
Part 2

Elements of Algebraic

Topology



This part of the book can be considered an introduction to algebraic
topology. The latter is a part of topology which relates topological and
algebraic problems. The relationship is used in both directions, but the
reduction of topological problems to algebra is more useful at first stages
because algebra is usually easier.

The relation is established according to the following scheme. One in-
vents a construction that assigns to each topological space X under consid-
eration an algebraic object A(X). The latter may be a group, a ring, a space
with a quadratic form, an algebra, etc. Another construction assigns to a
continuous map f : X → Y a homomorphism A(f) : A(X) → A(Y ). The
constructions satisfy natural conditions (in particular, they form a functor),
which make it possible to relate topological phenomena with their algebraic
images obtained via the constructions.

There is an immense number of useful constructions of this kind. In
this part we deal mostly with one of them which, historically, was the first
one: the fundamental group of a topological space. It was invented by Henri
Poincaré in the end of the XIXth century.



Chapter VI

Fundamental Group

29. Homotopy

29◦1. Continuous Deformations of Maps

29.A. Is it possible to deform continuously:

(1) the identity map id : R
2 → R

2 to the constant map R
2 → R

2 : x 7→
0,

(2) the identity map id : S1 → S1 to the symmetry S1 → S1 : x 7→ −x
(here x is considered a complex number because the circle S1 is
{x ∈ C : |x| = 1}),

(3) the identity map id : S1 → S1 to the constant map S1 → S1 : x 7→
1,

(4) the identity map id : S1 → S1 to the two-fold wrapping S1 → S1 :
x 7→ x2,

(5) the inclusion S1 → R2 to a constant map,

(6) the inclusion S1 → R
2

r 0 to a constant map?

29.B. Riddle. When you (tried to) solve the previous problem, what did
you mean by “deform continuously”?

207
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The present section is devoted to the notion of homotopy formalizing the
naive idea of continuous deformation of a map.

29◦2. Homotopy as Map and Family of Maps

Let f and g be two continuous maps of a topological space X to a
topological space Y , and H : X × I → Y a continuous map such that
H(x, 0) = f(x) and H(x, 1) = g(x) for any x ∈ X. Then f and g are
homotopic , and H is a homotopy between f and g.

For x ∈ X, t ∈ I denote H(x, t) by ht(x). This change of notation
results in a change of the point of view of H. Indeed, for a fixed t the
formula x 7→ ht(x) determines a map ht : X → Y , and H becomes a family
of maps ht enumerated by t ∈ I.

29.C. Each ht is continuous.

29.D. Does continuity of all ht imply continuity of H?

The conditions H(x, 0) = f(x) and H(x, 1) = g(x) in the above defi-
nition of a homotopy can be reformulated as follows: h0 = f and h1 = g.
Thus a homotopy between f and g can be regarded as a family of continuous
maps that connects f and g. Continuity of a homotopy allows us to say that
it is a continuous family of continuous maps (see 29◦10).

29◦3. Homotopy as Relation

29.E. Homotopy of maps is an equivalence relation.

29.E.1. If f : X → Y is a continuous map, then H : X×I → Y : (x, t) 7→ f(x)
is a homotopy between f and f .

29.E.2. If H is a homotopy between f and g, then H ′ defined by H ′(x, t) =
H(x, 1 − t) is a homotopy between g and f .

29.E.3. If H is a homotopy between f and f ′ and H ′ is a homotopy between
f ′ and f ′′, then H ′′ defined by

H ′′(x, t) =

{
H(x, 2t) if t ∈

[
0, 1

2

]
,

H ′(x, 2t− 1) if t ∈
[

1

2
, 1

]
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is a homotopy between f and f ′′.

Homotopy, being an equivalence relation by 29.E, splits the set C(X,Y )
of all continuous maps from a space X to a space Y into equivalence classes.
The latter are homotopy classes. The set of homotopy classes of all contin-
uous maps X → Y is denoted by π(X,Y ). Map homotopic to a constant
map are said to be null-homotopic .

29.1. Prove that for any X, the set π(X, I) has a single element.

29.2. Prove that two constant maps Z → X are homotopic iff their images lie in
one path-connected component of X.

29.3. Prove that the number of elements of π(I, Y ) is equal to the number of path
connected components of Y .

29◦4. Rectilinear Homotopy

29.F. Any two continuous maps of the same space to Rn are homotopic.

29.G. Solve the preceding problem by proving that for continuous maps
f, g : X → R

n formula H(x, t) = (1− t)f(x)+ tg(x) determines a homotopy
between f and g.

The homotopy defined in 29.G is a rectilinear homotopy.

29.H. Any two continuous maps of an arbitrary space to a convex subspace
of Rn are homotopic.

29◦5. Maps to Star-Shaped Sets

A set A ⊂ R
n is star-shaped if there exists a point b ∈ A such that for any

x ∈ A the whole segment [a, x] connecting x to a is contained in A. The point
a is the center of the star. (Certainly, the center of the star is not uniquely
determined.)

29.4. Prove that any two continuous maps of a space to a star-shaped subspace
of R

n are homotopic.

29◦6. Maps of Star-Shaped Sets

29.5. Prove that any continuous map of a star-shaped set C ⊂ R
n to any space

is null-homotopic.

29.6. Under what conditions (formulated in terms of known topological properties
of a space X) any two continuous maps of any star-shaped set to X are homotopic?
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29◦7. Easy Homotopies

29.7. Prove that each non-surjective map of any topological space to Sn is null-
homotopic.

29.8. Prove that any two maps of a one-point space to R
n

r 0 with n > 1 are
homotopic.

29.9. Find two nonhomotopic maps from a one-point space to R r 0.

29.10. For various m, n, and k, calculate the number of homotopy classes of
maps {1, 2, . . . ,m} → R

n
r {x1, x2, . . . , xk}, where {1, 2, . . . ,m} is equipped with

discrete topology.

29.11. Let f and g be two maps from a topological space X to C r 0. Prove that
if |f(x) − g(x)| < |f(x)| for any x ∈ X, then f and g are homotopic.

29.12. Prove that for any polynomials p and q over C of the same degree in
one variable there exists r > 0 such that for any R > r formulas z 7→ p(z) and
z 7→ q(z) determine maps of the circle {z ∈ C : |z| = R} to C r 0 and these maps
are homotopic.

29.13. Let f , g be maps of an arbitrary topological space X to Sn. Prove that if
|f(a) − g(a)| < 2 for each a ∈ X, then f is homotopic to g.

29.14. Let f : Sn → Sn be a continuous map. Prove that if it is fixed-point-free,
i.e., f(x) 6= x for every x ∈ Sn, then f is homotopic to the symmetry x 7→ −x.

29◦8. Two Natural Properties of Homotopies

29.I. Let f, f ′ : X → Y , g : Y → B, h : A → X be continuous maps and
F : X×I → Y a homotopy between f and f ′. Prove that then g◦F ◦(h×idI)
is a homotopy between g ◦ f ◦ h and g ◦ f ′ ◦ h.

29.J. Riddle. Under conditions of 29.I, define a natural map

π(X,Y ) → π(A,B).

How does it depend on g and h? Write down all nice properties of this
construction.

29.K. Prove that two maps f0, f1 : X → Y × Z are homotopic iff prY ◦f0

is homotopic to prY ◦ f1 and prZ ◦f0 is homotopic to prZ ◦ f1.

29◦9. Stationary Homotopy

Let A be a subset of X. A homotopy H : X×I → Y is fixed or stationary

on A, or, briefly, an A-homotopy if H(x, t) = H(x, 0) for all x ∈ A, t ∈ I.
Two maps connected by an A-homotopy are A-homotopic .

Certainly, any two A-homotopic maps coincide on A. If we want to
emphasize that a homotopy is not assumed to be fixed, then we say that it
is free. If we want to emphasize the opposite (that the homotopy is fixed),
then we say that it is relative.1

1Warning: there is a similar, but different kind of homotopy, which is also called relative.
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29.L. Prove that, like free homotopy, A-homotopy is an equivalence rela-
tion.

The classes into which A-homotopy splits the set of continuous maps
X → Y that agree on A with a map f : A → Y are A-homotopy classes of

continuous extensions of f to X.

29.M. For what A is a rectilinear homotopy fixed on A?

29◦10. Homotopies and Paths

Recall that a path in a space X is a continuous map from the segment
I to X. (See Section 13.)

29.N. Riddle. In what sense is any path a homotopy?

29.O. Riddle. In what sense does any homotopy consist of paths?

29.P. Riddle. In what sense is any homotopy a path?

Recall that the compact-open topology in C(X,Y ) is the topology generated
by the sets {ϕ ∈ C(X,Y ) | ϕ(A) ⊂ B} for compact A ⊂ X and open B ⊂ Y .

29.15. Prove that any homotopy ht : X → Y determines (see 29◦2) a path in
C(X,Y ) with compact-open topology.

29.16. Prove that if X is locally compact and regular, then any path in C(X,Y )
with compact-open topology determines a homotopy.

29◦11. Homotopy of Paths

29.Q. Prove that two paths in a space X are freely homotopic iff their
images belong to the same path-connected component of X.

This shows that the notion of free homotopy in the case of paths is not
interesting. On the other hand, there is a sort of relative homotopy playing
a very important role. This is (0 ∪ 1)-homotopy. This causes the following
commonly accepted deviation from the terminology introduced above: ho-
motopy of paths always means not a free homotopy, but a homotopy fixed
on the endpoints of I (i.e., on 0 ∪ 1).

Notation: a homotopy class of a path s is denoted by [s].
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30. Homotopy Properties of Path

Multiplication

30◦1. Multiplication of Homotopy Classes of Paths

Recall (see Section 13) that two paths u and v in a space X can be
multiplied, provided the initial point v(0) of v is the final point u(1) of u.
The product uv is defined by

uv(t) =

{
u(2t) if t ∈

[
0, 1

2

]
,

v(2t− 1) if t ∈
[

1
2 , 1

]
.

u(0)

v(1)

u(1)=v(0)

30.A. If a path u is homotopic to u′, a path v is homotopic to v′, and there
exists the product uv, then u′v′ exists and is homotopic to uv.

Define the product of homotopy classes of paths u and v as the homotopy
class of uv. So, [u][v] is defined as [uv], provided uv is defined. This is a
definition requiring a proof.

30.B. The product of homotopy classes of paths is well defined.2

30◦2. Associativity

30.C. Is multiplication of paths associative?

Certainly, this question might be formulated in more detail as follows.

30.D. Let u, v, and w be paths in a certain space such that products uv
and vw are defined (i.e., u(1) = v(0) and v(1) = w(0)). Is it true that
(uv)w = u(vw)?

30.1. Prove that for paths in a metric space (uv)w = u(vw) implies that u, v,
and w are constant maps.

30.2. Riddle. Find nonconstant paths u, v, and w in an indiscrete space such
that (uv)w = u(vw).

30.E. Multiplication of homotopy classes of paths is associative.

2Of course, when the initial point of paths in the first class is the final point of paths in the
second class.
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30.E.1. Reformulate Theorem 30.E in terms of paths and their homotopies.

30.E.2. Find a map ϕ : I → I such that if u, v, and w are paths with u(1) =
v(0) and v(1) = w(0), then ((uv)w) ◦ ϕ = u(vw).

1

30.E.3. Any path in I starting at 0 and ending at 1 is homotopic to id : I → I.

30.E.4. Let u, v and w be paths in a space such that products uv and vw
are defined (thus, u(1) = v(0) and v(1) = w(0)). Then (uv)w is homotopic to
u(vw).

If you want to understand the essence of 30.E, then observe that the
paths (uv)w and u(vw) have the same trajectories and differ only by the
time spent in different fragments of the path. Therefore, in order to find
a homotopy between them, we must find a continuous way to change one
schedule to the other. The lemmas above suggest a formal way of such a
change, but the same effect can be achieved in many other ways.

30.3. Present explicit formulas for the homotopy H between the paths (uv)w and
u(vw).

30◦3. Unit

Let a be a point of a space X. Denote by ea the path I → X : t 7→ a.

30.F. Is ea a unit for multiplication of paths?

The same question in more detailed form:

30.G. For a path u with u(0) = a is eau = u? For a path v with v(1) = a
is vea = v?

30.4. Prove that if eau = u and the space satisfies the first separation axiom,
then u = ea.

30.H. The homotopy class of ea is a unit for multiplication of homotopy
classes of paths.
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30◦4. Inverse

Recall that for a path u there is the inverse path u−1 : t 7→ u(1− t) (see
Section 13).

30.I. Is the inverse path inverse with respect to multiplication of paths?

In other words:

30.J. For a path u beginning in a and finishing in b, is it true that uu−1 = ea
and u−1u = eb?

30.5. Prove that for a path u with u(0) = a equality uu−1 = ea implies u = ea.

30.K. For any path u, the homotopy class of the path u−1 is inverse to the
homotopy class of u.

30.K.1. Find a map ϕ : I → I such that uu−1 = u ◦ ϕ for any path u.

30.K.2. Any path in I that starts and finishes at 0 is homotopic to the constant
path e0 : I → I.

We see that from the algebraic point of view multiplication of paths
is terrible, but it determines multiplication of homotopy classes of paths,
which has nice algebraic properties. The only unfortunate property is that
the multiplication of homotopy classes of paths is defined not for any two
classes.

30.L. Riddle. How to select a subset of the set of homotopy classes of
paths to obtain a group?
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31. Fundamental Group

31◦1. Definition of Fundamental Group

Let X be a topological space, x0 its point. A path in X which starts
and ends at x0 is a loop in X at x0. Denote by Ω1(X,x0) the set of loops
in X at x0. Denote by π1(X,x0) the set of homotopy classes of loops in X
at x0.

Both Ω1(X,x0) and π1(X,x0) are equipped with a multiplication.

31.A. For any topological space X and a point x0 ∈ X the set π1(X,x0)
of homotopy classes of loops at x0 with multiplication defined above in Sec-
tion 30 is a group.

π1(X,x0) is the fundamental group of the space X with base point x0.
It was introduced by Poincaré, and this is why it is also called the Poincaré

group. The letter π in this notation is also due to Poincaré.

31◦2. Why Index 1?

The index 1 in the notation π1(X,x0) appeared later than the letter
π. It is related to one more name of the fundamental group: the first
(or one-dimensional) homotopy group. There is an infinite series of groups
πr(X,x0) with r = 1, 2, 3, . . . the fundamental group being one of them.
The higher-dimensional homotopy groups were defined by Witold Hurewicz
in 1935, thirty years after the fundamental group was defined. Roughly
speaking, the general definition of πr(X,x0) is obtained from the definition
of π1(X,x0) by replacing I with the cube Ir.

31.B. Riddle. How to generalize problems of this section in such a way
that in each of them I would be replaced by Ir?

There is even a “zero-dimensional homotopy group” π0(X,x0), but it
is not a group, as a rule. It is the set of path-connected components of
X. Although there is no natural multiplication in π0(X,x0), unless X is
equipped with some special additional structures, there is a natural unit in
π0(X,x0). This is the component containing x0.

31◦3. Circular loops

Let X be a topological space, x0 its point. A continuous map l : S1 → X
such that3 l(1) = x0 is a (circular) loop at x0. Assign to each circular loop l
the composition of l with the exponential map I → S1 : t 7→ e2πit. This is a
usual loop at the same point.

3Recall that S1 is regarded as a subset of the plane R2, and the latter is identified in a
canonical way with C. Hence, 1 ∈ S1 = {z ∈ C : |z| = 1}.
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31.C. Prove that any loop can be obtained in this way from a circular loop.

Two circular loops l1 and l2 are homotopic if they are 1-homotopic. A
homotopy of a circular loop not fixed at x0 is a free homotopy.

31.D. Prove that two circular loops are homotopic iff the corresponding
ordinary loops are homotopic.

31.1. What kind of homotopy of loops corresponds to free homotopy of circular
loops?

31.2. Describe the operation with circular loops corresponding to the multiplica-
tion of paths.

31.3. Let U and V be the circular loops with common base point U(1) = V (1)
corresponding to the loops u and v. Prove that the circular loop

z 7→

(

U(z2) if Im(z) ≥ 0,

V (z2) if Im(z) ≤ 0

corresponds to the product of u and v.

31.4. Outline a construction of fundamental group using circular loops.

31◦4. The Very First Calculations

31.E. Prove that π1(R
n, 0) is a trivial group (i.e., consists of one element).

31.F. Generalize 31.E to the situations suggested by 29.H and 29.4.

31.5. Calculate the fundamental group of an indiscrete space.

31.6. Calculate the fundamental group of the quotient space of disk D2 obtained
by identification of each x ∈ D2 with −x.

31.7. Prove that if a two-point space X is path-connected, then X is simply
connected.

31.G. Prove that π1(S
n, (1, 0, . . . , 0)) with n ≥ 2 is a trivial group.

Whether you have solved 31.G or not, we recommend you to consider prob-
lems 31.G.1, 31.G.2, 31.G.4, 31.G.5, and 31.G.6 designed to give an approach
to 31.G, warn about a natural mistake and prepare an important tool for further
calculations of fundamental groups.

31.G.1. Prove that any loop s : I → Sn that does not fill the entire Sn (i.e.,
s(I) 6= Sn) is null-homotopic, provided n ≥ 2. (Cf. Problem 29.7.)

Warning: for any n there exists a loop filling Sn. See 9.Ox.

31.G.2. Can a loop filling S2 be null-homotopic?

31.G.3 Corollary of Lebesgue Lemma 16.W. Let s : I → X be a path,
and Γ be an open cover of a topological space X. There exists a sequence of
points a1, . . . , aN ∈ I with 0 = a1 < a2 < · · · < aN−1 < aN = 1 such that
s([ai, ai+1]) is contained in an element of Γ for each i.



31. Fundamental Group 217

31.G.4. Prove that if n ≥ 2, then for any path s : I → Sn there exists a
subdivision of I into a finite number of subintervals such that the restriction of
s to each of the subintervals is homotopic to a map with nowhere-dense image
via a homotopy fixed on the endpoints of the subinterval.

31.G.5. Prove that if n ≥ 2, then any loop in Sn is homotopic to a non-
surjective loop.

31.G.6. 1) Deduce 31.G from 31.G.1 and 31.G.5. 2) Find all points of the
proof of 31.G obtained in this way, where the condition n ≥ 2 is used.

31◦5. Fundamental Group of Product

31.H. The fundamental group of the product of topological spaces is canon-
ically isomorphic to the product of the fundamental groups of the factors:

π1(X × Y, (x0, y0)) = π1(X,x0) × π1(Y, y0)

31.8. Consider a loop u : I → X at x0, a loop v : I → Y at y0, and the loop
w = u× v : I → X × Y . We introduce the loops u′ : I → X × Y : t 7→ (u(t), y0)
and v′ : I → X × Y : t 7→ (x0, v(t). Prove that u′v′ ∼ w ∼ v′u′.

31.9. Prove that π1(R
n

r 0, (1, 0, . . . , 0)) is trivial if n ≥ 3.

31◦6. Simply-Connectedness

A nonempty topological space X is simply connected (or one-connected)
if X is path-connected and every loop in X is null-homotopic.

31.I. For a path-connected topological space X, the following statements are
equivalent:

(1) X is simply connected,

(2) each continuous map f : S1 → X is (freely) null-homotopic,

(3) each continuous map f : S1 → X extends to a continuous map
D2 → X,

(4) any two paths s1, s2 : I → X connecting the same points x0 and x1

are homotopic.

Theorem 31.I is closely related to Theorem 31.J below. Notice that since
Theorem 31.J concerns not all loops, but an individual loop, it is applicable
in a broader range of situations.

31.J. Let X be a topological space and s : S1 → X be a circular loop. Then
the following statements are equivalent:

(1) s is null-homotopic,

(2) s is freely null-homotopic,

(3) s extends to a continuous map D2 → X,
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(4) the paths s+, s− : I → X defined by formula s±(t) = s(e±πit) are
homotopic.

31.J.1. Riddle. To prove that 4 statements are equivalent, we must prove at
least 4 implications. What implications would you choose for the easiest proof
of Theorem 31.J?

31.J.2. Does homotopy of circular loops imply that these circular loops are
free homotopic?

31.J.3. A homotopy between a map of the circle and a constant map possesses
a quotient map whose source space is homoeomorphic to disk D2.

31.J.4. Represent the problem of constructing of a homotopy between paths s+
and s− as a problem of extension of a certain continuous map of the boundary
of a square to a continuous of the whole square.

31.J.5. When we solve the extension problem obtained as a result of Problem
31.J.4, does it help to know that the circular loop S1 → X : t 7→ s(e2πit)
extends to a continuous map of a disk?

31.10. Which of the following spaces are simply connected:

(a) a discrete
space;

(b) an indiscrete
space;

(c) R
n;

(d) a convex set; (e) a star-shaped set; (f) Sn;
(g) R

n
r 0?

31.11. Prove that if a topological space X is the union of two open simply con-
nected sets U and V with path-connected intersection U ∩ V , then X is simply
connected.

31.12. Show that the assumption in 31.11 that U and V are open is necessary.

31.13*. Let X be a topological space, U and V its open sets. Prove that if
U ∪ V and U ∩ V are simply connected, then so are U and V .

31◦7x. Fundamental Group of a Topological Group

Let G be a topological group. Given loops u, v : I → G starting at the
unity 1 ∈ G, let us define a loop u ⊙ v : I → G by the formula u ⊙ v(t) =
u(t) · v(t), where · denotes the group operation in G.

31.Ax. Prove that the set Ω(G, 1) of all loops in G starting at 1 equipped
with the operation ⊙ is a group.

31.Bx. Prove that the operation ⊙ on Ω(G, 1) determines a group operation
on π1(G, 1), which coincides with the standard group operation (determined
by multiplication of paths).

31.Bx.1. For loops u, v → G starting at 1, find (ue1) ⊙ (e1v).

31.Cx. The fundamental group of a topological group is Abelian.
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31◦8x. High Homotopy Groups

Let X be a topological space and x0 its point. A continuous map Ir → X
mapping the boundary ∂Ir of Ir to x0 is a spheroid of dimension r of X at
x0, or just an r-spheroid . Two r-spheroids are homotopic if they are ∂Ir-
homotopic. For two r-spheroids u and v ofX at x0, r ≥ 1, define the product
uv by the formula

uv(t1, t2, . . . , tr) =

{
u(2t1, t2, . . . , tr) if t1 ∈

[
0, 1

2

]
,

v(2t1 − 1, t2, . . . , tr) if t1 ∈
[

1
2 , 1

]
.

The set of homotopy classes of r-spheroids of a space X at x0 is the rth
(or r-dimensional) homotopy group πr(X,x0) of X at x0. Thus,

πr(X,x0) = π(Ir, ∂Ir; X,x0).

Multiplication of spheroids induces multiplication in πr(X,x0), which makes
πr(X,x0) a group.

31.Dx. Find πr(R
n, 0).

31.Ex. For any X and x0 the group πr(X,x0) with r ≥ 2 is Abelian.

Similar to 31◦3, higher-dimensional homotopy groups can be constructed
not out of homotopy classes of maps (Ir, ∂Ir) → (X,x0), but as

π(Sr, (1, 0, . . . , 0); X,x0).

Another, also quite a popular way, is to define πr(X,x0) as

π(Dr, ∂Dr; X,x0).

31.Fx. Construct natural bijections

π(Ir, ∂Ir; X,x0) → π(Dr, ∂Dr; X,x0) → π(Sr, (1, 0, . . . , 0); X,x0)

31.Gx. Riddle. For any X,x0 and r ≥ 2 present group πr(X,x0) as the
fundamental group of some space.

31.Hx. Prove the following generalization of 31.H:

πr(X × Y, (x0, y0)) = πr(X,x0) × πr(Y, y0).

31.Ix. Formulate and prove analogs of Problems 31.Ax and 31.Bx for higher
homotopy groups and π0(G, 1).
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32. The Role of Base Point

32◦1. Overview of the Role of Base Point

Sometimes the choice of the base point does not matter, sometimes it
is obviously crucial, sometimes this is a delicate question. In this section,
we have to clarify all subtleties related to the base point. We start with
preliminary formulations describing the subject in its entirety, but without
some necessary details.

The role of the base point may be roughly described as follows:

• As the base point changes within the same path-connected compo-
nent, the fundamental group remains in the same class of isomor-
phic groups.

• However, if the group is non-Abelian, it is impossible to find a
natural isomorphism between the fundamental groups at different
base points even in the same path-connected component.

• Fundamental groups of a space at base points belonging to different
path-connected components have nothing to do to each other.

In this section these will be demonstrated. The proof involves useful con-
structions, whose importance extends far outside of the frameworks of our
initial question on the role of base point.

32◦2. Definition of Translation Maps

Let x0 and x1 be two points of a topological space X, and let s be a path
connecting x0 with x1. Denote by σ the homotopy class [s] of s. Define a
map Ts : π1(X,x0) → π1(X,x1) by the formula Ts(α) = σ−1ασ.

x0

x1

32.1. Prove that for any loop a : I → X representing α ∈ π1(X,x0) and any path
s : I → X with s(0) = x0 there exists a free homotopy H : I × I → X between a
and a loop representing Ts(α) such that H(0, t) = H(1, t) = s(t) for t ∈ I .

32.2. Let a, b : I → X be loops homotopic via a homotopy H : I × I → X
such that H(0, t) = H(1, t) (i.e., H is a free homotopy of loops: at each moment
t ∈ I , it keeps the endpoints of the path coinciding). Set s(t) = H(0, t) (hence,
s is the path run through by the initial point of the loop under the homotopy).
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Prove that the homotopy class of b is the image of the homotopy class of a under
Ts : π1(X, s(0)) → π1(X, s(1)).

32◦3. Properties of Ts

32.A. Ts is a (group) homomorphism.4

32.B. If u is a path connecting x0 to x1 and v is a path connecting x1 with
x2, then Tuv = Tv ◦ Tu. In other words, the diagram

π1(X,x0)
Tu−−−−→ π1(X,x1)

ցTuv

yTv

π1(X,x2)

is commutative.

32.C. If paths u and v are homotopic, then Tu = Tv.

32.D. Tea = id : π1(X,a) → π1(X,a)

32.E. Ts−1 = T−1
s .

32.F. Ts is an isomorphism for any path s.

32.G. For any points x0 and x1 lying in the same path-connected component
of X groups π1(X,x0) and π1(X,x1) are isomorphic.

In spite of the result of Theorem 32.G, we cannot write π1(X) even if
the topological space X is path-connected. The reason is that although the
groups π1(X,x0) and π1(X,x1) are isomorphic, there may be no canonical
isomorphism between them (see 32.J below).

32.H. The space X is simply connected iff X is path-connected and the
group π1(X,x0) is trivial for a certain point x0 ∈ X.

32◦4. Role of Path

32.I. If a loop s represents an element σ of the fundamental group π1(X,x0),
then Ts is the inner automorphism of π1(X,x0) defined by α 7→ σ−1ασ.

32.J. Let x0 and x1 be points of a topological space X belonging to the same
path-connected component. The isomorphisms Ts : π1(X,x0) → π1(X,x1)
do not depend on s iff π1(X,x0) is an Abelian group.

