
Part 3

Topological Manifolds



This part is devoted to study of the most important topological spaces,
the spaces which provide a scene for most of geometric branches in mathe-
matics such as Differential Geometry and Analytical Mechanics.



Chapter X

Manifolds

44. Locally Euclidean Spaces

44◦1. Definition of Locally Euclidean Space

Let n be a non-negative integer. A topological space X is called a
locally Euclidean space of dimension n if each point of X has a neighborhood
homeomorphic either to R

n or R
n
+. Recall that R

n
+ = {x ∈ R

n : x1 ≥ 0}, it
is defined for n ≥ 1.

44.A. The notion of 0-dimensional locally Euclidean space coincides with
the notion of discrete topological space.

44.B. Prove that the following spaces are locally Euclidean:

(1) R
n,

(2) any open subset of Rn,

(3) Sn,

(4) RPn,

(5) CPn,

(6) R
n
+,

(7) any open subset of Rn
+,

(8) Dn,

(9) torus S1 × S1,

(10) handle,

(11) sphere with handles,
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320 X. Manifolds

(12) sphere with holes,

(13) Klein bottle,

(14) sphere with crosscaps.

44.1. Prove that an open subspace of a locally Euclidean space of dimension n is
a locally Euclidean space of dimension n.

44.2. Prove that a bouquet of two circles is not locally Euclidean.

44.C. If X is a locally Euclidean space of dimension p and Y is a locally
Euclidean space of dimension q then X × Y is a locally Euclidean space of
dimension p+ q.

44◦2. Dimension

44.D. Can a topological space be simultaneously a locally Euclidean space
of dimension both 0 and n > 0?

44.E. Can a topological space be simultaneously a locally Euclidean space
of dimension both 1 and n > 1?

44.3. Prove that any nonempty open connected subset of a locally Euclidean
space of dimension 1 can be made disconnected by removing two points.

44.4. Prove that any nonempty locally Euclidean space of dimension n > 1 con-
tains a nonempty open set, which cannot be made disconnected by removing any
two points.

44.F. Can a topological space be simultaneously a locally Euclidean space
of dimension both 2 and n > 2?

44.G. Let U be an open subset of R
2 and a p ∈ U . Prove that π1(U r {p})

admits an epimorphism onto Z.

44.H. Deduce from 44.G that a topological space cannot be simultaneously
a locally Euclidean space of dimension both 2 and n > 2.

We see that dimension of locally Euclidean topological space is a topo-
logical invariant at least for the cases when it is not greater than 2. In fact,
this holds true without that restriction. However, one needs some technique
to prove this. One possibility is provided by dimension theory, see, e.g., W.
Hurewicz and H. Wallman, Dimension Theory Princeton, NJ, 1941. Other
possibility is to generalize the arguments used in 44.H to higher dimensions.
However, this demands a knowledge of high-dimensional homotopy groups.

44.5. Deduce that a topological space cannot be simultaneously a locally Eu-
clidean space of dimension both n and p > n from the fact that πn−1(S

n−1) = Z.
Cf. 44.H
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44◦3. Interior and Boundary

A point a of a locally Euclidean space X is said to be an interior point
of X if a has a neighborhood (in X) homeomorphic to R

n. A point a ∈ X,
which is not interior, is called a boundary point of X.

44.6. Which points of R
n
+ have a neighborhood homeomorphic to R

n
+?

44.I. Formulate a definition of boundary point independent of a definition
for interior point.

Let X be a locally Euclidean space of dimension n. The set of all interior
points of X is called the interior of X and denoted by intX. The set of all
boundary points of X is called the boundary of X and denoted by ∂X.

These terms (interior and boundary) are used also with different mean-
ing. The notions of boundary and interior points of a set in a topological
space and the interior part and boundary of a set in a topological space are
introduced in general topology, see Section 6. They have almost nothing to
do with the notions discussed here. In both senses the terminology is clas-
sical, which is impossible to change. This does not create usually a danger
of confusion.

Notations are not as commonly accepted as words. We take an easy
opportunity to select unambiguous notations: we denote the interior part
of a set A in a topological space X by IntX A or IntA, while the interior of
a locally Euclidean space X is denoted by intX; the boundary of a set in
a topological space is denoted by symbol Fr, while the boundary of locally
Euclidean space is denoted by symbol ∂.

44.J. For a locally Euclidean space X the interior intX is an open dense
subset of X, the boundary ∂X is a closed nowhere dense subset of X.

44.K. The interior of a locally Euclidean space of dimension n is a locally
Euclidean space of dimension n without boundary (i.e., with empty bound-
ary; in symbols: ∂(intX) = ∅).

44.L. The boundary of a locally Euclidean space of dimension n is a locally
Euclidean space of dimension n − 1 without boundary (i.e., with empty
boundary; in symbols: ∂(∂X) = ∅).

44.M. int R
n
+ ⊃ {x ∈ R

n : x1 > 0} and

∂R
n
+ ⊂ {x ∈ R

n : x1 = 0}.

44.7. For any x, y ∈ {x ∈ R
n : x1 = 0}, there exists a homeomorphism f : R

n
+ →

R
n
+ with f(x) = y.

44.N. Either ∂R
n
+ = ∅ (and then ∂X = ∅ for any locally Euclidean space

X of dimension n), or ∂R
n
+ = {x ∈ R

n : x1 = 0}.
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In fact, the second alternative holds true. However, this is not easy to
prove for any dimension.

44.O. Prove that ∂R1
+ = {0}.

44.P. Prove that ∂R2
+ = {x ∈ R2 : x1 = 0}. (Cf. 44.G.)

44.8. Deduce that a ∂R
n
+ = {x ∈ R

n : x1 = 0} from πn−1(S
n−1) = Z. (Cf. 44.P,

44.5)

44.Q. Deduce from ∂Rn
+ = {x ∈ Rn : x1 = 0} for all n ≥ 1 that

int(X × Y ) = intX × intY

and
∂(X × Y ) = (∂(X) × Y ) ∪ (X × ∂Y ).

The last formula resembles Leibniz formula for derivative of a product.

44.R. Riddle. Can this be a matter of chance?

44.S. Prove that

(1) ∂(I × I) = (∂I × I) ∪ (I × ∂I),

(2) ∂Dn = Sn−1,

(3) ∂(S1 × I) = S1 × ∂I = S1 ∐ S1,

(4) the boundary of Möbius strip is homeomorphic to circle.

44.T Corollary. Möbius strip is not homeomorphic to cylinder S1 × I.
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45. Manifolds

45◦1. Definition of Manifold

A topological space is called a manifold of dimension n if it is

• locally Euclidean of dimension n,

• second countable,

• Hausdorff.

45.A. Prove that the three conditions of the definition are independent
(i.e., there exist spaces not satisfying any one of the three conditions and
satisfying the other two.)

45.A.1. Prove that R ∪i R, where i : {x ∈ R : x < 0} → R is the inclusion, is
a non-Hausdorff locally Euclidean space of dimension one.

45.B. Check whether the spaces listed in Problem 44.B are manifolds.

A compact manifold without boundary is said to be closed. As in the case
of interior and boundary, this term coincides with one of the basic terms of
general topology. Of course, the image of a closed manifold under embedding
into a Hausdorff space is a closed subset of this Hausdorff space (as any
compact subset of a Hausdorff space). However absence of boundary does
not work here, and even non-compact manifolds may be closed subsets. They
are closed in themselves, as any space. Here we meet again an ambiguity
of classical terminology. In the context of manifolds the term closed relates
rather to the idea of a closed surface.

45◦2. Components of Manifold

45.C. A connected component of a manifold is a manifold.

45.D. A connected component of a manifold is path-connected.

45.E. A connected component of a manifold is open in the manifold.

45.F. A manifold is the sum of its connected components.

45.G. The set of connected components of any manifold is countable. If
the manifold is compact, then the number of the components is finite.

45.1. Prove that a manifold is connected, iff its interior is connected.

45.H. The fundamental group of a manifold is countable.
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45◦3. Making New Manifolds out of Old Ones

45.I. Prove that an open subspace of a manifold of dimension n is a manifold
of dimension n.

45.J. The interior of a manifold of dimension n is a manifold of dimension
n without boundary.

45.K. The boundary of a manifold of dimension n is a manifold of dimension
n− 1 without boundary.

45.2. The boundary of a compact manifold of dimension n is a closed manifold
of dimension n − 1.

45.L. If X is a manifold of dimension p and Y is a manifold of dimension
q then X × Y is a manifold of dimension p+ q.

45.M. Prove that a covering space (in narrow sense) of a manifold is a
manifold of the same dimension.

45.N. Prove that if the total space of a covering is a manifold then the base
is a manifold of the same dimension.

45.O. Let X and Y be manifolds of dimension n, A and B components
of ∂X and ∂Y respectively. Then for any homeomorphism h : B → A the
space X ∪h Y is a manifold of dimension n.

45.O.1. Prove that the result of gluing of two copy of Rn
+ by the identity map

of the boundary hyperplane is homeomorphic to Rn.

45.P. Let X and Y be manifolds of dimension n, A and B closed subsets
of ∂X and ∂Y respectively. If A and B are manifolds of dimension n − 1
then for any homeomorphism h : B → A the space X ∪h Y is a manifold of
dimension n.

45◦4. Double

45.Q. Can a manifold be embedded into a manifold of the same dimension
without boundary?

Let X be a manifold. Denote by DX the space X ∪id∂X
X obtained by

gluing of two copies of X by the identity mapping id∂X : ∂X → ∂X of the
boundary.

45.R. Prove that DX is a manifold without boundary of the same dimen-
sion as X.

DX is called the double of X.

45.S. Prove that a double of a manifold is compact, iff the original manifold
is compact.
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45◦5x. Collars and Bites

Let X be a manifold. An embedding c : ∂X×I → X such that c(x, 0) =
x for each x ∈ ∂X is called a collar of X. A collar can be thought of as a
neighborhood of the boundary presented as a cylinder over boundary.

45.Ax. Every manifold has a collar.

Let U be an open set in the boundary of a manifold X . For a continuous
function ϕ : ∂X → R+ with ϕ−1(0,∞) = U set

Bϕ = {(x, t) ∈ ∂X × R+ : t ≤ ϕ(x)}.
A bite on X at U is an embedding b : Bϕ → X with some ϕ : ∂X → R+ such
that b(x, 0) = x for each x ∈ ∂X .

This is a generalization of collar. Indeed, a collar is a bite at U = ∂X with
ϕ = 1.

45.Ax.1. Prove that if U ⊂ ∂X is contained in an open subset of X homeo-
morphic to Rn

+, then there exists a bite of X at U .

45.Ax.2. Prove that for any bite b : B → X of a manifold X the closure of
X r b(B) is a manifold.

45.Ax.3. Let b1 : B1 → X be a bite ofX and b2 : B2 → Cl(Xrb1(B1)) be a bite
of Cl(Xrb1(B1)). Construct a bite b : B → X ofX with b(B) = b1(B1)∪b2(B2).

45.Ax.4. Prove that if there exists a bite of X at ∂X then there exists a collar
of X .

45.Bx. For any two collars c1, c2 : ∂X × I → X there exists a homeomor-
phism h : X → X with h(x) = x for x ∈ ∂X such that h ◦ c1 = c2.

This means that a collar is unique up to homeomorphism.

45.Bx.1. For any collar c : ∂X × I → X there exists a collar c′ : ∂X × I → X
such that c(x, t) = c′(x, t/2).

45.Bx.2. For any collar c : ∂X × I → X there exists a homeomorphism

h : X → X ∪x 7→(x,1) ∂X × I

with h(c(x, t)) = (x, t).
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46. Isotopy

46◦1. Isotopy of Homeomorphisms

Let X and Y be topological spaces, h, h′ : X → Y homeomorphisms.
A homotopy ht : X → Y , t ∈ [0, 1] connecting h and h′ (i.e., with h0 = h,
h1 = h′) is called an isotopy between h and h′ if ht is a homeomorphism for
each t ∈ [0, 1]. Homeomorphisms h, h′ are said to be isotopic if there exists
an isotopy between h and h′.

46.A. Being isotopic is an equivalence relation on the set of homeomor-
phisms X → Y .

46.B. Find a topological space X such that homotopy between homeomor-
phisms X → X does not imply isotopy.

This means that isotopy classification of homeomorphisms can be more
refined than homotopy classification of them.

46.1. Classify homeomorphisms of circle S1 to itself up to isotopy.

46.2. Classify homeomorphisms of line R
1 to itself up to isotopy.

The set of isotopy classes of homeomorphisms X → X (i.e. the quotient
of the set of self-homeomorphisms of X by isotopy relation) is called the
mapping class group or homeotopy group of X.

