
Hints, Comments,

Advises, Solutions, and

Answers

1.1 The set {∅} consists of one element, which is the empty set ∅. Of
course, this element itself is the empty set and contains no elements, but
the set {∅} consists of a single element ∅.

1.2 1) and 2) are correct, while 3) is not.

1.3 Yes, the set {{∅}} is a singleton, its single element is the the set
{∅}.

1.4 2, 3, 1, 2, 2, 2, 1, 2 for x 6= 1
2 and 1 if x = 1

2 .

1.5 (a) {1, 2, 3, 4}; (b) {}; (c) {−1,−2,−3,−4,−5,−6, . . . }
1.8 The set of solutions for a system of equations is equal to the in-

tersection of the sets of solutions of individual equations belonging to the
system.

2.1 The solution involves the equality ∪(aα; +∞) = (inf aα; +∞).
Prove it. By the way, the collection of closed rays [a; +∞) is not a topo-
logical structure since it may happen that ∪[aα; +∞) = (a0; +∞) (give an
example).

2.2 Yes, it is. A proof coincides almost literally with the solution of
the preceding problem.

2.3 The main point here is to realize that the axioms of topological
structure are conditions on the collection of subsets, and if these conditions
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are fulfilled, then the collection is a topological structure. The second col-
lection is not a topological structure because it contains the sets {a}, {b, d},
but does not contain {a, b, d} = {a}∪ {b, d}. Find two elements of the third
collection such that their intersection does not belong to it. By this you
would prove that this is not a topology. Finally, we easily see that all unions
and intersections of elements of the first collection still belong to the first
collection.

2.10 The following sets are closed

(1) in a discrete space: all sets;

(2) in an indiscrete space: only the sets that are also open, i.e., the
empty set and the whole space;

(3) in the arrow: ∅, the whole space and segments of the form [0, a];

(4) in : the sets X,∅, {b, c, d}, {a, c, d}, {b, d}, {d}, and{c, d};
(5) in RT1

: all finite sets and the whole R.

2.11 Here it is important to overcome the feeling that the question is
completely obvious. Why is not (0, 1] open? If (0, 1] = ∪(aα, bα), then 1 ∈
(aα0

, bα0
) for some α0, whence bα0

> 1, and it follows that ∪(aα, bα) 6= (0, 1].
The set

R r (0, 1] = (−∞, 0] ∪ (1,+∞)

is not open for similar reasons. On the other hand, we have

(0, 1] =
∞⋃

n=1

[
1

n
, 1

]
=

∞⋂

n=1

(
0,
n+ 1

n

)
.

2.13 Verify that Ω = {U | X r U ∈ F} is a topological structure.

2.14 A control sum: the number of such collections is 14.

2.15 By this point, you must already know everything needed for solv-
ing this problem, so solve it on your own. Please, don’t be lazy.

3.1 Certainly not! A topological structure is recovered from its base
as the set of unions of all collections of sets belonging to the base.

3.2

(1) A discrete space admits the base consisting of all one-point subsets
of the space and this base is minimal. (Why?)

(2) For a base in , we can take, say, {{a}, {b}, {a, c}, {a, b, c, d}}.
(3) The minimal base in indiscrete space is formed by a single set: the

whole space.

(4) In the arrow, {[0,+∞), (r,+∞)}r∈Q+
is a base.
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3.3 We will show that, removing any element from any base of the
standard topology of the line, we obtain a base of the same topology! Let
U be an arbitrary element of a base. It can be presented as a union of open
intervals that are shorter than the distance between some two points of U .
We would need at least two such intervals. Each of the intervals, in turn, is
a union of sets of the base under consideration. U is not involved into these
unions since U is not contained in so short intervals. Hence, U is a union of
elements of the base distinct from U , and it can be replaced by this union
in a presentation of an open set as a union of elements of the base.

3.4 The whole topological structure is its own base. So, the question
is when this is the only base. No open set in such a space is a union
of two open sets distinct from it. Hence, open sets are linearly ordered
by inclusion. Furthermore, the space should contain no increasing infinite
sequence of open sets since otherwise an open set could be obtained as a
union of sets in such a sequence.

3.5, 3.6 In solution of each of these problems the following easy lemma
may be of use: A =

⋃
Bα, where Bα ∈ B iff ∀x ∈ A ∃Bx ∈ B : x ∈ Bx ⊂ A.

3.7 The statement: “B is a base of a topological structure” is equivalent
to the following: the set of unions of all collections of sets belonging to B is a
topological structure. Σ1 is a base of some topology by 3.B and 3.6. So, you
must to prove analogs of 3.6 for Σ2 and Σ∞. To prove the coincidence of the
structures determined, say, by the bases Σ1 and Σ2, you need to prove that
a union of disks can be presented as a union of squares, and vice versa. Is
it sufficient to prove that a disk is a union of squares? What is the simplest
way to do this? (Cf. our advice concerning 3.5 and 3.6.)

3.9 Observe that the intersection of several arithmetic progressions is
an arithmetic progression.

3.10 Since the sets {i, i+ d, i+2d, . . .}, i = 1, . . . , d, are open, pairwise
disjoint and cover the whole N, it follows that each of them is closed. In
particular, for each prime number p the set {p, 2p, 3p, . . .} is closed. All
together, the sets of the form {p, 2p, 3p, . . .} cover N r {1}. Hence, if the set
of prime numbers were finite, then the set {1} would be open. However, it
is not a union of arithmetic progressions.

3.11 The inclusion Ω1 ⊂ Ω2 means that a set open in the first topology
(i.e., belonging to Ω1) also belongs to Ω2. Therefore, you must only prove
that R r {xi}ni=1 is open in the canonical topology of the line.

4.2 Cf. 4.B.

4.4 Look for the answer to 4.7.

4.7 Squares with sides parallel to the coordinate axes and bisectors of
the coordinate angles, respectively.
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4.8 We have D1(a) = X, D1/2(a) = {a}, and S1/2(a) = ∅.

4.9 For example, let X = D1(0) ⊂ R1. Then D3/2(5/6) ⊂ D1(0).

4.10 Three points suffice.

4.11 Let R > r and DR(b) ⊂ Dr(a). Take c ∈ DR(b) and use the
triangle inequality ρ(b, c) ≤ ρ(b, a) + ρ(a, c).

4.12 Put u = b− x and t = x− a. The Cauchy inequality becomes an
equality iff the vectors u and t have the same direction, i.e., x lies on the
segment connecting a and b.

4.13 For the metric ρ(p) with p > 1, this set is the segment connecting
a and b, while for the metric ρ(1) it is a rectangular parallelepiped whose
opposite vertices are a and b.

4.14 See the proof of 4.F.

4.19 The discrete one.

4.20 Just recall that you need to prove that XrDr(a) = {x | ρ(x, a) >
r} is open.

4.23 Use the obvious equality X r Sr(a) = Br(a) ∪ (X r Dr(a)) and
the result of 4.20.

4.25 Only the line and discrete spaces.

4.26 By 3.7, for n = 2 metrics ρ(2), ρ(1), and ρ(∞) are equivalent;
similar arguments work for n > 2, too. Cf. 4.30.

4.27 First, we prove that Ω2 ⊂ Ω1 provided that ρ2(x, y) ≤ Cρ1(x, y).

Indeed, the inequality ρ2 ≤ Cρ1 implies B
(ρ1)
r (a) ⊂ B

(ρ2)
Cr . Now let us use

Theorem 4.I. The inequality cρ1(x, y) ≤ ρ2(x, y) can written as ρ1(x, y) ≤
1
cρ2(x, y). Hence, Ω1 ⊂ Ω2.

4.28 The metrics ρ1(x, y) = |x− y| and ρ2(x, y) = arctan |x− y| on the
line are equivalent, but obviously there is no constant C such that ρ1 ≤ Cρ2.

4.29 Two metrics ρ1 and ρ2 are equivalent if there exist c, C, d > 0
such that ρ1(x, y) ≤ d implies cρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y).

4.30 Use the result of Problem 4.27. Show that for any pair of metrics
ρ(p), 1 ≤ p ≤ ∞ there exist appropriate constants c and C.

4.31 We have Ω1 ⊂ ΩC because ρ1(f, g) ≤ ρC(f, g). On the other

hand, there is no ρ1-ball centered at the origin is contained in B
(ρC)
1 (0) since

for each ε > 0 there exists a function f such that
∫ 1
0 |f(x)| dx < ε and

max
[0,1]

|f(x)| ≥ 1, so ΩC 6⊂ Ω1.
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4.32 Clearly, in all five cases the only thing which is to be proved and
is not completely obvious is the triangle inequality. It is also obvious for
ρ1 + ρ2. Furthermore,

ρ1(x, y) ≤ ρ1(x, z) + ρ1(z, y) ≤

max{ρ1(x, z), ρ2(x, z)} + max{ρ1(y, z), ρ2(y, z)}.

A similar inequality holds true for ρ2(x, y), therefore max{ρ1, ρ2} is a metric.
Construct examples which would prove that neither min{ρ1, ρ2}, nor ρ1

ρ2
, nor

ρ1ρ2 is a metric. (To do this, it would be suffice to find three points with
appropriate pairwise distances.)

4.33 Assertion (c) is quite obvious. Assertions (a) and (b) follow from
(c) for f(t) = t

1+t and f(t) = min{1, t}, respectively. Thus, it suffices to

check that these functions satisfy the assumptions of the assertion (c).

4.34 Since ρ
1+ρ ≤ ρ, and the inequality 1

2ρ(x, y) ≤ ρ(x,y)
1+ρ(x,y) holds true

for ρ(x, y) ≤ 1, the statement follows from the result of 4.29.

5.1 In the same way as the relative topology: if Σ is a base in X, then
ΣA = {A ∩ V | V ∈ Σ} is a base of the relative topology in A.

5.2

(1) Discrete, because (n− 1, n+ 1) ∩ N = {n};
(2) ΩN = {(k, k + 1, k + 2...)}k∈N;

(3) discrete;

(4) Ω = {∅, {2}, {1, 2}}.
5.3 Yes, it is open since [0, 1) = (−1, 1) ∩ [0, 2], and (−1, 1) is open on

the line.

5.5 Set V = U . Use Problem 5.E.

5.6 Consider the interval (−1, 1) ⊂ R ⊂ R2 and the open disk with
radius 1 and center at (0, 0) on the plane R2. Another solution is suggested
by the following general statement: any open set is locally closed. Indeed, if
U is open in X, then U is a neighborhood of each of its points, while U ∩U
is closed in U .

5.7 The metric topology in A is determined by the base Σ1 = {BA
r (a) |

a ∈ A}, where BA
r (a) = {x ∈ A | ρ(x, a) < r} is the open ball in A

with center a and radius r. The second topology is determined by the base
Σ2 = {A ∩ Br(x) | x ∈ X}, where Br(x) is an open ball in X. Obviously,
BA
r (a) = A ∩ Br(a) for a ∈ A. Therefore Σ1 ⊂ Σ2, whence Ω1 ⊂ Ω2.

However, it may happen that Σ1 6= Σ2. It remains to prove that elements of
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Σ2 are open in the topology determined by Σ1. For this purpose, check that
for each point x of an element U ∈ Σ2, there is V ∈ Σ1 such that x ∈ V ⊂ U .

6.1 We have Int{a, b, d} = {a, b} since this is really the greatest set
that is open in and contained in {a, b, d}.

6.2 The interior of the interval (0, 1) on the line with the Zariski topol-
ogy is empty because no nonempty open set of this space is contained in
(0, 1).

6.3 Indeed,

ClAB =
⋂

F⊃B,
ArF∈ΩA

F =
⋂

H⊃B,
XrH∈Ω

(H ∩A) = A ∩
⋂

H⊃B,
XrH∈Ω

H = A ∩ ClX B.

The second equality may be obviously violated. Indeed, let X = R2, A =
B = R1. Then IntAB = R1 6= ∅ = (IntX B) ∩A.

6.4 Cl{a} = {a, c, d}.
6.5 Fr{a} = {c, d}.
6.6 1) This follows from 6.K. 2) See 6.7.

6.8 In (X,Ω1) there are less open sets, and hence less closed sets
than in (X,Ω2). Therefore the intersection of all sets closed in (X,Ω1) and
containing A cannot be smaller than the intersection of all sets closed in
(X,Ω2) and containing A.

6.9 Int1A ⊂ Int2A.

6.10 Since IntA is an open set contained in B, it is contained in IntB,
which is the greatest one of such sets.

6.11 Since the set IntA is open, it coincides with its interior.

6.12 (8) Obvious inclusion IntA∩IntB ⊂ A∩B implies IntA∩IntB ⊂
Int(A∩B). Further, we have IntA ⊃ Int(A∩B) since A ⊃ A∩B. Similarly,
IntA ⊃ Int(A ∩B). Therefore, IntA ∩ IntB ⊃ Int(A ∩B). (9) The second
statement is not correct, see Problem 6.13.

6.13 Int([−1, 0] ∪ [0, 1]) = (−1, 1) 6= (−1, 0) ∪ (0, 1) = Int[−1, 0] ∪
Int[0, 1].

6.14 IntA∪ IntB is an open set contained in A∪B, hence IntA∪ IntB
is contained in the interior of A ∪B. Thus, IntA ∪ IntB ⊂ Int(A ∪B).

6.15 If A ⊂ B, then we have ClA ⊂ ClB, ClClA = ClA, ClA∪ClB =
Cl(A ∪B), and ClA ∩ ClB ⊃ Cl(A ∩B).

6.16 Cl{1} = [0, 1], Int[0, 1] = ∅, Fr(2,+∞) = [0, 2].

6.17 Int((0, 1] ∪ {2}) = (0, 1), Cl{ 1
n | n ∈ N} = {0} ∪ { 1

n | n ∈ N},
Fr Q = R.
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6.18 Cl N = R, Int(0, 1) = ∅, and Fr[0, 1] = R. Indeed, in RT1
closed

sets are either a finite set or the whole line. Therefore the closure of any
infinite set is . . .