Theorem 32.J implies that if the fundamental group of a topological
space X is Abelian, we may simply write π1(X).

4Recall that this means that Ts(αβ) = Ts(α)Ts(β).
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32◦5x. In Topological Group

In a topological group G there is another way to relate π1(G,x0) with
π1(G,x1): there are homeomorphisms Lg : G → G : x 7→ xg and Rg :
G → G : x 7→ gx, so that there are the induced isomorphisms (Lx−1

0
x1

)∗ :

π1(G,x0) → π1(G,x1) and (Rx1x−1

0

)∗ : π1(G,x0) → π1(G,x1).

32.Ax. Let G be a topological group, s I → G be a path. Prove that

Ts = (Ls(0)−1s(1))∗ = (Rs(1)s(0)−1) : π1(G, s(0)) → π1(G, s(1)).

32.Bx. Deduce from 32.Ax that the fundamental group of a topological
group is Abelian (cf. 31.Cx).

32.1x. Prove that the following spaces have Abelian fundamental groups:

(1) the space of nondegenerate real n×n matrices GL(n,R) = {A | detA 6=
0};

(2) the space of orthogonal real n×n matrices O(n,R) = {A | A·(tA) = E};
(3) the space of special unitary complex n × n matrices SU(n) = {A |

A · (tĀ) = 1,detA = 1}.

32◦6x. In High Homotopy Groups

32.Cx. Riddle. Guess how Ts is generalized to πr(X,x0) with any r.

Here is another form of the same question. We put it because its state-
ment contains a greater piece of an answer.

32.Dx. Riddle. Given a path s : I → X with s(0) = x0 and a spheroid
f : Ir → X at x0, how to cook up a spheroid at x1 = s(1) out of these?

32.Ex. Let s : I → X be a path, f : Ir → X a spheroid with f(Fr Ir) =
s(0). Prove that there exists a homotopy H : Ir × I → X of f such that
H(Fr Ir × t) = s(t) for any t ∈ I. Furthermore, the spheroid obtained by
such a homotopy is unique up to homotopy and determines an element of
πr(X, s(1)), which is uniquely determined by the homotopy class of s and
the element of πr(X, s(0)) represented by f .

Certainly, a solution of 32.Ex gives an answer to 32.Dx and 32.Cx. The
map πr(X, s(0)) → πr(X, s(1)) defined by 32.Ex is denoted by Ts. By 32.2,
this Ts generalizes Ts defined in the beginning of the section for the case
r = 1.

32.Fx. Prove that the properties of Ts formulated in Problems 32.A – 32.F
hold true in all dimensions.

32.Gx. Riddle. What are the counterparts of 32.Ax and 32.Bx for higher
homotopy groups?
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Proofs and Comments

29.A (a), (b), (e): yes; (c), (d), (f): no. See 29.B.

29.B See 29◦2.

29.C The map ht is continuous as the restriction of the homotopy H
to the fiber X × t ⊂ X × I.

29.D Certainly, no, it does not.

29.E See 29.E.1, 29.E.2, and 29.E.3.

29.E.1 The map H is continuous as the composition of the projection
p : X × I → X and the map f , and, furthermore, H(x, 0) = f(x) = H(x, 1).
Consequently, H is a homotopy.

29.E.2 The map H ′ is continuous as the composition of the homeo-
morphism X × I → X × I : (x, t) 7→ (x, 1 − t) and the homotopy H, and,
furthermore, H ′(x, 0) = H(x, 1) = g(x) and H ′(x, 1) = H(x, 0) = f(x).
Therefore, H ′ is a homotopy.

29.E.3 Indeed, H ′′(x, 0) = f(x) and H ′′(x, 1) = H ′(x, 1) = f ′′(x). H ′′

is continuous since the restriction of H ′′ to each of the sets X ×
[
0, 1

2

]
and

X ×
[
1
2 , 1

]
is continuous and these sets constitute a fundamental cover of

X × I.
Below we do not prove that the homotopies are continuous because this
always follows from explicit formulas.

29.F Each of them is homotopic to the constant map mapping the entire
space to the origin, for example, ifH(x, t) = (1−t)f(x), thenH : X×I → R

n

is a homotopy between f and the constant map x 7→ 0. (There is a more
convenient homotopy between arbitrary maps to Rn, see 29.G.)

29.G Indeed, H(x, 0) = f(x) and H(x, 1) = g(x). The map H is
obviously continuous. For example, this follows from the inequality
∣∣H(x, t)−H(x′, t′)

∣∣ ≤ |f(x)−f(x′)|+ |g(x)−g(x′)|+
(
|f(x)|+ |g(x)|

)
|t− t′|.

29.H Let K be a convex subset of Rn, f, g : X → K two continuous
maps, and H the rectilinear homotopy between f and g. Then H(x, t) ∈ K
for all (x, t) ∈ X × I, and we obtain a homotopy H : X × I → K.

29.I The map H = g◦F ◦(h×idI) : A×I → B is continuous, H(a, 0) =
g(F (h(a), 0)) = g(f(h(a))), and H(a, 1) = g(F (h(a), 1)) = g(f ′(h(a))).
Consequently, H is a homotopy.

29.J Take f : X → Y to g ◦ f ◦ h : A→ B. Assertion 29.I shows that
this correspondence preserves the homotopy relation, and, hence, it can be
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transferred to homotopy classes of maps. Thus, a map π(X,Y ) → π(A,B)
is defined.

29.K Any map f : X → Y × Z is uniquely determined by its com-
ponents prX ◦f and prY ◦f . If H is a homotopy between f and g,
then prY ◦H is a homotopy between prY ◦f and prY ◦g, and prZ ◦H is a
homotopy between prZ ◦f and prZ ◦g.

If HY is a homotopy between prY ◦f and prY ◦g and HZ is a homotopy
between prZ ◦f and prZ ◦g, then a homotopy between f and g is determined
by the formula H(x, t) = (HY (x, t),HZ(x, t)).

29.L The proof does not differ from that of assertion 29.E.

29.M For the sets A such that f |A = g|A (i.e., for the sets contained
in the coincidence set of f and g).

29.N A path is a homotopy of a map of a point, cf. 29.8.

29.O For each point x ∈ X, the map ux : I → X : t 7→ h(x, t) is a
path.

29.P If H is a homotopy, then for each t ∈ I the formula ht = H(x, t)
determines a continuous map X → Y . Thus, we obtain a map H : I →
C(X,Y ) of the segment to the set of all continuous maps X → Y . After
that, see 29.15 and 29.16.

29.15 This follows from 24.Vx.

29.16 This follows from 24.Wx.

29.Q This follows from the solution of Problem 29.3.

30.A 1) We start with a visual description of the required homotopy.
Let ut : I → X be a homotopy joining u and u′, and vt : I → X a homotopy
joining v and v′. Then the paths utvt with t ∈ [0, 1] form a homotopy
between uv and u′v′.
2) Now we present a more formal argument. Since the product uv is defined,
we have u(1) = v(0). Since u ∼ u′, we have u(1) = u′(1), we similarly have
v(0) = v′(0). Therefore, the product u′v′ is defined. The homotopy between
uv and u′v′ is the map

H : I × I → X : (s, t) 7→

{
H ′(2s, t) if s ∈

[
0, 1

2

]
,

H ′′(2s− 1, t) if s ∈
[

1
2 , 1

]
.

(H is continuous because the sets
[
0, 1

2

]
× I and

[
1
2 , 1

]
× I constitute a

fundamental cover of the square I × I, and the restriction of H to each of
these sets is continuous.)

30.B This is a straight-forward reformulation of 30.A.

30.C No; see 30.D, cf. 30.1.
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30.D No, this is almost always wrong (see 30.1 and 30.2). Here is the
simplest example. Let u(s) = 0 and w(s) = 1 for all s ∈ [0, 1] and v(s) = s.
Then (uv)w(s) = 0 only for s ∈

[
0, 1

4

]
, and u(vw)(s) = 0 for s ∈

[
0, 1

2

]
.

30.E.1 Reformulation: for any three paths u, v, and w such that the
products uv and vw are defined, the paths (uv)w and u(vw) are homotopic.

30.E.2 Let

ϕ(s) =





s
2 if s ∈

[
0, 1

2

]
,

s− 1
4 if s ∈

[
1
2 ,

3
4

]
,

2s− 1 if s ∈
[

3
4 , 1

]
.

Verify that ϕ is the required function, i.e., ((uv)w)(ϕ(s)) = u(vw)(s).

30.E.3 Consider the rectilinear homotopy, which is in addition fixed
on {0, 1}.

30.E.4 This follows from 29.I, 30.E.2, and 30.E.3.

30.F See 30.G.

30.G Generally speaking, no; see 30.4.

30.H Let

ϕ(s) =

{
0 if s ∈

[
0, 1

2

]
,

2s − 1 if s ∈
[

1
2 , 1

]
.

Verify that eau = u ◦ ϕ. Since ϕ ∼ idI , we have u ◦ ϕ ∼ u, whence

[ea][u] = [eau] = [u ◦ ϕ] = [u].

30.I See 30.J.

30.J Certainly not.

30.K.1 Consider the map

ϕ(s) =

{
2s if s ∈

[
0, 1

2

]
,

2 − 2s if s ∈
[

1
2 , 1

]
,

30.K.2 Consider the rectilinear homotopy.

30.L Groups are the sets of classes of paths u with u(0) = u(1) = x0,
where x0 is a certain marked point of X, as well as their subgroups.

31.A This immediately follows from 30.B, 30.E, 30.H, and 30.K.

31.B See 31◦8x.

31.C If u : I → X is a loop, then there exists a quotient map ũ :
I/{0, 1} → X. It remains to observe that I/{0, 1} ∼= S1.
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31.D If H : S1×I → X is a homotopy of circular loops, then the
formula H ′(s, t) = H(e2πis, t) determines a homotopy H ′ between ordinary
loops.

Homotopies of circular loops are quotient maps of homotopies of or-
dinary loops by the partition of the square induced by the relation (0, t) ∼
(1, t).

31.E This is true because there is a rectilinear homotopy between any
loop in R

n at the origin and a constant loop.

31.F Here is a possible generalization: for each convex (and even star-
shaped) set V ⊂ R

n and any point x0 ∈ V , the fundamental group π1(V, x0)
is trivial.

31.G.1 Let p ∈ Sn
r u(I). Consider the stereographic projection

τ : Sn r p → Rn. The loop v = τ ◦ u is null-homotopic, let h be the
corresponding homotopy. Then H = τ−1 ◦ h is a homotopy joining the loop
u and a constant loop on the sphere.

31.G.2 Such loops certainly exist. Indeed, if a loop u fills the entire
sphere, then so does the loop uu−1, which, however, is null-homotopic.

31.G.4 Let x be an arbitrary point of the sphere. We cover the sphere
by two open sets U = Sn

rx and V = Sn
r{−x}. By Lemma 31.G.3, there

is a sequence of points a1, . . . , aN ∈ I, where 0 = a1 < a2 < . . . < aN−1 <
aN = 1, such that for each i the image u([ai, ai+1]) is entirely contained in
U or in V . Since each of these sets is homeomorphi to R

n, where any two
paths with the same starting and ending points are homotopic, it follows
that each of the restrictions u|[ai,ai+1] is homotopic to a path the image of
which is, e.g., an “arc of a great circle” of Sn. Thus, the path u is homotopic
to a path the image of which does not fill the sphere, and even is nowhere
dense.

31.G.5 This immediately follows from Lemma 31.G.4.

31.G.6 1) This is immediate. 2) The assumption n ≥ 2 was used only
in Lemma 31.G.4.

31.H Take a loop u : I → X × Y at the point (x0, y0) to the pair of
loops in X and Y that are the components of u: u1 = prX ◦u and u2 =
prY ◦u. By assertion 29.I, the loops u and v are homotopic iff u1 ∼ v1 and
u2 ∼ v2. Consequently, taking the class of the loop u to the pair ([u1], [u2]),
we obtain a bijection between the fundamental group π1(X × Y, (x0, y0))
of the product of the spaces and the product π1(X,x0) × π1(Y, y0) of the
fundamental groups of the factors. It remains to verify that the bijection
constructed is a homomorphism, which is also obvious because prX ◦(uv) =
(prX ◦u)(prX ◦v).
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31.I (a) =⇒ (b): The space X is simply connected ⇒ each loop in X
is null-homotopic ⇒ each circular loop in X is relatively null-homotopic ⇒
each circular loop in X is freely null-homotopic.
(b) =⇒ (c): By assumption, for an arbitrary map f : S1 → X there is
a homotopy h : S1 × I → X such that h(p, 0) = f(p) and h(p, 1) = x0.
Consequently, there is a continuous map h′ : S1 × I/(S1 × 1) → X such

that h = h′ ◦ pr. It remains to observe that S1 × I/(S1 × 1) ∼= D2.

(c) =⇒ (d): Put g(t, 0) = u1(t), g(t, 1) = u2(t), g(0, t) = x0, and g(1, t) = x1

for t ∈ I. Thus, we mapped the boundary of the square I × I to X. Since
the square is homeomorphi to a disk and its boundary is homeomorphi to
a circle, it follows that the map extends from the boundary to the entire
square. The extension obtained is a homotopy between u1 and u2.
(d) =⇒ (a): This is obvious.

31.J.1 It is reasonable to consider the following implications: (a) =⇒
(b) =⇒ (c) =⇒ (d) =⇒ (a).

31.J.2 It certainly does. Furthermore, since s is null-homotopic, it
follows that the circular loop f is also null-homotopic, and the homotopy is
even fixed at the point 1 ∈ S1. Thus, (a) =⇒ (b).

31.J.3 The assertion suggests the main idea of the proof of the impli-
cation (b) =⇒ (c). A null-homotopy of a certain circular loop f is a map
H : S1 × I → X constant on the upper base of the cylinder. Consequently,
there is a quotient map S1 × I/S1 × 1 → X. It remains to observe that the
quotient space of the cylinder by the upper base is homeomorphi to a disk.

31.J.4 By the definition of a homotopy H : I × I → X between two
paths, the restriction of H to the contour of the square is given. Conse-
quently, the problem of constructing a homotopy between two paths is the
problem of extending a map from the contour of the square to the entire
square.

31.J.5 All that remains to observe for the proof of the implication
(c) =⇒ (d), is the following fact: if F : D2 → X is an extension of the circu-
lar loop f , then the formula H(t, τ) = F

(
cos πt, (2τ − 1) sin πt

)
determines

a homotopy between s+ and s−.

31.J In order to prove the theorem, it remains to prove the implication
(d) =⇒ (a). Let us state this assertion without using the notion of circular
loop. Let s : I → X be a loop. Put s+(t) = s(2t) and s−(t) = s(1 − 2t).
Thus, we must prove that if the paths s+ and s− are homotopic, then the
loop s is null-homotopic. Try to prove this on your own.

31.Ax The associativity of ⊙ follows from that of the multiplication
in G; the unity in the set Ω(G, 1) of all loops is the constant loop at the
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unity of the group; the element inverse to the loop u is the path v, where

v(s) =
(
u(s)

)−1
.

31.Bx.1 Verify that (ue1) ⊙ (e1v) = uv.

31.Bx We prove that if u ∼ u1, then u⊙v ∼ u1⊙v. For this purpose it
suffices to check that if h is a homotopy between u and u1, then the formula
H(s, t) = h(s, t)v(s) determines a homotopy between u ⊙ v and u1 ⊙ v.
Further, since ue1 ∼ u and e1v ∼ v, we have uv = (ue1) ⊙ (e1v) ∼ u ⊙ v,
therefore, the paths uv and u⊙ v lie in one homotopy class. Consequently,
the operation ⊙ induces the standard group operation in the set of homotopy
classes of paths.

31.Cx It is sufficient to prove that uv ∼ vu, which fact follows from
the following chain:

uv = (ue1) ⊙ (e1v) ∼ u⊙ v ∼ (e1u) ⊙ (ve1) = vu.

31.Dx This group is also trivial. The proof is similar to that of asser-
tion 31.E.

32.A Indeed, if α = [u] and β = [v], then

Ts(αβ) = σ−1αβσ = σ−1ασσ−1βσ = Ts(α)Ts(β).

32.B Indeed,

Tuv(α) = [uv]−1α[uv] = [v]−1[u]−1α[u][v] = Tv

(
Tu(α)

)
.

32.C By the definition of translation along a path, the homomorphism
Ts depends only on the homotopy class of s.

32.D This is so because Tea([u]) = [eauea] = [u].

32.E Since s−1s ∼ ex1
, 32.B–32.D imply that

Ts−1 ◦ Ts = Ts−1s = Tex1
= idπ1(X,x1) .

Similarly, we have Ts ◦ Ts−1 = idπ1(X,x0), whence Ts−1 = T−1
s .

32.F By 32.E, the homomorphism Ts has an inverse and, consequently,
is an isomorphism.

32.G If x0 and x1 lie in one path-connected component, then they are
joined by a path s. By 32.F, Ts : π1(X,x0) → π1(X,x1) is an isomorphism.

32.H This immediately follows from Theorem 32.G.

32.I This directly follows from the definition of Ts.

32.J Assume that the translation isomorphism does not depend
on the path. In particular, the isomorphism of translation along any loop
at x0 is trivial. Consider an arbitrary element β ∈ π1(X,x0) and a loop
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s in the homotopy class β. By assumption, β−1αβ = Ts(α) = α for each
α ∈ π1(X,x0). Therefore, αβ = βα for any elements α, β ∈ π1(X,x0), which
precisely means that the group π1(X,x0) is Abelian.

Consider two paths s1 and s2 joining x0 and x1. Since Ts1s−1

2

=

T−1
s2

◦Ts1
, it follows that Ts1

= Ts2
iff Ts1s−1

2

= idπ1(X,x0). Let β ∈ π1(X,x0)

be the class of the loop s1s
−1
2 . If the group π1(X,x0) is Abelian, then

Ts1s−1

2

(α) = β−1αβ = α, whence Ts1s−1

2

= id, and so Ts1
= Ts2

.

32.Ax Let u be a loop at s(0). The formula H(τ, t) = u(τ)s(0)−1s(1)
determines a free homotopy between u and the loop Ls(0)−1s(1)(u) such

that H(0, t) = H(1, t) = s(t). Therefore, by 32.2, the loops Ls(0)−1s(1)(u)

and s−1us are homotopic, whence Ts =
(
Ls(0)−1s(1)

)
∗
. The equality for

Rs(0)−1s(1) is proved in a similar way.

32.Bx By 32.Ax, we have Ts = (Le)∗ = idπ1(X,x0) for each loop s at x0.

Therefore, if β is the class of the loop s, then Ts(α) = β−1αβ = α, whence
αβ = βα.





Chapter VII

Covering Spaces and

Calculation of

Fundamental Groups

33. Covering Spaces

33◦1. Definition of Covering

Let X, B topological spaces, p : X → B a continuous map. Assume that
p is surjective and each point of B possesses a neighborhood U such that
the preimage p−1(U) of U is a disjoint union of open sets Vα and p maps
each Vα homeomorphically onto U . Then p : X → B is a covering (of B),
the space B is the base of this covering, X is the covering space for B and
the total space of the covering. Neighborhoods like U are said to be trivially

covered . The map p is a covering map or covering projection.

33.A. Let B be a topological space and F be a discrete space. Prove that
the projection prB : B × F → B is a covering.

33.1. If U ′ ⊂ U ⊂ B and the neighborhood U is trivially covered, then the
neighborhood U ′ is also trivially covered.

The following statement shows that in a certain sense any covering lo-
cally is organized as the covering of 33.A.

33.B. A continuous surjective map p : X → B is a covering iff for each point
a of B the preimage p−1(a) is discrete and there exist a neighborhood U of a

231
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and a homeomorphism h : p−1(U) → U×p−1(a) such that p|p−1(U) = prU ◦h.

Here, as usual, prU : U × p−1(a) → U .

However, the coverings of 33.A are not interesting. They are said to be
trivial . Here is the first really interesting example.

33.C. Prove that R → S1 : x 7→ e2πix is a covering.

To distinguish the most interesting examples, a covering with a con-
nected total space is called a covering in a narrow sense. Of course, the
covering of 33.C is a covering in a narrow sense.

33◦2. More Examples

33.D. R
2 → S1 × R : (x, y) 7→ (e2πix, y) is a covering.

33.E. Prove that if p : X → B and p′ : X ′ → B′ are coverings, then so is
p× p′ : X ×X ′ → B ×B′.

If p : X → B and p′ : X ′ → B′ are two coverings, then p×p′ : X×X ′ →
B × B′ is the product of the coverings p and p′. The first example of the
product of coverings is presented in 33.D.

33.F. C → C r 0 : z 7→ ez is a covering.

33.2. Riddle. In what sense the coverings of 33.D and 33.F are the same? Define
an appropriate equivalence relation for coverings.

33.G. R
2 → S1 × S1 : (x, y) 7→ (e2πix, e2πiy) is a covering.

33.H. For any positive integer n, the map S1 → S1 : z 7→ zn is a covering.

33.3. Prove that for each positive integer n the map C r 0 → C r 0 : z 7→ zn is a
covering.

33.I. For any positive integers p and q, the map S1 × S1 → S1 × S1 :
(z,w) 7→ (zp, wq) is a covering.

33.J. The natural projection Sn → RPn is a covering.
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33.K. Is (0, 3) → S1 : x 7→ e2πix a covering? (Cf. 33.14.)

33.L. Is the projection R
2 → R : (x, y) 7→ x a covering? Indeed, why

is not an open interval (a, b) ⊂ R a trivially covered neighborhood: its
preimage (a, b) × R is the union of open intervals (a, b) × {y}, which are
homeomorphically projected onto (a, b) by the projection (x, y) 7→ x?

33.4. Find coverings of the Möbius strip by a cylinder.

33.5. Find nontrivial coverings of Möbius strip by itself.

33.6. Find a covering of the Klein bottle by a torus. Cf. Problem 21.14.

33.7. Find coverings of the Klein bottle by the plane R
2 and the cylinder S1 ×R,

and a nontrivial covering of the Klein bottle by itself.

33.8. Describe explicitly the partition of R
2 into preimages of points under this

covering.

33.9*. Find a covering of a sphere with any number of crosscaps by a sphere
with handles.

33◦3. Local Homeomorphisms versus Coverings

33.10. Any covering is an open map.1

A map f : X → Y is a local homeomorphism if each point of X has a neighbor-
hood U such that the image f(U) is open in Y and the submap ab(f) : U → f(U)
is a homeomorphism.

33.11. Any covering is a local homeomorphism.

33.12. Find a local homeomorphism which is not a covering.

33.13. Prove that the restriction of a local homeomorphism to an open set is a
local homeomorphism.

33.14. For which subsets of R is the restriction of the map of Problem 33.C a
covering?

33.15. Find a nontrivial covering X → B with X homeomorphic to B and prove
that it satisfies the definition of a covering.

33◦4. Number of Sheets

Let p : X → B be a covering. The cardinality (i.e., the number of points)
of the preimage p−1(a) of a point a ∈ B is the multiplicity of the covering at
a or the number of sheets of the covering over a.

33.M. If the base of a covering is connected, then the multiplicity of the
covering at a point does not depend on the point.

1We remind that a map is open if the image of any open set is open.
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In the case of covering with connected base, the multiplicity is called
the number of sheets of the covering. If the number of sheets is n, then
the covering is n-sheeted , and we talk about an n-fold covering. Of course,
unless the covering is trivial, it is impossible to distinguish the sheets of
it, but this does not prevent us from speaking about the number of sheets.
On the other hand, we adopt the following agreement. By definition, the
preimage p−1(U) of any trivially covered neighborhood U ⊂ B splits into
open subsets: p−1(U) = ∪Vα, such that the restriction p|Vα : Vα → U is a
homeomorphism. Each of the subsets Vα is a sheet over U .

33.16. What are the numbers of sheets for the coverings from Section 33◦2?

In problems 33.17–33.19 we did not assume that you would rigorously justify
your answers. This will be done below, see problems 39.3–39.6.

33.17. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by the cylinder S1 × I?

33.18. What numbers can you realize as the number of sheets of a covering of
the Möbius strip by itself?

33.19. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by a torus?

33.20. What numbers can you realize as the number of sheets of a covering of
the Klein bottle by itself?

33.21. Construct a d-fold covering of a sphere with p handles by a sphere with
1 + d(p− 1) handles.

33.22. Let p : X → Y and q : Y → Z be coverings. Prove that if q has finitely
many sheets, then q ◦ p : x→ Y is a covering.

33.23*. Is the hypothesis of finiteness of the number of sheets in Problem 33.22

necessary?

33.24. Let p : X → B be a covering with compact base B. 1) Prove that if X is
compact, then the covering is finite-sheeted. 2) If B is Hausdorff and the covering
is finite-sheeted, then X is compact.

33.25. Let X be a topological space presentable as the union of two open con-
nected sets U and V . Prove that if the intersection U ∩ V is disconnected, then
X has a connected infinite-sheeted covering.

33◦5. Universal Coverings

A covering p : X → B is universal if X is simply connected. The appear-
ance of the word universal in this context is explained below in Section 39.

33.N. Which coverings of the problems stated above in this section are
universal?
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34. Theorems on Path Lifting

34◦1. Lifting

Let p : X → B and f : A → B be arbitrary maps. A map g : A → X
such that p◦g = f is said to cover f or be a lifting of f . Various topological
problems can be phrased in terms of finding a continuous lifting of some
continuous map. Problems of this sort are called lifting problems. They
may involve additional requirements. For example, the desired lifting must
coincide with a lifting already given on some subspace.

34.A. The identity map S1 → S1 does not admit a continuous lifting with
respect to the covering R → S1 : x 7→ e2πix. (In other words, there exists no

continuous map g : S1 → R such that e2πig(x) = x for x ∈ S1.)

34◦2. Path Lifting

34.B Path Lifting Theorem. Let p : X → B be a covering, x0 ∈ X,
b0 ∈ B be points such that p(x0) = b0. Then for any path s : I → B starting
at b0 there exists a unique path s̃ : I → X starting at x0 and being a lifting
of s. (In other words, there exists a unique path s̃ : I → X with s̃(0) = x0

and p ◦ s̃ = s.)

We can also prove a more general assertion than Theorem 34.B: see Prob-
lems 34.1–34.3.

34.1. Let p : X → B be a trivial covering. Then for any continuous map f of any

space A to B there exists a continuous lifting f̃ : A→ X.

34.2. Let p : X → B be a trivial covering and x0 ∈ X, b0 ∈ B be points such that
p(x0) = b0. Then for any continuous map f of a space A to B mapping a point

a0 to b0, a continuous lifting f̃ : A→ X with f̃(a0) = x0 is unique.

34.3. Let p : X → B be a covering, A a connected and locally connected space. If
f, g : A→ X are two continuous maps coinciding at some point and p ◦ f = p ◦ g,
then f = g.

34.4. If we replace x0, b0, and a0 in Problem 34.2 by pairs of points, then the

lifting problem may happen to have no solution f̃ with f̃(a0) = x0. Formulate a
condition necessary and sufficient for existence of such a solution.