46.C. For any topological space X, the mapping class group of X is a group
under the operation induced by composition of homeomorphisms.

46.3. Find the mapping class group of the union of the coordinate lines in the
plane.

46.4. Find the mapping class group of the union of bouquet of two circles.

46◦2. Isotopy of Embeddings and Sets

Homeomorphisms are topological embeddings of special kind. The no-
tion of isotopy of homeomorphism is extended in an obvious way to the case
of embeddings. Let X and Y be topological spaces, h, h′ : X → Y topolog-
ical embeddings. A homotopy ht : X → Y , t ∈ [0, 1] connecting h and h′

(i.e., with h0 = h, h1 = h′) is called an (embedding) isotopy between h and
h′ if ht is an embedding for each t ∈ [0, 1]. Embeddings h, h′ are said to be
isotopic if there exists an isotopy between h and h′.

46.D. Being isotopic is an equivalence relation on the set of embeddings
X → Y .
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A family At, t ∈ I of subsets of a topological space X is called an
isotopy of the set A = A0, if the graph Γ = {(x, t) ∈ X × I |x ∈ At} of the
family is fibrewise homeomorphic to the cylinder A× I, i. e. there exists a
homeomorphism A× I → Γ mapping A× {t} to Γ ∩X × {t} for any t ∈ I.
Such a homeomorphism gives rise to an isotopy of embeddings Φt : A→ X,
t ∈ I with Φ0 = in, Φt(A) = At. An isotopy of a subset is also called a
subset isotopy. Subsets A and A′ of the same topological space X are said
to be isotopic in X, if there exists a subset isotopy At of A with A′ = A1.

46.E. It is easy to see that this is an equivalence relation on the set of
subsets of X.

As it follows immediately from the definitions, any embedding isotopy
determines an isotopy of the image of the initial embedding and any subset
isotopy is accompanied with an embedding isotopy. However the relation
between the notions of subset isotopy and embedding isotopy is not too close
because of the following two reasons:

(1) an isotopy Φt accompanying a subset isotopy At starts with the
inclusion of A0 (while arbitrary isotopy may start with any embed-
ding);

(2) an isotopy accompanying a subset isotopy is determined by the
subset isotopy only up to composition with an isotopy of the iden-
tity homeomorphism A→ A (an isotopy of a homeomorphism is a
special case of embedding isotopies, since homeomorphisms can be
considered as a sort of embeddings).

An isotopy of a subset A in X is said to be ambient, if it may be ac-
companied with an embedding isotopy Φt : A→ X extendible to an isotopy
Φ̃t : X → X of the identity homeomorphism of the space X. The isotopy
Φ̃t is said to be ambient for Φt. This gives rise to obvious refinements of the
equivalence relations for subsets and embeddings introduced above.

46.F. Find isotopic, but not ambiently isotopic sets in [0, 1].

46.G. If sets A1, A2 ⊂ X are ambiently isotopic then the complements
X rA1 and X rA2 are homeomorphic and hence homotopy equivalent.

46.5. Find isotopic, but not ambiently isotopic sets in R.

46.6. Prove that any isotopic compact subsets of R are ambiently isotopic.

46.7. Find isotopic, but not ambiently isotopic compact sets in R3.

46.8. Prove that any two embeddings S1 → R
3 are isotopic. Find embeddings

S1 → R
3 that are not ambiently isotopic.
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46◦3. Isotopies and Attaching

46.Ax. Any isotopy ht : ∂X → ∂X extends to an isotopy Ht : X → X.

46.Bx. Let X and Y be manifolds of dimension n, A and B components of
∂X and ∂Y respectively. Then for any isotopic homeomorphisms f, g : B →
A the manifolds X ∪f Y and X ∪g Y are homeomorphic.

46.Cx. Let X and Y be manifolds of dimension n, let B be a compact
subset of ∂Y . If B is a manifold of dimension n−1 then for any embeddings
f, g : B → ∂X ambiently isotopic in ∂X the manifolds X ∪f Y and X ∪g Y
are homeomorphic.

46◦4. Connected Sums

46.H. Let X and Y be manifolds of dimension n, and ϕ : R
n → X, ψ :

Rn → Y be embeddings. Then

X r ϕ(IntDn) ∪ψ(Sn)→Xrϕ(IntDn):ψ(a)7→ϕ(a) Y r ψ(IntDn)

is a manifold of dimension n.

This manifold is called a connected sum of X and Y .

46.I. Show that the topological type of the connected sum of X and Y
depends not only on the topological types of X and Y .

46.J. Let X and Y be manifolds of dimension n, and ϕ : R
n → X, ψ :

Rn → Y be embeddings. Let h : X → X be a homeomorphism. Then the
connected sums of X and Y defined via ψ and ϕ, on one hand, and via ψ
and h ◦ ϕ, on the other hand, are homeomorphic.

46.9. Find pairs of manifolds connected sums of which are homeomorphic to

(1) S1,
(2) Klein bottle,
(3) sphere with three crosscaps.

46.10. Find a disconnected connected sum of connected manifolds. Describe,
under what circumstances this can happen.
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Proofs and Comments

44.A Each point in a 0-dimensional locally Euclidean space has a neighbor-
hood homeomorphic to R0 and hence consisting of a single point. Therefore
each point is open.





Chapter XI

Classifications in Low

Dimensions

In different geometric subjects there are different ideas which dimensions are
low and which high. In topology of manifolds low dimension means at most
4. However, in this chapter only dimensions up to 2 will be considered, and
even most of two-dimensional topology will not be touched. Manifolds of
dimension 4 are the most mysterious objects of the field. Dimensions higher
than 4 are easier: there is enough room for most of the constructions that
topology needs.

47. One-Dimensional Manifolds

47◦1. Zero-Dimensional Manifolds

This section is devoted to topological classification of manifolds of di-
mension one. We could skip the case of 0-dimensional manifolds due to
triviality of the problem.

47.A. Two 0-dimensional manifolds are homeomorphic iff they have the
same number of points.

The case of 1-dimensional manifolds is also simple, but requires more
detailed considerations. Surprisingly, many textbooks manage to ignore 1-
dimensional manifolds absolutely.

331
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47◦2. Reduction to Connected Manifolds

47.B. Two manifolds are homeomorphic iff there exists a one-to-one corre-
spondence between their components such that the corresponding components
are homeomorphic.

Thus, for topological classification of n-dimensional manifolds it suffices
to classify only connected n-dimensional manifolds.

47◦3. Examples

47.C. What connected 1-manifolds do you know?

(1) Do you know any closed connected 1-manifold?

(2) Do you know a connected compact 1-manifold, which is not closed?

(3) What non-compact connected 1-manifolds do you know?

(4) Is there a non-compact connected 1-manifolds with boundary?

47◦4. How to Distinguish Them From Each Other?

47.D. Fill the following table with pluses and minuses.

Manifold X Is X compact? Is ∂X empty?

S1

R1

I

R1
+

47◦5. Statements of Main Theorems

47.E. Any connected manifold of dimension 1 is homeomorphic to one of
the following for manifolds:

• circle S1,

• line R
1,

• interval I,

• half-line R
1
+.

This theorem may be splitted into the following four theorems:

47.F. Any closed connected manifold of dimension 1 is homeomorphic to
circle S1.

47.G. Any non-compact connected manifold of dimension 1 without bound-
ary is homeomorphic to line R1.
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47.H. Any compact connected manifold of dimension 1 with nonempty bound-
ary is homeomorphic to interval I.

47.I. Any non-compact connected manifold of dimension one with nonempty
boundary is homeomorphic to half-line R1

+.

47◦6. Lemma on 1-Manifold Covered with Two Lines

47.J Lemma. Any connected manifold of dimension 1 covered with two
open sets homeomorphic to R

1 is homeomorphic either to R
1, or S1.

Let X be a connected manifold of dimension 1 and U, V ⊂ X be its open
subsets homeomorphic to R. Denote by W the intersection U ∩V . Let ϕ : U →
R and ψ : V → R be homeomorphisms.

47.J.1. Prove that each connected component of ϕ(W ) is either an open in-
terval, or an open ray, or the whole R.

47.J.2. Prove that a homeomorphism between two open connected subsets of
R is a (strictly) monotone continuous function.

47.J.3. Prove that if a sequence xn of points of W converges to a point a ∈
U rW then it does not converge in V .

47.J.4. Prove that if there exists a bounded connected component C of ϕ(W )
then C = ϕ(W ), V = W , X = U and hence X is homeomorphic to R.

47.J.5. In the case of connected W and U 6= V , construct a homeomorphism
X → R which takes:

• W to (0, 1),

• U to (0,+∞), and

• V to (−∞, 1).

47.J.6. In the case of W consisting of two connected components, construct a
homeomorphism X → S1, which takes:

• W to {z ∈ S1 : −1/
√

2 < Im(z) < 1/
√

2},

• U to {z ∈ S1 : −1/
√

2 < Im(z)}, and

• V to {z ∈ S1 : Im(z) < 1/
√

2}.

47◦7. Without Boundary

47.F.1. Deduce Theorem 47.F from Lemma 47.I.

47.G.1. Deduce from Lemma 47.I that for any connected non-compact one-
dimensional manifold X without a boundary there exists an embedding X → R

with open image.

47.G.2. Deduce Theorem 47.G from 47.G.1.
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47◦8. With Boundary

47.H.1. Prove that any compact connected manifold of dimension 1 can be
embedded into S1.

47.H.2. List all connected subsets of S1.

47.H.3. Deduce Theorem 47.H from 47.H.2, and 47.H.1.

47.I.1. Prove that any non-compact connected manifold of dimension 1 can be
embedded into R1.

47.I.2. Deduce Theorem 47.I from 47.I.1.

47◦9. Corollaries of Classification

47.K. Prove that connected sum of closed 1-manifolds is defined up home-
omorphism by topological types of summands.

47.L. Which 0-manifolds bound a compact 1-manifold?

47◦10. Orientations of 1-manifolds

Orientation of a connected non-closed 1-manifold is a linear order on
the set of its points such that the corresponding interval topology (see. 7.P.
) coincides with the topology of this manifold.

Orientation of a connected closed 1-manifold is a cyclic order on the set
of its points such that the topology of this cyclic order (see ??) coincides
with the topology of the 1-manifold.

Orientation of an arbitrary 1-manifold is a collection of orientations of its
connected components (each component is equipped with an orientation).

47.M. Any 1-manifold admits an orientation.

47.N. An orientation of 1-manifold induces an orientation (i.e., a linear
ordering of points) on each subspace homeomorphic to R or R+. Vice versa,
an orientation of a 1-manifold is determined by a collection of orientations
of its open subspaces homeomorphic to R or R+, if the subspaces cover the
manifold and the orientations agree with each other: the orientations of any
two subspaces define the same orientation on each connected component of
their intersection.

47.O. Let X be a cyclicly ordered set, a ∈ X and B ⊂ X r {a}. Define in
X r {a} a linear order induced, as in ??, by the cyclic order on X r {a},
and equip B with the linear order induced by this linear order on X r {a}.
Prove that if B admits a bijective monotone map onto R, or [0; 1], or [0; 1),
or (0; 1], then this linear order on B does not depend on a.

The construction of 47.O allows one to define an orientation on any 1-
manifold which is a subspace of an oriented closed 1-manifold. A 1-manifold,
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which is a subspace of an oriented non-closed 1-manifold X, inherits from X
an orientation as a linear order. Thus, any 1-manifold, which is a subspace of
an oriented 1-manifold X, inherits from X an orientation. This orientation
is said to be induced by the orientation of X.

A topological embedding X → Y of an oriented 1-manifold to another
one is said to preserve the orientation if it maps the orientation of X to the
orientation induced on the image by the orientation of Y .

47.P. Any two orientation preserving embeddings of an oriented connected
1-manifold X to an oriented connected 1-manifold Y are isotopic.

47.Q. If two embeddings of an oriented 1-manifold X to an oriented 1-
manifold Y are isotopic and one of the embeddings preserves the orientation,
then the other one also preserves the orientation

47.R. [Corollary] Orientation of a closed segment is determined
by the ordering of its end points.

An orientation of a segment is shown by an arrow directed from the
initial end point to the final one.

47.S. A connected 1-manifold admits two orientations. A 1-manifold con-
sisting of n connected components admits 2n orientations.

47◦11. Mapping Class Groups

47.T. Find the mapping class groups of

(1) S1,

(2) R
1,

(3) R1
+,

(4) [0, 1],

(5) S1 ∐ S1,

(6) R
1
+ ∐ R

1
+.

47.1. Find the mapping class group of an arbitrary 1-manifold with finite number
of components.
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48. Two-Dimensional Manifolds: General

Picture

48◦1. Examples

48.A. What connected 2-manifolds do you know?