6.19 Yes, it does. Indeed, since Dr(x) is closed, we have ClBr(x) ⊂
Dr(x), whence

FrBr(x) = ClBr(x) rBr(x) ⊂ Dr(x) rBr(x) = Sr(x).

6.20 Yes, it does. Indeed, since since Br(x) is open, we have IntDr(x) ⊃
Br(x), whence

FrDr(x) = Dr(x) r IntDr(x) ⊂ Dr(x) rBr(x) = Sr(x).

6.21 LetX = [0, 1]∪{2} with metric ρ(x, y) = |x−y|. Then S2(0) = {2}
and ClB2(0) = [0, 1].

6.22.1 For instance, A = [0, 1).

6.22.2 Take A = [0, 1) ∪ (1, 2] ∪
(
Q ∩ [3, 4]

)
∪ {5}.

6.22.3 Since IntA ⊂ Cl IntA and IntA is open, it follows that IntA ⊂
IntCl IntA. Therefore, Cl IntA ⊂ Cl Int Cl IntA.
Since IntCl IntA ⊂ Cl IntA and Cl IntA is closed, it follows that Cl IntA ⊃
Cl IntCl IntA.

6.23 Let us consecutively construct sets Jn, n ≥ 1, such that Jn is
a union of intervals of length 3−n. Put J0 =

⋃
n∈Z(2n, 2n + 1). If the sets

J0, . . . , Jn−1 are constructed, then let Jn be the union of the middle thirds of

the segments constituting R r
⋃n−1
k=0 Jk. If A =

⋃∞
k=0 J3k, B =

⋃∞
k=0 J3k+1,

and C =
⋃∞
k=0 J3k+2, then FrA = FrB = FrC = Cl

(⋃∞
k=0 ClJk

)
. (In a

similar way, we easily construct an infinite family of open sets with common
boundary.)

6.24 If the endpoints of two segments are close to each other, then
each point on one of them is close to a point on the other one. If two points
belong to the interior of a convex set, then the convex set contains a cylindric
neighborhood of the segment connecting the points.

6.27 By (1), X ∈ Ω. From (2) it follows that Cl∗X = X, whence
∅ ∈ Ω. For U1, U2 ∈ Ω, (3) implies that U1 ∩ U2 ∈ Ω. Prior to checking
that the 1st axiom of topological structure is fulfilled, show that it im-
plies monotonicity of Cl∗: if A ⊂ B, then Cl∗A ⊂ Cl∗B, and deduce that
Cl∗(∩αAα) ⊂ ∩αCl∗Aα for any family of sets Aα.
To prove that the operations Cl∗ and the closure coincide, we recommend,
as usual, to replace equality of sets by two inclusions and use the fact that
a set F is closed iff F = Cl∗ F . (You must use property (4) somewhere!)

6.29 1) Nonempty sets; 2) unbounded sets; 3) infinite sets.
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6.30 In a discrete space, each set is closed, hence the only
everywhere-dense set is the whole space. Argue by contradiction.
If the space X is not discrete, then there exists a point x such that the
singleton {x} is not open, and hence X r x is everywhere dense, as well as
the entire X.

6.31 There are many ways to formulate this property. For example,
the intersection of all nonempty open sets is nonempty. See 2.6.

6.32 1) Yes, it is. This follows from monotonicity of closure. 2) No,
it is not. The easiest counter-example can be constructed in an indiscrete
space. We recommend to construct a counter-example in R and take Q as
one of the sets.

6.33 Let A and B be two open everywhere-dense sets, U an open set.
Hint: U ∩ (A ∩B) = (U ∩A) ∩B.

6.34 Only one of two sets needs to be open.

6.35 1) Let {Uk} be a countable family of open everywhere-dense
sets, V a nonempty open set on the line. Construct a sequence of nested

segments [a1, b1] ⊃ · · · ⊃ [an, bn] ⊃ . . . such that [an, bn] ⊂ V ∩
n⋂
k=1

Uk and

bn − an → 0. The point sup{an} = inf bn belongs to each of the segments.

Therefore, V ∩
∞⋂
k=1

Uk 6= ∅, and hence
∞⋂
k=1

Uk is everywhere dense. 2) The

second question is answered in the negative.

6.36 Let Un ⊃ Q, n ∈ N, be open sets. Since they contain Q, all of
them are everywhere dense. First, we enumerate all rational numbers: let
Q = {xn | n ∈ N}. After that, we find a segment [a1, b1] ⊂ U1 such that
x1 /∈ U1. Since U2 is everywhere dense, it contains a segment [a2, b2] ⊂
[a1, b1] ∩ U2 such that x2 /∈ [a2, b2]. Proceeding further in this way, we
obtain a nested sequence {[an, bn]} of segments such that 1) [an, bn] ⊂ Un
and 2) xn /∈ [an, bn]. By a standard theorem of Calculus, there exists a point
c ∈ ⋂∞

1 [an, bn]. Obviously, c ∈ (
⋂
Un) r Q.

6.37 Of course, it cannot, because the exterior of an everywhere dense
set is empty (We assume that X 6= ∅).

6.38 It is empty.

6.39 Yes, it is.

6.40 It suffices to observe we have X r IntClA = Cl(X r ClA) =
Cl(Int(X rA)) = X.

6.41 1) Let F be a closed set in a space X. Then FrF has the exterior
Xr IntFrF = (XrF )∪ IntF . Therefore, Cl(Xr IntFrF ) = Cl((XrF )∪
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IntF ) = X because Cl(X r F ) = (X r F ) ∪ FrF .
2) Yes, this is also true. The boundary of an open set U is nowhere dense
since FrU is also the boundary of the closed set X r U .
3) For arbitrary sets the statement is not true, in general: for instance,
Fr Q = R.

6.42 Clearly,

X r Cl(∪Ai) = X r ∪ClAi = ∩(X r ClAi).

Now the result follows from 6.33.

6.43 This set is IntClA.

6.44 Let Yn ⊂ R, n ∈ N, be nowhere-dense sets. Since Y1 is nowhere
dense, there is a segment [a1, b1] ⊂ R r Y1. Since Y2 also is nowhere dense,
[a1, b1] contains a segment [a2, b2] ⊂ R r Y2, and so on. Proceeding further
in this way, we obtain a sequence of nested segments {[an, bn]} such that
[an, bn] ⊂ R r Yn. By a standard theorem of Calculus, there exists a point
c ∈ ∩∞

1 [an, bn]. Obviously, c ∈ R r
⋂∞
n=1 Yn 6= ∅.

6.45 For example, each point of a finite subset A of the line is an
adherent point of A, but not a limit point.

6.47 The set of limit points of N in RT1
is the whole RT1

.

6.48 (1) =⇒ (2): Consider V =
⋃
x∈A Ux, where Ux are the neigh-

borhoods that exist by the definition of local closeness, and show that
A = V ∩ ClA.
(2) =⇒ (3): Use the definition of the relative topology induced on a subset.
(3) =⇒ (1): For neighborhoods Ux, one can take a set independent on x.

7.1 No, because it is not antisymmetric. Indeed, −1|1 and 1| − 1, but
−1 6= 1.

7.2 The hypotheses of Theorem 7.J turn into the following restrictions
on C: C is closed with respect to addition, contains the zero, and no non-
identity translation maps C bijectively onto itself.

7.6 1) Obviously, the greatest element is maximal and the smallest
one is minimal, but the converse statements are not true. 2) These notions
coincide for any subset of a poset, iff any two elements of the poset are
comparable (i.e., one of them is greater than the other). Indeed,
consider, e.g., a two-element subset. If the two elements were incompara-
ble, then each of them would be maximal, and hence, by assumption, the
greatest. However, the greatest element is unique. A contradiction.
Comparability of any two elements obviously implies that in any subset
any maximal element is the greatest one, and any minimal element is the
smallest one.
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7.9 The relation of inclusion in the set of all subsets of X is a linear
order iff X is either empty or one-point.

7.11 Consider, say, the following condition: for arbitrary a, b, and c
such that a ≺ c and b ≺ c, there exists an element d such that a � d, b � d,
and d ≺ c. Show that this condition implies that the right rays form a base
of a topology; show that it holds true in any linearly ordered set. Also show
that this condition holds true if the right rays form a base of a topology.

7.13 A point open in the poset topology is maximal in the entire poset.
Similarly, a point closed in the poset topology is minimal in the entire poset.

7.14 Rays of the forms (a,∞) and [a,∞), the empty set, and the whole
line.

7.16 The lower cone of the point.

7.17 A singleton consisting of an element that is greater than any other
element of the entire poset.

8.1 Yes, they do. Let us prove, for example, the latter equality. Let x ∈
f−1(Y rA). Then f(x) ∈ Y rA, whence f(x) /∈ A. Therefore, x /∈ f−1(A)
and x ∈ X r f−1(A). We have thus proved that f−1(Y rA) ⊂ X r f−1(A).
Each step in this argument is reversible. The reversing gives rise to the
opposite inclusion.

8.2 Let us prove (13). If y ∈ f(A ∪ B), then we can find x ∈ A ∪ B
such that f(x) = y. If x ∈ A, then y ∈ f(A), while if x ∈ B, then y ∈ f(B).
In both cases we have y ∈ f(A) ∪ f(B). The inverse inclusion has even
simpler proof. Inclusion A ⊂ A ∪ B implies f(A) ⊂ f(A ∪ B). Similarly,
f(B) ⊂ f(A ∪B). Thus f(A) ∪ f(B) ⊂ f(A ∪B). The other two equalities
may happen to be wrong, see 8.3 and 8.4.

8.3 Consider the constant map f : {0, 1} → {0}. Let A = {0} and
B = {1}. Then f(A) ∩ f(B) = {0}, while f(A ∩B) = f(∅) = ∅. Similarly,
f(X rA) = f(B) = {0} 6= ∅, although Y r f(A) = ∅.

8.4 We have f(A ∩ B) ⊂ f(A) ∩ f(B). (Prove this!) However, there
is no natural inclusion between f(X r A) and Y r f(A). Indeed, we can
arbitrarily change a map on X r A without changing it on A, and hence
without changing Y r f(A).

8.5 The bijectivity of f suffices for any equality of this kind. The In-
jectivity is necessary and sufficient for (14), but the surjectivity is necessary
for (15). Thus, the bijectivity of f is necessary to make correct all equalities
of 8.2.

8.6 We probe only the inclusion ⊂. Let y ∈ B ∩ f(A). Then y = f(x),
where x ∈ A. On the other hand, x ∈ f−1(B), whence x ∈ f−1(B)∩A, and
therefore y ∈ f(f−1(B) ∩A). Prove the opposite inclusion on your own.
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8.7 No, not necessarily. Example: f : {0} → {0, 1}, g : {0, 1} → {0}.
Surely, f must be injective (see 8.K), and g surjective (see 8.M).

9.1 The map id is continuous iff U = id−1(U) ∈ Ω1 for each U ∈ Ω2,
i.e., Ω2 ⊂ Ω1.

9.2 (a), (d): Yes, it is. (b), (c): Not necessarily.

9.3 1) Any map X → Y is continuous. 2) A map Y → X is continuous
iff the preimage of each point is open. Only constant maps Y → X (i.e., the
maps that map the whole Y to a single point of X) can be surely said to be
continuous.

9.4 1) A map X → Y is continuous iff its image is indiscrete. Therefore
only constant maps X → Y are continuous independently on the topology
in Y . 2) All maps Y → X are continuous.

9.5 Ω′ = {f−1(U) | U ∈ Ω} is a topology in A. Furthermore, this is
the coarsest topology in A with respect to which f is continuous.

9.6 A ⊂ ClA for any A. Hence f−1(A) ⊂ f−1(ClA). If f
is continuous, then f−1(ClA) is closed, and f−1(A) ⊂ f−1(ClA) implies
Cl f−1(A) ⊂ f−1(ClA). For A closed, we have Cl f−1(A) ⊂ f−1(A).
Therefore, f−1(A) coincides with its closure, and hence is closed. Thus the
preimage of any closed set is closed. By 9.A, the map f is continuous.

9.7 f is continuous, iff

• Int f−1(A) ⊃ f−1(IntA) for any A ⊂ Y , iff

• Cl f(A) ⊃ f(ClA) for any A ⊂ X, iff

• Int f(A) ⊂ f(IntA) for any A ⊂ X.

9.8 By definition. Use the fact that the preimage of an
open set is a union of preimages of base sets.

9.9 An experience with continuous functions gained in Calculus and
a natural expectation that the continuity studied in Calculus is not too
different from the continuity studied here give a strong evidence in favor of a
negative answer. The following argument based on the above definition also
provides it: the set U = (1, 2] is open in [0, 2], but its preimage f−1((1, 2]) =
[1, 2) is not.

9.10 Yes, f is continuous. Consider what a set f−1(a,+∞) (i.e., the
preimage of a set open in the arrow) can be. By the way, what about
continuity of map g coinciding with f everywhere besides at x = 1, and
with g(1) = 2?

9.11 Constant maps. If, for instance, 0, 1 ∈ f(RZ), then consider the
sets f−1

(
−∞, 1

2

)
and f−1

(
1
2 ,+∞

)
. Can both of them be open?
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9.12 Constant maps and maps such that the preimage of each point is
finite.

9.13 The functions that are monotonically increasing and continuous
from the left. (Recall that a monotonically increasing function f is contin-
uous from the left if sup{f(x) | x < a} = f(a) for each a.)

9.14 The map f is continuous, while g−1 is not. Indeed, the topology
on Z+ is discrete, while the singleton {0} is not open in the topology on
f(Z+).

9.15 Let A be an everywhere dense subset of a space X, and let f :
X → Y be a continuous surjection. By Theorem 6.M, it suffices to prove
that f(A) meets any nonempty open subset U of Y . Since f is surjective
and continuous, the preimage f−1(U) of such a set is also nonempty and
open. Therefore, its intersection with everywhere dense subset A of X is
nonempty. Hence, U ∩ f(A) is nonempty.