34.5. What goes wrong with the Path Lifting Theorem 34.B for the local home-
omorphism of Problem 33.K?

34.6. Consider the covering C → C r 0 : z 7→ ez. Find liftings of the paths
u(t) = 2 − t and v(t) = (1 + t)e2πit and their products uv and vu.
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34◦3. Homotopy Lifting

34.C Path Homotopy Lifting Theorem. Let p : X → B be a covering,
x0 ∈ X, b0 ∈ B be points such that p(x0) = b0. Let u, v : I → B be paths
starting at b0 and ũ, ṽ : I → X be the lifting paths for u, v starting at x0.
If the paths u and v are homotopic, then the covering paths ũ and ṽ are
homotopic.

34.D Corollary. Under the assumptions of Theorem 34.C, the covering
paths ũ and ṽ have the same final point (i.e., ũ(1) = ṽ(1)).

Notice that the paths in 34.C and 34.D are assumed to share the initial
point x0. In the statement of 34.D, we emphasize that then they also share
the final point.

34.E Corollary of 34.D. Let p : X → B be a covering and s : I → B be
a loop. If there exists a lifting s̃ : I → X of s with s̃(0) 6= s̃(1) (i.e., there
exists a covering path which is not a loop), then s is not null-homotopic.

34.F. If a path-connected space B has a nontrivial path-connected covering
space, then the fundamental group of B is nontrivial.

34.7. Prove that any covering p : X → B with simply connected B and path
connected X is a homeomorphism.

34.8. What corollaries can you deduce from 34.F and the examples of coverings
presented above in Section 33?

34.9. Riddle. Is it really important in the hypothesis of Theorem 34.C that u
and v are paths? To what class of maps can you generalize this theorem?
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35. Calculation of Fundamental Groups

Using Universal Coverings

35◦1. Fundamental Group of Circle

For an integer n, denote by sn the loop in S1 defined by the formula
sn(t) = e2πint. The initial point of this loop is 1. Denote the homotopy class
of s1 by α. Thus, α ∈ π1(S

1, 1).

35.A. The loop sn represents αn ∈ π1(S
1, 1).

35.B. Find the paths in R starting at 0 ∈ R and covering the loops sn with
respect to the universal covering R → S1.

35.C. The homomorphism Z → π1(S
1, 1) : n 7→ αn is an isomorphism.

35.C.1. The formula n 7→ αn determines a homomorphism Z → π1(S
1, 1).

35.C.2. Prove that a loop s : I → S1 starting at 1 is homotopic to sn if the
path s̃ : I → R covering s and starting at 0 ∈ R ends at n ∈ R (i.e., s̃(1) = n).

35.C.3. Prove that if the loop sn is null-homotopic, then n = 0.

35.1. Find the image of the homotopy class of the loop t 7→ e2πit
2

under the
isomorphism of Theorem 35.C.

Denote by deg the isomorphism inverse to the isomorphism of Theorem 35.C.

35.2. For any loop s : I → S1 starting at 1 ∈ S1, the integer deg([s]) is the final
point of the path starting at 0 ∈ R and covering s.

35.D Corollary of Theorem 35.C. The fundamental group of (S1)n is
a free Abelian group of rank n (i.e., isomorphic to Zn).

35.E. On torus S1 × S1 find two loops whose homotopy classes generate
the fundamental group of the torus.

35.F Corollary of Theorem 35.C. The fundamental group of punctured
plane R

2
r 0 is an infinite cyclic group.

35.3. Solve Problems 35.D – 35.F without reference to Theorems 35.C and 31.H,
but using explicit constructions of the corresponding universal coverings.

35◦2. Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic group.
It is calculated in the previous subsection since the projective line is a circle.
The zero-dimensional projective space is a point, hence its fundamental
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group is trivial. Now we calculate the fundamental groups of projective
spaces of all other dimensions.

Let n ≥ 2, and let and l : I → RPn be a loop covered by a path
l̃ : I → Sn which connects two antipodal points of Sn, say the poles P+ =
(1, 0, . . . , 0) and P− = (−1, 0, . . . , 0). Denote by λ the homotopy class of l.
It is an element of π1(RP

n, (1 : 0 : · · · : 0)).

35.G. For any n ≥ 2 group π1(RP
n, (1 : 0 : · · · : 0)) is a cyclic group of

order 2. It consists of two elements: λ and 1.

35.G.1 Lemma. Any loop in RPn at (1 : 0 : · · · : 0) is homotopic either to l
or constant. This depends on whether the covering path of the loop connects the
poles P+ and P−, or is a loop.

35.4. Where did we use the assumption n ≥ 2 in the proofs of Theorem 35.G and
Lemma 35.G.1 ?

35◦3. Fundamental Group of Bouquet of Circles

Consider a family of topological spaces {Xα}. In each of the spaces, let
a point xα be marked. Take the disjoint sum

⊔
αXα and identify all marked

points. The resulting quotient space
∨

αXα is the bouquet of {Xα}. Hence
a bouquet of q circles is a space which is a union of q copies of circle. The
copies meet at a single common point, and this is the only common point
for any two of them. The common point is the center of the bouquet.

Denote the bouquet of q circles by Bq and its center by c. Let u1, . . . ,
uq be loops in Bq starting at c and parameterizing the q copies of circle
comprising Bq. Denote by αi the homotopy class of ui.

35.H. π1(Bq, c) is a free group freely generated by α1, . . . , αq.

35◦4. Algebraic Digression: Free Groups

Recall that a group G is a free group freely generated by its elements
a1, . . . , aq if:

• each element x ∈ G is a product of powers (with positive or negative
integer exponents) of a1, . . . , aq, i.e.,

x = ae1

i1
ae2

i2
. . . aen

in

and

• this expression is unique up to the following trivial ambiguity: we
can insert or delete factors aia

−1
i and a−1

i ai or replace am
i by ar

ia
s
i

with r + s = m.

35.I. A free group is determined up to isomorphism by the number of its
free generators.
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The number of free generators is the rank of the free group. For a
standard representative of the isomorphism class of free groups of rank q,
we can take the group of words in an alphabet of q letters a1, . . . , aq and their

inverses a−1
1 , . . . , a−1

q . Two words represent the same element of the group iff
they can be obtained from each other by a sequence of insertions or deletions
of fragments aia

−1
i and a−1

i ai. This group is denoted by F(a1, . . . , aq), or
just Fq, when the notation for the generators is not to be emphasized.

35.J. Each element of F(a1, . . . , aq) has a unique shortest representative.
This is a word without fragments that could have been deleted.

The number l(x) of letters in the shortest representative of an element
x ∈ F(a1, . . . , aq) is the length of x. Certainly, this number is not well defined
unless the generators are fixed.

35.5. Show that an automorphism of Fq can map x ∈ Fq to an element with
different length. For what value of q does such an example not exist? Is it possible
to change the length in this way arbitrarily?

35.K. A group G is a free group freely generated by its elements a1, . . . ,
aq iff every map of the set {a1, . . . , aq} to any group X extends to a unique
homomorphism G→ X.

Theorem 35.K is sometimes taken as a definition of a free group. (Defi-
nitions of this sort emphasize relations among different groups, rather than
the internal structure of a single group. Of course, relations among groups
can tell everything about “internal affairs” of each group.)

Now we can reformulate Theorem 35.H as follows:

35.L. The homomorphism

F(a1, . . . , aq) → π1(Bq, c)

taking ai to αi for i = 1, . . . , q is an isomorphism.

First, for the sake of simplicity we restrict ourselves to the case where
q = 2. This will allow us to avoid superfluous complications in notation
and pictures. This is the simplest case, which really represents the general
situation. The case q = 1 is too special.

To take advantages of this, let us change the notation. Put B = B2,
u = u1, v = u2, α = α1, and β = α2.

Now Theorem 35.L looks as follows:

The homomorphism F(a, b) → π(B, c) taking a to α and b to β is an
isomorphism.

This theorem can be proved like Theorems 35.C and 35.G, provided the
universal covering of B is known.
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35◦5. Universal Covering for Bouquet of Circles

Denote by U and V the points antipodal to c on the circles of B. Cut
B at these points, removing U and V and putting instead each of them two
new points. Whatever this operation is, its result is a cross K, which is the
union of four closed segments with a common endpoint c. There appears a
natural map P : K → B that takes the center c of the cross to the center c
of B and homeomorphically maps the rays of the cross onto half-circles of
B. Since the circles of B are parameterized by loops u and v, the halves
of each of the circles are ordered: the corresponding loop passes first one
of the halves and then the other one. Denote by U+ the point of P−1(U)
belonging to the ray mapped by P onto the second half of the circle, and
by U− the other point of P−1(U). We similarly denote points of P−1(V ) by
V + and V −.

U V
U+

U−

U+

U−

∼=

U+

U−

V +

V −

The restriction of P to Kr{U+, U−, V +, V −} maps this set homeomor-
phically onto B r {U, V }. Therefore P provides a covering of B r {U, V }.
However, it fails to be a covering at U and V : none of these points has a
trivially covered neighborhood. Furthermore, the preimage of each of these
points consists of 2 points (the endpoints of the cross), where P is not even
a local homeomorphism. To eliminate this defect, we can attach a copy of
K at each of the 4 endpoints of K and extend P in a natural way to the
result. But then 12 new endpoints appear at which the map is not a local
homeomorphism. Well, we repeat the trick and recover the property of be-
ing a local homeomorphism at each of the 12 new endpoints. Then we do
this at each of the 36 new points, etc. But if we repeat this infinitely many
times, all bad points become nice ones.2

35.M. Formalize the construction of a covering for B described above.

2This sounds like a story about a battle with Hydra, but the happy ending demonstrates that
modern mathematicians have a magic power of the sort that the heros of myths and tales could not
even dream of. Indeed, we meet a Hydra K with 4 heads, chop off all the heads, but, according to
the old tradition of the genre, 3 new heads appear in place of each of the original heads. We chop
them off, and the story repeats. We do not even try to prevent this multiplication of heads. We
just chop them off. But contrary to the real heros of tales, we act outside of Time and hence have
no time limitations. Thus after infinite repetitions of the exercise with an exponentially growing
number of heads we succeed! No heads left!

This is a typical success story about an infinite construction in mathematics. Sometimes, as
in our case, such a construction can be replaced by a finite one, but dealing with infinite objects.
However, there are important constructions in which an infinite fragment is unavoidable.
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Consider F(a, b) as a discrete topological space. Take K × F(a, b). It
can be thought of as a collection of copies of K enumerated by elements of
F(a, b). Topologically this is a disjoint sum of the copies because F(a, b) is
equipped with discrete topology. In K × F(a, b), we identify points (U−, g)
with (U+, ga) and (V −, g) with (V +, gb) for each g ∈ F(a, b). Denote the
resulting quotient space by X.

35.N. The composition of the projection K ×F(a, b) → K and P : K → B
determines a continuous quotient map p : X → B.

35.O. p : X → B is a covering.

35.P. X is path-connected. For any g ∈ F(a, b), there exists a path con-
necting (c, 1) with (c, g) and covering the loop obtained from g by replacing
a with u and b with v.

35.Q. X is simply connected.

35◦6. Fundamental Groups of Finite Topological Spaces

35.6. Prove that if a three-point space X is path-connected, then X is simply
connected (cf. 31.7).

35.7. Consider a topological space X = {a, b, c, d} with topology determined by
the base {{a}, {c}, {a, b, c}, {c, d, a}}. Prove that X is path-connected, but not
simply connected.

35.8. Calculate π1(X).

35.9. Let X be a finite topological space with nontrivial fundamental group. Let
n0 be the least possible cardinality of X. 1) Find n0. 2) What nontrivial groups
arise as fundamental groups of n0-point spaces?

35.10. 1) Find a finite topological space with non-Abelian fundamental group.
2) What is the least possible cardinality of such a space?

35.11*. Let a topological space X be the union of two open path-connected sets
U and V . Prove that if U ∩ V has at least three connected components, then the
fundamental group of X is non-Abelian and, moreover, admits an epimorphism
onto a free group of rank 2.

35.12*. Find a finite topological space with fundamental group isomorphic to
Z2.
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Proofs and Comments

33.A Let us show that the set B itself is trivially covered. Indeed,
(
prB

)−1
(B) = X =

⋃
y∈F (B× y), and since the topology in F is discrete, it

follows that each of the sets B× y is open in the total space of the covering,
and the restriction of prB to each of them is a homeomorphism.

33.B We construct a homeomorphism h : p−1(U) → U ×
p−1(a) for an arbitrary trivially covered neighborhood U ⊂ B of a. By
the definition of a trivially covered neighborhood, we have p−1(U) =

⋃
Uα.

Let x ∈ p−1(U), consider an open sets Uα containing x and take x to the
pair (p(x), c), where {c} = p−1(a) ∩ Uα. It is clear that the correspondence
x 7→ (p(x), c) determines a homeomorphism h : p−1(U) → U × p−1(a).

By assertion 33.1, U is a trivially covered neighborhood, hence, p :
X → B is a covering.

33.C For each point z ∈ S1, the set Uz = S1
r {−z} is a trivially

covered neighborhood of z. Indeed, let z = e2πix. Then the preimage of Uz

is the union
⋃

k∈Z
(x+ k − 1

2 , x+ k + 1
2), and the restriction of the covering

to each of the above intervals is a homeomorphism.

33.D The product (S1 r{−z})×R is a trivially covered neighborhood
of a point (z, y) ∈ S1 × R; cf. 33.E.

33.E Verify that the product of trivially covered neighborhoods of
points b ∈ B and b′ ∈ B′ is a trivially covered neighborhood of the point
(b, b′) ∈ B ×B′.

33.F Consider the diagram

R
2 h

−−−−→ C

q

y
yp

S1 × R
g

−−−−→ C r 0,

where g(z, x) = zex, h(x, y) = y+ 2πix, and q(x, y) = (e2πix, y). The equal-
ity g(q(x, y)) = e2πix · ey = ey+2πix = p(h(x, y)) implies that the diagram is
commutative. Clearly, g and h are homeomorphisms. Since q is a covering
by 33.D, p is also a covering.

33.G By 33.E, this assertion follows from 33.C. Certainly, it is not
difficult to prove it directly. The product (S1

r {−z}) × (S1
r {−z′}) is a

trivially covered neighborhood of the point (z, z′) ∈ S1 × S1.

33.H Let z ∈ S1. The preimage −z under the projection consists of
n points, which partition the covering space into n arcs, and the restriction
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of the projection to each of them determines a homeomorphism of this arc
onto the neighborhood S1

r {−z} of z.

33.I By 33.E, this assertion follows from 33.H.

33.J The preimage of a point y ∈ RPn is a pair {x,−x} ⊂ Sn of
antipodal points. The plane passing through the center of the sphere and
orthogonal to the vector x splits the sphere into two open hemispheres, each
of which is homeomorphially projected to a neighborhood (homeomorphi to
R

n) of the point y ∈ RPn.

33.K No, it is not, because the point 1 ∈ S1 has no trivially covered
neighborhood.

33.L The open intervals mentioned in the statement are not open
subsets of the plane. Furthermore, since the preimage of any interval is a
connected set, it cannot be split into disjoint open subsets at all.

33.M Prove that the definition of a covering implies that the set of the
points in the base with preimage of prescribed cardinality is open and use
the fact that the base of the covering is connected.

33.N Those coverings where the covering space is R
1, R

2, R
n

r 0 with
n ≥ 3, and Sn with n ≥ 2, i.e., a simply connected space.

34.A Assume that there exists a lifting g of the identity map S1 → S1;
this is a continuous injection S1 → R. We show that there are no such
injections. Let g(S1) = [a, b]. The Intermediate Value Theorem implies
that each point x ∈ (a, b) is the image of at least two points of the circle.
Consequently, g is not an injection.

34.B Cover the base by trivially covered neighborhoods and partition
the segment [0, 1] by points 0 = a0 < a1 < . . . < an = 1, such that the
image s([ai, ai+1]) is entirely contained in one of the trivially covered neigh-
borhoods; s([ai, ai+1]) ⊂ Ui, i = 0, 1, . . . , n − 1. Since the restriction of the
covering to p−1(U0) is a trivial covering and f([a0, a1]) ⊂ U0, there exists
a lifting of s|[a0,a1] such that s̃(a0) = x0, let x1 = s̃(a1). Similarly, there
exists a unique lifting s̃|[a1,a2] such that s̃(a1) = x1; let x2 = s̃(a2), and so
on. Thus, there exists a lifting s̃ : I → X. Its uniqueness is obvious. If you
do not agree, use induction.

34.C Let h : I×I → B be a homotopy between the paths u and v, thus,
h(τ, 0) = u(τ), h(τ, 1) = v(τ), h(0, t) = b0, and h(1, t) = b1 ∈ B. We show

that there exists a map h̃ : I×I → X covering h and such that h(0, 0) = x0.
The proof of the existence of the covering homotopy is similar to that of the
Path Lifting Theorem. We subdivide the square I × I into smaller squares
such that the h-image of each of them is contained in a certain trivially
covered neighborhood in B. The restriction hk,l of the homotopy h to each
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of the “little” squares Ik,l is covered by the corresponding map h̃k,l. In
order to obtain a homotopy covering h, we must only ensure that these
maps coincide on the intersections of these squares. By 34.3, it suffices to
require that these maps coincide at least at one point. Let us make the

first step: let h(I0,0) ⊂ Ub0 and let h̃0,0 : I0,0 → X be a covering map

such that h̃0,0(a0, c0) = x0. Now we put b1 = h(a1, c0) and x1 = h̃(a1, c0).

There is a map h̃1,0 : I1,0 → X covering h|I1,0 such that h̃1,0(a1, c0) = x1.

Proceeding in this way, we obtain a map h̃ defined on the entire square.

It remains to verify that h̃ is a homotopy of paths. Consider the covering

path ũ : t 7→ h̃(0, t). Since p ◦ ũ is a constant path, the path ũ must also

be constant, whence h̃(0, t) = x0. Similarly, h̃(1, t) = x1 is a marked point

of the covering space. Therefore, h̃ is a homotopy of paths. In conclusion,
we observe that the uniqueness of this homotopy follows, once more, from
Lemma 34.3.

34.D Formally speaking, this is indeed a corollary, but actually we
already proved this when proving Theorem 34.C.

34.E A constant path is covered by a constant path. By 34.D, each
null-homotopic loop is covered by a loop.

35.A Consider the paths s̃n : I → R : t 7→ nt, s̃n−1 : I → R : t 7→
(n− 1)t, and s̃1 : I → R : t 7→ n− 1+ t covering the paths sn, sn−1, and s1,
respectively. Since the product s̃n−1s̃1 is defined and has the same starting
and ending points as the path s̃n, we have s̃n ∼ s̃n−1s̃1, whence sn ∼ sn−1s1.
Therefore, [sn] = [sn−1]α. Reasoning by induction, we obtain the required
equality [sn] = αn.

35.B See the proof of assertion 35.A: this is the path defined by the
formula s̃n(t) = nt.

35.C By 35.C.1, the map in question is indeed a well-defined homo-
morphism. By 35.C.2, it is an epimorphism, and by 35.C.3 it is a monomor-
phism. Therefore, it is an isomorphism.

35.C.1 If n 7→ αn and k 7→ αk, then n+ k 7→ αn+k = αn · αk.

35.C.2 Since R is simply connected, the paths s̃ and s̃n are homotopic,
therefore, the paths s and sn are also homotopic, whence [s] = [sn] = αn.

35.C.3 If n 6= 0, then the path s̃n ends at the point n, hence, it is not
a loop. Consequently, the loop sn is not null-homotopic.
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35.D This follows from the above computation of the fundamental
group of the circle and assertion 31.H:

π1(S
1 × . . .× S1

︸ ︷︷ ︸
n factors

, (1, 1, . . . , 1)) ∼= π1(S
1, 1) × . . .× π1(S

1, 1)︸ ︷︷ ︸
n factors

∼= Z
n.

35.E Let S1×S1 = {(z,w) : |z| = 1, |w| = 1} ⊂ C×C. The generators
of π1(S

1 × S1, (1, 1)) are the loops s1 : t 7→ (e2πit, 1) and s2 : t 7→ (1, e2πit).

35.F Since R2 r 0 ∼= S1 × R, we have π1(R
2 r 0, (1, 0)) ∼= π1(S

1, 1) ×
π1(R, 1) ∼= Z.

35.G.1 Let u be a loop in RPn, and let ũ be the covering u the path
in Sn. For n ≥ 2, the sphere Sn is simply connected, and if ũ is a loop, then
ũ and hence also u are null-homotopic. Now if ũ is not a loop, then, once

more since Sn is simply connected, we have ũ ∼ l̃, whence u ∼ l.

35.G By 35.G.1, the fundamental group consists of two elements, there-
fore, it is a cyclic group of order two.

35.H See 35◦5.

35.M See the paragraph following the present assertion.

35.N This obviously follows from the definition of P .

35.O This obviously follows from the definition of p.

35.P Use induction.

35.Q Use the fact that the image of any loop, as a compact set, inter-
sects only a finite number of the segments constituting the covering space
X, and use induction on the number of such segments.





Chapter VIII

Fundamental Group

and Maps

36. Induced Homomorphisms

and Their First Applications

36◦1. Homomorphisms Induced by a Continuous Map

Let f : X → Y be a continuous map of a topological space X to a
topological space Y . Let x0 ∈ X and y0 ∈ Y be points such that f(x0) = y0.
The latter property of f is expressed by saying that f maps pair (X,x0) to
pair (Y, y0) and writing f : (X,x0) → (Y, y0).

Consider the map f# : Ω(X,x0) → Ω(Y, y0) : s 7→ f ◦ s. This map
assigns to a loop its composition with f .

36.A. f# maps homotopic loops to homotopic loops.

Therefore, f# induces a map f∗ : π1(X,x0) → π1(Y, y0).

36.B. f∗ : π(X,x0) → π1(Y, y0) is a homomorphism for any continuous
map f : (X,x0) → (Y, y0).

f∗ : π(X,x0) → π1(Y, y0) is the homomorphism induced by f .

36.C. Let f : (X,x0) → (Y, y0) and g : (Y, y0) → (Z, z0) be (continuous)
maps. Then

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X,x0) → π1(Z, z0).

36.D. Let f, g : (X,x0) → (Y, y0) be continuous maps homotopic via a
homotopy fixed at x0. Then f∗ = g∗.

247
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36.E. Riddle. How can we generalize Theorem 36.D to the case of freely
homotopic f and g?

36.F. Let f : X → Y be a continuous map, x0 and x1 points of X connected
by a path s : I → X. Denote f(x0) by y0 and f(x1) by y1. Then the diagram

π1(X,x0)
f∗

−−−−→ π1(Y, y0)

Ts

y
yTf◦s

π1(X,x1)
f∗

−−−−→ π1(Y, y1)

is commutative, i.e., Tf◦s ◦ f∗ = f∗ ◦ Ts.

36.1. Prove that the map Cr 0 → Cr 0 : z 7→ z3 is not homotopic to the identity
map C r 0 → C r 0 : z 7→ z.

36.2. Let X be a subset of R
n. Prove that if a continuous map f : X → Y

extends to a continuous map R
n → Y , then f∗ : π1(X,x0) → π1(Y, f(x0)) is a

trivial homomorphism (i.e., maps everything to unit) for any x0 ∈ X.

36.3. Prove that if a Hausdorff space X contains an open set homeomorphic to
S1 × S1

r (1, 1), then X has infinite noncyclic fundamental group.

36.3.1. Prove that a space X satisfying the conditions of 36.3 can
be continuously mapped to a space with infinite noncyclic fundamen-
tal group in such a way that the map would induce an epimorphism of
π1(X) onto this infinite group.

36.4. Prove that the fundamental group of the space GL(n,C) of complex n×n-
matrices with nonzero determinant is infinite.

36◦2. Fundamental Theorem of Algebra

Our goal here is to prove the following theorem, which at first glance
has no relation to fundamental group.

36.G Fundamental Theorem of Algebra. Every polynomial of positive
degree in one variable with complex coefficients has a complex root.

In more detail:

Let p(z) = zn + a1z
n−1 + · · · + an be a polynomial of degree n > 0 in z

with complex coefficients. Then there exists a complex number w such that
p(w) = 0.

Although it is formulated in an algebraic way and called “The Funda-
mental Theorem of Algebra,” it has no simple algebraic proof. Its proofs
usually involve topological arguments or use complex analysis. This is so
because the field C of complex numbers as well as the field R of reals
is extremely difficult to describe in purely algebraic terms: all customary
constructive descriptions involve a sort of completion construction, cf. Sec-
tion 17.
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36.G.1 Reduction to Problem on a Map. Deduce Theorem 36.G from the
following statement:

For any complex polynomial p(z) of a positive degree, the zero belongs to
the image of the map C → C : z 7→ p(z). In other words, the formula z 7→ p(z)
does not determine a map C → C r 0.

36.G.2 Estimate of Remainder. Let p(z) = zn + a1z
n−1 + · · · + an be a

complex polynomial, q(z) = zn, and r(z) = p(z) − q(z). Then there exists a
positive real R such that |r(z)| < |q(z)| = Rn for any z with |z| = R

36.G.3 Lemma on Lady with Doggy. (Cf. 29.11.) A lady q(z) and her dog
p(z) walk on the punctured plane C r 0 periodically (i.e., say, with z ∈ S1).
Prove that if the lady does not let the dog to run further than by |q(z)| from
her, then the doggy’s loop S1 → C r 0 : z 7→ p(z) is homotopic to the lady’s
loop S1 → C r 0 : z 7→ q(z).

36.G.4 Lemma for Dummies. (Cf. 29.12.) If f : X → Y is a continuous
map and s : S1 → X is a null-homotopic loop, then f ◦ s : S1 → Y is also
null-homotopic.

36◦3x. Generalization of Intermediate Value Theorem

36.Ax. Riddle. How to generalize Intermediate Value Theorem 12.A to
the case of maps f : Dn → R

n?

36.Bx. Find out whether Intermediate Value Theorem 12.A is equivalent
to the following statement:
Let f : D1 → R

1 be a continuous map. If 0 6∈ f(S0) and the submap
f |S0 : S0 → R

1
r 0 of f induces a nonconstant map π0(S

0) → π0(R
1

r 0),
then there exists a point x ∈ D1 such that f(x) = 0.

36.Cx. Riddle. Suggest a generalization of Intermediate Value Theorem
to maps Dn → R

n which would generalize its reformulation 36.Bx. To do
it, you must give a definition of the induced homomorphism for homotopy
groups.

36.Dx. Let f : Dn → R
n be a continuous map. If f(Sn−1) does not contain

0 ∈ Rn and the submap f |Sn−1 : Sn−1 → Rn r 0 of f induces a nonconstant
map

πn−1(S
n−1) → πn−1(R

n
r 0),

then there exists a point x ∈ D1 such that f(x) = 0.

Usability of Theorem 36.Dx is impeded by a condition which is difficult
to check if n > 0. For n = 1, this is still possible in the frameworks of the
theory developed above.