(1) List closed connected 2-manifold that you know.

(2) Do you know a connected compact 2-manifold, which is not closed?

(3) What non-compact connected 2-manifolds do you know?

(4) Is there a non-compact connected 2-manifolds with non-empty bound-
ary?

48.1. Construct non-homeomorphic non-compact connected manifolds of dimen-
sion two without boundary and with isomorphic infinitely generated fundamental
group.

For notions relevant to this problem see what follows.

48◦2x. Ends and Odds

Let X be a non-compact Hausdorff topological space, which is a union
of an increasing sequence of its compact subspaces

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X.

Each connected component U of X r Cn is contained in some connected
component of X r Cn−1. A decreasing sequence U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ . . .
of connected components of

(X r C1) ⊃ (X r C2) ⊃ · · · ⊃ (X r Cn) ⊃ . . .

respectively is called an end of X with respect to C1 ⊂ · · · ⊂ Cn ⊂ . . . .

48.Ax. Let X and Cn be as above, D be a compact set in X and V a
connected component of XrD. Prove that there exists n such that D ⊂ Cn.

48.Bx. Let X and Cn be as above, Dn be an increasing sequence of compact
sets of X with X = ∪∞

n=1Dn. Prove that for any end U1 ⊃ · · · ⊃ Un ⊃ . . .
of X with respect to Cn there exists a unique end V1 ⊃ · · · ⊃ Vn ⊃ . . . of X
with respect to Dn such that for any p there exists q such that Vq ⊂ Up.

48.Cx. Let X, Cn and Dn be as above. Then the map of the set of ends of
X with respect to Cn to the set of ends of X with respect to Dn defined by
the statement of 48.Bx is a bijection.
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Theorem 48.Cx allows one to speak about ends of X without specifying
a system of compact sets

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ X

with X = ∪∞

n=1Cn. Indeed, 48.Bx and 48.Cx establish a canonical one-to-
one correspondence between ends of X with respect to any two systems of
this kind.

48.Dx. Prove that R1 has two ends, Rn with n > 1 has only one end.

48.Ex. Find the number of ends for the universal covering space of the
bouquet of two circles.

48.Fx. Does there exist a 2-manifold with a finite number of ends which
cannot be embedded into a compact 2-manifold?

48.Gx. Prove that for any compact set K ⊂ S2 with connected complement
S2 r K there is a natural map of the set of ends of S2 r K to the set of
connected components of K.

Let W be an open set of X. The set of ends U1 ⊃ · · · ⊃ Un ⊃ . . . of X
such that Un ⊂W for sufficiently large n is said to be open.

48.Hx. Prove that this defines a topological structure in the set of ends of
X.

The set of ends of X equipped with this topological structure is called
the space of ends of X. Denote this space by E(X).

48.1.1. Construct non-compact connected manifolds of dimension two without
boundary and with isomorphic infinitely generated fundamental group, but with
non-homeomorphic spaces of ends.

48.1.2. Construct non-compact connected manifolds of dimension two without
boundary and with isomorphic infinitely generated fundamental group, but with
different number of ends.

48.1.3. Construct non-compact connected manifolds of dimension two without
boundary with isomorphic infinitely generated fundamental group and the same
number of ends, but with different topology in the space of ends.

48.1.4. Let K be a completely disconnected closed set in S2. Prove that the
map E(S2 rK) → K defined in 48.Gx is continuous.

48.1.5. Construct a completely disconnected closed set K ⊂ S2 such that this
map is a homeomorphism.

48.Ix. Prove that there exists an uncountable family of pairwise nonhome-
omorphic connected 2-manifolds without boundary.
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The examples of non-compact manifolds dimension 2 presented above
show that there are too many non-compact connected 2-manifolds. This
makes impossible any really useful topological classification of non-compact
2-manifolds. Theorems reducing the homeomorphism problem for 2-manifolds
of this type to the homeomorphism problem for their spaces of ends do not
seem to be useful: spaces of ends look not much simpler than the surfaces
themselves.

However, there is a special class of non-compact 2-manifolds, which ad-
mits a simple and useful classification theorem. This is the class of simply

connected non-compact 2-manifolds without boundary. We postpone its
consideration to section 53◦4x. Now we turn to the case, which is the sim-
plest and most useful for applications.

48◦3. Closed Surfaces

48.B. Any connected closed manifold of dimension two is homeomorphic
either to sphere S2, or sphere with handles, or sphere with crosscaps.

Recall that according to Theorem 43.O the basic surfaces represent
pairwise distinct topological (and even homotopy) types. Therefore, 43.O
and 48.B together give topological and homotopy classifications of closed
2-dimensional manifolds.

We do not recommend to have a try at proving Theorem 48.B imme-
diately and, especially, in the form given above. All known proofs of 48.B
can be decomposed into two main stages: firstly, a manifold under con-
sideration is equipped with some additional structure (like triangulation or
smooth structure); then using this structure a required homeomorphism is
constructed. Although the first stage appears in the proof necessarily and
is rather difficult, it is not useful outside the proof. Indeed, any closed
2-manifold, which we meet in a concrete mathematical context, is either
equipped, or can be easily equipped with the additional structure. The
methods of imposing the additional structure are much easier, than a gen-
eral proof of existence for such a structure in an arbitrary 2-manifold.

Therefore, we suggest for the first case to restrict ourselves to the second
stage of the proof of Theorem 48.B, prefacing it with general notions related
to the most classical additional structure, which can be used for this purpose.

48◦4. Compact Surfaces with Boundary

As in the case of one-dimensional manifolds, classification of compact
two-dimensional manifolds with boundary can be easily reduced to the clas-
sification of closed manifolds. In the case of one-dimensional manifolds it
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was very useful to double a manifold. In two-dimensional case there is a con-
struction providing a closed manifold related to a compact manifold with
boundary even closer than the double.

48.C. Contracting to a point each connected component of the boundary of
a two-dimensional compact manifold with boundary gives rise to a closed
two-dimensional manifold.

48.2. A space homeomorphic to the quotient space of 48.C can be constructed
by attaching copies of D2 one to each connected component of the boundary.

48.D. Any connected compact manifold of dimension 2 with nonempty boun-
dary is homeomorphic either to sphere with holes, or sphere with handles and
holes, or sphere with crosscaps and holes.
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49. Triangulations

49◦1. Triangulations of Surfaces

By an Euclidean triangle we mean the convex hall of three non-collinear
points of Euclidean space. Of course, it is homeomorphic to disk D2, but it
is not solely the topological structure that is relevant now. The boundary
of a triangle contains three distinguished points, its vertices, which divide
the boundary into three pieces, its edges. A topological triangle in a topo-
logical space X is an embedding of an Euclidean triangle into X. A vertex
(respectively, edge) of a topological triangle T → X is the image of a vertex
( respectively, edge) of T in X.

A set of topological triangles in a 2-manifold X is a triangulation of X
provided the images of these triangles form a fundamental cover of X and
any two of the images either are disjoint or intersect in a common side or in
a common vertex.

49.A. Prove that in the case of compact X the former condition (about
fundamental cover) means that the number of triangles is finite.

49.B. Prove that the condition about fundamental cover means that the
cover is locally finite.

49◦2. Triangulation as cellular decomposition

49.C. A triangulation of a 2-manifold turns it into a cellular space, 0-cells
of which are the vertices of all triangles of the triangulation, 1-cells are the
sides of the triangles, and 2-cells are the interiors of the triangles.

This result allows us to apply all the terms introduced above for cellu-
lar spaces. In particular, we can speak about skeletons, cellular subspaces
and cells. However,in the latter two cases we rather use terms triangulated
subspace and simplex. Triangulations and terminology related to them ap-
peared long before cellular spaces. Therefore in this context the adjective
cellular is replaced usually by adjectives triangulated or simplicial.

49◦3. Two Properties of Triangulations of Surfaces

49.D Unramified. Let E be a side of a triangle involved into a triangula-
tion of a 2-manifold X. Prove that there exist at most two triangles of this
triangulation for which E is a side. Cf. 44.G, 44.H and 44.P.

49.E Local strong connectedness. Let V be a vertex of a triangle in-
volved into a triangulation of a 2-manifold X and T , T ′ be two triangles
of the triangulation adjacent to V . Prove that there exists a sequence
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T = T1, T2, . . . , Tn = T ′ of triangles of the triangulation such that V is
a vertex of each of them and triangles Ti, Ti+1 have common side for each
i = 1, . . . , n− 1.

49◦4x. Scheme of TriangulationTriangulations
present a surface
combinatorially.

Let X be a 2-manifold and T a triangulation of X. Denote the set of
vertices of T by V . Denote by Σ2 the set of triples of vertices, which are
vertices of a triangle of T . Denote by Σ1 the set of pairs of vertices, which
are vertices of a side of T . Put Σ0 = S. This is the set of vertices of T . Put
Σ = Σ2 ∪ Σ1 ∪ Σ0. The pair (V,Σ) is called the (combinatorial) scheme of
T .

49.Ax. Prove that the combinatorial scheme (V,Σ) of a triangulation of a
2-manifold has the following properties:

(1) Σ is a set consisting of subsets of V ,

(2) each element of Σ consists of at most 3 elements of V ,

(3) three-element elements of Σ cover V ,

(4) any subset of an element of Σ belongs to Σ,

(5) intersection of any collection of elements of Σ belongs to Σ,

(6) for any two-element element of Σ there exist exactly two three-
element elements of Σ containing it.

Recall that objects of this kind appeared above, in Section 23◦3x. Let
V be a set and Σ is a set of finite subsets of V . The pair (V,Σ) is called a
triangulation scheme if

• any subset of an element of Σ belongs to Σ,

• intersection of any collection of elements of Σ belongs to Σ,

• any one element subset of V belongs to Σ.

For any simplicial scheme (V,Σ) in 23◦3x a topological space S(V,Σ)
was constructed. This is, in fact, a cellular space, see 40.Ax.

49.Bx. Prove that if (V,Σ) is the combinatorial scheme of a triangulation
of a 2-manifold X then S(V,Σ) is homeomorphic to X.

49.Cx. Let (V,Σ) be a triangulation scheme such that

(1) V is countable,

(2) each element of Σ consists of at most 3 elements of V ,

(3) three-element elements of Σ cover V ,

(4) for any two-element element of Σ there exist exactly two three-
element elements of Σ containing it
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Prove that (V,Σ) is a combinatorial scheme of a triangulation of a 2-
manifold.

49◦5. Examples

49.1. Consider the cover of torus obtained in the obvious way from the cover of
the square by its halves separated by a diagonal of the square.

Is it a triangulation of torus? Why not?

49.2. Prove that the simplest triangulation of S2 consists of 4 triangles.

49.3*. Prove that a triangulation of torus S1 ×S1 contains at least 14 triangles,
and a triangulation of the projective plane contains at least 10 triangles.

49◦6. Subdivision of a Triangulation

A triangulation S of a 2-manifold X is said to be a subdivision of a
triangulation T , if each triangle of S is contained in some triangle1 of T .
Then S is also called a refinement of T .

There are several standard ways to subdivide a triangulation. Here is
one of the simplest of them. Choose a point inside a triangle τ , call it
a new vertex, connect it by disjoint arcs with vertices of τ and call these
arcs new edges. These arcs divide τ to three new triangles. In the original
triangulation replace τ by these three new triangles. This operation is called
a star subdivision centered at τ . See Figure 1.

τ

Figure 1. Star subdivision centered at triangle τ

.

1Although triangles which form a triangulation of X have been defined as topological em-
beddings, we hope that a reader guess that when one of such triangles is said to be contained in
another one this means that the image of the embedding which is the former triangle is contained
in the image of the other embedding which is the latter.
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49.F. Give a formal description of a star subdivision centered at a triangle
τ . I.e., present it as a change of a triangulation thought of as a collection of
topological triangles. What three embeddings of Euclidean triangles are to
replace τ? Show that the replacement gives rise to a triangulation. Describe
the corresponding operation on the combinatorial scheme.

Here is another subdivision defined locally. One adds a new vertex taken
on an edge ε of a given triangulation. One connects the new vertex by two
new edges to the vertices of the two tringles adjacent to ε. The new edges
divide these triangles, each to two new triangles. The rest of triangles of
the original triangulation are not affected. This operation is called a star
subdivision centered at ε. See Figure 2.

ε

Figure 2. Star subdivision centered at edge ε.

49.G. Give a formal description of a star subdivision centered at edge ε.
What four embeddings of Euclidean triangles are to replace the topological
triangles with edge ε? Show that the replacement gives rise to a triangula-
tion. Describe the corresponding operation on the combinatorial scheme.

49.4. Find a triangulation and its subdivision, which cannot be presented as a
composition of star subdivisions at edges or triangles.