9.16 Of course, it is not true. For example, the projection R2 → R :
(x, y) 7→ x maps the line {(x, y) ∈ R2 | y = 0}, which is nowhere dense in
R2, onto the whole target space.

9.17 Yes, such a set exists. Take for A the Cantor set and consider the

map that sends the number
+∞∑
i=1

ai

3i , where ai = 0; 2, to the number
+∞∑
i=1

ai

2i+1 .

It must be checked that this map is continuous. Please, do this on your own.

9.18 Let us prove the first statement. Let Ua be a neighborhood of
a ∈ X such that f(Ua) ⊂

(
− ε

2 + f(a), f(a) + ε
2

)
, and let Va be a similar

neighborhood for g. Taking Wa = Ua ∩ Va, we obtain (f + g)(Wa) ⊂ (−ε+
f(a), f(a) + ε).

9.20 Put

fi(x) =





0 x ≤ 0,
ix 0 ≤ x ≤ 1

i ,
1 x ≥ 1

i .

Then the formula x 7→ sup{ fi(x) | i ∈ N } determines a function that takes
value 0 at x ≤ 0 and 1 at x > 0.

9.21 The topology in Rn is generated by the metric

ρ(∞)(x, y) = max{|x1 − y1|, . . . , |xn − yn|}

(see 4.26). Observe that ρ(∞)(f(x), f(a)) < ε iff |fi(x) − fi(a)| < ε for all
i = 1, 2, . . . , n.

9.22 Use 9.21 and 9.18.

9.23 Use 9.21, 9.18, and 9.19.



solutions and answers 393

9.24 If Ω′ is a topology such that the map x 7→ ρ(x,A) is continuous
for each A, then Ω′ contains all open balls. Therefore, Ω′ contains all sets
open in the metric topology.

9.25 If ρ(x, a) < ε, then ρ
(
f(x), f(a)

)
≤ αε < ε.

9.27 Where we deal with closed sets.

9.28 Use the following property of polynomials: a polynomial P with
real coefficients that takes value 0 on a nonempty open set identically van-
ishes. For polynomials in one variable, this property easily follows from
the Bezout theorem, while for polynomials in many variables it is proved
by induction on the number of variables. The continuity of the function
x 7→ P (x) on Rn implies that the set of zeros {x | P (x) = 0} of P is closed.
Cf. 9.O.

9.29 In cases (a), (c), and (d), this is not true. Consider functions
constant on each element of these covers, but not constant on the whole
space.
In case (b), this is true. Try to prove this using arguments that you know
from calculus. (Cf. 9.T.)

9.31 If the intersection of a set U with each element of Γ is open in this
element, then the same is true for any element of Γ′. Since, by assumption,
Γ′ is a fundamental cover, it follows that U is open in the whole space. Thus,
the cover Γ is fundamental.

9.32 If B∩U is open in U for each U ∈ Γ, and A ∈ ∆, then (B∩U)∩A =
(B ∩ A) ∩ (U ∩ A) is open in U ∩ A. Hence, B ∩ A is open in A. Since the
cover ∆ is fundamental, B is open in X.

9.33 This follows from the preceding statement. What cover should
be taken as ∆?

9.1x Consider map f : [0, 2] → R with f(x) = x for x ∈ [0, 1] and
f(x) = x+ 1 for x ∈ (1, 2].

9.2x No. Here are two of many counterexamples. First, the map
f : {± 1

n , 0}∞n=1 → {−1, 0, 1}, which maps positive numbers to 1, negative,

to −1, and 0 to 0. Secondly, consider R2 with relation

(a, b) ≺ (a′, b′) if a < a′ or a = a′ and b < b′

This is a linear order (check!). The projection R2 → R : (x, y) 7→ x is
monotone (but not strictly monotone) with respect to ≺ and <, but the
preimage of any proper open subset U ⊂ R is not open in the interval
topology determined by ≺.

9.3x Yes, it is. Furthermore, it suffices to require only that f be non-
strictly monotone.
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10.1 Statements 10.C–10.E imply that homeomorphism is an equiv-
alence relation: 10.C implies reflexivity of homeomorphism, 10.D implies
transitivity, and 10.E implies symmetricity.

10.2 Show that τ ◦ τ = id, whence τ−1 = τ . To see that the inversion
is continuous, write τ down in coordinates and use 9.18, 9.19, and 9.21.

10.3 Show that Im(f(x+ iy)) = (ad− bc)y/|cz + d|2, whence f(H) ⊂
H. Find the inverse map (it is determined by a similar formula). Use 9.18,
9.19, and 9.21 to prove the continuity.

10.4 Use Intermediate Value Theorem. Use 10.M.

10.5 Cf. 10.H. 1), 2) This is obvious. 3) Any bijection RZ → RZ

establishes a one-to-one correspondence between finite (i.e., closed!) subsets.

10.6 Only the identity map of is a homeomorphism.

10.7 Use 9.13 and 10.M.

10.8 Let X = Y =
⋃∞
k=0[2k, 2k + 1) and consider the bijection

X → Y : x 7→





x
2 if x ∈ [0, 1),
x−1
2 if x ∈ [2, 3),

x− 2 if x ≥ 4.

10.10 To solve all assertions, except (f) and (i), apply maps used in
the solution of Problem 10.O. To solve (f) and (i), use polar coordinates.

10.11 In assertion (b): each nonempty open convex set in R2 is home-
omorphic to R2.

10.12 Every such a set is homeomorphic to one of the following sets:
a point, a segment, a ray, a disk, a strip, a half-plane, a plane. (Prove this!)

10.13 In Problems 10.T and 10.11, it is sufficient to replace the 2-disk
D2 by the n-disk Dn and the open 2-disk B2 by the open n-ball Bn. The
situation with Problem 10.12 is more complicated. Let K ⊂ Rn be a closed
convex set. First, we can assume that IntK 6= ∅ because otherwise K is
isometric to a subset of Rk with k < n. Secondly, we assume that K is
unbounded. (Otherwise, K is homeomorphic to a closed disk, see above.) If
K does not contain a line, then K is homeomorphic to a half-space. If K
contains a line, thenK is isometric to a “cylinder” with convex closed “base”
in Rn−1 and “elements” parallel to the nth coordinate axis, which allows us
to use induction on dimension. Try to formulate a complete answer.

10.14 Map each link of the polygon homeomorphically to a suitable
arc of the circle.
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10.15 Map each link of the polyline homeomorphically to a suitable
part of the segment. (Cf. the preceding problem. The homeomorphism can
easily be chosen piecewise linear.)

10.16 Accurately plug in the definitions!

10.17 Combining the techniques of Problems 10.S and 10.O (assertion
(e)), show that the “infinite cross” is homeomorphic to the set K = {|x| +
|y| ≤ 2} r {(0,±2), (±2, 0)} (another square without vertices).

10.18 The proof is elementary, but rather complicated!

10.19 Using homeomorphisms of Problem 10.O, you can construct,
e.g., the following homeomorphisms: (a) ∼= (d) ∼= (f), (d) ∼= (e) ∼= (h) ∼= (b),
(h) ∼= (g) ∼= (c).

10.20 Using homeomorphisms of Problem 10.O, you can construct,
e.g., the following homeomorphisms: (c) ∼= (b) ∼= (a) ∼= (d) ∼= (e) ∼= (g).
The prove that, e.g., (d) ∼= (f).

10.21 For the case of one segment, this is assertion 10.20 (f). In
the general case, use 10.19 (i.e., the fact that (l) ∼= (h); observe that the
homeomorphism can be fixed on the boundary of the square). Surround the
segments by disjoint rhombi and apply the above homeomorphism in each
of them.

10.22 Use induction on the number of links of the polyline X. Each
time, applying the argument used in the solution of the Problem 10.21 to
the outer link of X, we homeomorphically map R2 rX onto the complement
of a polyline with smaller number of links.

10.23 Prove that for any p, q ∈ IntD2 there is a homeomorphism
f : D2 → D2 such that f(p) = f(q) and ab(f) : S1 → S1 is the identity.
After that, use induction.
Here is a more explicit construction. Let K = {(xi, yi)}ni=1. We can as-
sume that xi’s are pairwise distinct. (Why?) Take any continuous function
f : R → R such that f(xi) = yi, i = 1, . . . , n. Then F : R2 → R2 : (x, y) 7→
(x, y − f(x)) is a homeomorphism with F (K) ⊂ R1. There is a homeomor-
phism g : R → R such that g(xi) = i, i = 1, . . . , n. Consider the homeo-
morphism G : R2 → R2 : (x, y) 7→ (g(x), y). Then (G ◦ F )(K) = {1, . . . , n},
whence R2 rK ∼= R2 r {1, . . . , n}.

10.24 Use the homeomorphism (b) ∼= (c) in Problem 10.20.

10.25 Use Problems 10.24 and 10.23.

10.26 Use the homeomorphism (x, t) 7→ (x, (1 − t)f(x) + tg(x)).

10.27 The first question is as follows: what is the mug from the math-
ematical point of view? How is it presented? Actually, there is a precise
approach to describing similar objects and introduce the corresponding class
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of spaces (“manifolds”), but for now we use the “common sense”. We start
with a cylinder, which is homeomorphic to a closed 3-disk, which in turn is
homeomorphic to a half-disk, is not it? Further, if we delete from the half-
disk a concentric half-disk of smaller radius, then the rest (i.e., the “skin
of a half of a water-mellon”) is still homeomorphic to the half-disk. (We
can prove this quite rigorously, and even give the required formulas.) The
remaining “skin” is a mug without a handle, which is thus homeomorphic
to a cylinder. Furthermore, we can assume that the “disks” along which the
handle adjoins the mug correspond to the bases of the cylinder, cf. 10.25,
while the handle is a (deformed) cylinder itself. “Pasting together” two
cylinders, we certainly obtain a doughnut as a result!

10.28 The following objects are homeomorphic to a coin: a saucer, a
glass, a spoon, a fork, a knife, a plate, a nail, a screw, a bolt, a nut, a drill.
The remaining objects are homeomorphic to a wedding ring: a cup, a flower
pot, a key.

10.29 Formulate and prove the plane version of the problem. After
that use rotation. An intermediate shape here is a 3-disk in which a thin
cylinder is drilled out. We can also single out the following useful lemma.
Let C0 be a cylinder, C ⊂ C0 a smaller cylinder with upper base lying
inside that of C0. Then there exists a homeomorphism f : Cl(C0 rC) → C0

identical on FrC0 r C.

10.30 Our argument will be close to that used in the solution of Prob-
lem 10.27. Repeating the first step of the solution to Problem 10.29, we
“get rid” of the large spherical hole at the end of the “tube”. After that,
we observe that the knotted tube has a neighborhood homeomorphic to a
cylinder. Applying the lemma formulated in the above solution, we obtain
a homeomorphism between the ball with a knotted hole and the whole ball.

10.31 In Figure, we have a sequence of images, where any two neighbor-
ing ones are connected by an (easy to imagine) homeomorphism. (The latter
is actually a result of a “deformation”.) It remains to take the composition.

10.32 Use the sequence of images depicted in Figure. (Cf. the solution
to the previous problem.)

10.33 Both spaces are homeomorphic to S3 r (S1∪point). To see this,
use the homeomorphism R3 ∼= S3 r point of Problem 10.R. (The second
time, take the point to be deleted on the circle S1.) In the general case of
Rn, this argument also works. But what happens if we replace S1 by Sk?

10.34 The stereographic projection Sn r (0, . . . , 0, 1) → Rn maps our
set to a (spherically symmetric) neighborhood of Sk−1, which is easily seen
to be homeomorphic to Rn r Rn−k.
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10.35 Here are properties that distinguish each of the spaces from the
remaining ones: Z is discrete, Q is countable, each proper closed subset of
RT1

is finite, and, finally, any two nonempty open sets in the arrow have
nonempty intersection.

10.36 Set X = {k}−1
−∞∪⋃∞

k=0[2k; 2k+1) and Y = X∪{1} and consider
the bijections

X → Y : x 7→





x+ 1 if x ≤ −2,

1 if x = −1,

x if x ≥ 0;

Y → X : x 7→





x if x < 0,
x
2 if x ∈ [0, 1],
x−1
2 if x ∈ [2, 3),

x− 2 if x ≥ 4.

Similar tricks are called “Hilbert’s hotel”. Guess why.

10.37 This is indeed very simple. Take [0, 1] and R. (Actually, any
two nonhomeomorphic subsets of R with nonempty interiors would do.)

10.38 The topology in Q is not discrete.

10.39 1), 2) If the discrete space is not one-point, this is impossible.

10.40 See 10.35.

11.1 1)–3) Yes: in each of these spaces, two nonempty open sets always
have nonempty intersection.

11.2 The empty space and a singleton.

11.3 A disconnected two-point space is obviously discrete.

11.4 1) No, Q is not connected since, for instance, Q =
(
Q∩(−∞,

√
2)

)
∪

(
Q ∩ (

√
2,+∞)

)
. 2) R r Q is also disconnected for a similar (and even sim-

pler) reason.

11.5 1) Yes, if (X,Ω1) is connected, then so is (X,Ω2): if X = U ∪ V ,
where U, V ∈ Ω1, then U, V ∈ Ω2. 2) No, the connectedness of (X,Ω1) does
not imply that of (X,Ω2): consider the case where Ω1 is indiscrete, Ω2 is
discrete, and X contains more than one point.

11.6 A subset A of a spaceX is disconnected iff there exist open subsets
U, V ⊂ X such that A ⊂ U ∪V , U ∩V ∩A = ∅, U ∩A 6= ∅, and V ∩A 6= ∅.

11.7 1), 3): No, it is not, because the relative topology on {0, 1} is
discrete (see 11.2). 2): Yes, it is, because the relative topology on {0, 1} is
not discrete (see 11.3).

11.8 1) Every subset of the arrow is connected. 2) A subset of RT1
is

connected iff it is empty, one-point, or infinite.