36.1x. Let f : D2 → R
2 be a continuous map. If f(S1) does not contain a ∈ R

2

and the circular loop f |S1 : S1 → R
2

r a determines a nontrivial element of
π1(R

2
r a), then there exists x ∈ D2 such that f(x) = a.
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36.2x. Let f : D2 → R
2 be a continuous map that leaves fixed each point of the

boundary circle S1. Then f(D2) ⊃ D2.

36.3x. Let f : R
2 → R

2 be a continuous map and there exists a real number m
such that |f(x) − x| ≤ m for any x ∈ R

2. Prove that f is a surjection.

36.4x. Let u, v : I → I× I be two paths such that u(0) = (0, 0), u(1) = (1, 1) and
v(0) = (0, 1), v(1) = (1, 0). Prove that u(I) ∩ v(I) 6= ∅.

36.4x.1. Let u, v be as in 36.4x. Prove that 0 ∈ R2 is a value of the
map w : I2 → R

2 : (x, y) 7→ u(x) − v(y).

36.5x. Prove that there exist connected disjoint sets F,G ⊂ I2 such that
(0, 0), (1, 1) ∈ F and (0, 1), (1, 0) ∈ G.

36.6x. Can we require in addition that the sets F andG satisfying the assumptions
of Problem 36.5x be closed?

36.7x. Let C be a smooth simple closed curve on the plane with two inflection
points. Prove that there is a line intersecting C in four points a, b, c, and d with
segments [a, b], [b, c] and [c, d] of the same length.

36◦4x. Winding Number

As we know (see 35.F), the fundamental group of the punctured plane
R

2
r 0 is isomorphic to Z. There are two isomorphisms, which differ by

multiplication by −1. We choose that taking the homotopy class of the loop
t 7→ (cos 2πt, sin 2πt) to 1 ∈ Z. In terms of circular loops, the isomorphism
means that to any loop f : S1 → R

2
r 0 we assign an integer. Roughly

speaking, it is the number of times the loop goes around 0 (with account of
direction).

Now we change the viewpoint in this consideration, and fix the loop, but
vary the point. Let f : S1 → R

2 be a circular loop and let x ∈ R
2

r f(S1).
Then f determines an element in π1(R

2
r x) = Z (here we choose basically
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the same identification of π1(R
2 r x) with Z that takes 1 to the homotopy

class of t 7→ x+ (cos 2πt, sin 2πt)). This number is denoted by ind(f, x) and
called the winding number or index of x with respect to f .

ind=1

ind=2

ind=0

It is also convenient to characterize the number ind(u, x) as follows.
Along with the circular loop u : S1 → R2 rx, consider the map ϕu,x : S1 →

S1 : z 7→ u(z)−x
|u(z)−x| . The homomorphism

(
ϕu,x

)
∗

: π1(S
1) → π1(S

1) takes the

generator α of the fundamental group of the circle to the element kα, where
k = ind(u, x).

36.Ex. The formula x 7→ ind(u, x) defines a locally constant function on
R

2
r u(S1).

36.8x. Let f : S1 → R
2 be a loop and x, y ∈ R

2
r f(S1). Prove that if ind(f, x) 6=

ind(f, y), then any path connecting x and y in R
2 meets f(S1).

36.9x. Prove that if u(S1) is contained in a disk, while a point x is not, then
ind(u, x) = 0.

36.10x. Find the set of values of function ind : R
2

r u(S1) → Z for the following
loops u:
a) u(z) = z; b) u(z) = z̄; c) u(z) = z2; d) u(z) = z + z−1 + z2 − z−2

(here z ∈ S1 ⊂ C).

36.11x. Choose several loops u : S1 → R
2 such that u(S1) is a bouquet of two

circles (a “lemniscate”). Find the winding number with respect to these loops for
various points.

36.12x. Find a loop f : S1 → R
2 such that there exist points x, y ∈ R

2
r f(S1)

with ind(f, x) = ind(f, y), but belonging to different connected components of
R

2
r f(S1).

36.13x. Prove that any ray R radiating from x meets f(S1) at least at | ind(f, x)|
points (i.e., the number of points in f−1(R) is not less than | ind(f, x)|).

36.Fx. If u : S1 → R
2 is a restriction of a continuous map F : D2 → R

2

and ind(u, x) 6= 0, then x ∈ F (D2).

36.Gx. If u and v are two circular loops in R
2 with common base point (i. e.,

u(1) = v(1)) and uv is their product, then ind(uv, x) = ind(u, x) + ind(v, x)
for each x ∈ R2 r uv(S1).
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36.Hx. Let u and v be circular loops in R2, and x ∈ R2 r (u(S1) ∪ v(S1)).
If there exists a (free) homotopy ut, t ∈ I connecting u and v such that
x ∈ R

2
r ut(S

1) for each t ∈ I, then ind(u, x) = ind(v, x).

36.Ix. Let u : S1 → C be a circular loop and a ∈ C
2

r u(S1). Then

ind(u, a) =
1

2πi

∫

S1

|u(z) − a|

u(z) − a
dz.

36.Jx. Let p(z) be a polynomial with complex coefficients, R > 0, and let
z0 ∈ C. Consider the circular loop u : S1 → C : z 7→ p(Rz). If z0 ∈
C r u(S1), then the polynomial p(z) − z0 has (counting the multiplicities)
precisely ind(u, z0) roots in the open disk B2

R = {z : |z| < R}.

36.Kx. Riddle. By what can we replace the circular loop u, the domain
BR, and the polynomial p(z) so that the assertion remain valid?

36◦5x. Borsuk–Ulam Theorem

36.Lx One-Dimensional Borsuk–Ulam. For each continuous map f :
S1 → R1 there exists x ∈ S1 such that f(x) = f(−x).

36.Mx Two-Dimensional Borsuk–Ulam. For each continuous map f :
S2 → R2 there exists x ∈ S2 such that f(x) = f(−x).

36.Mx.1 Lemma. If there exists a continuous map f : S2 → R2 such that
f(x) 6= f(−x) for each x ∈ S2, then there exists a continuous map ϕ : RP 2 →
RP 1 inducing a nonzero homomorphism π1(RP

2) → π1(RP
1).

36.14x. Prove that at each instant of time, there is a pair of antipodal points on
the earth’s surface where the pressures and also the temperatures are equal.

Theorems 36.Lx and 36.Mx are special cases of the following general
theorem. We do not assume the reader to be ready to prove Theorem 36.Nx

in the full generality, but is there another easy special case?

36.Nx Borsuk–Ulam Theorem. For each continuous map f : Sn → R
n

there exists x ∈ Sn such that f(x) = f(−x).
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37. Retractions and Fixed Points

37◦1. Retractions and Retracts

A continuous map of a topological space onto a subspace is a retraction

if the restriction of the map to the subspace is the identity map. In other
words, if X is a topological space and A ⊂ X, then ρ : X → A is a retraction
if ρ is continuous and ρ|A = idA.

37.A. Let ρ be a continuous map of a space X onto its subspace A. Then
the following statements are equivalent:

(1) ρ is a retraction,

(2) ρ(a) = a for any a ∈ A,

(3) ρ ◦ in = idA,

(4) ρ : X → A is an extension of the identity map A→ A.

A subspace A of a space X is a retract of X if there exists a retraction
X → A.

37.B. Any one-point subset is a retract.

Two-point set may be a non-retract.

37.C. Any subset of R consisting of two points is not a retract of R.

37.1. If A is a retract of X and B is a retract of A, then B is a retract of X.

37.2. If A is a retract of X and B is a retract of Y , then A × B is a retract of
X × Y .

37.3. A closed interval [a, b] is a retract of R.

37.4. An open interval (a, b) is not a retract of R.

37.5. What topological properties of ambient space are inherited by a retract?

37.6. Prove that a retract of a Hausdorff space is closed.

37.7. Prove that the union of Y -axis and the set {(x, y) ∈ R
2 | x > 0, y = sin 1

x
}

is not a retract of R
2 and, moreover, is not a retract of any of its neighborhoods.

37.D. S0 is not a retract of D1.

The role of the notion of retract is clarified by the following theorem.

37.E. A subset A of a topological space X is a retract of X iff for each space
Y each continuous map A→ Y extends to a continuous map X → Y .
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37◦2. Fundamental Group and Retractions

37.F. If ρ : X → A is a retraction, i : A→ X is the inclusion, and x0 ∈ A,
then ρ∗ : π1(X,x0) → π1(A,x0) is an epimorphism and i∗ : π1(A,x0) →
π1(X,x0) is a monomorphism.

37.G. Riddle. Which of the two statements of Theorem 37.F (about ρ∗ or
i∗) is easier to use for proving that a set A ⊂ X is not a retract of X?

37.H Borsuk Theorem in Dimension 2. S1 is not a retract of D2.

37.8. Is the projective line a retract of the projective plane?

The following problem is more difficult than 37.H in the sense that its solution
is not a straightforward consequence of Theorem 37.F, but rather demands to
reexamine the arguments used in proof of 37.F.

37.9. Prove that the boundary circle of Möbius band is not a retract of Möbius
band.

37.10. Prove that the boundary circle of a handle is not a retract of the handle.

The Borsuk Theorem in its whole generality cannot be deduced like
Theorem 37.H from Theorem 37.F. However, it can be proven using a
generalization of 37.F to higher homotopy groups. Although we do not
assume that you can successfully prove it now relying only on the tools
provided above, we formulate it here.

37.I Borsuk Theorem. The (n − 1)-sphere Sn−1 is not a retract of the
n-disk Dn.

At first glance this theorem seems to be useless. Why could it be inter-
esting to know that a map with a very special property of being a retraction
does not exist in this situation? However, in mathematics nonexistence
theorems are often closely related to theorems that may seem to be more
attractive. For instance, the Borsuk Theorem implies the Brouwer Theorem
discussed below. But prior to this we must introduce an important notion
related to the Brouwer Theorem.

37◦3. Fixed-Point Property

Let f : X → X be a continuous map. A point a ∈ X is a fixed point

of f if f(a) = a. A space X has the fixed-point property if every continuous
map X → X has a fixed point. The fixed point property implies solvability
of a wide class of equations.

37.11. Prove that the fixed point property is a topological property.

37.12. A closed interval [a, b] has the fixed point property.

37.13. Prove that if a topological space has the fixed point property, then so does
each of its retracts.
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37.14. Let X and Y be two topological spaces, x0 ∈ X and y0 ∈ Y . Prove
that X and Y have the fixed point property iff so does their bouquet X ∨ Y =
X ⊔ Y/[x0 ∼ y0].

37.15. Prove that any finite tree (i.e., a connected space obtained from a fi-
nite collection of closed intervals by some identifying of their endpoints such that
deleting of an internal point of each of the segments makes the space disconnected,
see 42◦4x) has the fixed-point property. Is this statement true for infinite trees?

37.16. Prove that R
n with n > 0 does not have the fixed point property.

37.17. Prove that Sn does not have the fixed point property.

37.18. Prove that RPn with odd n does not have the fixed point property.

37.19*. Prove that CPn with odd n does not have the fixed point property.

Information. RPn and CPn with any even n have the fixed point
property.

37.J Brouwer Theorem. Dn has the fixed point property.

37.J.1. Deduce from Borsuk Theorem in dimension n (i.e., from the statement
that Sn−1 is not a retract of Dn) Brouwer Theorem in dimension n (i.e., the
statement that any continuous map Dn → Dn has a fixed point).

37.K. Derive the Borsuk Theorem from the Brouwer Theorem.

The existence of fixed points can follow not only from topological argu-
ments.

37.20. Prove that if f : R
n → R

n is a periodic affine transformation (i.e.,
f ◦ · · · ◦ f
| {z }

p times

= idRn for a certain p), then f has a fixed point.
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38. Homotopy Equivalences

38◦1. Homotopy Equivalence as Map

Let X and Y be two topological spaces, f : X → Y and g : Y → X
continuous maps. Consider the compositions f ◦ g : Y → Y and g ◦ f : X →
X. They would be equal to the corresponding identity maps if f and g were
mutually inverse homeomorphisms. If f ◦ g and g ◦ f are only homotopic
to the identity maps, then f and g are said to be homotopy inverse to each
other. If a continuous map f possesses a homotopy inverse map, then f is
a homotopy invertible map or a homotopy equivalence.

38.A. Prove the following properties of homotopy equivalences:

(1) any homeomorphism is a homotopy equivalence,

(2) a map homotopy inverse to a homotopy equivalence is a homotopy
equivalence,

(3) the composition of two homotopy equivalences is a homotopy equiv-
alence.

38.1. Find a homotopy equivalence that is not a homeomorphism.

38◦2. Homotopy Equivalence as Relation

Two topological spaces X and Y are homotopy equivalent if there exists
a homotopy equivalence X → Y .

38.B. Homotopy equivalence of topological spaces is an equivalence rela-
tion.

The classes of homotopy equivalent spaces are homotopy types. Thus
homotopy equivalent spaces are said to be of the same homotopy type.

38.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.

38.3. Prove that homotopy equivalent spaces have the same number of connected
components.

38.4. Find an infinite series of topological spaces that belong to the same homo-
topy type, but are pairwise not homeomorphic.

38◦3. Deformation Retraction

A retraction ρ : X → A is a deformation retraction if its composition
in ◦ ρ with the inclusion in : A → X is homotopic to the identity idX . If
in ◦ ρ is A-homotopic to idX , then ρ is a strong deformation retraction. If
X admits a (strong) deformation retraction onto A, then A is a (strong)
deformation retract of X.
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38.C. Each deformation retraction is a homotopy equivalence.

38.D. If A is a deformation retract of X, then A and X are homotopy
equivalent.

38.E. Any two deformation retracts of one and the same space are homo-
topy equivalent.

38.F. If A is a deformation retract of X and B is a deformation retract of
Y , then A×B is a deformation retract of X × Y .

38◦4. Examples

38.G. Circle S1 is a deformation retract of R2 r 0.

38.5. Prove that the Möbius strip is homotopy equivalent to a circle.

38.6. Classify letters of Latin alphabet up to homotopy equivalence.

38.H. Prove that a plane with s punctures is homotopy equivalent to a
union of s circles intersecting in a single point.

38.I. Prove that the union of a diagonal of a square and the contour of the
same square is homotopy equivalent to a union of two circles intersecting in
a single point.
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38.7. Prove that a handle is homotopy equivalent to a bouquet of two circles.
(E.g., construct a deformation retraction of the handle to a union of two circles
intersecting in a single point.)

38.8. Prove that a handle is homotopy equivalent to a union of three arcs with
common endpoints (i.e., letter θ).

38.9. Prove that the space obtained from S2 by identification of a two (distinct)
points is homotopy equivalent to the union of a two-sphere and a circle intersecting
in a single point.

38.10. Prove that the space {(p, q) ∈ C : z2 + pz + q has two distinct roots} of
quadratic complex polynomials with distinct roots is homotopy equivalent to the
circle.

38.11. Prove that the space GL(n,R) of invertible n×n real matrices is homotopy
equivalent to the subspace O(n) consisting of orthogonal matrices.

38.12. Riddle. Is there any relation between a solution of the preceding problem
and the Gram–Schmidt orthogonalization? Can the Gram–Schmidt orthogonal-
ization algorithm be considered a deformation retraction?

38.13. Construct the following deformation retractions: (a) R
3

r R
1 → S1; (b)

R
n

rR
m → Sn−m−1; (c) S3

rS1 → S1; (d) SnrSm → Sn−m−1 (e) RPnrRPm →
RPn−m−1.

38◦5. Deformation Retraction versus Homotopy Equivalence

38.J. Spaces of Problem 38.I cannot be embedded one to another. On the
other hand, they can be embedded as deformation retracts in the plane with
two punctures.

Deformation retractions comprise a special type of homotopy equiva-
lences. For example, they are easier to visualize. However, as follows
from 38.J, it may happen that two spaces are homotopy equivalent, but none
of them can be embedded in the other one, and so none of them is homeo-
morphic to a deformation retract of the other one. Therefore, deformation
retractions seem to be insufficient for establishing homotopy equivalences.

However, this is not the case:

38.14*. Prove that any two homotopy equivalent spaces can be embedded as
deformation retracts in the same topological space.

38◦6. Contractible Spaces

A topological space X is contractible if the identity map id : X → X is
null-homotopic.

38.15. Show that R and I are contractible.

38.16. Prove that any contractible space is path-connected.

38.17. Prove that the following three statements about a topological space X are
equivalent:
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(1) X is contractible,
(2) X is homotopy equivalent to a point,
(3) there exists a deformation retraction of X onto a point,
(4) any point a of X is a deformation retract of X,
(5) any continuous map of any topological space Y to X is null-homotopic,
(6) any continuous map of X to any topological space Y is null-homotopic.

38.18. Is it true that if X is a contractible space, then for any topological space
Y

(1) any two continuous maps X → Y are homotopic?
(2) any two continuous maps Y → X are homotopic?

38.19. Find out if the spaces on the following list are contractible:

(1) R
n,

(2) a convex subset of R
n,

(3) a star-shaped subset of R
n,

(4) {(x, y) ∈ R
2 : x2 − y2 ≤ 1},

(5) a finite tree (i.e., a connected space obtained from a finite collection of
closed intervals by some identifying of their endpoints such that delet-
ing of an internal point of each of the segments makes the space discon-
nected, see 42◦4x.)

38.20. Prove that X × Y is contractible iff both X and Y are contractible.

38◦7. Fundamental Group and Homotopy Equivalences

38.K. Let f : X → Y and g : Y → X be homotopy inverse maps, and let
x0 ∈ X and y0 ∈ Y be two points such that f(x0) = y0 and g(y0) = x0 and,
moreover, the homotopies relating f ◦g to idY and g◦f to idX are fixed at y0

and x0, respectively. Then f∗ and g∗ are inverse to each other isomorphisms
between groups π1(X,x0) and π1(Y, y0).

38.L Corollary. If ρ : X → A is a strong deformation retraction, x0 ∈
A, then ρ∗ : π1(X,x0) → π1(A,x0) and in∗ : π1(A,x0) → π1(X,x0) are
mutually inverse isomorphisms.

38.21. Calculate the fundamental group of the following spaces:

(a) R
3

r R
1, (b) R

N
r R

n, (c) R
3

r S1, (d) R
N

r Sn,

(e) S3
r S1, (f) SN r Sk, (g) RP 3

r RP 1, (h) handle,
(i) Möbius band, (j) sphere with s holes,
(k) Klein bottle with a point re-

moved,
(l) Möbius band with s holes.

38.22. Prove that the boundary circle of the Möbius band standardly embedded
in R

3 (see 21.18) could not be the boundary of a disk embedded in R
3 in such a

way that its interior does not intersect the band.

38.23. 1) Calculate the fundamental group of the space Q of all complex polyno-
mials ax2 + bx+ c with distinct roots. 2) Calculate the fundamental group of the
subspace Q1 of Q consisting of polynomials with a = 1 (unital polynomials).

38.24. Riddle. Can you solve 38.23 along the lines of deriving the customary
formula for the roots of a quadratic trinomial?
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38.M. Suppose that the assumptions of Theorem 38.K are weakened as
follows: g(y0) 6= x0 and/or the homotopies relating f ◦ g to idY and g ◦ f
to idX are not fixed at y0 and x0, respectively. How would f∗ and g∗ be
related? Would π1(X,x0) and π1(Y, y0) be isomorphic?
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39. Covering Spaces via Fundamental

Groups

39◦1. Homomorphisms Induced by Covering Projections

39.A. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). Then p∗ :
π1(X,x0) → π1(B, b0) is a monomorphism. Cf. 34.C.

The image of the monomorphism p∗ : π1(X,x0) → π1(B, b0) induced by
the covering projection p : X → B is the group of the covering p with base

point x0.

39.B. Riddle. Is the group of covering determined by the covering?

39.C Group of Covering versus Lifting of Loops. Describe loops in
the base space of a covering, whose homotopy classes belong to the group
of the covering, in terms provided by Path Lifting Theorem 34.B.

39.D. Let p : X → B be a covering, let x0, x1 ∈ X belong to the same
path-component of X, and b0 = p(x0) = p(x1). Then p∗(π1(X,x0)) and
p∗(π1(X,x1)) are conjugate subgroups of π1(B, b0) (i.e., there exists an α ∈
π1(B, b0) such that p∗(π1(X,x1)) = α−1p∗(π1(X,x0))α).

39.E. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). For each
α ∈ π1(B, b0), there exists an x1 ∈ p−1(b0) such that p∗(π1(X,x1)) =
α−1p∗(π1(X,x0))α.

39.F. Let p : X → B be a covering in a narrow sense, G ⊂ π1(B, b0) the
group of this covering with a base point x0. A subgroup H ⊂ π1(B, b0) is a
group of the same covering iff H is conjugate to G.

39◦2. Number of Sheets

39.G Number of Sheets and Index of Subgroup. Let p : X → B be a
covering in a narrow sense with finite number of sheets. Then the number
of sheets is equal to the index of the group of this covering.

39.H Sheets and Right Cosets. Let p : X → B be a covering in a
narrow sense, b0 ∈ B, and x0 ∈ p−1(b0). Construct a natural bijection of
p−1(b0) and the set p∗(π1(X,x0))\π1(B, b0) of right cosets of the group of
the covering in the fundamental group of the base space.

39.1 Number of Sheets in Universal Covering. The number of sheets of a
universal covering equals the order of the fundamental group of the base space.

39.2 Nontrivial Covering Means Nontrivial π1. Any topological space that
has a nontrivial path-connected covering space has a nontrivial fundamental group.
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39.3. What numbers can appear as the number of sheets of a covering of the
Möbius strip by the cylinder S1 × I?

39.4. What numbers can appear as the number of sheets of a covering of the
Möbius strip by itself?

39.5. What numbers can appear as the number of sheets of a covering of the
Klein bottle by torus?

39.6. What numbers can appear as the number of sheets of a covering of the
Klein bottle by itself?

39.7. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by plane R

2?

39.8. What numbers can appear as the numbers of sheets for a covering of the
Klein bottle by S1 × R?

39◦3. Hierarchy of Coverings

Let p : X → B and q : Y → B be two coverings, x0 ∈ X, y0 ∈ Y , and
p(x0) = q(y0) = b0. The covering q with base point y0 is subordinate to p
with base point x0 if there exists a map ϕ : X → Y such that q ◦ϕ = p and
ϕ(x0) = y0. In this case, the map ϕ is a subordination.

39.I. A subordination is a covering map.

39.J. If a subordination exists, then it is unique. Cf. 34.B.

Two coverings p : X → B and q : Y → B are equivalent if there exists a
homeomorphism h : X → Y such that p = q ◦h. In this case, h and h−1 are
equivalences.

39.K. If two coverings are mutually subordinate, then the corresponding
subordinations are equivalences.

39.L. The equivalence of coverings is, indeed, an equivalence relation in the
set of coverings with a given base space.

39.M. Subordination determines a nonstrict partial order in the set of
equivalence classes of coverings with a given base.

39.9. What equivalence class of coverings is minimal (i.e., subordinate to all other
classes)?

39.N. Let p : X → B and q : Y → B be coverings, x0 ∈ X, y0 ∈ Y and
p(x0) = q(y0) = b0. If q with base point y0 is subordinate to p with base
point x0, then the group of covering p is contained in the group of covering
q, i.e., p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)).
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39◦4x. Existence of Subordinations

A topological space X is locally path-connected if for each point a ∈ X
and each neighborhood U of a the point a has a path-connected neighbor-
hood V ⊂ U .

39.1x. Find a path connected, but not locally path connected topological space.

39.Ax. Let B be a locally path-connected space, p : X → B and q : Y → B
be coverings in a narrow sense, x0 ∈ X, y0 ∈ Y and p(x0) = q(y0) = b0. If
p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)), then q is subordinate to p.

39.Ax.1. Under the conditions of 39.Ax, if two paths u, v : I → X have the
same initial point x0 and a common final point, then the paths that cover p ◦ u
and p ◦ v and have the same initial point y0 also have the same final point.

39.Ax.2. Under the conditions of 39.Ax, the map X → Y defined by 39.Ax.1
(guess, what this map is!) is continuous.

39.2x. Construct an example proving that the hypothesis of local path connect-
edness in 39.Ax.2 and 39.Ax is necessary.

39.Bx. Two coverings p : X → B and q : Y → B with a common locally
path-connected base are equivalent iff for some x0 ∈ X and y0 ∈ Y with
p(x0) = q(y0) = b0 the groups p∗(π1(X,x0)) and q∗(π1(Y, y0)) are conjugate
in π1(B, b0).

39.3x. Construct an example proving that the assumption of local path connect-
edness of the base in 39.Bx is necessary.

39◦5x. Micro Simply Connected Spaces

A topological space X is micro simply connected if each point a ∈ X has a
neighborhood U such that the inclusion homomorphism π1(U, a) → π1(X,a)
is trivial.

39.4x. Any simply connected space is micro simply connected.

39.5x. Find a micro simply connected, but not simply connected space.

A topological space is locally contractible at point a if each neighborhood
U of a contains a neighborhood V of a such that the inclusion V → U
is null-homotopic. A topological space is locally contractible if it is locally
contractible at each of its points.

39.6x. Any finite topological space is locally contractible.

39.7x. Any locally contractible space is micro simply connected.

39.8x. Find a space which is not micro simply connected.
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In the literature, the micro simply connectedness is also called weak local

simply connectedness, while a strong local simply connectedness is the follow-
ing property: any neighborhood U of any point x contains a neighborhood
V such that any loop at x in V is null-homotopic in U .

39.9x. Find a micro simply connected space which is not strong locally simply
connected.

39◦6x. Existence of Coverings

39.Cx. A space having a universal covering space is micro simply connected.

39.Dx Existence of Covering With a Given Group. If a topological
space B is path connected, locally path connected, and micro simply con-
nected, then for any b0 ∈ B and any subgroup π of π1(B, b0) there exists
a covering p : X → B and a point x0 ∈ X such that p(x0) = b0 and
p∗(π1(X,x0)) = π.

39.Dx.1. Suppose that in the assumptions of Theorem 39.Dx there exists a
covering p : X → B satisfying all requirements of this theorem. For each
x ∈ X , describe all paths in B that are p-images of paths connecting x0 to x in
X .

39.Dx.2. Does the solution of Problem 39.Dx.1 determine an equivalence re-
lation in the set of all paths in B starting at b0, so that we obtain a one-to-one
correspondence between the set X and the set of equivalence classes?

39.Dx.3. Describe a topology in the set of equivalence classes from 39.Dx.2
such that the natural bijection between X and this set be a homeomorphism.

39.Dx.4. Prove that the reconstruction of X and p : X → B provided by
problems 39.Dx.1–39.Dx.4 under the assumptions of Theorem 39.Dx determine
a covering whose existence is claimed by Theorem 39.Dx.

Essentially, assertions 39.Dx.1–39.Dx.3 imply the uniqueness of the cov-
ering with a given group. More precisely, the following assertion holds true.

39.Ex Uniqueness of the Covering With a Given Group. Assume
that B is path-connected, locally path-connected, and micro simply connected.
Let p : X → B and q : Y → B be two coverings, and let p∗(π1(X,x0)) =
q∗(π1(Y, y0)). Then the coverings p and q are equivalent, i.e., there exists a
homeomorphism f : X → Y such that f(x0) = y0 and p ◦ f = q.