49.5*. Prove that any subdivision of a triangulation of a compact surface can
be presented as a composition of a finite sequences of star subdivisions centered
at edges or triangles and operations inverse to such subdivisions.

By a baricentric subdivision of a triangle we call a composition of a star
subdivision centered at this tringle followed by star subdivisions at each of
its edges. See Figure 3.

Figure 3. Baricentric subdivision of a triangle.
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Baricentric subdivision of a triangulation of 2-manifold is a subdivision
which is a simultaneous baricentric subdivision of all triangles of this trian-
gulation. See Figure 4.

ε

Figure 4. Baricentric subdivision of a triangulation.

49.H. Establish a natural one-to-one correspondence between vertices of a
baricentric subdivision a simplices (i.e., vertices, edges and triangles) of the
original tringulation.

49.I. Establish a natural one-to-one correspondence between triangles of a
baricentric subdivision and triples each of which is formed of a triangle of
the original triangulation, an edge of this triangle and a vertex of this edge.

The expression baricentric subdivision has appeared in a diiferent con-
text, see Section 20. Let us relate the two notions sharing this name .

49.Dx Baricentric subdivision of a triangulation and its scheme.
Prove that the combinatorial scheme of the baricentric subdivision of a tri-
angulation of a 2-manifold coincides with the baricentric subdivision of the
scheme of the original triangulation (see 23◦4x).

49◦7. Homotopy Type of Compact Surface with Non-Empty Bound-

ary

49.J. Any compact connected triangulated 2-manifold with non-empty bound-
ary collapses to a one-dimensional simplicial subspace.

49.K. Any compact connected triangulated 2-manifold with non-empty
boundary is homotopy equivalent to a bouquet of circles.

49.L. The Euler characteristic of a triangulated compact connected 2-
manifold with non-empty boundary does not depend on triangulation. It
is equal to 1−r, where r is the rank of the one-dimensional homology group
of the 2-manifold.

49.M. The Euler characteristic of a triangulated compact connected 2-
manifold with non-empty boundary is not greater than 1.
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49.N. The Euler characteristic of a triangulated closed connected 2-manifold
with non-empty boundary is not greater than 2.

49◦8. Triangulations in dimension one

By an Euclidean segment we mean the convex hall of two different points
of a Euclidean space. It is homeomorphic to I. A topological segment or
topological edge in a topological space X is a topological embedding of an
Euclidean segment into X. A set of topological segments in a 1-manifold X
is a triangulation of X if the images of these topological segments constitute
a fundamental cover of X and any two of the images either are disjoint or
intersect in one common end point.

Traingulations of 1-manifolds are similar to triangulations of 2-manifolds
considered above.

49.O. Find counter-parts for theorems above. Which of them have no
counter-parts? What is a counter-part for the property 49.D? What are
counter-parts for star and baricentric subdivisions?

49.P. Find homotopy classification of triangulated compact 1-manifolds
using arguments similar to the ones from Section 49◦7. Compare with the
topological classification of 1-manifolds obtained in Section 47.

49.Q. What values take the Euler characteristic on compact 1-manifolds?

49.R. What is relation of the Euler characteristic of a compact triangulated
1-manifold X and the number of ∂X?

49.S. Triangulation of a 2-manifold X gives rise to a triangulation of its
boundary ∂X. Namely, the edges of the triangualtion of ∂X are the sides of
triangles of the original triangulation which lie in ∂X.

49◦9. Triangualtions in higher dimensions

49.T. Generalize everything presented above in this section to the case of
manifolds of higher dimensions.
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50. Handle Decomposition

50◦1. Handles and Their Anatomy

Together with triangulations, it is useful to consider representations of
a manifold as a union of balls of the same dimension, but adjacent to each
other as if they were thickening of cells of a cellular space

A space Dp×Dn−p is called a (standard) handle of dimension n and index
p. Its subset Dp×{0} ⊂ Dp×Dn−p is called the core of handle Dp×Dn−p,
and a subset {0} ×Dn−p ⊂ Dp ×Dn−p is called its cocore. The boundary
∂(Dp ×Dn−p) = of the handle Dp ×Dn−p can be presented as union of its
base Dp × Sn−p−1 and cobase Sp−1 ×Dn−p.

50.A. Draw all standard handles of dimensions ≤ 3.

A topological embedding h of the standard handle Dp×Dn−p of dimen-
sion n and index p into a manifold of the same dimansion n is called a handle
of dimension n and index p. The image under h of IntDp× IntDn−p is called
the interior of h, the image of the core h(Dp × {0}) of the standard handle
is called the core of h, the image h({0} ×Dn−p) of cocore, the cocore, etc.

50◦2. Handle Decomposition of Manifold

Let X be a manifold of dimension n. A collecton of n-dimensional han-
dles in X is called a handle decomposition of X, if

(1) the images of these handles constitute a locally finite cover of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of each of the handles is contained in the union of cobases
of the handles of smaller indices.

Let X be a manifold of dimension n with boundary. A collection of
n-dimensional handles in X is called a handle decomposion of X modulo
boundary, if

(1) the images of these handles constitute a locally finite cover of X,

(2) the interiors of these handles are pairwise disjoint,

(3) the base of each of the handles is contained in the union of ∂X and
cobases of the handles of smaller indices.

A composition of a handle h : Dp×Dn−p → X with the homeomorphism
of transposition of the factors Dp ×Dn−p → Dn−p ×Dp turns the handle h
of index p into a handle of the same dimension n, but of the complementary
index n − p. The core of the handle turns into the cocore, while the base,
to cobase.
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50.B. Composing each handle with the homeomorphism transposing the
factors turns a handle decomposition of manifold into a handle decomposi-
tion modulo boundary of the same manifold. Vice versa, a handle decom-
position modulo boundary turns into a handle decomposition of the same
manifold.

Handle decompositions obtained from each other in this way are said to
be dual to each other.

50.C. Riddle. For n-dimensional manifold with boundary split into two
(n−1)-dimensional manifolds with disjoint closures, define handle decompo-
sition modulo one of these manifolds so that the dual handle decomposition
would be modulo the complementary part of the boundary.

50.1. Find handle decompositions with a minimal number of handles for the
following manifolds:

(a) circle S1; (b) sphere Sn; (c) ball Dn

(d) torus S1 × S1; (e) handle; (f) cylinder S1 × I ;
(g) Möbius band; (h) projective plane

RP 2;
(i) projective space

RP n;
(j) sphere with p

handles;
(k) sphere with p

cross-caps;
(l) sphere with n

holes.

50◦3. Handle Decomposition and Triangulation

Let X be a 2-manifold, τ its triangulation, τ ′ its baricentric subdivision,
and τ ′′ the baricentric subdivision of τ ′. For each simplex S of τ denote by
HS the union of all simplices of τ ′′ which contain the unique vertex of τ ′

that lies in
∫

S. Thus, if S is a vertex then HS is the union of all triangles
of τ ′′ containing this vertex, if S is an edge then HS is the union all of the
triangles of τ ′′ which intersect with S but do not contain any of its vertices,
and, finally, if S is a triangle of τ then HS is the union of all triangles of τ ′′

which lie in S but do not intersect its boundary.

50.D Handle Decomposition out of a Triangulation. Sets HS con-
stitute a handle decomposition of X. The index of HS equals the dimension
of S.

50.E. Can every handle decomposition of a 2-manifold be constructed from
a triangulation as indicated in 50.D?

50.F. How to triangulate a 2-manifold which is equipped with a handle
decomposition?
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Figure 5. Construction of a handle decomposition from a triangulation.

50◦4. Regular Neighborhoods

Let X be a 2-manifold, τ its triangulation, and A be a simplicial sub-
space of X. The union of all those simplices of the double baricentric sub-
division τ ′′ of τ which intersect A is called the regular or second baricentric
neighborhood of A (with respect to τ).

Of course, usually regular neighborhood is not open in X, since it is the
union of simplices, which are closed. So, it is a neighborhood of A only in
wide sense (its interior contains A).

50.G. A regular neighborhood of A in X is a 2-manifold. It coincides with
the union of handles corresponding to the simplices contained in A. These
handles constitute a handle decomposition of the regular neighborhood.

50.H Collaps Induces Homemorphism. Let X be a triangulated 2-
manifold and A ⊂ X be its triangulated subspace. If X ց A then X is
homeomorphic to a regular neighborhood of A.

50.I. Any triangulated compact connected 2-manifold with non-empty bound-
ary is homeomorphic to a regular neighborhood of some of its 1-dimensional
triangulated subspaces.

50.J. In a triangulated 2-manifold, any triangulated subspace which is a
tree has regular neighborhood homeomorphic to disk.

50.K. In a triangulated 2-manifold, any triangulated subspace homeomor-
phic to circle has regular neighborhood homeomorphic either to the Möbius
band or cylinder S1 × I.

In the former case the circle is said to be one-sided, in the latter, two-
sided.

50◦5. Cutting 2-Manifold Along a Curve

50.L Cut Along a Curve. Let F be a triangulated surface and C ⊂ F be
a compact one-dimensional manifold contained in the 1-skeleton of F and
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satisfying condition ∂C = ∂F ∩ C. Prove that there exists a 2-manifold T
and surjective map p : T → F such that:

(1) p| : T r p−1(C) → F r C is a homeomorphism,

(2) p| : p−1(C) → C is a two-fold covering.

50.M Uniqueness of Cut. The 2-manifold T and map p which exist
according to Theorem 50.L, are unique up to homeomorphism: if T̃ and
p̃ are other 2-manifold and map satisfying the same hypothesis then there
exists a homeomorphism h : T̃ → T such that p ◦ h = p̃.

The 2-manifold T described in 50.L is called the result of cutting of F
along C. It is denoted by F C. This is not at all the complement F rC,
although a copy of F rC is contained in F C as a dense subset homotopy
equivalent to the whole F C.

50.N Triangulation of Cut Result. F C possesses a unique triangu-
lation such that the natural map F C → F maps homeomorphically edges
and triangles of this triangulation onto edges and, respectivly, triangles of
the original triangulation of F .

50.O. Let X be a triangulated 2-manifold, C be its triangulated subspace
homeomorphic to circle, and let F be a regular neighborhood of C in X.
Prove

(1) F C consists of two connected components, if C is two-sided on
X, it is connected if C is one-sided;

(2) the inverse image of C under the natural map X C → X consists
of two connected components if C is two-sided on X, it is connected
if C is one-sided on X.

This proposition discloses the meaning of words one-sided and two-sided

circle on a 2-manifold. Indeed, both connected components of the result of
cutting of a regular neighborhood, and connected components of the inverse
image of the circle can claim its right to be called a side of the circle or a
side of the cut.

50.2. Describe the topological type of F C for the following F and C:

(1) F is sphere S2, and C is its equator;
(2) F is a Möbius strip, and C is its middle circle (deformation retract);
(3) F = S1 × S1, C = S1 × 1;
(4) F is torus S1 × S1 standardly embedded into R

3, and C is the trefoil
knot lying on F , that is {(z, w) ∈ S1 × S1 | z2 = w3};

(5) F is a Möbius strip, C is a segment: findtwo topologically different

position of C on F and describe F C for each of them;

(6) F = RP 2, C = RP 1.
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(7) F = RP 2, C is homeomorphic to circle: find two topologically different

position C on F and describe F C for each of them.

50.P Euler Characteristic and Cut. Let F be a triangulated compact
2-manifold and C ⊂

∫

F be a closed one-dimensional contained in the 1-
skeleton of the triangulation of F . Then χ(F C) = χF .

50.Q. Find the Euler characteristic of F C, if ∂C 6= ∅.

50.R Generalized Cut (Incise). Let F be a triangulated 2-manifold and
C ⊂ F be a compact 1-dimensional manifold contained in 1-skeleton of F
and satisfying condition ∂F ∩C ⊂ ∂C. Let D = Cr (∂Cr∂F ). Prove that
there exist a 2-manifold T and sujective continuous map p : T → F such
that:

(1) p| : T r p−1(D) → F rD is a homeomorphism,

(2) p| : p−1(D) → D is a two-fold covering.

50.S Uniqueness of Cut. The 2-manifold T and map p, which exist
according to Theorem 50.R, ae unique up to homeomorphism: if T̃ and
p̃ are other 2-manifold and map satisfying the same hypothesis then there
exists a homeomorphism h : T̃ → T such that p ◦ h = p̃.

The 2-Manifold T described in 50.R is also called the result of cutting
of F along C and denoted by F C.

50.3. Show that if C is a segment contained in the interior of a 2-manifold F then
F C is homeomorphic to F r IntB, where B is the subset of

R

F homeomorphic
to disk.

50.4. Show that if C is a segment such that one of its end points is in
R

F and

the other one is on ∂F then F C is homeomorphic to F .