11.9 Show that [0, 1] is both open and closed in [0, 1] ∪ (2, 3].
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11.10 Given x, y ∈ A ⊂ R, z ∈ (x, y), and z /∈ A, produce two
nonempty sets open in A that partition A. Cf. 11.4.

11.11 Let B and C be two nonempty subsets of A open in
A that partition A. Use the fact that if B ∩ ClX C = ∅, then
B = A ∩ (X r ClX C).

11.12 Let X = A∪x∗, x∗ 6∈ A, and let Ω∗ consist of the empty set and
all sets containing x∗. Is this a topological structure in X? What topology
does it induce on A?

11.13 Let A be disconnected, and let B and C satisfy the hypothesis
of 11.11. Then we can put

U = {x ∈ Rn | ρ(x,B) < ρ(x,C)} and V = {x ∈ Rn | ρ(x,B) > ρ(x,C)}.

Notice that the conclusion of 11.13 would still hold true if in the hypothesis
we replaced Rn by an arbitrary space where every open subspace is normal,
see Section 14.

11.15 Obvious. (Cf. 11.6.)

11.15 The set A is dense in B equipped with the relative topology
induced from the ambient space. Therefore, we can apply 11.B.

11.16 Assume the contrary: let A ∪ B be disconnected. Then there
exist open subsets U and V of the ambient space such that A∪B ⊂ U ∪ V ,
U ∩ (A ∪ B) 6= ∅, V ∩ (A ∪ B) 6= ∅, and U ∩ V ∩ (A ∪ B) = ∅ (cf. the
solution of Problem 11.6). Since A ∪ B ⊂ U ∪ V , the set A meets at least
one of the sets U and V . Without loss of generality, we can assume that
A ∩ U 6= ∅. Then A ∩ V = ∅ by the connectedness of A, whence A ⊂ U .
Since U is a neighborhood of any point of A ∩ ClB, it meets B. The set V
also meets B since V ∩ (A∪B) 6= ∅, while A∩V = ∅. This contradicts the
connectedness of B since B ∩ U and B ∩ V form a partition of B into two
nonempty sets open in B.

11.17 If A ∪ B is disconnected, then there exist sets U and V open
in X such that U ∪ V ⊃ A ∪ B, U ∩ (A ∪ B) 6= ∅, V ∩ (A ∪ B) 6= ∅, and
U ∩ V ∩ (A ∪ B) = ∅. Since A is connected, A is contained in U or V .
Without loss of generality we may assume that A ⊂ U . Set B1 = B ∩ V .
Since B is open in XrA and V ⊂ XrA, the set B1 is open in V . Therefore,
B1 is open in X. Furthermore, we have B1 ⊂ X rU ⊂ X rA, therefore B1

is closed in X r U and hence also in X. Thus B1 is both open and closed
in X, contrary to the connectedness of X.

11.18 No, it does not. Example: put A = Q and B = R r Q.

11.19 1) If A and B are open and A is disconnected, then A = U ∪ V ,
where U and V are disjoint nonempty sets open in A. Since A ∩ B is
connected, then either A∩B ⊂ U , or A∩B ⊂ V . Without loss of generality,
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we can assume that A∩B ⊂ U . Then {V,U ∪B} is a partition of A∪B into
nonempty open sets. (U and V are open in A ∪ B because an open subset
of an open set is open.) This contradicts the connectedness of A ∪B.
2) In the case of closed A and B, the same arguments work if openness is
everywhere replaced by closedness.

11.20 Not necessarily. Consider the closed sets Kn = {(x, y) | x ≥
0, y ∈ {0, 1} } ∪ {(x, y) | x ∈ N, x ≥ n, y ∈ [−1, 1]}, n ∈ N. (An infinite
ladder, railroad, fence, hedge, handrail, balustrade, or banisters, whichever
you prefer.) Their intersection is the union of the rays {y = 1, x ≥ 0} and
{y = −1, x ≥ 0}.

11.21 Let C be a connected component of X, x ∈ C an arbitrary point.
If Ux is a connected neighborhood of x, then Ux lies entirely in C, and so x
is an interior point of C, which is thus open.

11.22 Theorem 11.I allows us to transform the statement under con-
sideration into the following obvious statement: if a set M is connected and
A is both open and closed, then either M ⊂ A, or M ⊂ X rA.

11.23 See the next problem.

11.24 Prove that any two points in the Cantor set cannot belong to
the same connected component.

11.25 If FrA = ∅, then A = ClA = IntA is a nontrivial open-closed
set.

11.26 If F ∩ FrA = ∅, then F = (F ∩ ClA) ∪ (F ∩ Cl(X r A)) and
F ∩ ClA ∩ Cl(X rA) = ∅.

11.27 If ClA is disconnected, then ClA = F1 ∪ F2, where F1 and F2

are nonempty disjoint sets closed in X. Each of them meets A since F1 ∪F2

is the smallest closed set containing A. Therefore A splits into the union
of nonempty sets A1 = A ∩ F1 and A2 = A ∩ F2, whose boundaries FrA1

and FrA2 are nonempty by 11.25. This contradicts the connectedness of
FrA = FrA1 ∪ FrA2.

11.29 Combine 11.N and 11.10.

11.30 Let M be the connected component of unity. For each x ∈ M ,
the set x ·M is connected and contains x = x · 1. Therefore x ·M meets
M , whence x ·M ⊂M . Thus M is a subgroup of X. Furthermore, for each
x ∈ X the set x−1 ·M ·x is connected and contains the unity. Consequently
x−1 ·M · x ⊂M . Hence the subgroup M is normal.

11.31 Let U ⊂ R be an open set. For each x ∈ U , let (mx,Mx) ⊂ U be
the largest open interval containing x. (Take the union of all open intervals
in U that contain x.) Any two such intervals either coincide or are disjoint,
i.e., they constitute a partition of U .
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11.32 1) Certainly, it is connected because if l is the spiral, then
Cl l = l ∪ S1. 2) Obviously, the answer will not change if we add to the
spiral only a part of the limit circle.

11.33 (a) This set is disconnected since, for example, so is its projection
to the x axis.
(b) This set is connected because any two of its points are joined by a broken
line (with at most two segments).
(c) This set is connected. Consider the set X ⊂ R2 defined as the union of
lines y = kx with k ∈ Q. Clearly, the coordinates (x, y) of any point of X
are either both rational or both irrational. Obviously X is connected, while
the set under consideration is contained in the closure of X (coinciding with
the whole plane).

13.17 Let A ⊂ Rn be the connected set. Use the fact that balls
in Rn are connected by 11.U (or by 11.V) and apply 11.E to the family
{A} ∪ {Bε(x)}x∈A.

11.35 For x ∈ A, let Vx ⊂ U be a spherical neighborhood of x. Consider
the neighborhood

⋃
x∈A Vx of A. To show that it is connected, use the fact

that balls in Rn are connected by 11.U (or by 11.V) and apply 11.E to the
family {A} ∪ {Vx}x∈A.

11.36 Let

X = {(0, 0), (0, 1)} ∪
{
(x, y) | x ∈ [0, 1], y = 1

n , n ∈ N
}
⊂ R2.

Prove that any open and closed set contains both points A(0, 0) and B(1, 0).

12.1 This is an immediate corollary of Theorem 12.A. Indeed any real
polynomial of odd degree takes both positive and negative values (for values
of the argument with sufficiently large absolute values).

12.2 Combine 11.Z, 12.B, and 12.E.

12.3 There are nine topological types, namely: (1) A, R; (2) B; (3) C,
G, I, J, L, M, N, S, U, V, W, Z; (4) D, O; (5) E, F, T, Y; (6) H, K; (8) P; (9)
Q; (7) X. Notice that the answer depends on the graphics of the letters. For
example, we can draw letter R homeomorphic not to A, but to Q. To prove
that letters of different types are not homeomorphic, use arguments similar
to that in the solution of 12.E.

12.4 A square with any of its points removed is still connected (prove
this!), while the segment is not. (We emphasize that the sentence “Because a
square cannot be partitioned into two nonempty open sets.” cannot serve as
a proof of the mentioned fact. The simplest approach would be to use 11.I.)

12.5 Use 10.R.
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12.2x This is so because for any x0 ∈ X the set {x | f(x) = f(x0)} is
both open and closed (prove this!). Here is another version of the argument.
For each point y in the source space the preimage f−1(y) is open.

12.4x Fix h ∈ H and consider the map x 7→ xhx−1. Since H is a
normal subgroup, the image of G is contained in H. Since H is discrete,
this map is locally constant. Therefore, by 12.2x, it is constant. Since the
unity is mapped to h, it follows that xhx−1 = h for any x ∈ G. Therefore
gh = hg for any g ∈ G and h ∈ H.

12.5x Consider the union of all sets with property E containing a point
a. (Is not it natural to call this set a component of a in the sense of E?)
Prove that such sets constitute an open partition of X. Therefore, if X is
connected, any such a set is the whole X.

12.7x Introduce a coordinate system with y-axis l, and consider the
function f sending t ∈ R to the area of the part A that lies to the left of the
line x = t. Prove that f is continuous. Observe that the set of values of f
is the segment [0;S], where S is the area of A, and apply the Intermediate
Value Theorem.

12.8x If A is connected, then the function introduced in the solution
of Problem 12.7x is strictly monotone on f−1

(
(0, S)

)
.

12.9x Fix a Cartesian coordinate system on the plane and, for any ϕ ∈
[0, π], consider also the coordinate system obtained by rotating the fixed one
through an angle of ϕ around the origin. Let fA and fB be functions defined
by the following property: the line defined by x = fA(ϕ) (respectively,
x = fB(ϕ)) in the corresponding coordinate system divides A (respectively,
B) into two parts of equal areas. Put g(ϕ) = fA(ϕ)−fB(ϕ). Clearly, g(π) =
−g(0). Hence, if we proved the continuity of fA and fB, then Intermediate
Value Theorem would imply existence of ϕ0 such that g(ϕ0) = 0. The
corresponding line x = fA(ϕ0) divides each of the figures into two parts of
equal areas. Prove continuity of fA and fB!

12.10x The idea of solution is close to the idea of solution of the
preceding problem. Find an appropriate function whose zero would give rise
to the desired lines, while the existence of a zero follows from Intermediate
Value Theorem.

13.1 Combine 11.R and 11.N.

13.2 Combine 13.1 and 11.26.

13.3 This is obvious since inA is continuous.
Indeed, u is continuous as a submap of the continuous map inA ◦u.

13.4 A one-point discrete space, an indiscrete space, the arrow, and
RT1

are path-connected. Also notice that the points a and c in can be
connected by a path!
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13.5 Use 13.3.

13.6 Combine (the formula of) 13.C and 13.5.

13.8 Indeed, let u : I → X be a path. Then any two points u(x), u(y) ∈
u(I) are connected by the path defined as the composition of u and I → I :
t 7→ (1 − t)x+ ty.

13.9 A path in the space of polygons looks as a deformation of a
polygon. Let us join an arbitrary polygon P with a regular triangle T . We
take a vertex V of P and move it to (say, the midpoint of) the diagonal of P
joining the neighboring vertices of V , thus reducing the number of vertices of
P . Proceeding by induction, we come to a triangle, which is easy to deform
into T .
It is also easy to see that any convex n-gon can be deformed to a regular
n-gon in the space of convex n-gons.

13.11 We consider the case where A and B are open and prove that
A is path-connected. Let x, y ∈ A, and let u be a path joining x and y in
A ∪ B. If u(I) 6⊂ A, then we set t̄ = sup{t | u([0, t]) ⊂ A}. Since A is
open, u(t̄) ∈ B. Since B is open, there is t0 < t̄ with u(t0) ∈ B, whence
u(t0) ∈ A∩B. In a similar way, we find t1 ∈ I such that u(t1) ∈ A ∩B and
u([t1, 1]) ⊂ A. It remains to join u(t0) and u(t1) by a path in A ∩B.

13.12 1), 2) The assertion about the boundary is trivial, and an ex-
ample is easy to find in R1. It is also easy to find a path-connected set in
R2 with disconnected interior. (Why are there no such examples in R1?)

13.13 Let x, y ∈ ClA. Assume that x, y ∈ IntA. (Otherwise, the
argument becomes even simpler.) Then we join x and y with points x′, y′ ∈
FrA by segments and join x′ and y′ by a path in FrA.

13.16 This is 13.M. Combine the result of 11.Y with 13.6

(or 13.B).

13.17 Combine Problem 11.34 and Theorem 13.U.

13.18 Combine Problem 11.35 and Theorem 13.U.

13.1x Use multiplication of paths.

13.2x Obvious.

13.3x Obvious.

13.4x Define polygon-connected components and show that they are
open for open sets in Rn.

13.5x For example, set A = S1.

13.6x Let x, y ∈ R2 rX. Draw two nonparallel lines through x and y
that do not intersect X.
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13.7x Let x, y ∈ RnrX. Draw a plane through x and y that intersects
each of the affine subspaces at most at one point and apply Problem 13.6x.
(In order to find such a plane, use the orthogonal projection of Rn to the
orthogonal complement of the line through x and y.)

13.8x Let w1, w2 ∈ CnrX. Observe that the complex line through w1

and w2 intersects each of the algebraic subsets at a finite number of points
and apply Problem 13.6x.

13.9x The set Symm(n; R) = {A | tA = A} is a linear subspace in
the space of all matrices, hence, it is path-connected. To handle the other
subspaces, use the function A 7→ detA. Since (obviously) it is continuous
and takes in each case both positive and negative values, but never vanishes,
it immediately follows that GL(n; R), O(n; R), Symm(n; R)∩GL(n; R), and
{A | A2 = E} are disconnected. In fact, each of them has two path-connected
components. Let us show, for example, that GL+(n; R) = {A | detA > 0 }
is path-connected. The following assertion is of use here, as well as below.
For each basis {ei} in Rn there exist paths ei : I → Rn such that: 1) for
each t ∈ [0, 1] the collection {ei(t)} is a basis; 2) ei(0) = ei, i = 1, . . . , n; 3)
{ei(1)} is an orthonormal basis. (Prove this.)