39.Fx Classification of Coverings Over a Good Space. There is a
one-to-one correspondence between classes of equivalent coverings (in a nar-
row sense) over a path-connected, locally path-connected, and micro simply
connected space B with base point b0, on the one hand, and conjugacy classes
of subgroups of π1(B, b0), on the other hand. This correspondence identifies
the hierarchy of coverings (ordered by subordination) with the hierarchy of
subgroups (ordered by inclusion).
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Under the correspondence of Theorem 39.Fx, the trivial subgroup cor-
responds to a covering with simply connected covering space. Since this
covering subordinates any other covering with the same base space, it is
said to be universal .

39.10x. Describe all coverings of the following spaces up to equivalence and sub-
ordination:

(1) circle S1;
(2) punctured plane R

2
r 0;

(3) Möbius strip;
(4) four point digital circle (the space formed by 4 points, a, b, c, d; with the

base of open sets formed by {a}, {c}, {a, b, c} and {c, d, a})
(5) torus S1 × S1;

39◦7x. Action of Fundamental Group on Fiber

39.Gx Action of π1 on Fiber. Let p : X → B be a covering, b0 ∈ B.
Construct a natural right action of π1(B, b0) on p−1(b0).

39.Hx. When the action in 39.Gx is transitive?

39◦8x. Automorphisms of Covering

A homeomorphism ϕ : X → X is an automorphism of a covering p : X →
B if p ◦ ϕ = p.

39.Ix. Automorphisms of a covering form a group.

Denote the group of automorphisms of a covering p : X → B by Aut(p).

39.Jx. An automorphism ϕ : X → X of covering p : X → B is recovered
from the image ϕ(x0) of any x0 ∈ X. Cf. 39.J.

39.Kx. Any two-fold covering has a nontrivial automorphism.

39.11x. Find a three-fold covering without nontrivial automorphisms.

Let G be a group and H its subgroup. Recall that the normalizer Nr(H)
of H is the subset of G consisting of g ∈ G such that g−1Hg = H. This is
a subgroup of G, which contains H as a normal subgroup. So, Nr(H)/H is
a group.

39.Lx. Let p : X → B be a covering, x0 ∈ X and b0 = p(x0). Con-
struct a map π1(B, b0) → p−1(b0) which induces a bijection of the set
p∗(π1(X,x0))\π1(B, b0) of right cosets onto p−1(b0).

39.Mx. Show that the bijection p∗(π1(X,x0))\π1(B, b0) → p−1(b0) from
39.Lx maps the set of images of a point x0 under all automorphisms of a
covering p : X → B to the group Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)).
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39.Nx. For any covering p : X → B in a narrow sense, there is a natural
injective map Aut(p) to the group Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)). This

map is an antihomomorphism.1

39.Ox. Under assumptions of Theorem 39.Nx, if B is locally path connected,
then the antihomomorphism Aut(p) → Nr(p∗(π1(X,x0)))/p∗(π1(X,x0)) is

bijective.

39◦9x. Regular Coverings

39.Px Regularity of Covering. Let p : X → B be a covering in a narrow
sense, b0 ∈ B, x0 ∈ p−1(b0). The following conditions are equivalent:

(1) p∗
(
π1(X,x0)

)
is a normal subgroup of π1(B, b0);

(2) p∗
(
π1(X,x)

)
is a normal subgroup of π1(B, p(x)) for each x ∈ X;

(3) all groups p∗π1(X,x) for x ∈ p−1(b) are the same;

(4) for any loop s : I → B either every path in X covering s is a loop
(independent on the its initial point) or none of them is a loop;

(5) the automorphism group acts transitively on p−1(b0).

A covering satisfying to (any of) the equivalent conditions of Theorem
39.Px is said to be regular .

39.12x. The coverings R → S1 : x 7→ e2πix and S1 → S1 : z 7→ zn for integer
n > 0 are regular.

39.Qx. The automorphism group of a regular covering p : X → B is nat-
urally anti-isomorphic to the quotient group π1(B, b0)/p∗π1(X,x0) of the

group π1(B, b0) by the group of the covering for any x0 ∈ p−1(b0).

39.Rx Classification of Regular Coverings Over a Good Base.

There is a one-to-one correspondence between classes of equivalent cover-
ings (in a narrow sense) over a path connected, locally path connected, and
micro simply connected space B with a base point b0, on one hand, and
anti-epimorphisms π1(B, b0) → G, on the other hand.

Algebraic properties of the automorphism group of a regular covering
are often referred to as if they were properties of the covering itself. For
instance, a cyclic covering is a regular covering with cyclic automorphism
group, an Abelian covering is a regular covering with Abelian automorphism
group, etc.

1Recall that a map ϕ : G → H from a group G to a group H is an antihomomorphism if
ϕ(ab) = ϕ(b)ϕ(a) for any a, b ∈ G.
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39.13x. Any two-fold covering is regular.

39.14x. Which coverings considered in Problems of Section 33 are regular? Is out
there any nonregular covering?

39.15x. Find a three-fold nonregular covering of a bouquet of two circles.

39.16x. Let p : X → B be a regular covering, Y ⊂ X, C ⊂ B, and let q : Y → C
be a submap of p. Prove that if q is a covering, then this covering is regular.

39◦10x. Lifting and Covering Maps

39.Sx. Riddle. Let p : X → B and f : Y → B be continuous maps.
Let x0 ∈ X and y0 ∈ Y be points such that p(x0) = f(y0). Formulate in
terms of homomorphisms p∗ : π1(X,x0) → π1(B, p(x0)) and f∗ : π1(Y, y0) →

π1(B, f(y0)) a necessary condition for existence of a lifting f̃ : Y → X of f

such that f̃(y0) = x0. Find an example where this condition is not sufficient.
What additional assumptions can make it sufficient?

39.Tx Theorem on Lifting a Map. Let p : X → B be a covering in
a narrow sense and f : Y → B be a continuous map. Let x0 ∈ X and
y0 ∈ Y be points such that p(x0) = f(y0). If Y is a locally path-connected
space and f∗π(Y, y0) ⊂ p∗π(X,x0), then there exists a unique continuous

map f̃ : Y → X such that p ◦ f̃ = f and f̃(y0) = x0.

39.Ux. Let p : X → B and q : Y → C be coverings in a narrow sense and
f : B → C be a continuous map. Let x0 ∈ X and y0 ∈ Y be points such
that fp(x0) = q(y0). If there exists a continuous map F : X → Y such that
fp = qF and F (x0) = y0, then f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0).

39.Vx Theorem on Covering of a Map. Let p : X → B and q : Y → C
be coverings in a narrow sense and f : B → C be a continuous map. Let
x0 ∈ X and y0 ∈ Y be points such that fp(x0) = q(y0). If Y is locally
path connected and f∗p∗π1(X,x0) ⊂ q∗π1(Y, y0), then there exists a unique
continuous map F : X → Y such that fp = qF and F (x0) = y0.

39◦11x. Induced Coverings

39.Wx. Let p : X → B be a covering and f : A → B a continuous map.
Denote by W a subspace of A × X consisting of points (a, x) such that
f(a) = p(x). Let q : W → A be a restriction of A × X → A. Then
q : W → A is a covering with the same number of sheets as p.

A covering q : W → A obtained as in Theorem 39.Wx is said to be
induced from p : X → B by f : A→ B.

39.17x. Represent coverings from problems 33.D and 33.F as induced from R →
S1 : x 7→ e2πix.
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39.18x. Which of the coverings considered above can be induced from the covering
of Problem 35.7?

39◦12x. High-Dimensional Homotopy Groups of Covering Space

39.Xx. Let p : X → B be a covering. Then for any continuous map s :
In → B and a lifting u : In−1 → X of the restriction s|In−1 there exists a
unique lifting of s extending u.

39.Yx. For any covering p : X → B and points x0 ∈ X, b0 ∈ B such
that p(x0) = b0 the homotopy groups πr(X,x0) and πr(B, b0) with r > 1 are
canonically isomorphic.

39.Zx. Prove that homotopy groups of dimensions greater than 1 of circle,
torus, Klein bottle and Möbius strip are trivial.
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Proofs and Comments

36.A This follows from 29.I.

36.B Let [u], [v] ∈ π1(X,x0). Since f ◦ (uv) = (f ◦ u)(f ◦ v), we have
f#(uv) = f#(u)f#(v) and

f∗([u][v]) = f∗
(
[uv]

)
=

[
f#(uv)

]
=

[
f#(u)f#(v)] =

=
[
f#(u)

][
f#(v)

]
= f∗([u])f∗([v]).

36.C Let [u] ∈ π1(X,x0). Since (g ◦ f)#(u) = g ◦ f ◦ u = g#(f#(u)),
consequently,

(g ◦ f)∗([u]) =
[
(g ◦ f)#(u)

]
=

[
g#(f#(u))

]
= g∗ ([f#(u)]) = g∗(f∗(u)),

thus, (g ◦ f)∗ = g∗ ◦ f∗.

36.D Let H : X × I → Y be a homotopy between f and g, and
let H(x0, t) = y0 for all t ∈ I; u is a certain loop in X. Consider a map
h = H ◦ (u× idI), thus, h : (τ, t) 7→ H(u(τ), t). Then h(τ, 0) = H(u(τ), 0) =
f(u(τ)) and h(τ, 1) = H(u(τ), 1) = g(u(τ)), so that h is a homotopy between
the loops f ◦u and g ◦u. Furthermore, h(0, t) = H(u(0), t) = H(x0, t) = y0,
and we similarly have h(1, t) = y0, therefore, h is a homotopy between the
loops f#(u) and g#(v), whence

f∗ ([u]) = [f# (u)] = [g# (u)] = g∗ ([u]) .

36.E Let H be a homotopy between the maps f and g and the loop s
is defined by the formula s(t) = H(x0, t). By assertion 32.2, g∗ = Ts ◦ f∗.

36.F This obviously follows from the equality

f#(s−1us) = (f ◦ s)−1f#(u)(f ◦ s).

36.G.1 This is the assertion of Theorem 36.G.

36.G.2 For example, it is sufficient to take R such that

R > max{1, |a1| + |a2| + . . .+ |an|}.

36.G.3 Use the rectilinear homotopy h(z, t) = tp(z) + (1 − t)q(z). It
remains to verify that h(z, t) 6= 0 for all z and t. Indeed, since |p(z)−q(z)| <
q(z) by assumption, we have

|h(z, t)| ≥ |q(z)| − t|p(z) − q(z)| ≥ |q(z)| − |p(z) − q(z)| > 0.

36.G.4 Indeed, this is a quite obvious lemma; see 36.A.
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36.G Take a number R satisfying the assumptions of assertion 36.G.2
and consider the loop u : u(t) = Re2πit. The loop u, certainly, is null-
homotopic in C. Now we assume that p(z) 6= 0 for all z with |z| ≤ R. Then
the loop p ◦ u is null-homotopic in C r 0, by 36.G.3, and the loop q ◦ u is
null-homotopic in C r 0. However, (q ◦u)(t) = Rne2πint, therefore, this loop
is not null-homotopic. A contradiction.

36.Ax See 36.Dx.

36.Bx Yes, it is.

36.Cx See 36.Dx.

36.Dx Let i : Sn−1 → Dn be the inclusion. Assume that f(x) 6= 0 for
all x ∈ Dn. We preserve the designation f for the submap Dn → Rn r0 and
consider the inclusion homomorphisms i∗ : πn−1(S

n−1) → πn−1(D
n) and

f∗ : πn−1(D
n) → πn−1(R

n
r0). Since all homotopy groups of Dn are trivial,

the composition (f ◦ i)∗ = f∗ ◦ i∗ is a zero homomorphism. However, the
composition f ◦ i is the map f0, which, by assumption, induces a nonzero
homomorphism πn−1(S

n−1) → πn−1(R
n r 0).

36.Ex Consider a circular neighborhood U of x disjoint with the image
u(S1) of the circular loop under consideration and let y ∈ U . Join x and y
by a rectilinear path s : t 7→ ty + (1 − t)x. Then

h(z, t) = ϕu,s(t)(z) =
u(z) − s(t)

|u(z) − s(t)|

determines a homotopy between ϕu,x and ϕu,y, whence
(
ϕu,x

)
∗

=
(
ϕu,y

)
∗
,

whence it follows that ind(u, y) = ind(u, x) for any point y ∈ U . Conse-
quently, the function ind : x 7→ ind(u, x) is constant on U .

36.Fx If x /∈ F (D2), then the circular loop u is null-homotopic in R
2
rx

because u = F ◦ i, where i is the standard embedding S1 → D2, and i is
null-homotopic in D2.

36.Gx This is true because we have [uv] = [u][v] and π1(R
2 r x) → Z

is a homomorphism.

36.Hx The formula

h(z, t) = ϕut,x(z) =
ut(z) − x

|ut(z) − x|

determines a homotopy between ϕu,x and ϕv,x, whence ind(u, x) = ind(v, x);
cf. 36.Ex.

36.Lx We define a map ϕ : S1 → R : x 7→ f(x) − f(−x). Then

ϕ(−x) = f(−x) − f(x) = −(f(x) − f(−x)) = −ϕ(x),
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thus ϕ is an odd map. Consequently, if, for example, ϕ(1) 6= 0, then the
image ϕ(S1) contains values with distinct signs. Since the circle is connected,
there is a point x ∈ S1 such that f(x) − f(−x) = ϕ(x) = 0.

36.Mx.1 Assume that f(x) 6= f(−x) for all x ∈ S2. In this case,

the formula g(x) = f(x)−f(−x)
|f(x)−f(−x)| determines a map g : S2 → S1. Since

g(−x) = −g(x), it follows that g takes antipodal points of S2 to antipodal
points of S1. The quotient map of g is a continuous map ϕ : RP 2 → RP 1.
We show that the induced homomorphism ϕ∗ : π1(RP

2) → π1(RP
1) is

nontrivial. The generator λ of the group π1(RP
2) is the class of the loop

l covered by the path l̃ joining two opposite points of S2. The path g ◦ l̃
also joins two opposite points lying on the circle, consequently, the loop ϕ◦ l
covered by g ◦ l̃ is not null-homotopic. Thus, ϕ∗(λ) is a nontrivial element
of π1(RP

1).

36.Mx To prove the Borsuk–Ulam Theorem, it only remains to observe
that there are no nontrivial homomorphisms π1(RP

2) → π1(RP
1) because

the first of these groups is isomorphic to Z2, while the second one is isomor-
phic to Z.

37.A Prove this assertion on your own.

37.B Since any map to a singleton is continuous, the map ρ : X → {x0}
is a retraction.

37.C The line is connected. Therefore, its retract (being its continu-
ous image) is connected, too. However, a pair of points in the line is not
connected.

37.D See the proof of assertion 37.C.

37.E Let ρ : X → A be a retraction. and let f : A → Y be a
continuous map. Then the composition F = f ◦ ρ : X → Y extends f .

Consider the identity map id : A→ A. Its continuous extension to X
is the required retraction ρ : X → A.

37.F Since ρ∗ ◦ i∗ = (ρ ◦ i)∗ = (id A)∗ = id π1(A,x0), it follows that
the homomorphism ρ∗ is an epimorphism, and the homomorphism i∗ is a
monomorphism.

37.G About i∗; for example, see the proof of the following assertion.

37.H Since the group π1(D
2) is trivial, while π1(S

1) is not, it follows
that i∗ : π1(S

1, 1) → π1(D
2, 1) cannot be a monomorphism. Consequently,

by assertion 37.F, the disk D2 cannot be retracted to its boundary S1.

37.I The proof word by word repeats that of Theorem 37.H, only
instead of fundamental groups we must use (n − 1)-dimensional homotopy
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groups. The reason for this is that the group πn−1(D
n) is trivial, while

πn−1(S
n−1) ∼= Z (i.e., this group is nontrivial).

37.J Assume that a map f : Dn → Dn has no fixed points. For each
x ∈ Dn, consider the ray starting at f(x) ∈ Dn and passing through x, and
denote by ρ(x) the point of its intersection with the boundary sphere Sn−1.
It is clear that ρ(x) = x for x ∈ Sn−1. Prove that the map ρ is continuous.
Therefore, ρ : Dn → Sn−1 is a retraction. However, this contradicts the
Borsuk Theorem.

38.A Prove this assertion on your own.

38.B This immediately follows from assertion 38.A.

38.C Since ρ is a retraction, it follows that one of the conditions in the
definition of homotopically inverse maps is automatically fulfilled: ρ ◦ in =
idA. The second requirement: in ◦ρ is homotopic to idX , is fulfilled by
assumption.

38.D This immediately follows from assertion 38.C.

38.E This follows from 38.D and 38.B.

38.F Let ρ1 : X → A and ρ2 : Y → B be deformation retractions.
Prove that ρ1 × ρ2 is a deformation retraction.

38.G Let the map ρ : R
2
r0 → S1 be defined by the formula ρ(x) = x

|x| .

The formula h(x, t) = (1 − t)x + t x
|x| determines a rectilinear homotopy

between the identity map of R
2
r 0 and the composition ρ ◦ i, where i is the

standard inclusion S1 → R2 r 0.

38.H The topological type of R
2
r {x1, x2, . . . , xs} does not depend on

the position of the points x1, x2, . . . , xs in the plane. We put them on the
unit circle: for example, let them be roots of unity of degree s. Consider
s simple closed curves on the plane each of which encloses exactly one of
the points and passes through the origin, and which have no other common
points except the origin. Instead of curves, maybe it is simpler to take, e.g.,
rhombi with centers at our points. It remains to prove that the union of the
curves (or rhombi) is a deformation retract of the plane with s punctures.
Clearly, it makes little sense to write down explicit formulas, although this
is possible. Consider an individual rhombus R and its center c. The central
projection maps R r c to the boundary of R, and there is a rectilinear
homotopy between the projection and the identical map of Rrc. It remains
to show that the part of the plane lying outside the union of the rhombi also
admits a deformation retraction to the union of their boundaries. What can
we do in order to make the argument look more like a proof? First consider
the polygon P whose vertices are the vertices of the rhombi opposite to the
origin. We easily see that P is a strong deformation retract of the plane (as
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well as the disk is). It remains to show that the union of the rhombi is a
deformation retract of P , which is obvious, is not it?

38.I We subdivide the square into four parts by two midlines and con-
sider the set K formed by the contour, the midlines, and the two quarters
of the square containing one of the diagonals. Show that each of the fol-
lowing sets is a deformation retract of K: the union of the contour and the
mentioned diagonal of the square; the union of the contours of the “empty”
quarters of this square.

38.J 1) None of these spaces can be embedded in another. Prove
this on your own, using the following lemma. Let Jn be the union of n
segments with a common endpoint. Then Jn cannot be embedded in Jk for
any n > k ≥ 2. 2) The second question is answered in the affirmative; see
the proof of assertion 38.I.

38.K Since the composition g◦f is x0-null-homotopic, we have g∗◦f∗ =
(g ◦ f)∗ = idπ1(X,x0). Similarly, f∗ ◦ g∗ = idπ1(Y,y0). Thus, f∗ and g∗ are
mutually inverse homomorphisms.

38.L Indeed, this immediately follows from Theorem 38.K.

38.M Let x1 = g(x0). For any homotopy h between idX and g ◦ f ,
the formula s(t) = h(x0, t) determines a path at x0. By the answer to Rid-
dle 36.E, the composition g∗ ◦ f∗ = Ts is an isomorphism. Similarly, the
composition f∗ ◦ g∗ is an isomorphism. Therefore, f∗ and g∗ are isomor-
phisms.

39.A If u is a loop in X such that the loop p◦u in B is null-homotopic,
then by the Path Homotopy Lifting Theorem 34.C the loop u is also null-
homotopic. Thus, if p∗([u]) = [p ◦ u] = 0, then [u] = 0, which precisely
means that p∗ is a monomorphism.

39.B No, it is not. If p(x0) = p(x1) = b0, x0 6= x1, and the group
π1(B, b0) is non-Abelian, then the subgroups p∗(π1(X,x0)) and p∗(π1(X,x1))
can easily be distinct (see 39.D).

39.C The group p∗(π1(X,x0)) of the covering consists of the homotopy
classes of those loops at b0 whose covering path starting at x0 is a loop.

39.D Let s be a path in X joining x0 and x1. Denote by α the class
of the loop p ◦ s and consider the inner automorphism ϕ : π1(B, b0) →
π1(B, b0) : β 7→ α−1βα. We prove that the following diagram is commuta-
tive:

π1(X,x0)
Ts−−−−→ π1(X,x1)

p∗

y
yp∗

π1(B, b0)
ϕ

−−−−→ π1(B, b0).
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Indeed, since Ts([u]) = [s−1us], we have

p∗
(
Ts([u])

)
= [p ◦ (s−1us)] = [(p ◦ s−1)(p ◦ u)(p ◦ s)] = α−1p∗

(
[u]

)
α.

Since the diagram is commutative and Ts is an isomorphism, it follows that

p∗(π1(X,x1)) = ϕ(p∗(π1(X,x0))) = α−1p∗(π1(X,x0))α,

thus, the groups p∗(π1(X,x0)) and p∗(π1(X,x1)) are conjugate.

39.E Let s be a loop in X representing the class α ∈ π1(B, b0). Let the
path s̃ cover s and start at x0. If we put x1 = s̃(1), then, as it follows from
the proof of assertion 39.D, we have p∗(π1(X,x1)) = α−1p∗(π1(X,x0))α.

39.F This follows from 39.D and 39.E.

39.G See 39.H.

39.H For brevity, put H = p∗(π1(X,x0)). Consider an arbitrary point
x1 ∈ p−1(b0); let s be the path starting at x0 and ending at x1, and α = [p◦s].
Take x1 to the right coset Hα ⊂ π1(B, b0). Let us verify that this definition
is correct. Let s1 be another path from x0 to x1, α1 = [p ◦ s1]. The path
ss−1

1 is a loop, so that αα−1
1 ∈ H, whence Hα = Hα1. Now we prove that

the described correspondence is a surjection. Let Hα be a coset. Consider a
loop u representing the class α, let ũ be the path covering u and starting at
x0, and x1 = ũ(1) ∈ p−1(b0). By construction, x1 is taken to the coset Hα,
therefore, the above correspondence is surjective. Finally, let us prove that
it is injective. Let x1, x2 ∈ p−1(b0), and let s1 and s2 be two paths joining
x0 with x1 and x2, respectively; let αi = [p ◦ si], i = 1, 2. Assume that
Hα1 = Hα2 and show that then x1 = x2. Consider a loop u = (p◦s1)(p◦s

−1
2 )

and the path ũ covering u, which is a loop because α1α
−1
2 ∈ H. It remains to

observe that the paths s′1 and s′2, where s′1(t) = u
(

t
2

)
and s′2(t) = u

(
1− t

2

)
,

start at x0 and cover the paths p ◦ s1 and p ◦ s2, respectively. Therefore,
s1 = s′1 and s2 = s′2, thus,

x1 = s1(1) = s′1(1) = ũ
(

1
2

)
= s′2(1) = s2(1) = x2.

39.I Consider an arbitrary point y ∈ Y , let b = q(y), and let Ub be a
neighborhood of b that is trivially covered for both p and q. Further, let V be
the sheet over Ub containing y, and let {Wα} be the collection of sheets over
Ub the union of which is ϕ−1(V ). Clearly, the map ϕ|Wα = (q|V )−1 ◦ p|Wα

is a homeomorphism.

39.J Let p and q be two coverings. Consider an arbitrary point x ∈ X
and a path s joining the marked point x0 with x. Let u = p ◦ s. By
assertion 34.B, there exists a unique path ũ : I → Y covering u and starting
at y0. Therefore, ũ = ϕ ◦ s, consequently, the point ϕ(x) = ϕ(s(1)) = ũ(1)
is uniquely determined.
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39.K Let ϕ : X → Y and ψ : Y → X be subordinations, and let
ϕ(x0) = y0 and ψ(y0) = x0. Clearly, the composition ψ◦ϕ is a subordination
of the covering p : X → B to itself. Consequently, by the uniqueness of
a subordination (see 39.J), we have ψ ◦ ϕ = idX . Similarly, ϕ ◦ ψ = idY ,
which precisely means that the subordinations ϕ and ψ are mutually inverse
equivalences.

39.L This relation is obviously symmetric, reflexive, and transitive.

39.M It is clear that if two coverings p and p′ are equivalent and q
is subordinate to p, then q is also subordinate to p′, therefore, the subor-
dination relation is transferred from coverings to their equivalence classes.
This relation is obviously reflexive and transitive, and it is proved in 39.K
that two coverings subordinate to each other are equivalent, therefore this
relationb is antisymmetric.

39.N Since p∗ = (q ◦ ϕ)∗ = q∗ ◦ ϕ∗, we have

p∗(π1(X,x0)) = q∗(ϕ∗(π1(X,x0))) ⊂ q∗(π1(Y, y0)).

39.Ax.1 Denote by ũ, ṽ : I → Y the paths starting at y0 and covering
the paths p ◦ u and p ◦ v, respectively. Consider the path uv−1, which is a
loop at x0 by assumption, the loop (p ◦ u)(p ◦ v)−1 = p ◦ (uv−1), and its
class α ∈ p∗(π1(X,x0)) ⊂ q∗(π1(Y, y0)). Thus, α ∈ q∗(π1(Y, y0)), therefore,
the path starting at y0 and covering the loop (p ◦ u)(p ◦ v)−1 is also a loop.
Consequently, the paths covering p ◦ u and p ◦ v and starting at y0 end at
one and the same point. It remains to observe that they are the paths ũ
and ṽ.

39.Ax.2 We define the map ϕ : X → Y as follows. Let x ∈ X, u – a
path joining x0 and x. Then ϕ(x) = y, where y is the endpoint of the path
ũ : I → Y covering the path p ◦ u. By assertion 39.Ax.1, the map ϕ is well
defined. We prove that ϕ : X → Y is continuous. Let x1 ∈ X, b1 = p(x1)
and y1 = ϕ(x1); by construction, we have q(y1) = b1. Consider an arbitrary
neighborhood V of y1. We can assume that V is a sheet over a trivially
covered path-connected neighborhood U of b1. Let W be the sheet over U
containing x1, thus, the neighborhood W is also path-connected. Consider
an arbitrary point x ∈ W . Let a path v : I → W join x1 and x. It is clear
that the image of the path ṽ starting at y1 and covering the path p ◦ v is
contained in the neighborhood V , whence ϕ(x) ∈ V . Thus, ϕ(W ) ⊂ V ,
consequently, ϕ is continuous at x.

39.Bx This follows from 39.E, 39.Ax, and 39.K.

39.Cx Let X → B be a universal covering, U a trivially covered neigh-
borhood of a point a ∈ B, and V one of the “sheets” over U . Then the
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inclusion i : U → B is the composition p ◦ j ◦ (p|V )−1, where j is the inclu-
sion V → X. Since the group π1(X) is trivial, the inclusion homomorphism
i∗ : π1(U, a) → π1(B, a) is also trivial.