50◦6. Orientations

Recall that an orientation of a segment is a linear order of the set of its
points. It is determined by its restriction to the set of its end points, see
47.R. To describe an orientation of a segment it suffices to say which of its
end points is initial and which is final.

Similarly, orientation of a triangle can be described in a number of ways,
each of which can be chosen as the definition. By an orientation of a triangle
one means a collection of orientations of its edges such that each vertex of the
triangle is the final point for one of the edges adjacent to it and initial point
for the other edge. Thus, an orientation of a triangle defines an orientation
on each of its sides.

A segment admits two orientations. A triangle also admits two orien-
tations: one is obtained from another one by change of the orientation on
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each side of the triangle. Therefore an orientation of any side of a triangle
defines an orientation of the triangle.

Vertices of an oriented triangle are cyclicly ordered: a vertex A follows
immediately the vertex B which is the initial vertex of the edge which finishes
at A. Similarly the edges of an oriented triangle are cyclicly ordered: a side
a follows immediately the side b which final end point is the initial point of
a.

Vice versa, each of these cyclic orders defines an orientation of the tri-
angle.

An orientation of a triangulation of a 2-manifold is a collection of ori-
entations of all triangles constituting the triangulation such that for each
edge the orientations defined on it by the orientations of the two adjacent
triangles are opposite to each other. A triangulation is said to be orientable,
if it admits an orientation.

50.T Number of Orientations. A triangulation of a connected 2-manifold
is either non-orientable or admits exactly two orientations. These two ori-
entations are opposite to each other. Each of them can be recovered from
the orientation of any triangle involved in the triangulation.

50.U Lifting of Triangulation. Let B be a triangulated surface and
p : X → B be a covering. Can you equip X with a triangulation?

50.V Lifting of Orientation. Let B be an oriented triangulated surface
and p : X → B be a covering. Equip X with a triangulation such that p
maps each simplex of this triangulation homeomorphically onto a simplex
of the original triangulation of B. Is this triangulation orientable?

50.W. Let X be a triangulated surface, C ⊂ X be a 1-dimensional manifold
contained in 1-skeleton of X. If the triangulation of X is orientable, then C
is two-sided.
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51. Topological Classification of Compact

Triangulated 2-Manifolds

51◦1. Spines and Their Regular Neighborhoods

Let X be a triangulated compact connected 2-manifold with non-empty
boundary. A simplicial subspace S of the 1-skeleton of X is a spine of X if
X collapses to S.

51.A. Let X be a triangulated compact connected 2-manifold with non-
empty boundary. Then a regular neighborhood of its spine is homeomorphic
to X.

51.B Corollary. A triangulated compact connected 2-manifold with non-
empty boundary admits a handle decomposition without handles of index 2.

A spine of a closed connected 2-manifold is a spine of this manifold with
an interior of a triangle from the triangulation removed.

51.C. A triangulated closed connected 2-manifold admits a handle decom-
position with exactly one handle of index 2.

51.D. A spine of a triangulated closed connected 2-manifold is connected.

51.E Corollary. The Euler characteristic of a closed connected triangu-
lated 2-manifold is not greater than 2. If it is equal to 2, then the 2-manifold
is homeomorphic to S2.

51.F Corollary: Extremal Case. Let X be a closed connected triangu-
lated 2-manifold X. If χ(X) = 2, then X is homeomorphic to S2.

51◦2. Simply connected compact 2-manifolds

51.G. A simply connected compact triangulated 2-manifold with non-empty
boundary collapses to a point.

51.H Corollary. A simply connected compact triangulated 2-manifold with
non-empty boundary is homeomorphic to disk D2.

51.I Corollary. Let X be a compact connected triangulated 2-manifold X
with ∂X 6= ∅. If χ(X) = 1, then X is homeomorphic to D2.

51◦3. Splitting off crosscaps and handles

51.J. A non-orientable triangulated 2-manifold X is a connected sum of
RP 2 and a triangulated 2-manifold Y . If X is connected, then Y is also
connected.
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51.K. Under conditions of Theorem 51.J, ifX is compact then Y is compact
and χ(Y ) = χ(X) + 1.

51.L. If on an orientable connected triangulated 2-manifold X there is a
simple closed curve C contained in the 1-skeleton of X such that X r C
is connected, then C is contained in a simplicial subspace H of X homeo-
morphic to torus with a hole and X is a connected sum of a torus and a
triangulated connected orientable 2-manifold Y .

If X is compact, then Y is compact and χ(Y ) = χ(X) + 2.

51.M. A compact connected triangulated 2-manifold with non-empty con-
nected boundary is a connected sum of a disk and some number of copies of
the projective plane and/or torus.

51.N Corollary. A simply connected closed triangulated 2-manifold is home-
omorphic to S2.

51.O. A compact connected triangulated 2-manifold with non-empty bound-
ary is a connected sum of a sphere with holes and some number of copies of
the projective plane and/or torus.

51.P. A closed connected triangulated 2-manifold is a connected sum of
some number of copies of the projective plane and/or torus.

51◦4. Splitting of a Handle on a Non-Orientable 2-Manifold

51.Q. A connected sum of torus and projective plane is homeomorphic to a
connected sum of three copies of the projective plane.

51.Q.1. On torus there are 3 simple closed curves which meet at a single point
transversal to each other.

51.Q.2. A connected sum of a surface S with RP 2 can be obtained by deleting
an open disk from S and identifying antipodal points on the boundary of the
hole.

51.Q.3. On a connected sum of torus and projective plane there exist three
disjoint one-sided simple closed curves.

51◦5. Final Formulations

51.R. Any connected closed triangulated 2-manifold is homeomorphic either
to sphere, or sphere with handles, or sphere with crosscaps.

51.S. Any connected compact triangulated 2-manifold with non-empty bound-
ary is homeomorphic either to sphere with holes, or sphere with holes and
handles, or sphere with holes and crosscaps.
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51.1. Find the place for the Klein Bottle in the above classification.

51.2. Prove that any closed triangulated surface with non-orientable triangulation
is homeomorphic either to projective plane number of handles or Klein bottle with
handles. (Here the number of handles is allowed to be null.)



52. Cellular Approach to Classification 355

52. Cellular Approach to Topological

Classification of Compact surfaces

In this section we consider another, more classical and detailed solution
of the same problem. We classify compact triangulated 2-manifolds in a
way which provides also an algorithm building a homeomorphism between
a given surface and one of the standard surfaces.

52◦1. Families of Polygons

Triangulations provide a combinatorial description of 2-dimensional man-
ifolds, but this description is usually too bulky. Here we will study other,
more practical way to present 2-dimensional manifolds combinatorially. The
main idea is to use larger building blocks.

Let F be a collection of convex polygons P1, P2, . . . . Let the sides of these
polygons be oriented and paired off. Then we say that this is a family of
polygons. There is a natural quotient space of the sum of polygons involved
in a family: one identifies each side with its pair-mate by a homeomorphism,
which respects the orientations of the sides. This quotient space is called
just the quotient of the family.

52.A. Prove that the quotient of the family of polygons is a 2-manifold
without boundary.

52.B. Prove that the topological type of the quotient of a family does not
change when the homeomorphism between the sides of a distinguished pair
is replaced by other homeomorphism which respects the orientations.

52.C. Prove that any triangulation of a 2-manifold gives rise to a family of
polygons whose quotient is homeomorphic to the 2-manifold.

A family of polygons can be described combinatorially: Assign a letter
to each distinguished pair of sides. Go around the polygons writing down
the letters assigned to the sides and equipping a letter with exponent −1 if
the side is oriented against the direction in which we go around the polygon.
At each polygon we write a word. The word depends on the side from which
we started and on the direction of going around the polygon. Therefore it
is defined up to cyclic permutation and inversion. The collection of words
assigned to all the polygons of the family is called a phrase associated with
the family of polygons. It describes the family to the extend sufficient to
recovering the topological type of the quotient.

52.1. Prove that the quotient of the family of polygons associated with phrase
aba−1b−1 is homeomorphic to S1 × S1.
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52.2. Identify the topological type of the quotient of the family of polygons asso-
ciated with phrases

(1) aa−1;
(2) ab, ab;
(3) aa;
(4) abab−1;
(5) abab;
(6) abcabc;
(7) aabb;

(8) a1b1a
−1

1 b−1

1 a2b2a
−1

2 b−1

2 . . . agbga−1
g b−1

g ;
(9) a1a1a2a2 . . . agag.

52.D. A collection of words is a phrase associated with a family of polygons,
iff each letter appears twice in the words.

A family of polygons is called irreducible if the quotient is connected.

52.E. A family of polygons is irreducible, iff a phrase associated with it
does not admit a division into two collections of words such that there is no
letter involved in both collections.

52◦2. Operations on Family of Polygons

Although any family of polygons defines a 2-manifold, there are many
families defining the same 2-manifold. There are simple operations which
change a family, but do not change the topological type of the quotient of
the family. Here are the most obvious and elementary of these operations.

(1) Simultaneous reversing orientations of sides belonging to one of the
pairs.

(2) Select a pair of sides and subdivide each side in the pair into two
sides. The orientations of the original sides define the orderings of
the halves. Unite the first halves into one new pair of sides, and
the second halves into the other new pair. The orientations of the
original sides define in an obvious way orientations of their halves.
This operation is called 1-subdivision. In the quotient it effects in
subdivision of a 1-cell (which is the image of the selected pair of
sides) into two 1-cells. This 1-cells is replaced by two 1-cells and
one 0-cell.

(3) The inverse operation to 1-subdivision. It is called 1-consolidation.

(4) Cut one of the polygons along its diagonal into two polygons. The
sides of the cut constitute a new pair. They are equipped with
an orientation such that gluing the polygons by a homeomorphism
respecting these orientations recovers the original polygon. This
operation is called 2-subdivision. In the quotient it effects in subdi-
vision of a 2-cell into two new 2-cells along an arc whose end-points
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are 0-cells (may be coinciding). The original 2-cell is replaced by
two 2-cells and one 1-cell.

(5) The inverse operation to 2-subdivision. It is called 2-consolidation.

52◦3. Topological and Homotopy Classification of Closed Surfaces

52.F Reduction Theorem. Any finite irreducible family of polygons can
be reduced by the five elementary operations to one of the following standard
families:

(1) aa−1

(2) a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g

(3) a1a1a2a2 . . . agag for some natural g.

52.G Corollary, see 51.R. Any triangulated closed connected manifold
of dimension 2 is homeomorphic to either sphere, or sphere with handles,
or sphere with crosscaps.

Theorems 52.G and 43.O provide classifications of triangulated closed
connected 2-manifolds up to homeomorphisms and homotopy equivalence.

52.F.1 Reduction to Single Polygon. Any finite irreducible family of poly-
gons can be reduced by elementary operations to a family consisting of a single
polygon.

52.F.2 Cancellation. A family of polygons corresponding to a phrase con-
taining a fragment aa−1 or a−1a, where a is any letter, can be transformed by
elementary operations to a family corresponding to the phrase obtained from
the original one by erasing this fragment, unless the latter is the whole original
phrase.

52.F.3 Reduction to Single Vertex. An irreducible family of polygons can
be turned by elementary transformations to a polygon such that all its vertices
are projected to a single point of the quotient.

52.F.4 Separation of Crosscap. A family corresponding to a phrase con-
sisting of a word XaY a, where X and Y are words and a is a letter, can be
transformed to the family corresponding to the phrase bbY −1X .

52.F.5. If a family, whose quotient has a single vertex in the natural cell
decomposition, corresponds to a phrase consisting of a word XaY a−1, where X
and Y are nonempty words and a is a letter, then X = UbU ′ and Y = V b−1V ′.

52.F.6 Separation of Handle. A family corresponding to a phrase consisting
of a word UbU ′aV b−1V ′a−1, where U , U ′, V , and V ′ are words and a, b are
letters, can be transformed to the family presented by phrase dcd−1c−1UV ′V U ′.

52.F.7 Handle plus Crosscap Equals 3 Crosscaps. A family correspond-
ing to phrase aba−1b−1ccX can be transformed by elementary transformations
to the family corresponding to phrase abdbadX .
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53. Recognizing Closed Surfaces

53.A. What is the topological type of the 2-manifold, which can be obtained
as follows: Take two disjoint copies of disk. Attach three parallel strips con-
necting the disks and twisted by π. The resulting surface S has a connected
boundary. Attach a copy of disk along its boundary by a homeomorphism
onto the boundary of the S. This is the space to recognize.

53.B. Euler characteristic of the cellular space obtained as quotient of a
family of polygons is invariant under homotopy equivalences.