13.10x GL(n,C) is even polygon-connected by 13.8x since detA = 0

is an algebraic equation in Cn2

. The other spaces are path-connected.

14.1 Only the discrete space is Hausdorff (and, formally, indiscrete
singletons).

14.2 Read the following formula written with quantifiers: ∃Ub ∀N ∈
N ∃n > N : an ∈ X r Ub.

14.4 Let f, g : X → Y be two continuous maps and let Y be a Hausdorff
space. To prove that the coincidence set C(f, g) is closed, we show that its
complement is open. If x ∈ X r C(f, g), then f(x) 6= g(x). Since Y is
Hausdorff, f(x) and g(x) have disjoint neighborhoods U and V . For each
y ∈ f−1(U) ∩ g−1(V ), we obviously have f(y) 6= g(y), whence f−1(U) ∩
g−1(V ) ⊂ X r C(f, g). Since f and g are continuous, this intersection is a
neighborhood of y.

14.5 Consider the following two maps from I to the arrow: x 7→ 1 and
x 7→ sgnx. (Here, sgn : R → R is the function that takes negative numbers
to −1, 0 to 0, and positive numbers to 1.)

14.6 This follows from 14.4 because, obviously, the fixed point set of
f is C(f, idX).

14.7 Let X be the arrow. Consider the map f : X → X : x 7→ x+sinx.
What is the fixed point set of f? Is it closed in X?
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14.8 By 14.4, the coincidence set C(f, g) of f and g is closed in X.
Since C(f, g) contains the everywhere-dense set A, it coincides with the
entire X.

14.10 Only the first two properties are hereditary.

14.11 We have {x} =
⋂
U∋x U iff for each y 6= x the point x has a

neighborhood U that does not contain y, which is precisely T1.

14.12 This is obvious.

14.13 See 14.J.

14.14 Consider a neighborhood of f(a) that does not contain f(b) and
take its preimage.

14.15 Otherwise, the indiscrete space would contain nontrivial closed
subsets (preimages of singletons).

14.16 This is a complete analog of the topology on RT1
: only finite

sets and the entire space are closed.

14.17 Consider the coarsest topology on R that contains the usual
topology and is such that the set A =

{
1
n | n ∈ N

}
is closed. Show that in

this space the point 0 and the set A cannot be separated by neighborhoods.

14.18 An obvious example is the indiscrete space. A more instructive
example is the “real line with two zeros”, which is also of interest in some
other cases: let X = R ∪ 0′, and let the base of the topology in X consist
of all usual open intervals (a, b) ⊂ R and of “modified intervals” (a, b)′ :=
(a, 0) ∪ 0′ ∪ (0, b), where a < 0 < b. (Verify that this is indeed a base.)
Axiom T3 is fulfilled, but 0 and 0′ have no disjoint neighborhoods in X.

14.19 Let a spaceX satisfy T3. If b ∈ X andW is a neighborhood
of b, then, applying T3 to b and X rW , we obtain disjoint open sets U and
V such that b ∈ U and X rW ⊂ V . Obviously, Cl(U) ⊂ X r V ⊂W .

Let X be the space, let F ⊂ X be a closed set, and let b ∈ X r F .
Then X r F is a neighborhood of x, and we can find a neighborhood U of
x with Cl(U) ⊂ X rF . Then X r Cl(U) is the required neighborhood of F
disjoint with U .

14.20 Let X be a space, A ⊂ X a subspace, B a closed subset of A.
If x /∈ B, then x /∈ F , where F is closed in X and F ∩ A = B. The rest is
obvious.

14.21 For example, consider an indiscrete space or the arrow.

14.22 Cf. the proof of assertion 14.19. Let a space X satisfy
T4. If F ⊂ X is a closed set and W is a neighborhood of F , then, applying
T4 to F and X rW , we obtain disjoint open sets U and V such that F ⊂ U
and X rW ⊂ V . Obviously, Cl(U) ⊂ X r V ⊂W .

Let X be the space, and let F,G ⊂ X be two disjoint closed sets.
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Then X rG is a neighborhood of F , and we can find a neighborhood U of
F with Cl(U) ⊂ X r G. Then X r Cl(U) is the required neighborhood of
F disjoint with U .

14.23 Use the fact that a closed subset of a closed subspace is closed
in the entire space and recall the definition of the relative topology.

14.24 For example, consider A = N and B =
{
n+ 1

n

}∞
1

in R.

14.25 Let F1, F2 ⊂ Y be disjoint closed sets. Since f is continuous,
their preimages f−1(F1) and f−1(F2) are also closed in X. Since X satisfies
T4, the preimages have disjoint neighborhoods W1 and W2. By assumption,
the closed sets Ai = XrWi, i = 1, 2, have closed images Bi. Since B1∪B2 =
f(A1) ∪ f(A2) = f(A1 ∪ A2) = f(X) = Y , the open sets U1 = Y r B1 and
U2 = Y rB2 are disjoint. Check that Fi ⊂ Ui, i = 1, 2.

14.1x Let x, y ∈ N be two distinct points. If at least one of them lies
in H, then, obviously, they have disjoint neighborhoods. Now if x, y ∈ R1,
then they are separated by certain disjoint disks Dx and Dy.

14.2x Verify that if an open disk D ⊂ H touches R1 at a point x, then
Cl(D ∪ x) = ClD. After that, use 14.19.

14.3x The discrete structure.

14.4x Since R1 is closed in N and the relative topology on R1 is discrete,
each subset of R1 is closed in N . Let us prove that the closed sets {(x, 0) |
x ∈ Q} and {(x, 0) | x ∈ R r Q} have no disjoint neighborhoods in N .
Let U be a Niemytski neighborhood of R1 r Q. For each x ∈ R1 r Q, fix
an r(x) such that an open disk Dr(x) ⊂ U of radius r(x) touches R1 at x.

Put Zn = {x ∈ R1 | r(x) > 1/n}. Since, obviously, Q ∪ ⋃∞
n=1 Zn = R1,

the result of 6.44 implies that there is (sufficiently large) n such that Zn
is not nowhere dense. Therefore, ClZn contains a segment [a, b] ⊂ R1,
whence it follows that U ∪ [a, b] contains a whole neighborhood of [a, b],
which meets any neighborhood in N of any rational in [a, b]. Hence, U
meets each neighborhood of Q, and so, indeed, N is not normal.

14.6x Add a point x∗ to N : N ∗ = N ∪ x∗. The topology Ω∗ on N ∗

is obtained from the topology Ω on N by adding sets of the form x∗ ∪ U ,
where U ∈ Ω contains all points in R1 except a finite number. Verify that
(N ∗,Ω∗)is a normal space.

14.8x Set f(x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)
.

14.9x.1 Set A = f−1
([
−1,−1

3

])
and B = f−1

([
1
3 , 1

])
. Use 14.8x to

prove that there exists a function g : X →
[
−2

3 ,
2
3 ] such that g(A) = −1

3 and

g(B) = 1
3 .
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14.9x By 14.9x.1, there is a function g1 : X →
[
−1

3 ,
1
3

]
such that

|f(x) − g1(x)| ≤ 2
3 for every x ∈ F . Put f1(x) = f(x) − g1(x). Slightly

modifying the proof of 14.9x.1 we obtain a function g2 : X →
[
−2

9 ,
2
9 ] such

that |f1(x) − g2(x)| ≤ 4
9 for every x ∈ F , i.e. |f(x) − g1(x) − g2(x)| ≤ 4

9 .
Repeating this process, we construct a sequence of functions gn : X →
[
−2n−1

3n , 2n−1

3n ] such that

|f(x) − g1(x) − . . .− gn(x)| ≤ 2n

3n .

Use 24.Hx to prove that the sum g1(x)+. . .+gn(x) converges to a continuous
function g : X → [−1, 1]. Obviously, g|F = f .

15.1 This is obvious.

15.2 Sending each curve C in Σ to a pair of points in Q2 ⊂ R2 lying
inside two “halves” of C, we obtain an injection Σ → Q4. It remains to
observe that Q4 is countable and use 15.1. (In order to show that Q4 is
countable, use 15.F and 15.E.)

15.3 The arrow is second countable: {(x,+∞) | x ∈ Q} is a countable
base. (Use 15.F.) Use 15.G to show that RT1

is not second countable.

15.4 Yes, they are: N is dense both in the arrow and in RT1
.

15.5 Consider the space from Problem 2.6.

15.6 Take an uncountable set (e.g., R) with all distances between
distinct points equal to 1. (See 4.A.)

15.7 Let X be a separable space, let {Uα}α∈J be the collection of
pairwise disjoint open sets of X, and let A ⊂ X be a countable everywhere-
dense subset. Taking for each α ∈ J a point p(α) ∈ A ∩ Uα 6= ∅, we obtain
an injection J → A.

15.8 Use 11.H, 13.U, 13.S, 15.M, and 15.7.

15.9 Consider id : R → RT1
and use 15.M and the result of 15.3.

15.10 LetX be the space, B0 a countable base ofX, andB an arbitrary
base of X. By the Lindelöf Theorem 15.O, each set in B0 is the union of a
countable collection of sets in B. It remains to use 15.E.

15.12 Obviously, it suffices to prove only the last assertion. If U is an
open set and a ∈ U , then there is r > 0 such that Br(a) ⊂ U . Since rn → 0,
there is k ∈ N such that rk < r, whence Brk(a) ⊂ U .

15.13 If X is a discrete (respectively, indiscrete) space, then the min-
imal base at a point x ∈ X is {{x}} (respectively, {X}).

15.14 All spaces except RT1
, cf. 15.3.
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15.15 Equip R with the topology determined by the base {[a, b) | a, b ∈
R, a < b}.

15.16 If {Vi}∞1 is a countable neighborhood base, then put Ui =
⋂n

1 Vi.

15.17 In this space, xn → a iff xn = a for all sufficiently large n. It
follows that SClA = A for each A ⊂ R. Check that SCl[0, 1] = [0, 1] 6=
Cl[0, 1] = R.

15.18 Consider the identical map of the space from Problem 15.17 to
R.

16.1 1) If (X,Ω2) is compact, then, obviously, so is (X,Ω1). 2) The
converse is wrong in general.

16.2 The arrow is compact. (Which set must belong to each cover of
the arrow?) The space RT1

is also compact: if Γ is an open cover of RT1
,

then any nonempty element of Γ covers the entire RT1
except a finite number

of points, each of which, in turn, is covered by an element of Γ.

16.3 This set is not compact in R since, e.g., the cover {(0, 2− 1
n)}n∈N

contains no finite subcovering.

16.4 The set [1, 2) is compact in the arrow because any open set con-
taining 1 (i.e., a ray (a,+∞) with a < 1, or even [0,+∞) itself) contains
the entire [1, 2). Notice that the set (1, 2] is not compact (to prove this,
use 16.D).

16.5 A is compact in the arrow iff inf A ∈ A.

16.6 See the solution of 16.2.

16.7 1) If Γ covers A ∪ B, then Γ covers both A and B. Therefore,
Γ contains both a finite subcovering of A and a finite subcovering of B,
whose union is a finite cover of A ∪ B. 2) The set A ∩ B is not necessarily
compact (use 16.5 to construct the corresponding example). Unfortunately,
sometimes students present a “proof” of the fact that A ∩ B is compact.
Here is a typical argument. “Since A is compact, A has a finite cover, and
since B is compact, B also has a finite cover. Taking pairwise intersections
of the elements of these covers, we obtain a finite cover of the intersection
A∩B.” Why does not this argument imply in any way that the intersection
of two compact sets is compact?

16.8 Take an open cover Γ of A, and let U0 ∈ Γ be an open set
containing 0. Then U0 covers the entire A except a finite number of points,
each of which, in turn, is covered by an element of Γ. (Cf. the solution
of 16.2.)

16.9 Consider an indiscrete two-point space and its one-point subset.

16.10 Combine 16.K, 2.F, and 16.J.
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16.11 Take any λ0 ∈ Λ. Then {X r Kλ}λ∈Λ is an open cover of the
compact setKλ0

rU . If {XrKλi
}n1 is a finite subcovering, then U ⊃ ⋂n

1 Kλi
.

16.12 By 16.K, all setsKn are closed subsets ofK1. Since the collection
{Kn} obviously has the finite intersection property and K1 is compact, we
have

⋂∞
1 Kn 6= ∅ is nonempty (see Theorem 16.G). Assume the contrary:

let
⋂
Kn = F1 ∪F2, where F1 and F2 are two disjoint nonempty closed sets.

By Theorem 13.17 and 16.O, they have disjoint neighborhoods U1 and U2.
Applying 16.11 to U1 ∪U2, we see that for some n we have U1 ∪U2 ⊃ Kn ⊃
F1 ∪ F2, which contradicts the connectedness of Kn.

16.13 Only if the space is finite.

16.14 From 16.T it follows that S1, Sn, and the ellipsoid are compact.
The remaining sets are not compact: [0, 1) and [0, 1) ∩ Q are not closed in
R, while the ray and the hyperboloid are unbounded.

16.15 GL(n) is not even closed in L(n, n) = Rn2

, while SL(n) and
space (d) are not bounded. Therefore, only O(n) is compact because it is
both closed and bounded (check this).

16.16 By 12.C and Theorems 16.P and 16.U, f(I) is a compact interval,
i.e., a segment.

16.17 This is 16.V. Since the function A → R : x 7→
ρ(0, x) is bounded, A is bounded. Let us prove that A is closed. Assume
the contrary: let x0 ∈ ClArA. Then the function A→ R : x 7→ 1/ρ(x, x0)
is unbounded, a contradiction. Since A is closed and bounded, it is compact
by 16.T.

16.18 Consider the function f : G → R : x 7→ ρ(x, F ). By 4.35, f is
continuous. Since ρ(G,F ) = infx∈G f(x), it remains to apply 16.V. Recall
that f takes only positive values! (See 4.L.)