39.Dx.1 Let two paths u1 and u2 join b0 and b. The paths covering
them and starting at x0 end at one and the same point x iff the class of the
loop u1u

−1
2 lies in the subgroup π.

39.Dx.2 Yes, it does. Consider the set of all paths in B starting at b0,
endow it with the following equivalence relation: u1 ∼ u2 if [u1u

−1
2 ] ∈ π, and

let X̃ be the quotient set by this relation. A natural bijection between X
and X̃ is constructed as follows. For each point x ∈ X, we consider a path u
joining the marked point x0 with of a point x. The class of the path p ◦u in

X̃ is the image of x. The described correspondence is obviously a bijection

f : X → X̃. The map g : X̃ → X inverse to f has the following structure.
Let u : I → B represent a class y ∈ X̃. Consider the path v : I → X
covering u and starting at x0. Then g(y) = v(1).

39.Dx.3 We define a base for the topology in X̃. For each pair (U, x),

where U is an open set in B and x ∈ X̃, the set Ux consists of the classes
of all possible paths uv, where u is a path in the class x, and v is a path in
U starting at u(1). It is not difficult to prove that for each point y ∈ Ux we
have the identity Uy = Ux, whence it follows that the collection of the sets

of the form Ux is a base for the topology in X̃. In order to prove that f
and g are homeomorphisms, it is sufficient to verify that each of them maps
each set in a certain base for the topology to an open set. Consider the base
consisting of trivially covered neighborhoods U ⊂ B, each of which, firstly,
is path-connected, and, secondly, each loop in which is null-homotopic in B.

39.Dx.4 The space X̃ is defined in 39.Dx.2. The projection p : X̃ → B

is defined as follows: p(y) = u(1), where u is a path in the class y ∈ X̃.
The map p is continuous without any assumptions on the properties of B.
Prove that if a set U in B is open and path-connected and each loop in U
is null-homotopic in B, then U is a trivially covered neighborhood.

39.Fx Consider the subgroups π ⊂ π0 ⊂ π1(B, b0) and let p : Ỹ → B

and q : Ỹ → B be the coverings constructed by π and π0, respectively. The

construction of the covering implies that there exists a map f : X̃ → Ỹ .
Show that f is the required subordination.

39.Gx We say that the group G acts from the right on a set F if each
element α ∈ G determines a map ϕα : F → F so that: 1) ϕαβ = ϕα ◦ϕβ ; 2)
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if e is the unity of the group G, then ϕe = idF . Put F = p−1(b0). For each
α ∈ π1(B, b0), we define a map ϕα : F → F as follows. Let x ∈ F . Consider
a loop u at b0, such that [u] = α. Let the path ũ cover u and start at x.
Put ϕα(x) = ũ(1).
The Path Homotopy Lifting Theorem implies that the map ϕα depends only
on the homotopy class of u, therefore, the definition is correct. If [u] = e,
i.e., the loop u is null-homotopic, then the path ũ is also a loop, whence
ũ(1) = x, thus, ϕe = idF . Verify that the first property in the definition of
an action of a group on a set is also fulfilled.

39.Hx See 39.Px.

39.Ix The group operation in the set of all automorphisms is their
composition.

39.Jx This follows from 39.J.

39.Kx Show that the map transposing the two points in the preimage
of each point in the base, is a homeomorphism.

39.Lx This is assertion 39.H.

39.Qx This follows from 39.Nx and 39.Px.





Chapter IX

Cellular Techniques

40. Cellular Spaces

40◦1. Definition of Cellular Spaces

In this section, we study a class of topological spaces that play a very
important role in algebraic topology. Their role in the context of this book
is more restricted: this is the class of spaces for which we learn how to
calculate the fundamental group. 1

A zero-dimensional cellular space is just a discrete space. Points of a 0-
dimensional cellular space are also called (zero-dimensional) cells, or 0-cells.

A one-dimensional cellular space is a space that can be obtained as follows.
Take any 0-dimensional cellular space X0. Take a family of maps ϕα : S0 →
X0. Attach to X0 via ϕα the sum of a family of copies of D1 (indexed by
the same indices α as the maps ϕα):

X0 ∪⊔ϕα

(⊔

α

D1

)
.

1This class of spaces was introduced by J. H. C. Whitehead. He called these spaces CW -

complexes, and they are known under this name. However, it is not a good name for plenty
of reasons. With very rare exceptions (one of which is CW -complex, the other is simplicial
complex), the word complex is used nowadays for various algebraic notions, but not for spaces.
We have decided to use the term cellular space instead of CW -complex, following D. B. Fuchs
and V. A. Rokhlin [6].

279
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The images of the interior parts of copies ofD1 are called (open) 1-dimensional

cells, 1-cells, one-cells, or edges. The subsets obtained from D1 are closed 1-
cells. The cells of X0 (i.e., points of X0) are also called vertices. Open 1-cells
and 0-cells constitute a partition of a one-dimensional cellular space. This
partition is included in the notion of cellular space, i.e., a one-dimensional
cellular space is a topological space equipped with a partition that can be
obtained in this way. 2

A two-dimensional cellular space is a space that can be obtained as follows.
Take any cellular space X1 of dimension 0 or 1. Take a family of continuous3

maps ϕα : S1 → X1. Attach the sum of a family of copies of D2 to X1 via
ϕα:

X1 ∪⊔ϕα

(⊔

α

D2

)
.

The images of the interior parts of copies of D2 are (open) 2-dimensional

cells, 2-cells, two-cells, or faces. The cells of X1 are also regarded as cells
of the 2-dimensional cellular space. Open cells of both kinds constitute a
partition of a 2-dimensional cellular space. This partition is included in the
notion of cellular space, i.e., a two-dimensional cellular space is a topological
space equipped with a partition that can be obtained in the way described
above. The set obtained out of a copy of the whole D2 is a closed 2-cell .

A cellular space of dimension n is defined in a similar way: This is a
space equipped with a partition. It is obtained from a cellular space Xn−1

of dimension less than n by attaching a family of copies of the n-disk Dn

via by a family of continuous maps of their boundary spheres:

Xn−1 ∪⊔ϕα

(⊔

α

Dn

)
.

2One-dimensional cellular spaces are also associated with the word graph. However, rather
often this word is used for objects of other classes. For example, one can call in this way one-
dimensional cellular spaces in which attaching maps of different one-cells are not allowed to coin-
cide, or the boundary of a one-cell is prohibited to consist of a single vertex. When one-dimensional
cellular spaces are to be considered anyway, despite of this terminological disregard, they are called
multigraphs or pseudographs. Furthermore, sometimes one includes into the notion of graph an
additional structure. Say, a choice of orientation on each edge. Certainly, all these variations
contradict a general tendency in mathematical terminology to call in a simpler way decent ob-
jects of a more general nature, passing to more complicated terms along with adding structures

and imposing restrictions. However, in this specific situation there is no hope to implement that
tendency. Any attempt to fix a meaning for the word graph apparently only contributes to this
chaos, and we just keep this word away from important formulations, using it as a short informal
synonym for more formal term of one-dimensional cellular space. (Other overused common words,
like curve and surface, also deserve this sort of caution.)

3In the above definition of a 1-dimensional cellular space, the attaching maps ϕα also were
continuous, although their continuity was not required since any map of S0 to any space is
continuous.
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The images of the interiors of the attached n-dosks are (open) n-dimensional

cells or simply n-cells. The images of the entire n-disks are closed n-cells.
Cells of Xn−1 are also regarded as cells of the n-dimensional cellular space.
The mappings ϕα are the attaching maps, and the restrictions of the factor-
ization map to the n-disks Dn are the characteristic maps.

A cellular space is obtained as a union of increasing sequence of cellular
spaces X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ . . . obtained in this way from each other.
The sequence may be finite or infinite. In the latter case, the topological
structure is introduced by saying that the cover of the union by Xn’s is
fundamental, i.e., a set U ⊂

⋃∞
n=0Xn is open iff its intersection U ∩Xn with

each Xn is open in Xn.

The partition of a cellular space into its open cells is a cellular decompo-

sition. The union of all cells of dimension less than or equal to n of a cellular
space X is the n-dimensional skeleton of X. This term may be misleading
since the n-dimensional skeleton may contain no n-cells, and so it may coin-
cide with the (n−1)-dimensional skeleton. Thus, the n-dimensional skeleton
may have dimension less than n. For this reason, it is better to speak about
the nth skeleton or n-skeleton.

40.1. In a cellular space, skeletons are closed.

A cellular space is finite if it contains a finite number of cells. A cellular
space is countable if it contains a countable number of cells. A cellular space
is locally finite if each of its points has a neighborhood intersecting finitely
many cells.

Let X be a cellular space. A subspace A ⊂ X is a cellular subspace of
X if A is a union of open cells and together with each cell e contains the
closed cell ē. This definition admits various equivalent reformulations. For
instance, A ⊂ X is a cellular subspace of X iff A is both a union of closed cells
and a union of open cells. Another option: together with each point x ∈ A
the subspace A contains the closed cell e ∈ x. Certainly, A is equipped
with a partition into the open cells of X contained in A. Obviously, the
k-skeleton of a cellular space X is a cellular subspace of X.

40.2. Prove that the union and intersection of any collection of cellular subspaces
are cellular subspaces.

40.A. Prove that a cellular subspace of a cellular space is a cellular space.
(Probably, your proof will involve assertion 40.Gx.)

40.A.1. Let X be a topological space, and let X1 ⊂ X2 ⊂ . . . be an increasing
sequence of subsets constituting a fundamental cover of X . Let A ⊂ X be a
subspace, put Ai = A ∩Xi. Let one of the following conditions be fulfilled:
1) Xi are open in X ;
2) Ai are open in X ;
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3) Ai are closed in X .
Then {Ai} is a fundamental cover of A.

40◦2. First Examples

40.B. A cellular space consisting of two cells, one of which is a 0-cell and
the other one is an n-cell, is homeomorphic to Sn.

40.C. Represent Dn with n > 0 as a cellular space made of three cells.

40.D. A cellular space consisting of a single 0-cell and q one-cells is a bou-
quet of q circles.

40.E. Represent torus S1×S1 as a cellular space with one 0-cell, two 1-cells,
and one 2-cell.

40.F. How to obtain a presentation of torus S1×S1 as a cellular space with
4 cells from a presentation of S1 as a cellular space with 2 cells?

40.3. Prove that if X and Y are finite cellular spaces, then X × Y has a natural
structure of a finite cellular space.

40.4*. Does the statement of 40.3 remain true if we skip the finiteness condition
in it? If yes, prove this; if no, find an example where the product is not a cellular
space.

40.G. Represent sphere Sn as a cellular space such that spheres S0 ⊂ S1 ⊂
S2 ⊂ · · · ⊂ Sn−1 are its skeletons.

40.H. Represent RPn as a cellular space with n + 1 cells. Describe the
attaching maps of the cells.

40.5. Represent CPn as a cellular space with n+ 1 cells. Describe the attaching
maps of its cells.

40.6. Represent the following topological spaces as cellular ones

(a) handle; (b) Möbius strip; (c) S1 × I ,
(d) sphere with p

handles;
(e) sphere with p

crosscaps.

40.7. What is the minimal number of cells in a cellular space homeomorphic to

(a) Möbius strip; (b) sphere with p
handles;

(c) sphere with p
crosscaps?
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40.8. Find a cellular space where the closure of a cell is not equal to a union of
other cells. What is the minimal number of cells in a space containing a cell of
this sort?

40.9. Consider the disjoint sum of a countable collection of copies of closed interval
I and identify the copies of 0 in all of them. Represent the result (which is the
bouquet of the countable family of intervals) as a countable cellular space. Prove
that this space is not first countable.

40.I. Represent R
1 as a cellular space.

40.10. Prove that for any two cellular spaces homeomorphic to R
1 there exists

a homeomorphism between them homeomorphically mapping each cell of one of
them onto a cell of the other one.

40.J. Represent R
n as a cellular space.

Denote by R∞ the union of the sequence of Euclidean spaces R0 ⊂
R

1 ⊂ · · · ⊂ R
n ⊂ canonically included to each other: R

n = {x ∈ R
n+1 :

xn+1 = 0}. Equip R
∞ with the topological structure for which the spaces

R
n constitute a fundamental cover.

40.K. Represent R
∞ as a cellular space.

40.11. Show that R
∞ is not metrizable.

40◦3. Further Two-Dimensional Examples

Let us consider a class of 2-dimensional cellular spaces that admit a
simple combinatorial description. Each space in this class is a quotient
space of a finite family of convex polygons by identification of sides via
affine homeomorphisms. The identification of vertices is determined by the
identification of the sides. The quotient space has a natural decomposition
into 0-cells, which are the images of vertices, 1-cells, which are the images
of sides, and faces, the images of the interior parts of the polygons.

To describe such a space, we need, first, to show, what sides are identi-
fied. Usually this is indicated by writing the same letters at the sides to be
identified. There are only two affine homeomorphisms between two closed
intervals. To specify one of them, it suffices to show the orientations of the
intervals that are identified by the homeomorphism. Usually this is done
by drawing arrows on the sides. Here is a description of this sort for the
standard presentation of torus S1 × S1 as the quotient space of square:

b

a

b

a
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We can replace a picture by a combinatorial description. To do this,
put letters on all sides of polygon, go around the polygons counterclockwise
and write down the letters that stay at the sides of polygon along the con-
tour. The letters corresponding to the sides whose orientation is opposite
to the counterclockwise direction are put with exponent −1. This yields a
collection of words, which contains sufficient information about the family
of polygons and the partition. For instance, the presentation of the torus
shown above is encoded by the word ab−1a−1b.

40.12. Prove that:

(1) the word a−1a describes a cellular space homeomorphic to S2,
(2) the word aa describes a cellular space homeomorphic to RP 2,
(3) the word aba−1b−1c describes a handle,
(4) the word abcb−1 describes cylinder S1 × I ,
(5) each of the words aab and abac describe Möbius strip,
(6) the word abab describes a cellular space homeomorphic to RP 2,
(7) each of the words aabb and ab−1ab describe Klein bottle,
(8) the word

a1b1a
−1

1 b−1

1 a2b2a
−1

2 b−1

2 . . . agbga
−1
g b−1

g .

describes sphere with g handles,
(9) the word a1a1a2a2 . . . agag describes sphere with g crosscaps.

40◦4. Embedding to Euclidean Space

40.L. Any countable 0-dimensional cellular space can be embedded into R.

40.M. Any countable locally finite 1-dimensional cellular space can be em-
bedded into R

3.

40.13. Find a 1-dimensional cellular space which you cannot embed into R
2. (We

do not ask you to prove rigorously that no embedding is possible.)

40.N. Any finite dimensional countable locally finite cellular space can be
embedded into Euclidean space of sufficiently high dimension.

40.N.1. Let X and Y be topological spaces such that X can be embedded into
R
p and Y can be embedded into R

q, and both embeddings are proper maps
(see 18◦3x; in particular, their images are closed in Rp and Rq, respectively).
Let A be a closed subset of Y . Assume that A has a neighborhood U in Y such
that there exists a homeomorphism h : ClU → A× I mapping A to A× 0. Let
ϕ : A → X be a proper continuous map. Then the initial embedding X → Rp

extends to an embedding X ∪ϕ Y → Rp+q+1.

40.N.2. Let X be a locally finite countable k-dimensional cellular space and
A be the (k − 1)-skeleton of X . Prove that if A can be embedded to Rp, then
X can be embedded into Rp+k+1.

40.O. Any countable locally finite cellular space can be embedded into R∞.



40. Cellular Spaces 285

40.P. Any finite cellular space is metrizable.

40.Q. Any finite cellular space is normal.

40.R. Any countable cellular space can be embedded into R∞.

40.S. Any cellular space is normal.

40.T. Any locally finite cellular space is metrizable.

40◦5x. Simplicial Spaces

Recall that in 23◦3x we introduced a class of topological spaces: simpli-
cial spaces. Each simplicial space is equipped with a partition into subsets,
called open simplices, which are indeed homeomorphic to open simplices of
Euclidean space.

40.Ax. Any simplicial space is cellular, and its partition into open simplices
is the corresponding partition into open cells.

40◦6x. Topological Properties of Cellular Spaces

The present section contains assertions of mixed character. For example,
we study conditions ensuring that a cellular space is compact (40.Kx) or
separable (40.Ox). We also prove that a cellular space X is connected, iff X
is path-connected (40.Sx), iff the 1-skeleton of X is path-connected (40.Vx).
On the other hand, we study the cellular topological structure as such. For
example, any cellular space is Hausdorff (40.Bx). Further, is not obvious at
all from the definition of a cellular space that a closed cell is the closure of
the corresponding open cell (or that closed cells are closed at all). In this
connection, the present section includes assertions of technical character.
(We do not formulate them as lemmas to individual theorems because often
they are lemmas for several assertions.) For example: closed cells constitute
a fundamental cover of a cellular space (40.Dx).

We notice that, say, in the textbook [FR], a cellular space is defined
as a Hausdorff topological space equipped by a cellular partition with two
properties:
(C ) each closed cell intersects only a finite number of (open) cells;
(W ) closed cells constitute a fundamental cover of the space. The results of
assertions 40.Bx, 40.Cx, and 40.Fx imply that cellular spaces in the sense of
the above definition are cellular spaces in the sense of Rokhlin–Fuchs’ text-
book (i.e., in the standard sense), the possibility of inductive construction
for which is proved in [RF]. Thus, both definitions of a cellular space are
equivalent.

An advice to the reader: first try to prove the above assertions for finite
cellular spaces.
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40.Bx. Each cellular space is a Hausdorff topological space.

40.Cx. In a cellular space, the closure of any cell e is the closed cell e.

40.Dx. Closed cells constitute a fundamental cover of a cellular space.

40.Ex. Each cover of a cellular space by cellular subspaces is fundamental.

40.Fx. In a cellular space, any closed cell intersects only a finite number of
open cells.

40.Gx. If A is cellular subspace of a cellular space X, then A is closed in
X.

40.Hx. The space obtained as a result of pasting two cellular subspaces
together along their common subspace, is cellular.

40.Ix. If a subset A of a cellular space X intersects each open cell along
a finite set, then A is closed. Furthermore, the induced topology on A is
discrete.

40.Jx. Prove that any compact subset of a cellular space intersects a finite
number of cells.

40.Kx Corollary. A cellular space is compact iff it is finite.

40.Lx. Any cell of a cellular space is contained in a finite cellular subspace
of this space.

40.Mx. Any compact subset of a cellular space is contained in a finite
cellular subspace.

40.Nx. A subset of a cellular space is compact iff it is closed and intersects
only a finite number of open cells.

40.Ox. A cellular space is separable iff it is countable.

40.Px. Any path-connected component of a cellular space is a cellular sub-
space.

40.Qx. A cellular space is locally path-connected.

40.Rx. Any path-connected component of a cellular space is both open and
closed. It is a connected component.

40.Sx. A cellular space is connected iff it is path connected.

40.Tx. A locally finite cellular space is countable iff it has countable 0-
skeleton.

40.Ux. Any connected locally finite cellular space is countable.

40.Vx. A cellular space is connected iff its 1-skeleton is connected.
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41. Cellular Constructions

41◦1. Euler Characteristic

Let X be a finite cellular space. Let ci(X) denote the number of its cells
of dimension i. The Euler characteristic of X is the alternating sum of ci(X):

χ(X) = c0(X) − c1(X) + c2(X) − · · · + (−1)ici(X) + . . .

41.A. Prove that Euler characteristic is additive in the following sense: for
any cellular space X and its finite cellular subspaces A and B we have

χ(A ∪B) = χ(A) + χ(B) − χ(A ∩B).

41.B. Prove that Euler characteristic is multiplicative in the following sense:
for any finite cellular spaces X and Y the Euler characteristic of their prod-
uct X × Y is χ(X)χ(Y ).

41◦2. Collapse and Generalized Collapse

Let X be a cellular space, e and f its open cells of dimensions n and
n− 1, respectively. Suppose:

• the attaching map ϕe : Sn−1 → Xn−1 of e determines a homeomor-
phism of the open upper hemisphere Sn−1

+ onto f ,

• f does not meet images of attaching maps of cells, distinct from e,

• the cell e is disjoint from the image of attaching map of any cell.

f

e

41.C. X r (e ∪ f) is a cellular subspace of X.

41.D. X r (e ∪ f) is a deformation retract of X.

We say that X r (e ∪ f) is obtained from X by an elementary collapse,
and we write X ց X r (e ∪ f).

If a cellular subspace A of a cellular space X is obtained from X by a
sequence of elementary collapses, then we say that X is collapsed onto A
and also write X ց A.

41.E. Collapsing does not change the Euler characteristic: if X is a finite
cellular space and X ց A, then χ(A) = χ(X).
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As above, let X be a cellular space, let e and f be its open cells of dimen-
sions n and n−1, respectively, and let the attaching map ϕe : Sn → Xn−1 of
e determine a homeomorphism Sn−1

+ on f . Unlike the preceding situation,
here we assume neither that f is disjoint from the images of attaching maps
of cells different from e, nor that e is disjoint from the images of attaching
maps of whatever cells. Let χe : Dn → X be a characteristic map of e.
Furthermore, let ψ : Dn → Sn−1

rϕ−1
e (f) = Sn−1

rSn−1
+ be a deformation

retraction.

41.F. Under these conditions, the quotient space X/[χe(x) ∼ ϕe(ψ(x))] of

X is a cellular space where the cells are the images under the natural pro-
jections of all cells of X except e and f .

Cellular space X/[χe(x) ∼ ϕe(ψ(x))] is said to be obtained by cancella-

tion of cells e and f .

41.G. The projection X → X/[χe(x) ∼ ϕe(ψ(x))] is a homotopy equiva-

lence.

41.G.1. Find a cellular subspace Y of a cellular space X such that the pro-
jection Y → Y/[χe(x) ∼ ϕe(ψ(x))] would be a homotopy equivalence by Theo-

rem 41.D.

41.G.2. Extend the map Y → Y r (e ∪ f) to a map X → X ′, which is a
homotopy equivalence by 41.6x.

41◦3x. Homotopy Equivalences of Cellular Spaces

41.1x. Let X = A∪ϕD
n be the space obtained by attaching an n-disk to a topo-

logical space A via a continuous map ϕ : Sn−1 → A. Prove that the complement
X r x of any point x ∈ X r A admits a (strong) deformation retraction to A.

41.2x. Let X be an n-dimensional cellular space, and let K be a set intersecting
each of the open n-cells of X at a single point. Prove that the (n − 1)-skeleton
Xn−1 of X is a deformation retract of X r K.

41.3x. Prove that the complement RPnrpoint is homotopy equivalent to RPn−1;
the complement CPn r point is homotopy equivalent to CPn−1.

41.4x. Prove that the punctured solid torus D2 × S1
r point, where point is an

arbitrary interior point, is homotopy equivalent to a torus with a disk attached
along the meridian S1 × 1.

41.5x. Let A be cellular space of dimension n, let ϕ : Sn → A and ψ : Sn → A
be continuous maps. Prove that if ϕ and ψ are homotopic, then the spaces Xϕ =
A ∪ϕ D

n+1 and Xψ = A ∪ψ D
n+1 are homotopy equivalent.

Below we need a more general fact.

41.6x. Let f : X → Y be a homotopy equivalence, ϕ : Sn−1 → X and ϕ′ :
Sn−1 → Y continuous maps. Prove that if f ◦ϕ ∼ ϕ′, then X ∪ϕD

n ≃ Y ∪ϕ′ Dn.
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41.7x. Let X be a space obtained from a circle by attaching of two copies of disk
by maps S1 → S1 : z 7→ z2 and S1 → S1 : z 7→ z3, respectively. Find a cellular
space homotopy equivalent to X with smallest possible number of cells.

41.8x. Riddle. Generalize the result of Problem 41.7x.

41.9x. Prove that if we attach a disk to the torus S1 × S1 along the parallel
S1 ×1, then the space K obtained is homotopy equivalent to the bouquet S2 ∨S1.

41.10x. Prove that the torus S1 ×S1 with two disks attached along the meridian
{1} × S1 and parallel S1 × 1, respectively, is homotopy equivalent to S2.

41.11x. Consider three circles in R
3: S1 = {x2 +y2 = 1, z = 0}, S2 = {x2 +y2 =

1, z = 1}, and S3 = {z2 + (y − 1)2 = 1, x = 0}. Since R
3 ∼= S3

r point, we can
assume that S1, S2, and S3 lie in S3. Prove that the space X = S3

r (S1 ∪S2) is
not homotopy equivalent to the space Y = S3

r (S1 ∪ S3).

41.Ax. Let X be a cellular space, A ⊂ X a cellular subspace. Then the
union (X × 0) ∪ (A× I) is a retract of the cylinder X × I.

41.Bx. Let X be a cellular space, A ⊂ X a cellular subspace. Assume
that we are given a map F : X → Y and a homotopy h : A × I → Y
of the restriction f = F |A. Then the homotopy h extends to a homotopy
H : X × I → Y of F .

41.Cx. Let X be a cellular space, A ⊂ X a contractible cellular subspace.
Then the projection pr : X → X/A is a homotopy equivalence.

Problem 41.Cx implies the following assertions.

41.Dx. If a cellular space X contains a closed 1-cell e homeomorphic to
I, then X is homotopy equivalent to the cellular space X/e obtained by
contraction of e.

41.Ex. Any connected cellular space is homotopy equivalent to a cellular
space with one-point 0-skeleton.

41.Fx. A simply connected finite 2-dimensional cellular space is homotopy
equivalent to a cellular space with one-point 1-skeleton.

41.12x. Solve Problem 41.9x with the help of Theorem 41.Cx.

41.13x. Prove that the quotient space

CP 2/[(z0 : z1 : z2) ∼ (z0 : z1 : z2)]

of the complex projective plane CP 2 is homotopy equivalent to S4.

Information. We have CP 2/[z ∼ τ (z)] ∼= S4.

41.Gx. Let X be a cellular space, and let A be a cellular subspace of X
such that the inclusion in : A→ X is a homotopy equivalence. Then A is a
deformation retract of X.
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42. One-Dimensional Cellular Spaces

42◦1. Homotopy Classification

42.A. Any connected finite 1-dimensional cellular space is homotopy equiv-
alent to a bouquet of circles.

42.A.1 Lemma. Let X be a 1-dimensional cellular space, e a 1-cell of X
attached by an injective map S0 → X0 (i.e., e has two distinct endpoints).
Prove that the projection X → X/e is a homotopy equivalence. Describe the
homotopy inverse map explicitly.

42.B. A finite connected cellular space X of dimension one is homotopy
equivalent to the bouquet of 1−χ(X) circles, and its fundamental group is
a free group of rank 1 − χ(X).

42.C Corollary. The Euler characteristic of a finite connected one-dimen-
sional cellular space is invariant under homotopy equivalence. It is not
greater than one. It equals one iff the space is homotopy equivalent to point.

42.D Corollary. The Euler characteristic of a finite one-dimensional cel-
lular space is not greater than the number of its connected components. It
is equal to this number iff each of its connected components is homotopy
equivalent to a point.