53.1. How can 53.B help to solve 53.A?

53.2. Let X be a closed connected surface. What values of χ(X) allow to recover
the topological type of X? What ambiguity is left for other values of χ(X)?

53◦1. Orientations

By an orientation of a polygon one means orientation of all its sides such
that each vertex is the final end point for one of the adjacent sides and initial
for the other one. Thus an orientation of a polygon includes orientation of
all its sides. Each segment can be oriented in two ways, and each polygon
can be oriented in two ways.

An orientation of a family of polygons is a collection of orientations of
all the polygons comprising the family such that for each pair of sides one
of the pair-mates has the orientation inherited from the orientation of the
polygon containing it while the other pair-mate has the orientation opposite
to the inherited orientation. A family of polygons is said to be orientable if
it admits an orientation.

53.3. Which of the families of polygons from Problem 52.2 are orientable?

53.4. Prove that a family of polygons associated with a word is orientable iff each
letter appear in the word once with exponent −1 and once with exponent 1.

53.C. Orientability of a family of polygons is preserved by the elementary
operations.

A surface is said to be orientable if it can be presented as the quotient
of an orientable family of polygons.

53.D. A surface S is orientable, iff any family of polygons whose quotient
is homeomorphic to S is orientable.

53.E. Spheres with handles are orientable. Spheres with crosscaps are not.
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53◦2. More About Recognizing Closed Surfaces

53.5. How can the notion of orientability and 53.C help to solve 53.A?

53.F. Two closed connected manifolds of dimension two are homeomorphic
iff they have the same Euler characteristic and either are both orientable or
both non-orientable.

53◦3. Recognizing Compact Surfaces with Boundary

53.G. Riddle. Generalize orientabilty to the case of nonclosed manifolds
of dimension two. (Give as many generalization as you can and prove that
they are equivalent. The main criterium of success is that the generalized
orientability should help to recognize the topological type.)

53.H. Two compact connected manifolds of dimension two are homeomor-
phic iff they have the same Euler characteristic, are both orientable or both
nonorientable and their boundaries have the same number of connected com-
ponents.

53◦4x. Simply Connected Surfaces

53.Ax Theorem∗. Any simply connected non-compact manifold of dimen-
sion two without boundary is homeomorphic to R

2.

53◦4x.1. Any simply connected triangulated non-compact manifold without
boundary can be presented as the union of an increasing sequence of compact
simplicial subspaces C0 ⊃ C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ . . . such that each of them is
a 2-manifold with boundary and IntCn ⊂ Cn+1 for each n.

53◦4x.2. Under conditions of 53◦4x.1 the sequence Cn can be modified in such
a way that each Cn becomes simply connected.

53.Bx Corollary. The universal covering of any surface with empty bound-
ary and infinite fundamental group is homeomorphic to R2.
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Proofs and Comments

47.A Indeed, any 0-dimensional manifold is just a countable discrete
topological space, and the only topological invariant needed for topological
classification of 0-manifolds is the number of points.

47.B Each manifold is the sum of its connected components.

47.C

(1) S1,

(2) I,

(3) R, R+,

(4) R+.

47.D

Manifold X Is X compact? Is ∂X empty?

S1 + +

R1 − +

I + −
R

1
+ − −

48.Fx Yes, for example, a plane with infinite number of handles.

49.Q All non-negative inetegers.

49.R χ(X) = 1
2χ(∂X) = 1

2 ♯(∂X). To prove this, consider double DX
of X, and observe that χ(DX) = 2χ(X) − χ(∂X), while χ(DX) = 0, since
DX is a closed 1-manifold.

50.V Yes, it is orientable. An orientation can be obtain by taking on
each triangle of X the orientation which is mapped by p to the orientation
of its image.

51.Q.1 Represent the torus as the quotient space of the unit square.
Take the images of a diagonal of the square and the two segments connecting
the midpoints of the opposite sides of the square.



Chapter XII

Surfaces Beyond

Classification

In most of the textbooks which present topological classification of compact
surfaces the classification is the top result. However the topology of 2-
manifolds does not stop, but rather begins with it. Below we discuss few
topics which are not included usually.

361
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54. Curves and Graphs on Surfaces

54◦1. Genus of Surface

In mathematical literature one of the most frequently mentioned in-
variants of compact 2-manifolds cannot be seriously discussed without the
classification theorem, although it was introduced by Riemann before the
was formulated.

The genus of a surface X is the maximal number of disjoint simple closed
curves C1, . . . , Cg on X which do not divide X (i.e., such that X r ∪gi=1Ci
is connected). The genus of X is denoted by g(X).

In what follows we assume all the surfaces triangulated and curves sim-
plicial. Let us calculate genus for closed surfaces.

54.A Genus of Sphere with Handles. The genus of sphere with h han-
dles is h.

54.A.1. Find h disjoint simple closed curves which do not divide a sphere with
h handles.

54.A.2. Cutting an orientable 2-manifold along a system of k disjoint simple
closed curves creates 2k new connected components of the boundary and does
not change the Euler characteristic.

54.A.3. Attaching a disk to a 2-manifold along a boundary component home-
omorphic to S1 by a homeomorphism of the boundary circle of the disk to the
boundary component increases the Euler characteristic of the surface by 1.

54.A.4. The Euler characteristic of a closed connected surface cannot be greater
than 2.

54.B Genus of Sphere with Crosscaps. The genus of sphere with h
crosscaps is h.

54.B.1. Find h disjoint simple closed curves which do not divide a sphere with
h crosscaps.

54.B.2. Cutting a 2-manifold along a collection of k disjoint one-sided simple
closed curves creates k new connected components of the boundary and does
not change the Euler characteristic.

54.1. A collection of k disjoint simple closed curves on a connected 2-manifold of
genus g divides the 2-manifold to at least max(1, k − g + 1) connected pieces.

54.2. To what number of connected pieces does a collection of disjoint simple
closed curves can divide a connected 2-manifold of genus g, if the collection consists
of p two-sided and q one-sided curves?
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54◦2x. Polygonal Jordan, Schönflies and Annulus Theorems

The following two famous theorems which in a simplicial case are straight-
forward corollaries of the topological classification of compact 2-manifolds.

54.Ax Jordan Theorem. The complement of any simple close curve on
the plane consists of two connected components.

54.Bx Schönflies Theorem. Under conditions of the Jordan Theorem the
closure of one of the components of the compliment is homeomorphic to D2,
the other one is homeomorphic to D2

r 0.

Without assumption of simpliciality of the simple closed curve these
theorems can be deduced from their simplicial versions and appropriate
versions of approximation theorems, or can be proven independently. The
simplest proof of the general Schönflies Theorem is based on the Riemann
mapping theorem.

Information: Jordan Theorem is a very special corollary of gen-
eral homological duality theorems (Alexander duality). Its straightforward
generalizations hold true in higher dimensions.

Schönflies Theorem is much more delicate. Its literal generalizations
without additional assumptions just in general topological setup do not hold
true in dimensions ≥ 3. For any n ≥ 3 there is a topological embedding
i : Sn−1 → R

n such that none of the connected components of R
n

r i(Sn−1)
is simply connected. The first examples of this kind were constructed by
J. W. Alexander, they are known as Alexander horned spheres.

Here is another classical theorem of the same flavor. As for the Jordan
and Schönflies theorems, the tools provided by the material given above
allows one to prove only its simplicial version, although a they hold true as
formulated below, without any assumption of triangulability.

54.Cx Annulus Theorem. For any two disjoint simple closed curves A
and B on S2, the complement S2

r (A ∪ B) consists of three connected
components. The closure of one of them is homeomorphic to the annulus
S1 × I, the closures of the others are homeomorphic to disk D2.

54◦3x. Planarity of Graphs

A one-dimensional cellular space is planar if it can be embedded to R
2.

54.Dx. A one-dimensional cellular space is planar iff it can be embedded
to S2.

54.1x. Find a non-planar 1-dimensional cellular space.

Denote by Gn a one-dimensional cellular space formed by n vertices
and

(

n
2

)

edges, with an edge connecting each pair of vertices. This space is
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called a complete graph with n vertices. This is the 1-skeleton of an (n− 1)-
dimensional simplex.

54.Ex. Space Gn is planar iff n ≤ 4.

54.Ex.1. G4 is planar. Any its topological embedding to S2 is equivalent to
the embedding of 1-skeleton to 2-skeleton of a tetrahedron.

Denote byGm,n a one-dimensional cellular space formed bym+n vertices
divided to two sets consisting of m and n vertices respectively, in which any
vertex from one set connected with a single edge to each vertex of another
one, while no vertices of the same set are connected with an edge.

54.Fx. G3,3 is not a planar graph.

54.Fx.1. G3,2 is a planar graph. Any two its topological embeddings to S2 are
equivalent.

54.2x. Which Gm,n are planar, which are not?

54.Gx Kuratowski Theorem*. A one-dimensional cellular space X is
not a planar graph iff either G5 or G3,3 can be embedded to X.

54.3x. Does there exist a connected 2-manifold U such that any connected finite
1-dimensional cellular space can be topologically embedded to U?

54.4x. Does there exist a connected compact 2-manifold U such that any con-
nected finite 1-dimensional cellular space can be topologically embedded to U?

54.5x. Find a 1-dimensional cellular space which is not embeddable to torus S1 ×
S1.
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55x. Coverings and Branched Coverings

55◦1x. Finite Coverings of Closed Surfaces

For which closed connected 2-manifoldsX and Y does there exist a covering
X → Y ?

55.Ax Revise and Recollect. We have done some steps towards solution
of this problem. Examine the material above and find relevant results.

55.Bx Coverings of Torus. Any covering space of torus S1 × S1 with
finite number of sheets is homeomorphic to S1 ×S1. There exists a covering
S1 × S1 → S1 × S1 with any finite number of sheets.

55.Cx Euler Characteristic of Covering Space. If X and Y are finite
simplicial spaces and X → Y is a simplicial map which is an n-fold covering,
then χ(X) = nχ(Y ).

55.Dx Coverings of Orientable Closed Surface. Let X and Y be closed
connected orientable triangulated 2-manifolds. Covering X → Y exits iff
χ(X) divides χ(Y ).

55.1x. Let X and Y be closed connected orientable triangulated 2-manifolds with
χ(Y ) = dχ(X). Prove that there exist a regular d-fold covering X → Y in a
narrow sense with the automorphism group Zd.

55.2x. Let X and Y be closed connected orientable triangulated 2-manifolds and
p, q : X → Y be regular coverings (in narrow sense) with the automorphism group
Zd. Then there exist homeomorphisms f : X → X and g : Y → Y such that
q ◦ f = g ◦ p, that is the diagram

X
f

−−−−−→ X

p

?

?

y

?

?

y

q

Y
g

−−−−−→ Y

is commutative.

55.3x. Find regular coverings p, q : X → Y in narrow sense with the same number
of sheets, where X and Y are orientable closed connected 2-manifolds, for which
there exist no homeomorphisms f : X → X and g : Y → Y with q ◦ f = g ◦ p.
What is the minimal possible number of sheets?

55.Ex Corollary. Sphere with two handles does not cover any orientable
closed surface.

55.4x. Does sphere with two handles cover a non-orientable closed surface?

Let X be a triangulated 2-manifold. For any triangle τ of its triangula-
tion consider two copies of τ equipped with orientations opposite each other.
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These copies are marked by the orientations, so we may think about them as
about pairs (τ, o1) and (τ, o2), where oi is an orientation of τ , but we rather
need to think about them as about duplicates of the triangles marked with
the orientations.

Let us factorize the sum of all these duplicates according to the fol-
lowing rule: we identify sides of duplicates of two triangles if the sides are
dupplicates of the same edge in X and the orientations associated with the
duplicates of the triangles induce opposite orientations on the side. Denote
the quotient space byXor (warning: this notation is not commonly accepted,
but a commonly accepted notation does not exist). The identity maps of
the copies of triangles to the original triangles induce map Xor → X. It is
called orientation covering of X. See Figure 1.

decompose to triangles

by orienting

duplicate

covering

orientation

triangulated surface sum of triangles

sum of oriented triangles

surface

oriented triangulated

glue back according

to the orientations

data:

result:

result:

Figure 1. Construction of the orientation covering.

55.Fx Theorem on Orientation Covering. For any triangulated 2-
manifold X the construction above gives an oriented triangulated 2-manifold
Xor and a 2-fold covering Xor → X. The non-trivial automorphism of this
covering reverses the orientation.

55.Gx Orientability Versus Orientation Covering. A triangulated 2-
manifold is orientable iff its orientation covering is trivial.

55.Hx. Any covering p : X → B of a non-orientable connected triangulated
2-manifold B with orientable covering space X can be factorize through the



55x. Coverings and Branched Coverings 367

orientation covering of B: there exists a covering q : X → Bor such that the

composition X
q→ Bor → B is p : X → B.