16.19 Use 16.18 and, e.g., put ε = ρ(A,X r U).

16.20 Prove that if A ⊂ Rn is a closed set, then for each x ∈ Rn

there is y ∈ A such that ρ(x, y) = ρ(x,A), whence V =
⋃
x∈ADε(x). The

set
⋃
x∈ABε(x) is path-connected as a connected open subset of Rn, which

implies that V is also path-connected.

16.22 Consider the function ϕ : X → R : x 7→ ρ(x, f(x)). If f(x) 6= x,
then, by assumption, we have ϕ(f(x)) = ρ(f(x), f(f(x))) < ρ(x, f(x)) =
ϕ(x). Prove that ϕ is continuous. Since X is compact, ϕ attains its minimal
value at a certain point x0 by 16.V. However, if f(x0) 6= x0, then ϕ(f(x0)) <
ϕ(x0), and so ϕ(x0) is not the minimal value of ϕ, a contradiction.

16.23 Let U1, . . . , Un be a finite subcovering of the initial cover. We
put fi(x) = ρ(x,X rUi). Since the functions fi(x) are continuous, so is the
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function ϕ : x 7→ max{fi(x)}n1 . Since X is compact, ϕ attains its minimal
value r. Since Ui cover X, we have r > 0.

16.24 Obvious.

16.25 If X is not compact, then use, e.g., 10.B. If Y is not Hausdorff,
then consider, e.g., the identical map id of I with the usual topology to I
with the Zariski topology, or simply the identical map of a discrete space to
the same set with indiscrete topology.

16.26 No, there is no such subspace. Let A ⊂ Rn be a noncompact
set. If A is not closed, then the inclusion in : A → Rn is not a closed map.
If A = Rn, then there exists a homeomorphism Rn → {x ∈ Rn | x1 > 0}. If
A is closed, but not bounded, then take x0 /∈ A and consider an inversion
with center x0.

16.27 Use 5.F: closed sets of a closed subspace are closed in the ambient
space.

16.1x Let p : Rn → R be a norm. The inequality

p(x) = p
(∑

xiei

)
≤

∑
p(xiei) =

∑
|xi|p(ei) =

∑
λi|xi|

implies that p is continuous at zero (here, {ei} is the standard basis in Rn).
Show that p is also continuous at any other point of Rn.

16.2x Since the sphere is compact, there are real numbers c, C > 0
such that c|x| ≤ p(x) ≤ C|x|, where | · | is the usual Euclidean norm. Now
use 4.27.

16.3x Certainly not!

16.4x Consider a cover of X by neighborhoods on which f is bounded.

17.1 This obviously follows from 17.E.

17.2 By the Zorn lemma, there exists a maximal set in which the
distances between the points are at least ε; this set will be the required
ε-net.

17.1x No, they are not compact. Consider the sequence {en}, where
en is the unit basis vector. What are the pairwise distances between these
points?

17.2x This set is compact because the set

A = {x ∈ l∞ | |xn| ≤ 2−n forn ≤ k, xn = 0 forn > k}
is a 2−k-net in the set.

17.4x No, there does not exist such normed space. Prove that if E is a
finite-dimensional subspace of a normed space (X, p), x /∈ E, and y ∈ E is a

point in E closest to x , then the point x0 = x−y
|x−y| is such that p(x0−z) ≥ 1.



410 Hints, comments, advices,

(This fact is called the “Lemma on a Perpendicular”.) Using this assertion,
we can construct by induction a sequence xn ∈ X such that p(xn) = 1,
p(xn − xk) ≥ 1 for n 6= k. It is clear that it has no convergent subsequence.

17.5x See 4.Ix.

17.6x If x = a0 + a1p + . . . and y = a0 + a1p + . . . + akp
k, then

ρ(x, y) ≤ p−k−1.

17.7x Yes, Zp is complete. To prove this, use the following assertion:

if x = a0 + a1p+ . . ., y = b0 + b1p+ . . ., and ρ(x, y) < p−k, then ai = bi for
all i = 1, . . . , k.

17.8x Yes, Zp is compact. Since the finite set A = {y = a0 +a1p+ . . .+

akp
k} is a p−k−1-net in Zp, the completeness of Zp proved in 17.7x implies

that it is compact.

17.9x Use the Hausdorff metric.

17.10x We can view R2n as the space of n-tuples of points in the plane.
Each n-tuple has a convex hull, which is a convex polygon with at most n
vertices. Let K ⊂ R2n be the set of all n-tuples with convex hulls contained
in Pn. We easily see that K is bounded and closed, i.e., K is compact. The
map K → Pn taking an n-tuple to its convex hull is obviously continuous
and surjective, whence it follows that Pn is compact.

17.11x Use the fact that Pn is compact and the area determines a
continuous function S : Pn → R.

17.12x It is sufficient to show that if a polygon P ⊂ D is not regular,
then we can find a polygon P ′ ⊂ D that has perimeter at most p and area
greater than that of P , or perimeter less than p and area at least that of
P . 1) First, it is convenient to assume that P (as well as P ′) contains the
center of D. 2) If P has two neighboring sides of different length, then we
can make them equal of smaller length without changing the area. 3) If P
is equilateral, but has different angles, we once more enlarge the area, this
time even decreasing the perimeter.

17.13x As in 17.9x, the Hausdorff metric would do.

17.14x Consider a sequence consisting of regular polygons of perimeter
p with increasing number of vertices. Show that this sequence has no limit
in P∞. Therefore, no such a sequence contains a convergent sequence, and
so P∞ is not even sequentially compact.

17.15x Once more, use the Hausdorff metric, as in 17.9x and 17.13x.

17.16x By 17.N, it suffices to show that 1) P contains a compact
ε-net for each (arbitrarily small) ε > 0, and 2) P is complete. 1) Pn
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with sufficiently large n would do. (What finite ε-net would you sug-
gest?) 2) Let K1,K2, . . . be a Cauchy sequence in P. Show that K∗ :=
Cl (

⋃∞
n=1 (

⋂∞
i=nKi)) is a convex set in P, and Ki → K∗ as i→ ∞.

17.17x This follows from 17.16x and the continuity of the area function
S : P → R. (Cf. 17.11x.)

17.18x Similarly to 17.12x, it suffices to show that we can increase
the area of a compact set X distinct from a disk without increasing the
perimeter of X. 1) First, we take two points A,B ∈ FrX that divide FrX
in two parts of equal length. 2) The line AB splits X into two parts, X1 and
X2. Suppose that the area of X1 is at least that of X2. Then, if we replace
X2 by a mirror reflection of X1, we do not decrease S(X). If X1 is not a
half-disk, then there is a point C ∈ X1 ∩ FrX such that ∠ACB 6= π/2, and
we easily increase S(X).

18.1x Obvious.

18.2x All of them, except Q.

18.3x Let A =
⋃∞
n=1

(
1

n+1 ,
1
n

)
and B = {0}. The sets A and B are

discrete and so locally compact, but the point 0 ∈ A∪B has no neighborhood
with compact closure (in A ∪B).

18.4x See 18.Lx.

18.7x This is obvious since an open set U meets an A ∈ Γ iff U meets
ClA.

18.8x This immediately follows from 18.Qx.

18.9x Use 18.8x.

18.11x Let X be a locally compact space. ThenX has a base consisting
of open sets with compact closures. By the Lindelöf theorem, the base (being
an open cover of X) contains a countable subcovering of X. It remains to
use assertion 18.Xx.

18.12x Repeat the proof of a similar fact about compactness.

18.13x This is obvious. (Recall the definitions.)

18.14x Consider the cover Γ′ = {X r F,Uα} of X. Let {Vα} be a
locally finite refinement of Γ′. Then ∆ = {Vα | Vα ∩ F 6= ∅} is cover of F .
Put W =

⋃
Vα∈∆ Vα. Since ∆ is locally finite, K =

⋃
Vα∈∆ ClVα is a closed

set. Then W and X rK are the required disjoint neighborhoods of F and
M .

18.15x This immediately follows from 18.14x (or 18.16x).

18.16x This immediately follows from 18.14x.

18.17x Since X is Hausdorff and locally compact, each point x ∈ Uα ∈
Γ has a neighborhood Vα,x with compact closure lying in Uα. Since X is
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paracompact, the open cover {Vα,x} of X has a locally finite refinement ∆,
as required.

18.18x The argument involves the Zorn lemma. Consider the set M
of all open covers ∆ of X such that for each V ∈ ∆ either V ∈ Γ, or ClV is
contained in an element of Γ. We assign to ∆ ∈ M the subset A∆ = {Vα |
ClVα ⊂ Uα} ⊂ Γ. Introduce a natural order on the set {A∆ | ∆ ∈ M},
show that this set has a largest element A∆0

, which coincides with the entire
Γ, and, therefore, ∆0 is the required cover.

18.20x Next to obvious.

19.1 pr−1
Y (B) = X ×B.

19.2 We have:

prY (Γf ∩ (A× Y )) = prY ({(x, f(x)) | x ∈ A}) = {f(x) | x ∈ A} = f(A).

Prove the second identity on your own.

19.3 Indeed, (A×B) ∩ ∆ = {(x, y) | x ∈ A, y ∈ B, x = y} = {(x, x) |
x ∈ A ∩B}.

19.4 prX |Γf
: (x, f(x)) ↔ x.

19.5 Indeed, f(x1) = f(x2) iff prY (x1, f(x1)) = prY (x2, f(x2)).

19.6 This obviously follows from the relation T (x, f(x)) = (f(x), x) =
(y, f−1(y)).

19.7 Use the formula

(A×B)∩
⋃

α

(Uα×Vα) =
⋃

α

((A×B)∩ (Uα×Vα)) =
⋃

α

((A∩Uα)× (B∩Vα)).

19.8 Use the third formula of 19.A:

(X × Y ) r (A×B) = ((X rA) × Y ) ∪ (X × (Y rB)) ∈ ΩX×Y .

19.9 As usual, we check the two inclusions. ⊂ Use 19.8.

⊃ If x and y are adherent points of A and B, respectively, then, obviously,
(x, y) is an adherent point of A×B.

19.10 Yes, this is true. Once more, we check two inclusions. ⊂
This is obvious. ⊃ If z = (x, y) ∈ Int(A × B), then z has an elementary
neighborhood: z ∈ W = U × V ⊂ A × B, which means that x has a
neighborhood Ux ⊂ A and y has a neighborhood Vy ⊂ B, i.e., x ∈ IntA and
y ∈ IntB, whence z = (x, y) ∈ IntA× IntB).

19.11 Certainly not! For instance, the boundary of the square I × I ⊂
R2 is the contour of the square, while the product Fr I×Fr I consists of four
points.
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19.12 No, it is not in general; consider the set (−1, 1) × (−1, 1) ⊂ R2.

19.13 Since A and B are closed, we have FrA = Ar IntA and FrB =
Br IntB. The set A×B is also closed by 19.8, whence by the third formula
in 19.A we have

Fr(A×B) = (A×B) r Int(A×B) = (A×B) r (IntA× IntB)

=
(
(Ar IntA) ×B

)
∪

(
A× (B r IntB)

)
= (FrA×B) ∪ (A× FrB).

(23)

19.14 Using 19.9, 19.10, and the third formula of 19.A, we obtain

Fr(A×B) = Cl(A×B) r Int(A×B) = (ClA× ClB) r (IntA× IntB)

=
(
(ClArIntA)×ClB

)
∪

(
ClA×(ClBrIntB)

)
= (FrA×ClB)∪(ClA×FrB)

=
(
FrA×(B∪FrB)

)
∪

(
(A∪FrA)×FrB

)
= (FrA×B)∪(FrA×FrB)∪(A×FrB).

19.15 It is sufficient to show that each elementary set in the product
topology of X × Y is a union of sets of such form. Indeed,

⋃

α

Uα ×
⋃

β

Vβ =
⋃

α,β

(Uα × Vβ).

19.16 The restriction prX |Γf
is obviously a continuous bijection.

The inverse map X → Γf : x 7→ (x, f(x)) is continuous iff so is the map g :
X → X×Y : x 7→ (x, f(x)), which is true because g−1(U×V ) = U∩f−1(V ).

Use the relation f = prY ◦
(
prX |Γf

)−1
.

19.17 Indeed, prX(W ) = prX
(⋃

α(Uα × Vα)
)

=
⋃
α prX(Uα × Vα) =⋃

α Uα. (We assumed that Vα 6= ∅.)

19.18 No, it is not; consider the projection of the hyperbola A =
{(x, y) | xy = 1} ⊂ R2 to the x axis.

19.19 Let F ⊂ X × Y be a closed set and let x /∈ prX(F ). Then
(x × Y ) ∩ F = ∅, and for each y ∈ Y the point (x, y) has an elementary
neighborhood Ux(y)× Vy ⊂ (X × Y ) rF . Since the fiber x× Y is compact,
there is a finite subcovering {Vyi

}ni=1. The neighborhood U =
⋂n

1 Ux(yi) is
obviously disjoint with prX(F ). Therefore, the complement of prX(F ) is
open, and so prX(F ) is closed.

19.20 Plug in the definitions.

19.21 This is rather straightforward.

19.22 This is also quite straightforward.

19.23 Recall the definition of the product topology and use 19.21.
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19.24 Let us check that ρ is continuous at each point (x1, x2) ∈ X×X.
Indeed, let d = ρ(x1, x2), ε > 0. Then, using the triangle inequality, we
easily see that ρ

(
Bε/2(x1) ×Bε/2(x2)

)
⊂ (d− ε, d + ε).