42.E Homotopy Classification of Finite 1-Dimensional Cellular

Spaces. Finite connected one-dimensional cellular spaces are homotopy
equivalent, iff their fundamental groups are isomorphic, iff their Euler char-
acteristics are equal.

42.1. The fundamental group of a 2-sphere punctured at n points is a free group
of rank n− 1.

42.2. Prove that the Euler characteristic of a cellular space homeomorphic to S2

is equal to 2.

42.3 The Euler Theorem. For any convex polyhedron in R
3, the sum of the

number of its vertices and the number of its faces equals the number of its edges
plus two.

42.4. Prove the Euler Theorem without using fundamental groups.

42.5. Prove that the Euler characteristic of any cellular space homeomorphi to
the torus is equal to 0.

Information. The Euler characteristic is homotopy invariant, but the
usual proof of this fact involves the machinery of singular homology theory,
which lies far beyond the scope of our book.
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42◦2. Spanning Trees

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A cellular subspace
A of a cellular space X is a spanning tree of X if A is a tree and is not
contained in any other cellular subspace B ⊂ X which is a tree.

42.F. Any finite connected one-dimensional cellular space contains a span-
ning tree.

42.G. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff A is a tree and contains all vertices of X.

Theorem 42.G explains the term spanning tree.

42.H. Prove that a cellular subspace A of a cellular space X is a spanning
tree iff it is a tree and the quotient space X/A is a bouquet of circles.

42.I. Let X be a one-dimensional cellular space and A its cellular subspace.
Prove that if A is a tree, then the projection X → X/A is a homotopy
equivalence.

Problems 42.F, 42.I, and 42.H provide one more proof of Theorem 42.A.

42◦3x. Dividing Cells

42.Ax. In a one-dimensional connected cellular space each connected com-
ponent of the complement of an edge meets the closure of the edge. The
complement has at most two connected component.

A complete local characterization of a vertex in a one-dimensional cellu-
lar space is its valency . This is the total number of points in the preimages
of the vertex under attaching maps of all one-cells of the space. It is more
traditional to define the degree of a vertex v as the number of edges incident
to v, counting with multiplicity 2 the edges that are incident only to v.

42.Bx. 1) Each connected component of the complement of a vertex in a
connected one-dimensional cellular space contains an edge with boundary
containing the vertex. 2) The complement of a vertex of valency m has at
most m connected components.

42◦4x. Trees and Forests

A one-dimensional cellular space is a tree if it is connected, while the
complement of each of its (open) 1-cells is disconnected. A one-dimensional
cellular space is a forest if each of its connected components is a tree.

42.Cx. Any cellular subspace of a forest is a forest. In particular, any
connected cellular subspace of a tree is a tree.
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42.Dx. In a tree the complement of an edge consists of two connected
components.

42.Ex. In a tree, the complement of a vertex of valency m has consists of
m connected components.

42.Fx. A finite tree has there exists a vertex of valency one.

42.Gx. Any finite tree collapses to a point and has Euler characteristic one.

42.Hx. Prove that any point of a tree is its deformation retract.

42.Ix. Any finite one-dimensional cellular space that can be collapsed to a
point is a tree.

42.Jx. In any finite one-dimensional cellular space the sum of valencies of
all vertices is equal to the number of edges multiplied by two.

42.Kx. A finite connected one-dimensional cellular space with Euler char-
acteristic one has a vertex of valency one.

42.Lx. A finite connected one-dimensional cellular space with Euler char-
acteristic one collapses to a point.

42◦5x. Simple Paths

Let X be a one-dimensional cellular space. A simple path of length n in
X is a finite sequence (v1, e1, v2, e2, . . . , en, vn+1), formed by vertices vi and
edges ei of X such that each term appears in it only once and the boundary
of every edge ei consists of the preceding and subsequent vertices vi and vi+1.
The vertex v1 is the initial vertex, and vn+1 is the final one. The simple path
connects these vertices. They are connected by a path I → X, which is a
topological embedding with image contained in the union of all cells involved
in the simple path. The union of these cells is a cellular subspace of X. It
is called a simple broken line.

42.Mx. In a connected one-dimensional cellular space, any two vertices are
connected by a simple path.

42.Nx Corollary. In a connected one-dimensional cellular space X, any
two points are connected by a path I → X which is a topological embedding.

42.1x. Can a path-connected space contain two distinct points that cannot be
connected by a path which is a topological embedding?

42.2x. Can you find a Hausdorff space with this property?

42.Ox. A connected one-dimensional cellular space X is a tree iff there
exists no topological embedding S1 → X.
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42.Px. In a one-dimensional cellular space X there exists a loop S1 → X
that is not null-homotopic iff there exists a topological embedding S1 → X.

42.Qx. A one-dimensional cellular space is a tree iff any two distinct ver-
tices are connected in it by a unique simple path.

42.3x. Prove that any finite tree has fixed point property.

Cf. 37.12, 37.13, and 37.14.

42.4x. Is this true for any tree; for any finite connected one-dimensional cellular
space?
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43. Fundamental Group of a Cellular

Space

43◦1. One-Dimensional Cellular Spaces

43.A. The fundamental group of a connected finite one-dimensional cellular
space X is a free group of rank 1 − χ(X).

43.B. Let X be a finite connected one-dimensional cellular space, T a span-
ning tree of X, and x0 ∈ T . For each 1-cell e ⊂ XrT , choose a loop se that
starts at x0, goes inside T to e, then goes once along e, and then returns to
x0 in T . Prove that π1(X,x0) is freely generated by the homotopy classes
of se.

43◦2. Generators

43.C. Let A be a topological space, x0 ∈ A. Let ϕ : Sk−1 → A be a
continuous map, X = A∪ϕD

k. If k > 1, then the inclusion homomorphism
π1(A,x0) → π1(X,x0) is surjective. Cf. 43.G.4 and 43.G.5.

43.D. Let X be a cellular space, x0 its 0-cell and X1 the 1-skeleton of X.
Then the inclusion homomorphism

π1(X1, x0) → π1(X,x0)

is surjective.

43.E. Let X be a finite cellular space, T a spanning tree of X1, and x0 ∈ T .
For each cell e ⊂ X1 r T , choose a loop se that starts at x0, goes inside
T to e, then goes once along e, and finally returns to x0 in T . Prove that
π1(X,x0) is generated by the homotopy classes of se.

43.1. Deduce Theorem 31.G from Theorem 43.D.

43.2. Find π1(CP
n).

43◦3. Relations

Let X be a cellular space, x0 its 0-cell. Denote by Xn the n-skeleton
of X. Recall that X2 is obtained from X1 by attaching copies of the disk
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D2 via continuous maps ϕα : S1 → X1. The attaching maps are circular
loops in X1. For each α, choose a path sα : I → X1 connecting ϕα(1) with
x0. Denote by N the normal subgroup of π1(X,x0) generated (as a normal
subgroup4) by the elements

Tsα [ϕα] ∈ π1(X1, x0).

43.F. N does not depend on the choice of the paths sα.

43.G. The normal subgroup N is the kernel of the inclusion homomorphism
in∗ : π1(X1, x0) → π1(X,x0).

Theorem 43.G can be proved in various ways. For example, we can de-
rive it from the Seifert–van Kampen Theorem (see 43.4x). Here we prove
Theorem 43.G by constructing a “rightful” covering space. The inclusion
N ⊂ Ker in∗ is rather obvious (see 43.G.1). The proof of the converse inclu-
sion involves the existence of a covering p : Y → X, whose submap over the
1-skeleton of X is a covering p1 : Y1 → X1 with group N , and the fact that
Ker in∗ is contained in the group of each covering over X1 that extends to
a covering over the entire X. The scheme of argument suggested in Lem-
mas 1–7 can also be modified. The thing is that the inclusion X2 → X
induces an isomorphism of fundamental groups. It is not difficult to prove
this, but the techniques involved, though quite general and natural, never-
theless lie beyond the scope of our book. Here we just want to emphasize
that this result replaces Lemmas 4 and 5.

43.G.1 Lemma 1. N ⊂ Ker i∗, cf. 31.J (3).

43.G.2 Lemma 2. Let p1 : Y1 → X1 be a covering with covering group N .
Then for any α and a point y ∈ p−1

1 (ϕα(1)) there exists a lifting ϕ̃α : S1 → Y1

of ϕα with ϕ̃α(1) = y.

43.G.3 Lemma 3. Let Y2 be a cellular space obtained by attaching copies
of disk to Y1 by all liftings of attaching maps ϕα. Then there exists a map
p2 : Y2 → X2 extending p1 which is a covering.

43.G.4 Lemma 4. Attaching maps of n-cells with n ≥ 3 are lift to any covering
space. Cf. 39.Xx and 39.Yx.

43.G.5 Lemma 5. Covering p2 : Y2 → X2 extends to a covering of the whole
X .

43.G.6 Lemma 6. Any loop s : I → X1 realizing an element of Ker i∗ (i.e.,
null-homotopic in X) is covered by a loop of Y . The covering loop is contained
in Y1.

43.G.7 Lemma 7. N = Ker in∗.

4Recall that a subgroup N is normal if N coincides with all conjugate subgroups of N . The
normal subgroup N generated by a set A is the minimal normal subgroup containing A. As a
subgroup, N is generated by elements of A and elements conjugate to them. This means that
each element of N is a product of elements conjugate to elements of A.
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43.H. The inclusion in2 : X2 → X induces an isomorphism between the
fundamental groups of a cellular space and its 2-skeleton.

43.3. Check that the covering over the cellular space X constructed in the proof
of Theorem 43.G is universal.

43◦4. Writing Down Generators and Relations

Theorems 43.E and 43.G imply the following recipe for writing down a
presentation for the fundamental group of a finite dimensional cellular space
by generators and relations:

Let X be a finite cellular space, x0 a 0-cell of X. Let T a spanning
tree of the 1-skeleton of X. For each 1-cell e 6⊂ T of X, choose a loop se

that starts at x0, goes inside T to e, goes once along e, and then returns
to x0 in T . Let g1, . . . , gm be the homotopy classes of these loops. Let
ϕ1, . . . , ϕn : S1 → X1 be the attaching maps of 2-cells of X. For each ϕi

choose a path si connecting ϕi(1) with x0 in the 1-skeleton of X. Express
the homotopy class of the loop s−1

i ϕisi as a product of powers of generators
gj. Let r1, . . . , rn are the words in letters g1, . . . , gm obtained in this way.
The fundamental group of X is generated by g1, . . . , gm, which satisfy the
defining relations r1 = 1, . . . , rn = 1.

43.I. Check that this rule gives correct answers in the cases of RPn and S1×
S1 for the cellular presentations of these spaces provided in Problems 40.H
and 40.E.

In assertion 41.Fx proved above we assumed that the cellular space is
2-dimensional. The reason for this was that at that moment we did not
know that the inclusion X2 → X induces an isomorphism of fundamental
groups.

43.J. Each finite simply connected cellular space is homotopy equivalent to
a cellular space with one-point 1-skeleton.

43◦5. Fundamental Groups of Basic Surfaces

43.K. The fundamental group of a sphere with g handles admits presenta-
tion

〈a1, b1, a2, b2, . . . ag, bg | a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.

43.L. The fundamental group of a sphere with g crosscaps admits the fol-
lowing presentation

〈a1, a2, . . . ag | a2
1a

2
2 . . . a

2
g = 1〉.

43.M. Fundamental groups of spheres with different numbers of handles are
not isomorphic.
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When we want to prove that two finitely presented groups are not iso-
morphic, one of the first natural moves is to abelianize the groups. (Recall
that to abelianize a group G means to quotient it out by the commutator
subgroup. The commutator subgroup [G,G] is the normal subgroup gener-
ated by the commutators a−1b−1ab for all a, b ∈ G. Abelianization means
adding relations that ab = ba for any a, b ∈ G.)

Abelian finitely generated groups are well known. Any finitely generated
Abelian group is isomorphic to a product of a finite number of cyclic groups.
If the abelianized groups are not isomorphic, then the original groups are
not isomorphic as well.

43.M.1. The abelianized fundamental group of a sphere with g handles is a free
Abelian group of rank 2g (i.e., is isomorphic to Z2g).

43.N. Fundamental groups of spheres with different numbers of crosscaps
are not isomorphic.

43.N.1. The abelianized fundamental group of a sphere with g crosscaps is
isomorphic to Zg−1 × Z2.

43.O. Spheres with different numbers of handles are not homotopy equiva-
lent.

43.P. Spheres with different numbers of crosscaps are not homotopy equiv-
alent.

43.Q. A sphere with handles is not homotopy equivalent to a sphere with
crosscaps.

If X is a path-connected space, then the abelianized fundamental group
of X is the 1-dimensional (or first) homology group of X and denoted by
H1(X). If X is not path-connected, then H1(X) is the direct sum of the first
homology groups of all path-connected components of X. Thus 43.M.1 can
be rephrased as follows: if Fg is a sphere with g handles, then H1(Fg) = Z2g.

43◦6x. Seifert–van Kampen Theorem

To calculate fundamental group, one often uses the Seifert–van Kampen
Theorem, instead of the cellular techniques presented above.

43.Ax Seifert–van Kampen Theorem. Let X be a path-connected topo-
logical space, A and B be its open path-connected subspaces covering X, and
let C = A ∩ B be also path-connected. Then π1(X) can be presented as
amalgamated product of π1(A) and π1(B) with identified subgroup π1(C).
In other words, if x0 ∈ C,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,
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π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

π1(C, x0) is generated by its elements γ1, . . . , γt, and inA : C → A and
inB : C → B are inclusions, then π1(X,x0) can be presented as

〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

inA∗(γ1) = inB∗(γ1), . . . , inA∗(γt) = inB∗(γt)〉.

Now we consider the situation where the space X and its subsets A and
B are cellular.

43.Bx. Assume that X is a connected finite cellular space, and A and B
are two cellular subspaces of X covering X. Denote A ∩ B by C. How are
the fundamental groups of X, A, B, and C related to each other?

43.Cx Seifert–van Kampen Theorem. Let X be a connected finite cel-
lular space, A and B – connected cellular subspaces covering X, C = A∩B.
Assume that C is also connected. Let x0 ∈ C be a 0-cell,

π1(A,x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

π1(B,x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and let the group π1(C, x0) be generated by the elements γ1, . . . , γt. Denote
by ξi(α1, . . . , αp) and ηi(β1, . . . , βq) the images of the elements γi (more pre-
cisely, their expression via the generators) under the inclusion homomor-
phisms

π1(C, x0) → π1(A,x0) and, respectively, π1(C, x0) → π1(B,x0).

Then

π1(X,x0) = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ1 = η1, . . . , ξt = ηt〉.

43.1x. Let X, A, B, and C be as above. Assume that A and B are simply
connected and C consists of two connected components. Prove that π1(X) is
isomorphic to Z.

43.2x. Is Theorem 43.Cx a special case of Theorem 43.Ax?

43.3x. May the assumption of openness of A and B in 43.Ax be omitted?

43.4x. Deduce Theorem 43.G from the Seifert–van Kampen Theorem 43.Ax.

43.5x. Compute the fundamental group of the lens space, which is obtained by
pasting together two solid tori via the homeomorphism S1 × S1 → S1 × S1 :
(u, v) 7→ (ukvl, umvn), where kn− lm = 1.
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43.6x. Determine the homotopy and the topological type of the lens space for
m = 0, 1.

43.7x. Find a presentation for the fundamental group of the complement in R
3 of

a torus knot K of type (p, q), where p and q are relatively prime positive integers.
This knot lies on the revolution torus T , which is described by parametric equations

8

><

>:

x = (2 + cos 2πu) cos 2πv

y = (2 + cos 2πu) sin 2πv

z = sin 2πu,

and K is described on T by equation pu = qv.

43.8x. Let (X,x0) and (Y, y0) be two simply connected topological spaces with
marked points, and let Z = X ∨ Y be their bouquet.

(1) Prove that if X and Y are cellular spaces, then Z is simply connected.
(2) Prove that if x0 and y0 have neighborhoods Ux0

⊂ X and Vy0 ⊂ Y that
admit strong deformation retractions to x0 and y0, respectively, then Z
is simply connected.

(3) Construct two simply connected topological spaces X and Y with a
non-simply connected bouquet.

43◦7x. Group-Theoretic Digression:

Amalgamated Product of Groups

At first glance, description of the fundamental group of X given above
in the statement of Seifert - van Kampen Theorem is far from being invari-
ant: it depends on the choice of generators and relations of other groups
involved. However, this is actually a detailed description of a group - theo-
retic construction in terms of generators and relations. By solving the next
problem, you will get a more complete picture of the subject.

43.Dx. Let A and B be groups,

A = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

B = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and C be a group generated by γ1, . . . γt. Let ξ : C → A and η : C → B be
arbitrary homomorphisms. Then

X = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ(γ1) = η(γ1), . . . , ξ(γt) = η(γt)〉.

and homomorphisms φ : A → X : αi 7→ αi, i = 1, . . . , p and ψ : B → X :
βj 7→ βj , j = 1, . . . , q take part in commutative diagram
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A
ξ

  A
AA

AA

C

φ >>~~~~~

ψ   @
@@

@@
X

B
r

>>}}}}}

and for each group X ′ and homomorphisms ϕ′ : A → X ′ and ψ′ : B →
X ′ involved in commutative diagram

A
ξ′

  B
BB

BB

C

φ
??~~~~~

ψ ��@
@@

@@
X ′

B
r′

>>|||||

there exists a unique homomorphism ζ : X → X ′ such that diagram

A

ξ   @
@@

@@
@@

ξ′

((PPPPPPPPPPPPP

C

φ
??~~~~~~~

ψ ��@
@@

@@
@@

X
ζ

//___ X ′

B

r
>>~~~~~~~ r′

77nnnnnnnnnnnnn

is commutative. The latter determines the group X up to isomorphism.

The group X described in 43.Dx is a free product of A and B with amal-

gamated subgroup C, it is denoted by A ∗C B. Notice that the name is not
quite precise, as it ignores the role of the homomorphisms φ and ψ and the
possibility that they may be not injective.

If the group C is trivial, then A ∗C B is denoted by A ∗B and called the
free product of A and B.

43.9x. Is a free group of rank n a free product of n copies of Z?

43.10x. Represent the fundamental group of Klein bottle as Z ∗Z Z. Does this
decomposition correspond to a decomposition of Klein bottle?

43.11x. Riddle. Define a free product as a set of equivalence classes of words in
which the letters are elements of the factors.

43.12x. Investigate algebraic properties of free multiplication of groups: is it
associative, commutative and, if it is, then in what sense? Do homomorphisms of
the factors determine a homomorphism of the product?
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43.13x*. Find decomposition of modular group Mod = SL(2,Z)/
„

−1 0

0 −1

«

as

free product Z2 ∗ Z3.

43◦8x. Addendum to Seifert–van Kampen Theorem

Seifert-van Kampen Theorem appeared and used mainly as a tool for
calculation of fundamental groups. However, it helps not in any situation.
For example, it does not work under assumptions of the following theorem.

43.Ex. Let X be a topological space, A and B open sets covering X and
C = A ∩ B. Assume that A and B are simply connected and C consists of
two connected components. Then π1(X) is isomorphic to Z.

Theorem 43.Ex also holds true if we assume that C consists of two path-
connected components. The difference seems to be immaterial, but the proof
becomes incomparably more technical.

Seifert and van Kampen needed more universal tool for calculation of
fundamental group, and theorems published by them were much more gen-
eral than 43.Ax. Theorem 43.Ax is all that could penetrate from there
original papers to textbooks. Theorem 43.1x is another special case of their
results. The most general formulation is cumbersome, and we restrict our-
selves to one more special case, which was distinguished by van Kampen.
Together with 43.Ax, it allows one to calculate fundamental groups in all
situations that are available with the most general formulations by van Kam-
pen, although not that fast. We formulate the original version of this the-
orem, but recommend, first, to restrict to a cellular version, in which the
results presented in the beginning of this section allow one to obtain a com-
plete answer about calculation of fundamental groups, and only after that
to consider the general situation.

First, let us describe the situation common for both formulations. Let
A be a topological space, B its closed subset and U a neighborhood of B in
A such that U r B is a union of two disjoint sets, M1 and M2, open in A.
Put Ni = B ∪Mi. Let C be a topological space that can be represented as
(Ar U) ∪ (N1 ⊔N2) and in which the sets (Ar U) ∪N1 and (Ar U) ∪N2

with the topology induced from A form a fundamental cover. There are two
copies of B in C, which come from N1 and N2. The space A can be identified
with the quotient space of C obtained by identification of the two copies of
B via the natural homeomorphism. However, our description begins with
A, since this is the space whose fundamental group we want to calculate,
while the space B is auxiliary constructed out of A (see Figure 1).

In the cellular version of the statement formulated below, space A is
supposed to be cellular, and B its cellular subspace. Then C is also equipped
with a natural cellular structure such that the natural map C → A is cellular.
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B1 B2

M1 M2

A

B

M1 M2

Figure 1

43.Fx. Let in the situation described above C is path-connected and x0 ∈
C r (B1 ∪ B2). Let π1(C, x0) is presented by generators α1, . . . , αn and
relations ψ1 = 1, . . . , ψm = 1. Assume that base points yi ∈ Bi are mapped
to the same point y under the map C → A, and σi is a homotopy class of a
path connecting x0 with yi in C. Let β1, . . . , βp be generators of π1(B, y),
and β1i, . . . , βpi the corresponding elements of π1(Bi, yi). Denote by ϕli a

word representing σiβliσ
−1
i in terms of α1, . . . , αn. Then π1(A,x0) has the

following presentation:

〈α1, . . . , αn, γ | ψ1 = · · · = ψm = 1, γϕ11 = ϕ12γ, . . . , γϕp1 = ϕp2γ〉.

43.14x. Using 43.Fx, calculate fundamental groups of torus and Klein bottle.

43.15x. Using 43.Fx, calculate the fundamental groups of basic surfaces.

43.16x. Deduce Theorem 43.1x from 43.Ax and 43.Fx.

43.17x. Riddle. Develop an algebraic theory of group-theoretic construction
contained in Theorem 43.Fx.
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Proofs and Comments

40.A Let A be a cellular subspace of a cellular space X. For n = 0, 1, . . .,
we see that A ∩ Xn+1 is obtained from A ∩ Xn by attaching the (n + 1)-
cells contained in A. Therefore, if A is contained in a certain skeleton,
then A certainly is a cellular space and the intersections An = A ∩ Xn,
n = 0, 1, . . ., are the skeletons of A. In the general case, we must verify that
the cover of A by the sets An is fundamental, which follows from assertion
3 of Lemma 40.A.1 below, Problem 40.1, and assertion 40.Gx.

40.A.1 We prove only assertion 3 because it is needed for the proof
of the theorem. Assume that a subset F ⊂ A intersects each of the sets Ai

along a set closed in Ai. Since F ∩Xi = F ∩Ai is closed in Ai, it follows that
this set is closed in Xi. Therefore, F is closed in X since the cover {Xi}
is fundamental. Consequently, F is also closed in A, which proves that the
cover {Ai} is fundamental.

40.B This is true because attaching Dn to a point along the boundary
sphere we obtain the quotient space Dn/Sn−1 ∼= Sn.

40.C These (open) cells are: a point, the (n− 1)-sphere Sn−1 without
this point, the n-ball Bn bounded by Sn−1: e0 = x ∈ Sn−1 ⊂ Dn, en−1 =
Sn

r x, en = Bn.

40.D Indeed, factorizing the disjoint union of segments by the set of
all of their endpoints, we obtain a bouquet of circles.

40.E We present the product I × I as a cellular space consisting of
9 cells: four 0-cells – the vertices of the square, four 1-cells – the sides of
the square, and a 2-cell – the interior of the square. After the standard
factorization under which the square becomes a torus, from the four 0-cells
we obtain one 0-cell, and from the four 1-cells we obtain two 1-cells.

40.F Each open cell of the product is a product of open cells of the
factors, see Problem 40.3.

40.G Let Sk = Sn ∩ R
k+1, where

R
k+1 = {(x1, x2, . . . , xk+1, 0, . . . , 0)} ⊂ R

n+1.

If we present Sn as the union of the constructed spheres of smaller dimen-
sions: Sn =

⋃n
k=0 S

k, then for each k ∈ {1, . . . , n} the difference Sk
r Sk−1

consists of exactly two k-cells: open hemispheres.

40.H Consider the cellular partition of Sn described in the solution
of Problem 40.G. Then the factorization Sn → RPn identifies both cells
in each dimension into one. Each of the attaching maps is the projection
Dk → RP k mapping the boundary sphere Sk−1 onto RP k−1.
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40.I 0-cells are all integer points, and 1-cells are the open intervals
(k, k + 1), k ∈ Z.

40.J Since R
n = R × . . . × R (n factors), the cellular structure of R

n

can be determined by those of the factors (see 40.3). Thus, the 0-cells are
the points with integer coordinates. The 1-cells are open intervals with end-
points (k1, . . . , ki, . . . , kn) and (k1, . . . , ki + 1, . . . , kn), i.e., segments parallel
to the coordinate axes. The 2-cells are squares parallel to the coordinate
2-planes, etc.

40.K See the solution of Problem 40.J.

40.L This is obvious: each infinite countable 0-dimensional space is
homeomorphi to N ⊂ R.

40.M We map 0-cells to integer points Ak(k, 0, 0) on the x axis. The
embeddings of 1-cells will be piecewise linear and performed as follows. Take
the nth 1-cell of X to the pair of points with coordinates Cn(0, 2n − 1, 1)
and Dn(0, 2n, 1), n ∈ N. If the endpoints of the 1-cell are mapped to Ak

and Al, then the image of the 1-cell is the three-link polyline AkCnDnAl

(possibly, closed). We easily see that the images of distinct open cells are
disjoint (because their outer third parts lie on two skew lines). We have thus
constructed an injection f : X → R

3, which is obviously continuous. The
inverse map is continuous because it is continuous on each of the constructed
polylines, which in addition constitute a closed locally-finite cover of f(X),
which is fundamental by 9.U.

Ak
Al

Cn
Dn

40.N Use induction on skeletons and 40.N.2. The argument is simpli-
fied a great deal in the case where the cellular space is finite.

40.N.1 We assume that X ⊂ Rp ⊂ Rp+q+1, where Rp is the coordinate
space of the first p coordinate lines in R

p+q+1, and Y ⊂ R
q ⊂ R

p+q+1,
where Rq is the coordinate space of the last q coordinate lines in Rp+q+1.
Now we define a map f : X ⊔ Y → R

p+q+1. Put f(x) = x if x ∈ X,
and f(y) = (0, . . . , 0, 1, y) if y /∈ V = h−1

(
A ×

[
0, 1

2

))
. Finally, if y ∈ U ,



Proofs and Comments 305

h(y) = (a, t), and t ∈
[
0, 1

2

]
, then we put

f(y) =
(
(1 − 2t)ϕ(a), 2t, 2ty

)
.

We easily see that f is a proper map. The quotient map f̂ : X∪ϕY → R
p+q+1

is a proper injection, therefore, f̂ is an embedding by 18.Ox (cf. 18.Px).