55.Ix Corollary. Let X be an orientable closed connected 2-manifold and
Y be a non-orientable closed connected 2-manifold. There exists a covering
X → Y iff χ(X) divides 2χ(Y ).

55.Jx. Let X and Y be non-orientable closed connected 2-manifolds. There
exists a covering X → Y iff χ(X) divides χ(Y ).

55.Jx.1. There is a covering of Klein bottle by itself with any number of sheets.

55◦2x. Branched Coverings

The notion of branched covering is more general and more classical than
the notion of covering. Branched coverings are not that useful for calculation
of fundamental groups and higher homotopy groups. This is why it would
be pointless to study them in part 2 of this book, where the main goal was
to calculate fundamental groups.

Let U and V be 2-manifolds and m a natural number. A map p : V → U
is called a model m-fold branched covering , if there exist homeomorphisms
g : U → C and h : V → C such that h ◦ p ◦ h−1(z) = zm.

A map p : Y → X is called a branched covering , if for any a ∈ X there
exists a neighborhood U of a in X such that p−1(U) is the union of disjoint
open sets Vα such that for each α the submap Vα → U of p : Y → X is
a standard branched covering. The manifold X is called the base of the
branched covering p : Y → X and Y the covering space. A point of the base
is called branch point, if among model branched coverings of its neighborhood
there is an m-fold covering with m > 1.

55.Kx. A branched covering without branch points is a covering.

Branched coverings appear first in Complex Analysis. The following
theorem provides a good reason for this.

55.Lx. For any analytic function f : C → C with f(a) = b there exist
neighborhoods U and V of a and b, respectively, and homeomorphisms α :
U → D2 and β : V → D2 such that β ◦f ◦α−1(z) = zm for some natural m.

55.Mx Corollary 1. Any non-constant complex polynomial p in one vari-
able defines a branched covering C → C.

55.Nx Corollary 2. Let X and Y be closed complex 1-manifolds (closed
Riemann surfaces). Any holomorphic map Y → X is a branched covering.

A branched covering without branch points is a covering.
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Proofs and Comments

54.A.1 Is the collection of one meridian curve taken from each handle
good for this?

54.B.1 Is the collection of one middle one-sided curve taken from each
crosscap good for this?

55.Ax According to the solution of Problem 50.V, if Y is orientable
than X is orientable, too. By Theorem 39.A, π1(X) is isomorphic to a
subgroup of π1(Y ). Since X is closed, it is compact and hence the fiber of a
covering, being a discrete subspace of a compact Hausdorff space X should
be finite. Therefore, by Theorem 39.G, the subgroup of π1(Y ) isomorphic
to π1(X) has a finite index. Vice versa, according to Theorems 45.M and
39.Dx, for any subgroup G ⊂ π1(Y ) of finite index there exists a covering
X → Y with π1(X) isomorphic to G.

55.Bx Among closed surfaces only torus has commutative fundamental
group. Therefore only torus can cover torus. The map

S1 × S1 → S1 × S1 : (z,w) 7→ (zn, w)

is an n-fold covering.

55.Dx It follows from Theorem . Set d = χ(X) : χ(Y ).
Represent Y as a connected sum of torus with some other closed surface.
I.e., find a simple closed curve on Y which divides Y into a handle H and a
disk with handles D. Take a d-fold covering of H (say, the one induced by a
d-fold covering of the torus which is obtained from H by attaching a disk to
the boundary). The covering space has d boundary components. Fill each
of them with a copy of D and extend the covering by the homeomorphisms
of these copies to D. Calculate the Euler characteristic of the covering
space. It equals χ(X). Since the covering space and X are orientable closed
connected orientable 2-surfaces with the same Euler characteristic, they are
homeomorphic.

55.Jx See Theorem 54◦1. A non-orientable closed con-
nected 2-manifold either is homeomorphic to RP 2 or is a connected sum of
the Klein bottle with some closed non-orientable manifold. If Y is homeo-
morphic to RP 2, then χ(Y ) = 1 and χ(X) = 1. Hence Y is homeomorphic
to RP 2 and for the covering one can take the identity map. For the other
cases, it suffices to construct a covering of Klein bottle by itself with any
natural number of sheets.
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56x. One-Dimensional Homology and

Cohomology

56◦1x. Why and What for

Sometimes the fundamental group contains too much information to deal
with, and it is handy to ignore a part of this information. A regular way
to do this is to use instead of the fundamental group some of its natural
quotient groups. One of them, the abelianized fundamental group, was
introduced and used in Section 43 to prove, in particular, that spheres with
different numbers of handles are not homotopy equivalent, see Problems
43.M, 43.M.1-43.N.1 and 43.O.

In this Section we will study the one-dimensional homology and its clos-
est relatives. Usually they are studied in the framework of homology theory
together with their high-dimensional generalizations. This general theory
requires much more algebra and takes more time and efforts. On the other
hand, one-dimensional case is useful on its own, involves a lot of specific
details and provides a geometric intuition, which is useful, in particular, for
studying the high-dimensional homology.

369
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56◦2x. One-Dimensional Integer Homology

Recall that for a path-connected space X the abelianized fundamental
group of X is called its one-dimensional homology group and denoted by
H1(X). If X is an arbitrary topological space then H1(X) is the direct sum
of the one-dimensional homology groups of all the connected components of
X.

56.1x. Find H1(X) for the following spaces

(1) Möbius strip,
(2) handle,
(3) sphere with p handles and r holes,
(4) sphere with p crosscaps r holes,
(5) the complement in R

3 of the circles {(x, y, z) ∈ R
3 | z = 0, x2 + y2 = 1}

and {(x, y, z) ∈ R
3 | x = 0, z2 + (y − 1)2 = 1},

(6) the complement in R
3 of the circles {(x, y, z) ∈ R

3 | z = 0, x2 + y2 = 1}
and {(x, y, z) ∈ R

3 | z = 1, x2 + y2 = 1},

The name of H1(X) appears often with the adjective integer or expres-
sion with coefficients in Z, so it comes as one-dimensional integer homology
group of X, or one-dimensional homology group of X with coefficients in Z.
This is done to distinguish H1(X) from its genegalizations, one-dimensional
homology groups with coefficients in any abelian group G. The case of
G = Z2 is considered below, but we will not study these generalizations in
full generality.

The group operation in H1(X) (as well as in other homology groups) is
written additively and called addition. Thus the product of loops represents
the sum of the homology classes represented by the loops multiplied.

Few more new words. An element of a homology group is called a
homology class. The homology classes really admit several interpretations as
equivalence classes of objects of various nature. For example, according to
the definition we start with, a homology class is a coset consisting of elements
of the fundamental group. In turn, each element of the fundamental group
consists of loops. Thus, we can think of a homology class as of a set of loops.

56◦3x. Null-Homologous Loops and Disks with Handles

A loop which belongs to the zero homology class is said to be null-
homologous. Loops, which belong to the same homology class, are said to
be homologous to each other.

56.Ax Null-Homologous Loop. Let X be a topological space. A circular
loop s : S1 → X is null-homologous, iff there exist a continuous map f of
a disk D with handles (i.e., a sphere with a hole and handles) to X and a
homeomorphism h of S1 onto the boundary circle of D such that f ◦ h = s.
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56.Ax.1. In the fundamental group of a disk with handles, a loop, whose homo-
topy class generates the fundamental group of the boundary circle, is homotopic
to a product of commutators of meridian and longitude loops of the handles.

A homotopy between a loop and a product of commutators of loops can be
thought of as an extension of the loop to a continuous map of a sphere with
handles and a hole.

56◦4x. Description of H1(X) in Terms of Free Circular Loops

Factorization by the commutator subgroup kills the difference between
translation maps defined by different paths. Therefore the abelianized fun-
damental groups of a path-connected space can be naturally identified.
Hence each free loop defines a homology class. This suggests that H1(X)
can be defined starting with free loops, rather than loops at a base point.

56.Bx. On the sphere with two handles and three holes shown in Figure
1 the sum of the homology classes of the three loops, which go counter-
clockwise arround the three holes, is zero.

Figure 1. Sphere with two handles and three holes. The boundary cir-
cles of the holes are equipped with arrows showing the counter-clockwise
orientation.

56.Cx Zero-Homologous Collections of Loops. Let X be a pathwise
connected space and s1, . . . , sn : S1 → X be a collection of n free loops.
Prove that the sum of homology classes of s1, . . . , sn is equal to zero,
iff there exist a continuous map f : F → X, where F is a sphere with
handles and n holes, and embeddings i1, . . . , in : S1 → F parametrizing the
boundary circles of the holes in the counter-clockwise direction (as in Figure
1) such that sk = f ◦ ik for k = 1, . . . , n.

56.Dx Homologous Collections of Loops. In a topological space X
any class ξ ∈ H1(X) can be represented by a finite collection of free circular
loops. Collections {u1, . . . , up} and {v1, . . . , vq} of free circular loops in X
define the same homology class, iff there exist a continuous map f : F → X,
where F is a disjoint sum of several spheres with handles and holes with the
total number of holes equal p + q, and embeddings i1, . . . , ip+q : S1 → F
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parametrizing the boundary circles of all the holes of F in the counter-
clockwise direction such that uk = f ◦ ik for k = 1, . . . , p and v−1

k = f ◦ ik+p
for k = 1, . . . , q.

56◦5x. Homology and Continuous Maps

Let X be a path connected topological space with a base point x0 ∈ X.
The factorization map π1(X,x0) → H1(X) is usually called the Hurewicz
homomorphism1 and denoted by H. If X is not path connected and X0 is
its path connected component containing x0, then the inclusion X0 →֒ X
defines an isomorphism in : π1(X0, x0) → π1(X,x0). On the other hand,
H1(X0) is contained in H1(X) as a direct summand. This allows one to
define the Hurewicz homomorphism π1(X,x0) → H1(X) as a composition
of the Hurewicz homomorphism H : π1(X0, x0) → H1(X0) (which is already
defined above), isomorphism in−1 : π1(X,x0) → π1(X0, x0) (inverse to the
inclusion isomorphism), and inclusion H1(X0) →֒ H1(X).

56.Ex. Let f : (X,x0) → (Y, y0) be a continuous map. If X is path con-
nected, then the diagram

π1(X,x0) −−−−→
f∗

π(Y, y0)

H





y
H





y

H1(X) H1(Y )

is completed in a unique way to a commutative diagram

π1(X,x0) −−−−→
f∗

π(Y, y0)

H





y
H





y

H1(X) −−−−→ H1(Y )

The homomorphism H1(X) → H1(Y ) completing the diagram in 56.Ex
is denoted by the same symbol f∗ as the homomorphism f∗ : π1(X,x0) →
π1(Y, y0). It is also called a homomorphism induced by f .

56.Fx. Extend the definition of f∗ : H1(X) → H1(Y ) given in 56.Ex to the
case when X is not path connected.

56.Gx. For any continuous map f : X → Y and any loop ϕ : S1 → X, the
image under f∗ : H1(X) → H1(Y ) of the homology class represented by ϕ
is the homology class represented by f ◦ ϕ.

1Witold Hurewicz has introduced a high dimensional generalization of this homomorphism,
πn(X, x0) → Hn(X), which we cannot discuss here for you are not assumed to be familiar with
Hn(X). The homomorphism π1(X, x0) → H1(X) should be rather attributed to Henry Poincaré,
although the group H1(X) was introduced long after he died.
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56.2x. Look through 36, 37, 38, 39 and 43 and find all the theorems about ho-
momorphisms of fundamental groups which gives rise to similar theorems about
homomorphisms of one-dimensional homology groups. In which applications the
fundamental groups can be replaced by one-dimensional homology groups?

56.3x Homology Group of a Cellular Space. Deduce from the calculation of
the fundamental group of a cellular space (see 43) an algorithm for calculation of
H1(X) for a cellular space X.

56◦6x. One-Dimensional Cohomology

Let X be a path-connected topological space and G a commutative
group.

56.Hx. The homomorphisms π1(X,x0) → G comprise a commutative group
in which the group operation is the pointwise addition.

The group Hom(π1(X,x0), G) of all the homomorphisms π1(X,x0) → G
is called one-dimensional cohomology group of X with coefficients in G and
denoted by H1(X;G).

For an arbitrary topological space X, the one-dimensional cohomol-
ogy group of X with coefficients in G is defined as the direct product of
one-dimensional cohomology group with coefficients in G of all the path-
connected components of X.

56.Ix Cohomology via Homology. H1(X;G) = Hom(H1(X), G).

56.Jx Cohomology and Regular Coverings. This map is a bijection of
the set of all the regular G-coverings of X onto H1(X;G).