19.25 This is quite straightforward.

19.26 Let (x, y) /∈ ∆. Then the points x and y are distinct, and
so they have disjoint neighborhoods: Ux ∩Vy = ∅. Then (Ux×Vy)∩∆ = ∅

by 19.3, i.e., Ux × Vy ⊂ X ×X r ∆. Therefore, (X ×X) r ∆ is open.
Let x and y be two distinct points of X. Then (x, y) ∈ (X ×X) r ∆,

and, since ∆ is closed, (x, y) has an elementary neighborhood Ux × Vy ⊂
X ×X r ∆. It follows that Ux × Vy is disjoint with ∆, whence Ux ∩ Vy = ∅

by 19.3, as required.

19.27 Combine 19.26 and 19.25.

19.28 The projection prX : X → Y is a closed map by 19.19. There-
fore, the restriction prX |Γ : Γ → X is also closed by 16.27, it is a homeo-
morphism by 16.24, and so f is continuous by 19.16.
Another option: use 19.19 and the identity f−1(F ) = prX

(
Γf ∩ (X × F )

)
.

19.29 Consider the map R → R : x 7→
{

0 if x = 0,

1/x, otherwise.

19.32 Only the path-connectedness implies the continuity. The func-
tions described in the Problem 19.31 provide counterexamples to other as-
sertions.

19.36 No, they are not.

19.37 It is convenient to use the following property, which is equivalent
to the regularity of a space (see 14.19). For each neighborhood W of (x, y),
there is a neighborhood U of (x, y) such that ClU ⊂ W . It is sufficient
to consider the case where W is an elementary neighborhood. Use the
regularity of X and Y and Problem 19.9.

19.38.1 Let A and B be disjoint closed sets. For each a ∈ A, there
exists an open set Ua = [a, xa) ⊂ X r B. Put U =

⋃
a∈A Ua. The neigh-

borhood V ⊃ B is defined similarly. If U ∩ V 6= ∅, then for some a ∈ A
and b ∈ B we have [a, xa) ∩ [b, yb) 6= ∅. Let, say, a < b. Then b ∈ [x, xb), a
contradiction.

19.38.2 The set ∇ is closed in R2, a fortiori ∇ is closed in R × R.
Since {(x,−x)} = ∇∩

(
[x, x+ 1)× [−x,−x+ 1)

)
, it follows that each point

of ∇ is open in ∇.

19.38.3 See 14.4x.

19.39 Modify the argument used in the proof of assertion 19.S.

19.40 This follows from 19.U and 19.9.
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19.43 RnrRk ∼= (Rn−kr0)×Rk ∼= (Sn−k−1×R)×Rk ∼= Sn−k−1×Rk+1.

19.45 The space O(n) is the union of SO(n) and a disjoint open subset
homeomorphic to SO(n). Therefore, O(n) is homeomorphic to SO(n) ×
{−1, 1} ∼= SO(n) ×O(1).

19.46 It is sufficient to show that GL+(n) = {A | detA > 0} is
homeomorphic to SL(n) × (0,+∞). The required homeomorphism takes a
matrix A ∈ GL+(n) to the pair ( 1

n
√

detA
A,detA).

19.48 The existence of such a homeomorphism is directly connected
with the existence of quaternions (see the last subsection in 22), and there-
fore in the proof we also use properties of quaternions. Let {x0, x1, x2, x3} be
a quadruple of pairwise orthogonal unit quaternions determining a point in
SO(4). The required homeomorphism takes this quadruple to the pair con-
sisting of the unit quaternion x0 ∈ S3 and the triple {x−1

0 x1, x
−1
0 x2, x

−1
0 x3}

of pairwise orthogonal vectors in R3, which determines an element in SO(3).
(Notice that, e.g., SO(5) is not homeomorphic to S4 × SO(4)!)

20.2 The map pr takes each point to the element of the partition
(regarded as an element of the quotient set) containing the point, and so
the preimage pr−1(point) = pr−1(pr(x)) is also the element of the partition
containing the point x ∈ X.

20.3 Let X/S = {a, b, c}, where p−1(a) = [0, 1
3 ], p−1(b) = (1

3 ,
2
3 ], and

p−1(c) = (2
3 , 1]. Then ΩX/S = {∅, {c}, {b, c}, {a, b, c}}.

20.4 All elements of the partition are open in X.

20.6 Let X = N× I. Let the partition S consist of the fiber N = N×0
and singletons. Let pr(N) = x∗ ∈ X/S, let us prove that the point x∗
has no countable neighborhood base. Assume the contrary: let {Uk} be a
countable neighborhood base at x∗. Each of the sets pr−1(Uk) is open in X
and contains each of the points xn = (n, 0) ∈ X. For each of these points,
X contains an open set Vn such that xn ∈ Vn ⊂ pr−1(Un). It remains to
observe that W = pr

(
∪Vn

)
is a neighborhood of x∗ that is not contained in

any of the neighborhoods Un of x∗, a contradiction.

20.7 For each open set U ⊂ X/S, the image f/S(U) = f
(
pr−1(U)

)
is

open as the image of the open set pr−1(U) under the open map f .

20.1x If F is a closed set in X, then F = pr−1
(
pr(F )

)
, hence,

pr(F ) is closed. This follows from the fact that for each closed set
F in X the set pr−1

(
pr(F )

)
, first, is closed, because pr is continuous, and,

secondly, is a saturation of F .
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20.2x Let A be the closed element of the partition that is not one-point.
The saturation of any closed set F is either F itself, or the union F ∪A, i.e.,
a closed set.

20.3x This is similar to 20.1x.

20.4x If A is saturated, then for each subset U ⊂ A the saturation
of U is also a subset of A. Consequently, the saturation of IntA lies in A,
and, since the saturation is open, it coincides with IntA. Since X r A is
also saturated, Int(X rA) = X r ClA is saturated, too, and so ClA is also
saturated.

21.1 Here is a partition of the segment with quotient space homeomor-
phic to the letter A. It consists of the two-point sets {1

6 , 1}, {2
3 − x, 2

3 + x}
for x ∈ (0, 1

6 ]; the other elements are singletons. The idea of the proof
is the same as that used in 21.2: we construct a continuous surjection of
the segment onto the letter A. Consider the map defined by the following
formulas:

f(t) =





(3t, 6t) if x ∈ [0, 1
3 ],

(3t, 4 − 6t) if x ∈ [13 ,
1
2 ],

(9
2 − 6t, 1) if x ∈ [12 ,

2
3 ],

(6t− 7
2 , 1) if x ∈ [23 ,

5
6 ],

(3t− 1, 6 − 6t) if x ∈ [56 , 1].

Show that f(I) is precisely the letter A, and the partition into the preimages
under f is the partition described in the beginning of the solution.

21.2 Let u : I → I × I be a Peano curve, i.e., a continuous surjection.
Then the injective factor of the map u is a homeomorphism of a certain
quotient space of the segment onto the square.

21.3 Let S be the partition of A into A ∩ B and singletons in X r

B = A r B, T the partition of X into B and singletons in X r B, prA :
A → A/S and prX : X → X/T the projections. Since the quotient map
q : A/A ∩B → X/B is obviously a continuous bijection, to prove that
q is a homeomorphism, it suffices to check that q is an open map. Let
U ⊂ A/A ∩B be an open set, V = pr−1

A U . Then V is open in A and
saturated in X. If V ∩ B = ∅, then V is also open in X because {A,B}
is a fundamental cover of X, and so q(U) = prX(V ) is open in X/T . If
V ∩B 6= ∅, then, obviously, V ⊃ A∩B, and so the saturated set W = V ∪B
is open in X. In this case, q(U) = prX(W ) is also open in X/B.
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21.4 Consider the map f : I → I, where

f(x) =





3
2x if x ∈

[
0, 1

3

]
,

1
2 if x ∈

[
1
3 ,

2
3

]
,

3x−1
2 if x ∈

[
2
3 , 1

]
,

and prove that S(f) is the given partition. Therefore, f/S(f) : I/S(f) ∼= I.

21.5 Consider the function ϕ : R+ → R+ that vanishes for t ∈ [0, 1]
and is equal to t − 1 for t ≥ 1 and the map f : R2 → R2, where f(x, y) =
(ϕ(r)

r x, ϕ(r)
r y

)
; here, as before, r =

√
x2 + y2. By construction, R2/D2 =

R2/S(f). The map f/S(f) is a continuous bijection. In order to see that

f/S(f) is a homeomorphism, use 18.Ox (18.Px). In order to see that R2 is

also homeomorphic to other spaces, use the constructions described in the
solutions of Problems 10.20–10.22.

21.6 Let S be the partition of X into A and singletons in X \ A. Let
T be the partition of Y into f(A) and singletons in Y \ f(A). Show that
f/(S, T ) is a homeomorphism.

21.7 No, it is not. The quotient space R2/A has no countable base at
the image of A, while IntD2∪{(0, 1)} is first countable as a subspace of R2.
We can construct a continuous map R2 → IntD2 ∪ {(0, 1)} that maps A
to (0, 1) and determines a homeomorphism R2 r A → IntD2. This map
determines a continuous map R2/A→ D2 ∪ {(0, 1)}, but the inverse map is
not continuous.

21.8 The partition S(ϕ), where ϕ : S1 → S1 ⊂ C : z 7→ z3, is precisely
the partition into given triples, whence S1/S ∼= S1.

21.9 For the first equivalence relation, consider the map ϕ(z) = z2.

21.10 Notice: the quotient space of Dn by the equivalence relation
x ∼ y ⇐⇒ xi = −yi is not homeomorphic to Dn!

21.11 Consider f : R → S1: x 7→ (cos 2πx, sin 2πx). It is clear that
x ∼ y ⇐⇒ f(x) = f(y), and so the partition S(f) is the given one.
Unfortunately, here we cannot simply apply Theorem 16.Y because R is not
compact. Prove, that, nevertheless, this quotient space is compact.

21.12 The quotient space of the cylinder by the equivalence relation
(x, p) ∼ (y, q) if x + y = 1 and p = −q (here x, y ∈ [0, 1] and p, q ∈ S1), is
homeomorphic to the Möbius strip.

21.13 Use the transitivity of factorization (Theorem 21.H). Let S be
the partition of the square into pairs of points on vertical sides lying on one
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horizontal line; all the remaining elements of the partition are singletons.
We see that the quotient space I2/S is homeomorphic to the cylinder. Now
let S′ be the partition of the cylinder into pairs of points on the bases
symmetric with respect to the center of the cylinder; the other elements are
singletons. Then the partition T of the square into the preimages under the
map p : I2 → I2/S of the preimages of elements of S′ coincides with the
partition the quotient space by which is the Klein bottle.

21.17 The first assertion follows from the fact that the open sets in
the topology induced from

⊔
α∈AXα on the image inβ(Xβ) have the form

{(x, β) | x ∈ U}, where U is an open set inXβ , and so ab inβ : Xβ → inβ(Xβ)
a homeomorphism. Furthermore, each of these images is open in the sum
of the spaces (because each of its inα-preimages is either empty, or equal to
Xβ), and hence is also closed.

21.18 The separation axioms and the first axiom of countability are
inherited. The separability and the second axiom of countability require
that the index set be countable. The space

⊔
α∈AXα is disconnected if

the number of summands is greater than one. The space is compact if the
number of summands is finite and each of the summands is compact.

21.19 The composition ϕ = pr ◦ in2 is injective because each element
of the partition in X1 ⊔ X2 contains at most one point in in2(X2). The
continuity of ϕ is obvious. Consider an open set U ⊂ X2. The set in1(X1) ∪
in2(U) is open in X1 ⊔ X2 and saturated, and so its image W is open in
X2 ∪f X1. Since the intersection W ∩ ϕ(X2) = ϕ(U) is open in ϕ(X2), it
follows that ϕ is a topological embedding.

21.20 Thus, X = {∗}. Put Y ′ = Y ⊔ {∗} and A′ = A⊔ {∗}. It is clear
that the factor g : Y/A→ Y ′/A′ of the injection in : Y → Y ′ is a continuous
bijection. Prove that the map g is open.

21.21 Cut the square in order to obtain (after factorization) two
Möbius strips, which must be glued together along their boundary circles.

21.22 Use the map

(idS1 ×i+) ⊔ (idS1 ×i−) : (S1 × I) ⊔ (S1 × I) → S1 × S1,

where i± are embeddings of I in S1 onto the upper and, respectively, lower
semicircle.

21.23 See 21.M and 21.22.

21.24 If the square, whose quotient space is the Klein bottle, is cut
by a vertical segment in two rectangles, then gluing together the horizontal
sides we obtain two cylinders.

21.25 Let S3 = {(z1, z2) | |z1|2 + |z2|2 = 1} ⊂ C2. The subset of the
sphere determined by the equation |z1| = |z2| consists of all pairs (z1, z2) such
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that |z1| = |z2| = 1√
2
, therefore, the set is a torus. Now consider the subset

T1 determined by the inequality |z1| ≤ |z2| and the map taking (z1, z2) ∈ T1

to (u, v) =
(
z1
|z2| ,

z2
|z2|

)
∈ C2. Show that this map is a homeomorphism of T1

onto D2 × S1 and complete the argument on your own.

21.26 The cylinder or the Möbius strip. Consider a homeomorphism
g between the vertical sides of the square, let g : (0, x) 7→ (1, f(x)). The
map f is a homeomorphism I → I, therefore, f is a (strictly) monotone
function. Assume that the function f is increasing, in particular, f(0) = 0
and f(1) = 1. Let us show that there is a homeomorphism h : I2 → I2

such that h(0, x) = x and h(1, x) = (1, f(x)) for all x ∈ I. For this purpose,
we subdivide the square by the diagonals in four parts, and define h on the
right-hand triangle by the formula

h
(

1+t
2 , 1−t

2 + tx
)

=
(

1+t
2 , 1−t

2 + tf(x)
)
,

t, x ∈ I. On the remaining three triangles, h is identical. It is clear that
that the homeomorphism takes the element {(0, x), (1, x)} of the partition to
the element {(0, x), (1, f(x))}, therefore, there exists a continuous bijection
of the cylinder (consequently, a homeomorphism) onto the result of gluing
together the square by the homeomorphism g of its vertical sides. If the
function f is decreasing, then, arguing in a similar way, we see that the
result of this gluing is the Möbius strip.

