ U . Since C is compact, C is covered by finitely many sets of the form
W1 = x1W, . . . ,Wn = xnW with x1, . . . , xn ∈ C. Put V =

⋂
(xiWx−1

i ).
Clearly, V is a neighborhood of 1G. If x ∈ C, then x = xiwi for suitable
i, wi ∈W . Finally, we have

x−1V x = w−1
i x−1

i V xiwi ⊂ w−1
i Wwi ⊂W 3 ⊂ U.

26.Kx If 1G is closed, then all singletons in G are closed. Therefore,
G satisfies T1 iff 1G is closed. Let us prove that in this case the group G
is also Hausdorff. Consider g 6= 1 and take a neighborhood U of 1G not
containing g. By 26.15x, 1G has a symmetric neighborhood V such that
V 2 ⊂ U . Verify that gV and V are disjoint, whence it follows that G is
Hausdorff.

26.Lx Use 14.C In this case, each element of G is the
intersection of its neighborhoods. Hence, G satisfies the first separation
axiom, and it remains to apply 26.Kx.

26.Mx.1 It suffices to take a symmetric neighborhood V such that
V 2 ⊂ U . Indeed, then for any g /∈ U the neighborhoods gV and V are
disjoint, whence ClV ⊂ U .

26.Ox Let W be an open set, g ∈ W . Let V be a symmetric neigh-
borhood of 1G with V 2 ⊂ W . There 1G has a neighborhood U ∈ Γ such
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that U ⊂ V . There exists a ∈ S such that a ∈ gU−1. Then g ∈ aU and
a ∈ gU−1 ⊂ gV −1 = gV . Therefore, aU ⊂ aV ⊂ gV 2 ⊂W .

26.Px This immediately follows from 26.Ox.

27.Bx This follows from 26.16x.

27.Dx If U is open, then UH (respectively, HU) is open, see 26.11x.

27.Ex Let G be the group, H ⊂ G the subgroup. The space G/H of
left cosets satisfies the first separation axiom since gH is closed in G for any
g ∈ G. Observe that every open set in G/H has the form {gH | g ∈ U},
where U is an open set in G. Hence, it is sufficient to check that for every
open neighborhood U of 1G in G the unity 1G has a neighborhood V in G
such that ClV H ⊂ UH. Pick a symmetric neighborhood V with V 2 ⊂ U ,
see 26.15x. Let x ∈ G belong to ClV H. Then V x contains a point vh with
v ∈ V and h ∈ H, so that there exists v′ ∈ V such that v′x = vh, whence
x ∈ V −1V H = V 2H ⊂ UH.

27.Fx (Compactness) First, we check that if H is compact, then the
projection G→ G/H is a closed map. Let F ⊂ G be a closed set, x /∈ FH.
Since FH is closed (see 26.14x), x has a neighborhood U disjoint with
FH. Then UH is disjoint with FH. Hence, the projection is closed. Now,
consider a family of closed sets in G with finite intersection property. Their
images also form a family of closed sets in G/H with finite intersection
property. Since G/H is compact, the images have a nonempty intersection.
Therefore, there is g ∈ G such that the traces of the closed sets in the family
on gH have finite intersection property. Finally, since gH is compact, the
closed sets in the family have a nonempty intersection.
(Connectedness) Let G = U ∪ V , where U and V are disjoint open subsets
of G. Since all cosets gH, g ∈ G, are connected, each of them is contained
either in U or in V . Hence, G is decomposed into UH and V H, which
yields a decomposition of G/H in two disjoint open subsets. Since G/H is
connected, either UH or V H is empty. Therefore, either U or V is empty.

27.Hx Let C be the connected component of 1G in a topological group
G. Then C−1 is connected and contains 1G, whence C−1 ⊂ C. For any
g ∈ C, the set gC is connected and meets C, whence gC ⊂ C. Therefore, C
is a subgroup of G. C is closed since connected components are closed. C
is normal since gCg−1 is connected and contains 1G, whatever g ∈ G is.

27.Ix Let G be a topological group, H a normal subgroup of G, a, b ∈ G
two elements. Let W be a neighborhood of the coset abH in G/H . The
preimage ofW inG is an open setW consisting of cosets ofH and containing
ab. In particular, W is a neighborhood of ab. Since the multiplication in G
is continuous, a and b have neighborhoods U and V , respectively, such that
UV ⊂W . Then (UH)(V H) = (UV )H ⊂WH. Therefore, multiplication of
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elements in the quotient group determines a continuous map G/H×G/H →
G/H. Prove on your own that the map G/H ×G/H : aH → a−1H is also
continuous.

27.Jx This is special case of 27.Dx.

27.Kx If {Ui} is a countable (neighborhood) base in G, then {UiH} is
a countable (neighborhood) base in G/H .

27.Lx This is a special case of 27.Ex.

27.Mx In this case, all cosets of H are also open. Therefore,
each singleton in G/H is open. If 1G/H is open in G/H, then H is
open in G by the definition of the quotient topology.

27.Nx Obvious. Let a ∈ G, and let b = f(a) ∈ H. For any
neighborhood U of b, the set b−1U is a neighborhood of 1H in H. Therefore,
1G has a neighborhood V in G such that f(V ) ⊂ b−1U . Then aV is a
neighborhood of a, and we have f(aV ) = f(a)f(V ) = bf(V ) ⊂ bb−1U = U .
Hence, f is continuous at each point a ∈ G, i.e., f is a topological group
homomorphism.