56.4x Addition of G-Coverings. What operation on the set of regular G-
coverings corresponds to addition of cohomology classes?

56◦7x. Integer Cohomology and Maps to S1

Let X be a topological space and f : X → S1 a continuous map. It
induces a homomorphism f∗ : H1(X) → H1(S

1) = Z. Therefore it defines
an element of H1(X; Z).

56.Kx. This construction defines a bijection of the set of all the homotopy
classes of maps X → S1 onto H1(X; Z).

56.Lx Addition of Maps to Circle. What operation on the set of ho-
motopy classes of maps to S1 corresponds to the addition in H1(X; Z)?

56.Mx. What regular Z-covering of X corresponds to a homotopy class of
mappings X → S1 under the compositions of the bijections described in
56.Kx and 56.Jx
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56◦8x. One-Dimensional Homology Modulo 2

Here we define yet another natural quotient group of the fundamental
group. It is even simpler than H1(X).

For a path-connected X, consider the quotient group of π1(X) by the
normal subgroup generated by squares of all the elements of π(X). It is
denoted by H1(X; Z2) and called one-dimensional homology group of X
with coefficients in Z2 or the first Z2-homology group of X. For an arbitrary
X, the group H1(X; Z2) is defined as the sum of one-dimensional homology
group with coefficients in Z2 of all the path-connected components of X.

Elements ofH1(X; Z2) are called one-dimensional homology classes mod-
ulo 2 or one-dimensional homology classes with coefficients in Z2. They can
be thought of as classes of elements of the fundamental groups or classes
of loops. A loop defining the zero homology class modulo 2 is said to be
null-homologous modulo 2.

56.Nx. In a disk with crosscaps the boundary loop is null-homologous mod-
ulo 2.

56.Ox Loops Zero-Homologous Modulo 2. Prove that a circular loop
s : S1 → X is null-homologous modulo 2, iff there exist a continuous map
f of a disk with crosscaps D to X and a homeomorphism h of S1 onto the
boundary circle of D such that f ◦ h = s.

56.Px. If a loop is null-homologous then it is null-homologous modulo 2.

56.Qx Homology and Mod 2 Homology. H1(X; Z2) is commutative
for any X, and can be obtained as the quotient group of H1(X) by the
subgroup of all even homology classes, i.e. elements of H1(X) of the form
2ξ with ξ ∈ H1(X). Each element of H1(X; Z2) is of order 2 and H1(X; Z2)
is a vector space over the field of two elements Z2.

56.5x. Find H1(X; Z2) for the following spaces

(1) Möbius strip,
(2) handle,
(3) sphere with p handles,
(4) sphere with p crosscaps,
(5) sphere with p handles and r holes,
(6) sphere with p crosscaps and r holes,
(7) the complement in R

3 of the circles {(x, y, z) ∈ R
3 | z = 0, x2 + y2 = 1}

and {(x, y, z) ∈ R
3 | x = 0, z2 + (y − 1)2 = 1},

(8) the complement in R
3 of the circles {(x, y, z) ∈ R

3 | z = 0, x2 + y2 = 1}
and {(x, y, z) ∈ R

3 | z = 1, x2 + y2 = 1},

56.6x Z2-Homology of Cellular Space. Deduce from the calculation of the
fundamental group of a cellular space (see Section 43) an algorithm for calculation
of the one-dimensional homology group with Z2 coefficients of a cellular space.
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56.Rx Collections of Loops Homologous Mod 2. Let X be a topolog-
ical space. Any class ξ ∈ H1(X; Z2) can be represented by a finite collection
of free circular loops in X. Collections {u1, . . . , up} and {v1, . . . , vq} of free
circular loops in X define the same homology class modulo 2, iff there exist
a continuous map f : F → X, where F is a disjoint sum of several spheres
with crosscaps and holes with the total number of holes equal p + q, and
embeddings i1, . . . , ip+q : S1 → F parametrizing the boundary circles of all
the holes of F such that uk = f ◦ ik for k = 1, . . . , p and vk = f ◦ ik+p for
k = 1, . . . , q.

56.7x. Compare 56.Rx with 56.Dx. Why in 56.Rx the counter-clockwise direction
has not appeared? In what other aspects 56.Rx is simpler than 56.Dx and why?

56.Sx Duality Between Mod 2 Homology and Cohomology.

H1(X; Z2) = Hom(H1(X; Z2),Z2) = HomZ2
(H1(X; Z2),Z2)

for any space X. If H1(X; Z2) is finite then H1(X; Z2) and H1(X; Z2) are
finite-dimensional vector spaces over Z2 dual to each other.

56.8x. A loop is null-homologous modulo 2 in X, iff it is covered by a loop in any
two-fold covering space of X.

56.Tx. Riddle. Homology Modulo n? Generalize all the theory above
about Z2-homology to define and study Zn-homology for any natural n.
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57. One-Dimensional mod2-Homology of

Surfaces

57◦1. Polygonal Paths on Surface

Let F be a triagulated surface. A path s : I → F is said to be polygonal
if s(I) is contained in the one-dimensional skeleton of the triangulation of F ,
the preimage of any vertex of the triangulation is finite, and the restriction
of s to a segment between any two consequitive points which are mapped to
vertices is an affine homeomorphism onto an edge of the triangulation. In
terms of kinematics, a polygonal path represents a moving point, which goes
only along edges, does not stay anywhere, and, whenever it appears on an
edge, it goes along the edge with a constant speed to the opposite end-point.
A circular loop l : S1 → F is said to be polygonal if the corresponding path

I
t7→exp(2πit)−→ S1 l−→F is polygonal.

57.A. Let F be a triagulated surface. Any path s : I → F connecting
vertices of the triangulation is homotopic to a polygonal path. Any circular
loop l : S1 → F is freely homotopic to a polygonal one.

A polygonal path is a combinatorial object:

57.B. To describe a polygonal path up to homotopy, it is enough to specify
the order in which it passes through vertices.

On the other hand, pushing a path to the one-dimensional skeleton can
create new double points. Some edges may appear several time in the same
edge.

57.1. Let F be a triangulated surface and α be an element of π1(F ) different from
1. Prove that there exists a natural N such that for any n ≥ N each polygonal
loop representing αn passes through some edge of the triangulation more than
once.

57◦2. Bringing Loops to General Position

To avoid a congestion of paths on edges, one can add new edges, i.e.,
subdivide the triangulation, see Section 49◦6.

57.C. Let F be a triangulated and u, v polygonal circular loops on F . Then
there exist a subdivision of the triangulation of F and polygonal loops u′,
v′ homotopic to u and v, respectively, such that u′(I) ∩ v′(I) is finite.

57.D. Let F be a triangulated and u a polygonal circular loop on F . Then
there exist a subdivision of the triangulation of F and a polygonal loop v
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homotopic to u such that v maps the preimage v−1(ε) of any edge ε ⊂ v(I)
homeomorphically onto ε. (In other words, v passes along each edge at most
once).

Let u, v be polygonal circular loops on a triangulated surface F and
a be an isolated point of u(I) ∩ v(I). Suppose u−1(a) and v−1(a) are one
point sets. One says that u intersects v translversally at a if there exist
a neighborhood U of a in F and a homeomorphism U → R

2 which maps
u(I) ∩ U onto the x-axes and v(I) ∩ U to y-axes.

Polygonal circular loops u, v on a triangulated surface are said to be in
general position to with respect each other, if u(I) ∩ v(i) is finite, for each
point a ∈ u(i) ∩ v(I) each of the sets u−1(a) and v−1(a) contains a single
point and u, v are transversal at a.

57.E. Any two circular loops on a triangulated surface are homotopic to
circular loops, which are polygonal with respect to some subdivision of the
triangulation and in general position with respect to each other.

For a map f : X → Y denote by Sk(f) the set

{a ∈ X | f−1f(a) consists of k elements}
and put

S(f) = {a ∈ X | f−1f(a) consists of more than 1 element}.

A polygonal circular loop l on a triangulated surface F is said to be
generic if

(1) S(l) is finite,

(2) S(l) = S2(l),

(3) at each a ∈ l(S2(l)) the two branches of s(I) intersecting at a are
transversal, that is a has a neighborhood U in F such that there
exists a homeomorphism U → R2 mapping the images under s of
the connected components of s−1(U) to the coordinate axis.

57.F. Any circular loop on a triangulated surface is homotopic to a circular
loop, which is polygonal with respect to some subdivision of the triangula-
tion and generic.

Generic circular loops are especially suitable for graphic representation,
because the image of a circular loop defines it to a great extend:

57.G. Let l be a generic polygonal loop on a triangulated surface. Then
any generic polygonal loop k with k(S1) = l(S1) is homotopic in l(S1) to
either l or l−1.
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Thus, to describe a generic circular loop up to a reparametrization ho-
motopic to identity, it is sufficient to draw the image of the loop on the
surface and specify the direction in which the loop runs along the image.

The image of a generic polygonal loop is called a generic (polygonal)
closed connected curve. A union of a finite collection of generic closed con-
nected polygonal curves is called a generic (polygonal) closed curve. A
generic closed connected curve without double points (i.e., an embedded
oriented circle contained in the one-dimensional skeleton of a triangulated
surface) is called a simple polygonal closed curve.

The adjective closed in the definitions above appears because there is a
version of the definitions with (non-closed) paths instead of loops.

57.H. Riddle. What modifications in Problems 57.C – 57.G and corre-
sponding definitions should be done to replace loops by paths everywhere?

By a generic polygonal curve we will mean a union of a finite collection
of pairwise disjoint images of generic polygonal loops and paths.

57◦3. Curves on Surfaces and Two-Fold Coverings

Let F be a two-dimensional triangulated surface and C ⊂ F a manifold
of dimension one contained in the 1-skeleton of the triangulation of F . Let
∂C = ∂F ∩ C. Since the preimage C̃ of C under the natural projection
F C → F is a two-fold covering space of C, there is an involution τ :

C̃ → C̃ which is the only nontrivial automorphism of this covering. Take
two copies of F C and identify each x ∈ C̃ in one of them with τ(x) in
the other copy. The resulting space is denoted by F≈C .

57.I. The natural projection F C → F defines a continuous map F≈C →
F . This is a two-fold covering. Its restriction over F r C is trivial.

57◦4. One-Dimensional Z2-Cohomology of Surface

By 56.Jx, a two-fold covering of F can be thought of as an element
of H1(F ; Z2). Thus any one-dimensional manifold C contained in the 1-
skeleton of F and such that ∂C = ∂F ∩ C defines a cohomology class of F
with coefficients in Z2. This class is said to be realized by C.

57.J. The cohomology class with coefficients in Z2 realized by C in a com-
pact surface F is zero, iff C divides F , that is, F = G ∪H, where G and H
are compact two-dimensional manifolds with G ∩H = C.

Recall that the cohomology group of a path-connected space X with
coefficients in Z2 is defined above in Section 56x as Hom(π1(X),Z2).
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57.K. Let F be a triangulated connected surface, let C ⊂ F be a manifold
of dimension one with ∂C = ∂F ∩ C contained in the 1-skeleton of F . Let
l be a polygonal loop on F which is in general position with respect to C.
Then the value which the cohomology class with coefficients in Z2 defined
by C takes on the element of π1(F ) realized by l equals the number of points
of l ∩ C reduced modulo 2.

57◦5. One-Dimensional Z2-Homology of Surface

57.L Z2-Classes via Simple Closed Curves. Let F be a triangulated
connected two-dimensional manifold. Every homology class ξ ∈ H1(F ; Z2)
can be represented by a polygonal simple closed curve.

57.M. A Z2-homology class of a triangulated two-dimensional manifold F
represented by a polygonal simple closed curve A ⊂ F is zero, iff there exists
a compact two-dimensional manifold G ⊂ F such that A = ∂G.

Of course, the “if” part of 57.M follows straightforwardly from 56.Ox. The
“only if” part requires trickier arguments.

57.M.1. If A is a polygonal simple closed curve on F , which does not bound
in F a compact 2-manifold, then there exists a connected compact 1-manifold
C ⊂ F with ∂C = ∂F ∩C, which intersects A in a single point transversally.

57.M.2. Let F be a two-dimensional triangulated surface and C ⊂ F a mani-
fold of dimension one contained in the 1-skeleton of the triangulation of F . Let
∂C = ∂F ∩ C. Any polygonal loop f : S1 → F , which intersects C in an odd
number of points and transversally at each of them, is covered in F≈C by a
path with distinct end-points.

57.M.3. See 56.8x.

57◦6. Poincaré Duality

To be written!

57◦7. One-Sided and Two-Sided Simple Closed Curves on Sur-

faces

To be written!

57◦8. Orientation Covering and First Stiefel-Whitney Class

To be written!

57◦9. Relative Homology

To be written!