40.N.2 By the definition of a cellular space, X is obtained by attaching
a disjoint union of closed k-disks to the (k − 1)-skeleton of X. Let Y be
a countable union of k-balls, A the union of their boundary spheres. (The
assumptions of Lemma 40.N.1 is obviously fulfilled: let the neighborhood U
be the complement of the union of concentric disks with radius 1

2 .) Thus,
Lemma 40.N.2 follows from 40.N.1.

40.O This follows from 40.N.2 by the definition of the cellular topology.

40.P This follows from 40.O and 40.N.

40.Q This follows from 40.P.

40.R Try to prove this assertion at least for 1-dimensional spaces.

40.S This can be proved by somewhat complicating the argument used
in the proof of 40.Bx.

40.T See, [FR, p. 93].

40.Ax We easily see that the closure of any open simplex is canonically
homeomorphi to the closed n-simplex. and, since any simplicial space Σ is
Hausdorff, Σ is homeomorphi to the quotient space obtained from a disjoint
union of several closed simplices by pasting them together along entire faces
via affine homeomorphisms. Since each simplex ∆ is a cellular space and
the faces of ∆ are cellular subspaces of ∆, it remains to use Problem 40.Hx.

40.Bx Let X be a cellular space, x, y ∈ X. Let n be the smallest
number such that x, y ∈ Xn. We construct their disjoint neighborhoods Un

and Vn in Xn. Let, for example, x ∈ e, where e is an open n-cell. Then let
Un be a small ball centered at x, and let Vn be the complement (in Xn) of
the closure of Un. Now let a be the center of an (n+1)-cell, ϕ : Sn → Xn the
attaching map. Consider the open cones over ϕ−1(Un) and ϕ−1(Vn) with
vertex a. Let Un+1 and Vn+1 be the unions of the images of such cones over
all (n+ 1)-cells of X. Clearly, they are disjoint neighborhoods of x and y in
Xn+1. The sets U = ∪∞

k=nUk and V = ∪∞
k=nVk are disjoint neighborhoods

of x and y in X.

40.Cx Let X be a cellular space, e ⊂ X a cell of X, ψ : Dn → X the
characteristic map of e, B = Bn ⊂ Dn the open unit ball. Since the map
ψ is continuous, we have e = ψ(Dn) = ψ(ClB) ⊂ Cl(ψ(B)) = Cl(e). On
the other hand, ψ(Dn) is a compact set, which is closed by 40.Bx, whence
e = ψ(Dn) ⊃ Cl(e).
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40.Dx Let X be a cellular space, Xn the n-skeleton of X, n ∈ N.
The definition of the quotient topology easily implies that Xn−1 and closed
n-cells of X form a fundamental cover of Xn. Starting with n = 0 and
reasoning by induction, we prove that the cover of Xn by closed k-cells with
k ≤ n is fundamental. And since the cover of X by the skeletons Xn is
fundamental by the definition of the cellular topology, so is the cover of X
by closed cells (see 9.31).

40.Ex This follows from assertion 40.Dx, the fact that, by the definition
of a cellular subspace, each closed cell is contained in an element of the cover,
and assertion 9.31.

40.Fx Let X be a cellular space, Xk the k-skeleton of X. First, we
prove that each compact set K ⊂ Xk intersects only a finite number of open
cells in Xk. We use induction on the dimension of the skeleton. Since the
topology on the 0-skeleton is discrete, each compact set can contain only a
finite number of 0-cells of X. Let us perform the step of induction. Consider
a compact set K ⊂ Xn. For each n-cell eα meeting K, take an open ball
Uα ⊂ eα such that K∩Uα 6= ∅. Consider the cover Γ = {eα,Xnr∪Cl(Uα)}.
It is clear that Γ is an open cover of K. Since K is compact, Γ contains a
finite subcovering. Therefore, K intersects finitely many n-cells. The inter-
section of K with the (n− 1)-skeleton is closed, therefore, it is compact. By
the inductive hypothesis, this set (i.e., K ∩ Xn−1) intersects finitely many
open cells. Therefore, the set K also intersects finitely many open cells.
Now let ϕ : Sn−1 → Xn−1 be the attaching map for the n-cell, F =
ϕ(Sn−1) ⊂ Xn−1. Since F is compact, F can intersect only a finite num-
ber of open cells. Thus we see that each closed cell intersects only a finite
number of open cells.

40.Gx Let A be a cellular subspace of X. By 40.Dx, it is sufficient to
verify that A ∩ e is closed for each cell e of X. Since a cellular subspace is
a union of open (as well as of closed) cells, i.e., A = ∪eα = ∪eα, it follows
from 40.Fx that we have

A ∩ e =
(
∪eα

)
∩ e = (∪n

i=1eαi) ∩ e ⊂ (∪n
i=1eαi) ∩ e ⊂ A ∩ e

and, consequently, the inclusions in this chain are equalities. Consequently,
by 40.Cx, the set A∩e = ∪n

i=1 (eαi ∩ e) is closed as a union of a finite number
of closed sets.

40.Ix Since, by 40.Fx, each closed cell intersects only a finite number
of open cells, it follows that the intersection of any closed cell e with A is
finite and consequently (since cellular spaces are Hausdorff) closed, both in
X, and a fortiori in e. Since, by 40.Dx, closed cells constitute a fundamental
cover, the set A itself is also closed. Similarly, each subset of A is also closed
in X and a fortiori in A. Thus, indeed, the induced topology in A is discrete.
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40.Jx Let K ⊂ X be a compact subset. In each of the cells eα meeting
K, we take a point xα ∈ eα ∩K and consider the set A = {xα}. By 40.Ix,
the set A is closed, and the topology on A is discrete. Since A is compact
as a closed subset of a compact set, therefore, A is finite. Consequently, K
intersects only a finite number of open cells.

40.Kx Use 40.Jx. A finite cellular space is compact as a
union of a finite number of compact sets – closed cells.

40.Lx We can use induction on the dimension of the cell because the
closure of any cell intersects finitely many cells of smaller dimension. Notice
that the closure itself is not necessarily a cellular subspace.

40.Mx This follows from 40.Jx, 40.Lx, and 40.2.

40.Nx Let K be a compact subset of a cellular space. Then K
is closed because each cellular space is Hausdorff. Assertion 40.Jx implies
that K meets only a finite number of open cells.

If K intersects finitely many open cells, then by 40.Lx K lies in a finite
cellular subspace Y , which is compact by 40.Kx, and K is a closed subset
of Y .

40.Ox Let X be a cellular space. We argue by contradiction.
Let X contain an uncountable set of n-cells enα. Put Un

α = enα. Each of the
sets Un

α is open in the n-skeleton Xn of X. Now we construct an uncountable
collection of disjoint open sets in X. Let a be the center of a certain (n+1)-
cell, ϕ : Sn → Xn the attaching map of the cell. We construct the cone over
ϕ−1(Un

α ) with vertex at a and denote by Un+1
α the union of such cones over

all (n+1)-cells of X. It is clear that
{
Un+1

α

}
is an uncountable collection of

sets open in Xn+1. Then the sets Uα =
⋃∞

k=nU
k
α constitute an uncountable

collection of disjoint sets that are open in the entire X. Therefore, X is not
second countable and, therefore, nonseparable.

If X has a countable set of cells, then, taking in each cell a countable
everywhere dense set and uniting them, we obtain a countable set dense in
the entire X (check this!). Thus, X is separable.

40.Px Indeed, any path-connected component Y of a cellular space
together with each point x ∈ Y entirely contains each closed cell containing
x and, in particular, it contains the closure of the open cell containing x.

40.Rx Cf. the argument used in the solution of Problem 40.Ox.

40.Rx This is so because a cellular space is locally path-connected,
see 40.Qx.

40.Sx This follows from 40.Rx.

40.Tx Obvious. We show by induction that the number of
cells in each dimension is countable. For this purpose, it is sufficient to prove
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that each cell intersects finitely many closed cells. It is more convenient to
prove a stronger assertion: any closed cell e intersects finitely many closed
cells. It is clear that any neighborhood meeting the closed cell also meets the
cell itself. Consider the cover of e by neighborhoods each of which intersects
finitely many closed cells. It remains to use the fact that e is compact.

40.Ux By Problem 40.Tx, the 1-skeleton of X is connected. The result
of Problem 40.Tx implies that it is sufficient to prove that the 0-skeleton of
X is countable. Fix a 0-cell x0. Denote by A1 the union of all closed 1-cells
containing x0. Now we consider the set A2 – the union of all closed 1-cells
meeting A1. Since X is locally finite, each of the sets A1 and A2 contains a
finite number of cells. Proceeding in a similar way, we obtain an increasing
sequence of 1-dimensional cellular subspaces A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . .,
each of which is finite. Put A =

⋃∞
k=1Ak. The set A contains countably

many cells. The definition of the cellular topology implies that A is both
open and closed in X1. Since X1 is connected, we have A = X1.

40.Vx Assume the contrary: let the 1-skeleton X1 be discon-
nected. Then X1 is the union of two closed sets: X1 = X ′

1 ∪X
′′
1 . Each 2-cell

is attached to one of these sets, whence X2 = X ′
2 ∪X

′′
2 . A similar argument

shows that for each positive integer n the n-skeleton is a union of its closed
subsets. Put X ′ =

⋃∞
n=0X

′
n and X ′′ =

⋃∞
n=0X

′′
n. By the definition of the

cellular topology, X ′ and X ′′ are closed, consequently, X is disconnected.
This is obvious.

41.A This immediately follows from the obvious equality ci(A∪B) =
ci(A) + ci(B) − ci(A ∩B).

41.B Here we use the following artificial trick. We introduce the poly-
nomial χA(t) = c0(A)+c1(A)t+ . . .+ci(A)ti + . . .. This is the Poincaré poly-

nomial , and its most important property for us here is that χ(X) = χX(−1).

Since ck(X × Y ) =
∑k

i=0 ci(X)ck−i(Y ), we have

χX×Y (t) = χX(t) · χY (t),

whence χ(X × Y ) = χX×Y (−1) = χX(−1) · χY (−1) = χ(X) · χ(Y ).

41.C Set X ′ = X r (e ∪ f). It follows from the definition that the
union of all open cells in X ′ coincides with the union of all closed cells in
X ′, consequently, X ′ is a cellular subspace of X.

41.D The deformation retraction of Dn to the lower closed hemisphere
Sn−1
− determines a deformation retraction X → X r (e ∪ f).

41.E The assertion is obvious because each elementary combinatorial
collapse decreases by one the number of cells in each of two neighboring
dimensions.
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41.F Let p : X → X ′ be the factorization map. The space X ′ has the
same open cells as X except e and f . The attaching map for each of them
is the composition of the initial attaching map and p.

41.G.1 Put Y = Xn−1 ∪ϕe D
n. Clearly, Y ′ ∼= Y r (e ∪ f), and so

we identify these spaces. Then the projection p′ : Y → Y ′ is a homotopy
equivalence by 41.D.

41.G.2 Let {eα} be a collection of n-cells of X distinct from the cell
e, ϕα – the corresponding attaching maps. Consider the map p′ : Y → Y ′.
Since

Xn = Y ∪(
F

α ϕα)

(⊔

α

Dn
α

)
,

we have

X ′
n = Y ′ ∪(

F

α p′◦ϕα)

(⊔

α

Dn
α

)
.

Since p′ is a homotopy equivalence by 41.G.1, the result of 41.6x implies
that p′ extends to a homotopy equivalence pn : Xn → X ′

n. Using induction
on skeletons, we obtain the required assertion.

41.Ax We use induction on the dimension. Clearly, we should consider
only those cells which do not lie in A. If there is a retraction

ρn−1 : (Xn−1 ∪A) × I → (Xn−1 × 0) ∪ (A× I),

and we construct a retraction

ρ̃n : (Xn ∪A) × I → (Xn × 0) ∪ ((Xn−1 ∪A) × I),

then it is obvious how, using their “composition”, we can obtain a retraction

ρn : (Xn ∪A) × I → (Xn × 0) ∪ (A× I).

We need the standard retraction ρ : Dn × I → (Dn × 0) ∪ (Sn−1 × I). (It
is most easy to define ρ geometrically. Place the cylinder in a standard
way in Rn+1 and consider a point p lying over the center of the upper
base. For z ∈ Dn × I, let ρ(z) be the point of intersection of the ray
starting at p and passing through z with the union of the base Dn × 0 and
the lateral area Sn−1 × I of the cylinder.) The quotient map ρ is a map
e × I → (Xn × 0) ∪ (Xn−1 × I). Extending it identically to Xn−1 × I, we
obtain a map

ρe : (e× I) ∪ (Xn−1 × I) → (Xn × 0) ∪ (Xn−1 × I).

Since the closed cells constitute a fundamental cover of a cellular space, the
retraction ρ̃n is thus defined.
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41.Bx The formulas H̃(x, 0) = F (x) for x ∈ X and H̃(x, t) = h(x, t) for

(x, t) ∈ A× I determine a map H̃ : (X × 0)∪ (A× I) → Y . By 41.Ax, there

is a retraction ρ : X × I → (X × 0) ∪ (A× I). The composition H = H̃ ◦ ρ
is the required homotopy.

41.Cx Denote by h : A × I → A a homotopy between the identity
map of A and the constant map A → A : a 7→ x0. Consider the homotopy

h̃ = i ◦ h : A × I → X. By Theorem 41.Bx, h̃ extends to a homotopy
H : X × I → X of the identity map of the entire X. Consider the map

f : X → X, f(x) = H(x, 1). By the construction of the homotopy h̃, we
have f(A) = {x0}, consequently, the quotient map of f is a continuous map
g : X/A → X. We prove that pr and g are mutually inverse homotopy
equivalences. To do this we must verify that g ◦pr ∼ idX and pr ◦g ∼ idX/A.
1) We observe thatH(x, 1) = g(pr(x)) by the definition of g. SinceH(x, 0) =
x for all x ∈ X, it follows that H is a homotopy between idX and the
composition g ◦ pr.
2) If we factorize each fiber X × t by A × t, then, since H(x, t) ∈ A for all

x ∈ A and t ∈ I, the homotopy H determines a homotopy H̃ : X/A→ X/A
between idX/A and the composition p ◦ g.

41.Fx Let X be the space. By 41.Ex, we can assume that X has one
0-cell, and therefore the 1-skeleton X1 is a bouquet of circles. Consider the
characteristic map ψ : I → X1 of a certain 1-cell. Instead of the loop ψ, it is
more convenient to consider the circular loop S1 → X1, which we denote by
the same letter. Since X is simply connected, the loop ψ extends to a map
f : D2 → X. Now consider the diskD3. To simplify the notation, we assume
that f is defined on the lower hemisphere S2

− ⊂ D3. Put Y = X ∪f D
3 ≃ X.

The space Y is cellular and is obtained by adding two cells to X: a 2- and a
3-cell. The new 2-cell e, i.e., the image of the upper hemisphere in D3, is a
contractible cellular space. Therefore, we have Y/e ≃ Y , and Y/e contains
one 1-cell less than the initial space X. Proceeding in this way, we obtain
a space with one-point 2-skeleton. Notice that our construction yielded
a 3-dimensional cellular space. Actually, in our assumptions the space is
homotopy equivalent to: a point, a 2-sphere, or a bouquet of 2-spheres, but
the proof of this fact involves more sophisticated techniques (the homology).

41.Gx Let the map f : X → A be homotopically inverse to the in-
clusion inA. By assumption, the restriction of f to the subspace A, i.e.,
the composition f ◦ in, is homotopic to the identity map idA. By Theo-
rem 41.Bx, this homotopy extends to a homotopy H : X × I → A of f .
Put ρ(x) = H(x, 1); then ρ(x, 1) = x for all x ∈ A. Consequently, ρ is a
retraction. It remains to observe that, since ρ is homotopic to f , it follows
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that in ◦ρ is homotopic to the composition inA ◦f , which is homotopic to
idX because f and in are homotopically inverse by assumption.

42.A Prove this by induction, using Lemma 42.A.1.

42.A.1 Certainly, the fact that the projection is a homotopy equiv-
alence is a special case of assertions 41.Dx and 41.G. However, here we
present an independent argument, which is more visual in the 1-dimensional
case. All homotopies will be fixed outside a neighborhood of the 1-cell e
of the initial cellular space X and outside a neighborhood of the 0-cell x0,
which is the image of e in the quotient space Y = X/e. For this reason,
we consider only the closures of such neighborhoods. Furthermore, to sim-
plify the notation, we assume that the spaces under consideration coincide
with these neighborhoods. In this case, X is the 1-cell e with the segments
I1, I2, . . . , Ik (respectively, J1, J2, . . . , Jn) attached to the left endpoint, (re-
spectively, to the right endpoint). The space Y is simply a bouquet of all
these segments with a common point x0. The map f : X → Y has the
following structure: each of the segments Ii and Jj is mapped onto itself
identically, and the cell e is mapped to x0. The map g : Y → X takes x0 to
the midpoint of e and maps a half of each of the segments Is and Jt to the
left and to the right half of e, respectively. Finally, the remaining half of
each of these segments is mapped (with double stretching) onto the entire
segment. We prove that the described maps are homotopically inverse. Here
it is important that the homotopies be fixed on the free endpoints of Is and
Jt. The composition f ◦ g : Y → Y has the following structure. The restric-
tion of f ◦ g to each of the segments in the bouquet is, strictly speaking, the
product of the identical path and the constant path, which is known to be
homotopic to the identical path. Furthermore, the homotopy is fixed both
on the free endpoints of the segments and on x0. The composition g◦f maps
the entire cell e to the midpoint of e, while the halves of each of the segments
Is and Jt adjacent to e are mapped a half of e, and their remaining parts
are doubly stretched and mapped onto the entire corresponding segment.
Certainly, the map under consideration is homotopic to the identity.

42.B By 42.A.1, each connected 1-dimensional finite cellular space X
is homotopy equivalent to a space X ′, where the number of 0- and 1-cells
is one less than in X, whence χ(X) = χ(X ′). Reasoning by induction, we
obtain as a result a space with a single 0-cell and with Euler characteristic
equal to χ(X) (cf. 41.E). Let k be the number of 1-cells in this space. Then
χ(X) = 1−k, whence k = 1−χ(X). It remains to observe that k is precisely
the rang of π1(X).

42.C This follows from 42.B because the fundamental group of a space
is invariant with respect to homotopy equivalences.

42.D This follows from 42.C.
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42.E By 42.B, if two finite connected 1-dimensional cellular spaces
have isomorphic fundamental groups (or equal Euler characteristics), then
each of them is homotopy equivalent to a bouquet consisting of one and the
same number of circles, therefore, the spaces are homotopy equivalent. If the
spaces are homotopy equivalent, then, certainly, their fundamental groups
are isomorphic, and, by 42.C, their Euler characteristics are also equal.

42.Ax Let e be an open cell. If the image ϕe(S
0) of the attaching

map of e is one-point, then X r e is obviously connected. Assume that
ϕe(S

0) = {x0, x1}. Prove that each connected component of X r e contains
at least one of the points x0 and x1.

42.Bx 1) Let X be a connected 1-dimensional cellular space, x ∈ X a
vertex. If a connected component of X r x contains no edges whose closure
contains x, then, since cellular spaces are locally connected, the component
is both open and closed in the entire X, contrary to the connectedness of
X. 2) This follows from the fact that a vertex of degree m lies in the closure
of at most m distinct edges.

43.A See 42.B.

43.B This follows from 42.I (or 41.Cx) because of 35.L.

43.C It is sufficient to prove that each loop u : I → X is homotopic
to a loop v with v(I) ⊂ A. Let U ⊂ Dk be the open ball with radius
2
3 , and let V be the complement in X of a closed disk with radius 1

3 . By
the Lebesgue Lemma 16.W, the segment I can be subdivided segments
I1, . . . , IN the image of each of which is entirely contained in one of the sets
U or V . Assume that u(Il) ⊂ U . Since in Dk any two paths with the same
starting and ending points are homotopic, it follows that the restriction u|Il

is homotopic to a path that does not meet the center a ∈ Dk. Therefore, the
loop u is homotopic to a loop u′ whose image does not contain a. It remains
to observe that the space A is a deformation retract of X r a, therefore, u′

is homotopic to a loop v with image lying in A.

43.D Let s be a loop at x0. Since the set s(I) is compact, s(I) is
contained in a finite cellular subspace Y of X. It remains to apply asser-
tion 43.C and use induction on the number of cells in Y .

43.E This follows from 43.D and 43.B.

43.F If we take another collection of paths s′α, then the elements Tsα [ϕα]
and Ts′α [ϕα] will be conjugate in π1(X1, x0), and since the subgroup N is
normal, N contains the collection of elements {Tsα [ϕα]} iff N contains the
collection {Ts′α [ϕα]}.

43.G We can assume that the 0-skeleton of X is the singleton {x0},
so that the 1-skeleton X1 is a bouquet of circles. Consider a covering
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p1 : Y1 → X1 with group N . Its existence follows from the more gen-
eral Theorem 39.Dx on the existence of a covering with given group. In the
case considered, the covering space is a 1-dimensional cellular space. Now
the proof of the theorem consists of several steps, each of which is the proof
of one of the following seven lemmas. It will also be convenient to assume
that ϕα(1) = x0, so that Tsα [ϕα] = [ϕα].

43.G.1 Since, clearly, in∗([ϕα]) = 1 in π1(X,x0), we have in∗([ϕα]) =
1 in π1(X,x0), therefore, each of the elements [ϕα] ∈ Ker i∗. Since the
subgroup Ker i∗ is normal, it contains N , which is the smallest subgroup
generated by these elements.

43.G.2 This follows from 39.Px.

43.G.3 Let F = p−1
1 (x0) be the fiber over x0. The map p2 is a quotient

map

Y1 ⊔

(⊔

α

⊔

y∈Fα

D2
α,y

)
→ X1 ⊔

(⊔

α

D2
α

)
,

whose submap Y1 → X1 is p1, and the maps
⊔

y∈Fα
D2

α → D2
α are identities

on each of the disks D2
α. It is clear that for each point x ∈ IntD2

α ⊂ X2 the
entire interior of the disk is a trivially covered neighborhood. Now assume
that for point x ∈ X1 the set U1 is a trivially covered neighborhood of x
with respect to the covering p1. Put U = U1 ∪ (

⋃
α′ ψα′(Bα′)), where Bα′ is

the open cone with vertex at the center of D2
α′ and base ϕ−1

α′ (U). The set U
is a trivially covered neighborhood of x with respect to p2.

43.G.4 First, we prove this for n = 3. So, let p : X → B be an
arbitrary covering, ϕ : S2 → B an arbitrary map. Consider the subset
A = S1×0∪1×I∪S1×1 of the cylinder S1×I, and let q : S1×I → S1 × I/A
be the factorization map. We easily see that S1 × I/A ∼= S2. Therefore, we
assume that q : S1 × I → S2. The composition h = ϕ ◦ q : S1 × I → B
is a homotopy between one and the same constant loop in the base of the
covering. By the Path Homotopy Lifting Theorem 34.C, the homotopy h

is covered by the map h̃, which also is a homotopy between two constant

paths, therefore, the quotient map of h̃ is the map ϕ̃ : S2 → X covering ϕ.
For n > 3, use 39.Yx.

43.G.5 The proof is similar to that of Lemma 3.

43.G.6 Since the loop in ◦s : I → X is null-homotopic, it is covered by
a loop, the image of which automatically lies in Y1.
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43.G.7 Let s be a loop in X1 such that [s] ∈ Ker(i1)∗. Lemma 6
implies that s is covered by a loop s̃ : I → Y1, whence [s] = (p1)∗([s̃ ]) ∈ N .
Therefore, Ker in∗ ⊂ N , whence N = Ker in∗ by Lemma 1.

43.I For example, RP 2 is obtained by attaching D2 to S1 via the map
ϕ : S1 → S1 : z 7→ z2. The class of the loop ϕ in π1(S

1) = Z is the doubled
generator, whence π1(RP

2) ∼= Z2, as it should have been expected. The
torus S1×S1 is obtained by attaching D2 to the bouquet S1 ∨S1 via a map
ϕ representing the commutator of the generators of π1(S

1 ∨S1). Therefore,
as it should have been expected, the fundamental group of the torus is Z2.

43.K See 40.12 (h).

43.L See 40.12 (i).

43.M.1 Indeed, the single relation in the fundamental group of the
sphere with g handles means that the product of g commutators of the
generators ai and bi equals 1, and so it “vanishes” after the abelianization.

43.N.1 Taking the elements a1, . . . , ag−1, and bn = a1a2 . . . ag as
generators in the commuted group, we obtain an Abelian group with a
single relation b2n = 1.

43.O This follows from 43.M.1.

43.O This follows from 43.N.1.

43.Q This follows from 43.M.1 and 43.N.1.

43.Ax We do not assume that you can prove this theorem on your own.
The proof can be found, for example, in [Massey].

43.Bx Draw a commutative diagram comprising all inclusion homo-
morphisms induced by all inclusions occurring in this situation.

43.Cx Since, as we will see in Section 43◦7x, the group presented as
above, actually, up to canonical isomorphism does not depend on the choice
of generators and relations in π1(A,x0) and π1(B,x0) and the choice of
generators in π1(C, x0), we can use the presentation which is most convenient
for us. We derive the theorem from Theorems 43.D and 43.G. First of
all, it is convenient to replace X, A, B, and C by homotopy equivalent
spaces with one-point 0-skeletons. We do this with the help of the following
construction. Let TC be a spanning tree in the 1-skeleton of C. We complete
TC to a spanning tree TA ⊃ TC in A, and also complete TC to a spanning
tree TB ⊃ TC . The union T = TA ∪ TB is a spanning tree in X. It remains
to replace each of the spaces under consideration with its quotient space
by a spanning tree. Thus, the 1-skeleton of each of the spaces X, A, B,
and C either coincides with the 0-cell x0, or is a bouquet of circles. Each
of the circles of the bouquets determines a generator of the fundamental
group of the corresponding space. The image of γi ∈ π1(C, x0) under the
inclusion homomorphism is one of the generators, let it be αi (βi) in π1(A,x0)
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(respectively, in π1(B,x0)). Thus, ξi = αi and ηi = βi. The relations ξi = ηi,
and, in this case, αi = βi, i = 1, . . . , t arise because each of the circles lying
in C determines a generator of π1(X,x0). All the remaining relations, as it
follows from assertion 43.G, are determined by the attaching maps of the
2-cells of X, each of which lies in at least one of the sets A or B, and hence is
a relation between the generators of the fundamental groups of these spaces.

43.Dx Let F be a free group with generators α1, . . . , αp, β1, . . . , βq. By
definition, the group X is the quotient group of F by the normal hull N of
the elements

{ρ1, . . . , ρr, σ1, . . . , σs, ξ(γ1)η(γ1)
−1, . . . , ξ(γt)η(γt)

−1}.

Since the first diagram is commutative, it follows that the subgroup N lies
in the kernel of the homomorphism F → X ′ : αi 7→ ϕ′(αi), βi 7→ ψ′(αi),
consequently, there is a homomorphism ζ : X → X ′. Its uniqueness is
obvious. Prove the last assertion of the theorem on your own.

43.Ex Construct a universal covering of X.