27.Ox Each open subset of G/Ker f has the form U · Ker f ,

where U is an open subset of G. Since f/S(f)(U · Ker f) = f(U), the map

f/S(f) is open.

Since the projection G → G/Ker f is open (see 27.Dx), the map f is

open if so is f/S(f).

27.Px Combine 27.Ox, 26.Kx, and 16.Y.

27.Qx This follows from 27.Ox since the exponential map R → S1 :
x 7→ e2πxi is open.

27.Sx The groups are not isomorphic since only one of them is compact.
The exponential map x 7→ e2πxi determines a local isomorphism from R to
S1.

27.Vx The map A × B → G : (a, b) 7→ ab is a continuous bijection.
To see that it is a homeomorphism, observe that it is open since for any
neighborhoods of unity, U ⊂ A and V ⊂ B, and any points a ∈ A and b ∈ B,
the product UaV b = abU ′V ′, where U ′ = b−1a−1Uab and V ′ = b−1V b,
contains abW ′, where W ′ is a neighborhood of 1G contained in U ′V ′.

27.Wx This immediately follows from 3.8.

27.Xx The map TopX → TopX : g 7→ g−1 is continuous because it
preserves the subbase for the topological structure on TopX. It remains to
apply 27.Xx.1.
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27.Xx.1 It suffices to check that the preimage of every element of
a subbase is open. For W (C,U), this is a special case of 24.Sx, where we
showed that for any gh ∈W (C,U) there is an open U ′, h(C) ⊂ U ′ ⊂ g−1(U),
such that ClU ′ is compact, h ∈W (C,U ′), g ∈W (ClU ′, U), and

gh ∈W (ClU ′, U) ◦W (C,U ′) ⊂W (C,U).

The case of (W (C,U))−1 reduces to the previous one because for any gh ∈
(W (C,U))−1 we have h−1g−1 ∈ W (C,U), and so, applying the above con-
struction, we obtain an open U ′ such that g−1(C) ⊂ U ′ ⊂ h(U), ClU ′ is
compact, g−1 ∈W (C,U ′), h−1 ∈W (ClU ′, U), and

h−1g−1 ∈W (ClU ′, U) ◦W (C,U ′) ⊂W (C,U).

Finally, we have g ∈ (W (C,U ′))−1, h ∈ (W (ClU ′, U))−1, and

gh ∈ (W (C,U ′))−1 ◦ (W (ClU ′, U))−1 ⊂ (W (C,U))−1.

We observe that the above map is continuous even for the pure compact-
open topology on TopX.

28.Gx It suffices to check that the preimage of every element of a
subbase is open. For W (C,U), this is a special case of 24.Vx. Let φ(g) ∈
(W (C,U))−1. Then φ(g−1) ∈ W (C,U), and therefore g−1 has an open
neighborhood V in G with φ(V ) ⊂W (C,U). It follows that V −1 is an open
neighborhood of g in G and φ(V −1) ⊂ (W (C,U))−1. (The assumptions
about X are needed only to ensure that TopX is a topological group.)

28.Ix Let us check that 1G is an isolated point of G. Consider an
open set V with compact closure. Let U ⊂ V be an open subset with
compact closure ClU ⊂ V . Then, for each of finitely many gk ∈ G with
gk(U) ∩ V 6= ∅, let xk ∈ X be a point with gk(xk) 6= xk, and let Uk be an
open neighborhood of xk disjoint with gk(xk). Finally, G ∩W (ClU, V ) ∩⋂
W (xk, Uk) contains only 1G.

28.Jx The space G/Gx is compact, the orbit G(x) ⊂ X is Hausdorff,
and the map G/Gx → G(x) is a continuous bijection. It remains to ap-
ply 16.Y.

28.Kx To prove that X/G is Hausdorff, consider two disjoint orbits,
G(x) and G(y). Since G(y) is compact, there are disjoint open sets U ∋ x
and V ⊃ G(y). Since G(x) is compact, there is a finite number of elements
gk ∈ G such that

⋃
gkU covers G(x). Then Cl(

⋃
gkU) =

⋃
Cl gkU =⋃

gk ClU is disjoint with G(y), which shows that X/G is Hausdorff. (Note
that this part of the proof does not involve the compactness of X.) Finally,
X/G is compact as a quotient of the compact space X.

28.Mx It suffices to prove that the canonical map f : G/Gx → X is
open (see 28.Nx).
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Take a neighborhood V ⊂ G of 1G with compact closure and a neighborhood
U ⊂ G of 1G with ClU ·ClU ⊂ V . Since G contains a dense countable set, it
follows that there is a sequence gn ∈ G such that {gnU} is an open cover ofG.
It remains to prove that at least one of the sets f(gnU) = gnf(U) = gnU(x)
has nonempty interior.
Assume the contrary. Then, using the local compactness of X, its Hausdorff
property, and the compactness of f(gn ClU), we construct by induction a
sequence Wn ⊂ X of nested open sets with compact closure such that Wn

is disjoint with gkUx with k < n and gnUx ∩Wn is closed in Wn. Finally,
we obtain nonempty

⋂
Wn disjoint with G(x), a contradiction.

28.Nx The canonical map G/Gx → X is continuous and bijective.
Hence, it is a homeomorphism iff it is open (and iff it is closed).