21.27 The torus and the Klein bottle; similarly to 21.26.

21.28 Show that any homeomorphism of the boundary circle extends
to the entire Möbius strip.

21.29 See 21.27.

21.30 Show that each auto-homeomorphism of the boundary circle of a
handle extends to an auto-homeomorphism of the entire handle. (Compare
Problem 21.28. When solving both problems, it is convenient to use the
following fact: each auto-homeomorphism of the outer boundary circle of a
ring extends to an auto-homeomorphism of the entire ring that is fixed on
the inner boundary circle or determines a mirror symmetry of it.)

21.31 See the solutions to Problems 21.28 21.30.

21.32 We can assume that the holes are split into the pairs of holes
connected by “tubes”. (Compare the solution to Problem 21.V.) Together
with a disk surrounding such a pair, each tube either forms a handle or
a Klein bottle with a hole. If each of the tubes forms a handle, then we
obtain a sphere with handles. Otherwise, we transform all handles into
Klein bottles with holes (see the solution to Problem 21.V) and obtain a
sphere with films.
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22.1 There exists a natural one-to-one correspondence between lines
in the plane that are determined by equations of the form ax + by + c = 0
and points (a : b : c) in RP 2. Observe that the complement of the image of
the set of all lines is the singleton {(0 : 0 : 1)}.

23.1x Yes, it is. A number a always divides a (formally speaking, even
0 divides 0). Further, if a divides b and b divides c, then a divides c.

23.2x a ∼ b iff a = ±b.
23.3x This is obvious because A ⊂ ClB iff ClA ⊂ ClB.

24.1x This is obvious. (Cf. Problem 24.2x.)

24.2x Taking each point y ∈ Y to the constant map X → Y : x 7→ y,
we obtain an injection Y → C(X,Y ).

24.4x The correspondence f 7→ f−1(0) determines a bijection C(X,Y ) →
ΩX .

24.5x Since X is a discrete space, each map f : X → Y is continuous.
If X = {x1, x2, . . . , xn}, then f is uniquely determined by the collection
{f(x1), . . . , f(xn)} ∈ Y n.

24.6x The set X has two connected components.

24.7x It is clear (prove this) that the topological structures C(I, I) and

C(pw)(I, I) are distinct, and, consequently, the identical map of the set C(I, I)
is not a homeomorphism. In order to prove that the spaces considered are
not homeomorphic, we must find a topological property such that one of the
spaces satisfies it, while the other does not. Show that C(I, I) satisfies the

first axiom of countability, while C(pw)(I, I) does not.

24.8x We identify Y with Const(X,Y ) via the map y 7→ fy : x 7→ y.
Consider the intersections of sets in the subbase with the image of Y under
the above map. We haveW (x,U)∩Const(X,Y ) = U , hence, the intersection
of Y with any subbase set in the topology of pointwise convergence is open
in Y . Conversely, for each open set U in Y and for each x ∈ X we have
U = W (x,U) ∩ Const(X,Y ). The same argument is also valid in the case
of the compact-open topology.

24.9x The mapping f 7→ (f(x1), f(x2), . . . , f(xn)) maps the subbase set
W (x1, U1)∩W (x2, U2)∩ . . . ∩W (xn, Un) to the base set U1 ×U2 × . . .×Un
of the product topology. Finally, it is clear that if X is finite, then the
topologies Ωco(X,Y ) and Ωpw(X,Y ) coincide.

24.10x Use 24.Wx. Since X is a path-connected
space, any two paths in X are freely homotopic. Consider a homotopy

h : I × I → X. By 24.Vx, the map h̃ : I → C(I,X) defined by the formula

h̃(t)(s) = h(t, s), is continuous. Therefore, any two paths in X are joined by
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a path in the space of paths, which precisely means that the space C(I,X)
is path-connected.

24.11x The space C(pw)(I, I) is noncompact since the sequence of
functions fn(x) = xn has no accumulation points in this space. The same
sequence has no limit points in C(I, I), and, hence, this space also is not
compact.

24.12x Let

dn(f, g) = max{|f(x) − g(x)| : x ∈ [−n, n]}, n ∈ N.

Put

d(f, g) =
∞∑

n=1

dn(f, g)

2n(1 + dn(f, g))
.

We easily see that d is a metric. Show that d generates the compact-open
topology.

24.13x The proof is similar to that of assertion 24.12x. We only need to
observe that since, obviously, X =

⋃∞
i=1 IntXi, for each compact set K ⊂ X

there is n such that K ⊂ Xn.

25.1x 1) No, it cannot. 2) Yes, it can.

26.1x Use the fact that 1) β(x, y) = ω(x, α(y)), and 2) α(x) = β(1, x)
and ω(x, y) = β(x, α(y)). Use the continuity of compositions.
Write b−1 = 1 · b−1 and ab = a · (1 · b−1)−1.

26.2x In the notation used in the proof of assertion 26.1x, α is a
continuous map inverse to itself. Therefore, α is a homeomorphism.

26.3x Use the fact that the former map is the composition ω ◦ (f × g),
while the latter is the composition α ◦ f (in the notation used in the proof
of 26.1x).

26.4x Yes, it is. In order to prove this, use the fact that any auto-
homeomorphism of an indiscrete space is continuous.

26.5x If the topology in a group is induced by the standard topology
of the Euclidean space, then in order to verify that the maps (x, y) 7→ xy
and x 7→ x−1 are continuous it suffices to check that they are determined
by continuous functions. If x = a + ib and y = c + id, then xy = (ac −
bd)+ i(ad+ bc). Therefore, the multiplication is determined by the function
(a, b, c, d) 7→ (ac − bd, ad + bc), which is obviously continuous. The passage
to the inverse element is also determined by the continuous function (on
R2 r 0)

R2 r 0 → R2 r 0 : (a, b) 7→
(

a

a2 + b2
,

−b
a2 + b2

)
.
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26.6x Use the idea of the solution to Problem 26.5x and the fact that
addition, multiplication, and their compositions are continuous.

26.7x Consider, e.g., the cofinite topology of Problem 2.5, or, what
would be more interesting, the topology of an irrational flow R → T 2.
(See 28.1x (f).)

26.8x Consider any two (algebraically) nonisomorphic discrete finite
groups of equal order. Here is a more meaningful example: the topological
group GL+(2,R) ⊂ GL(2,R) of invertible 2×2 matrices with positive deter-
minant is homeomorphic to O+(2)×R3. (Here, O+(2) = O(2)∩GL+(2,R).)
The two groups are not isomorphic because the first one is not Abelian, while
the second one is.

26.10x Yes, it does. (For the same reason as in 26.Ex.)

26.11x Use the fact that UV =
⋃
x∈V Ux and V U =

⋃
x∈V xU .

26.12x No, it will not. A counterexample is given by a point by
point sum U + V of a singleton U ⊂ R with an open interval V ∈ R. A
counterexample where both U and V are closed is given in 26.13x

26.13x (a), (b) Yes. (c) No. This group is everywhere dense, but
obviously does not coincide with R. (For example, because it is countable,
while R is not.)

26.14x Let x /∈ UV . Then U and xV −1 are disjoint. Apply 26.14x.1

and take a neighborhood W of 1G such that WU does not meet xV −1. Then
W−1x does not meet UV .

26.14x.1 For each x ∈ C, the unity 1G has a neighborhood Vx such
that xVx does not meet F . By 26.Hx, 1G has a neighborhood Wx such
that W 2

x ⊂ Vx. Since C is compact, C is covered by finitely many sets
of the form W1 = x1Wx1

, . . . ,Wn = xnWxn . Put V1 =
⋂n

1 Wxi
. Then

CV1 ⊂ ⋃
WiV ⊂ ⋃

xiW
2
xi

⊂ ⋃
xiVxi

, so that CV does not meet F . In a
similar way, we construct a neighborhood V2 of 1G such that V2C does not
meet F . The neighborhood V = V1 ∩ V2 possesses the required property.
If G is a locally compact group, then we choose the neighborhood Vx with
compact closure and then proceed as before.

26.15x By 26.Hx, 1G has a neighborhood V ′ with V ′V ′ ⊂ U . By 26.Gx,
V ′ contains a symmetric neighborhood V2 of 1G. Then V2V2 ⊂ V ′V ′ ⊂ U .
After that, proceed by induction, replacing U by V2 and choosing as Vn a
symmetric neighborhood V of 1G such that V n−1 ⊂ V2. Then V n ⊂ V 2

2 ⊂ U .
Observe that V ⊂ V V .

26.16x The set H =
⋃∞
n=1 V

n is open. Clearly, 1 ∈ H, H−1 ⊂ H,
and HH ⊂ H. Hence, H is a subgroup. It remains to observe that an open
subgroup is always closed (see 27.3x).
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26.18x Let N be the intersection of all neighborhoods of 1G. Since
G is finite, there are only finitely many neighborhoods involved, and hence
N is open. From 26.Gx and 26.Hx it follows that N = N−1 and N2 = N .
Hence, N is a subgroup. It is normal since otherwise N ∩ gNg−1 would be
a smaller neighborhood of 1G than N .

27.2x Obvious. (Consider the unity.) Let H be the
subgroup, U an open set, g ∈ U ⊂ H. Then h ∈ hg−1U ⊂ H for each
h ∈ H, therefore, each point of H is inner.

27.3x For any subgroup H and any g /∈ H, the sets H and gH are
disjoint. Hence, the complement of H is the union of gH over all g /∈ H.
Therefore, the complement of H is open if H is open.

27.4x Use the same argument as in the solution to Problem 27.3x and
observe that in the case of finite index there are only finitely many distinct
cosets gH such that g /∈ H.

27.5x Consider Z ⊂ R and, respectively, Q ⊂ R.

27.6x Show that if H contains an isolated point, then all points of H
are isolated.

27.7x Let U ⊂ G be an open set such that U∩H = U∩ClH 6= ∅. If g /∈
H and gH ∩U 6= ∅, then g belongs to the open set

⋃
h∈H h(U rH) disjoint

with H. If gH is disjoint with U , take h′ ∈ H ∩ U and a symmetric open
neighborhood V of 1 such that V h′ ⊂ U . Then V g is an open neighborhood
of g disjoint with H. (Otherwise, vg = h implies gh−1h′ = v−1h′ ∈ V h′.)

27.8x By 27.7x, the closure of ClH rH contains H.

27.9x Use the fact that (ClH)−1 = ClH−1 and ClH · ClH ⊂ Cl(H ·
H) = ClH.

27.10x This is true if the interior is nonempty, see 27.2x.

27.12x Repeat the argument used in the solution to 27.Fx.

27.13x We identify elements of SO(n) with positively oriented or-
thonormal bases in Rn. The map p : SO(n) → Sn−1 sends each basis to its
last vector. The preimage of a point x ∈ Sn−1 is the right coset of SO(n−1)
(prove this). Clearly, p is continuous. The quotient map of p is a continuous
bijection p̂ : SO(n)/SO(n − 1) → Sn−1. Since SO(n) is compact and Sn−1

is Hausdorff, p̂ is a homeomorphism.

27.14x 1) The groups SO(n), U(n), SU(n), and Sp(n) are bounded
closed subsets of the corresponding matrix spaces. Therefore, they are com-
pact.

2) To check that SO(n) is connected, combine 27.13x and 27.Fx, and
then use induction (we observe that the group SO(2) ∼= S1 is connected).
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(Another, more hand-operated, method consists in using normal forms. For
example, for any x ∈ SO(n) there is g ∈ SO(n) such that the matrix
gxg−1 consists of diagonal blocks of SO(1) and SO(2) matrices. The latter
block matrices belong to the connected component C of the unity in SO(n).
Since C is a normal subgroup (see 27.Hx), it follows that x ∈ C.) In order
to prove that U(n), SU(n), and Sp(n) are connected, state and prove the
corresponding counterparts of 27.13x and then use 27.Fx.

3) The group O(n) has two connected components: SO(n) and its com-
plement (the only nontrivial coset of SO(n)). The group O(p, q) has four
connected components if p > 0 and q > 0. To check this, use induction on
p and q, at each step using 27.12x and 18.Ox.

27.15x See the solution to 27.Hx.

27.16x Let h ∈ H. Since H is normal, we have a map η : G → H :
g 7→ ghg−1. Since G is connected, the image of η is a connected subset of
H. Since H is discrete, it is a point, and so η is constant. Since η(1) = h,
we have ghg−1 = η(g) = h for all g ∈ G. Therefore, gh = gh for all g ∈ G,
i.e., h ∈ C(G).

27.19x Consider the exponential map R → S1 : x 7→ e2πxi and an open
interval in R containing 0 and 1

2 .

27.20x Let U and V be neighborhoods of unity in topological groups
G and H, respectively. Let f : U → V be a homeomorphism such that

f(xy) = f(x)f(y) for any x, y ∈ U . By 26.Hx, 1G has a neighborhood Û

in G such that Û2 ⊂ U . Since Û ⊂ U , we have f(xy) = f(x)f(y) for any

x, y ∈ Û with xy ∈ Û . Put V̂ = f(Û) and consider z, t ∈ V̂ with zt ∈ V̂ .

Then z = f(x) and t = f(y), where x, y ∈ Û , whence xy ∈ U , and so
f(xy) = f(x)f(y) = zt. Therefore, we have x = f−1(z) and y = f−1(t),
whence f−1(z)f−1(t) = xy = f−1(zt).

27.21x This follows from 27.Ox because the projection prG : G×H →
G is an open map.

27.23x The map is continuous as a restriction of the continuous map
G×G → G : (x, y) 7→ xy. As an example, consider the case where G = R,
A = Q, and B is generated by the irrational elements of a Hamel basis
of R (i.e., a basis of R as of a vector space over Q). The inverse group
isomorphism R → A×B here is not continuous since, e.g., R is connected,
while A×B is not.

27.Ux Let a compact Hausdorff group G be the direct product of two
closed subgroups A and B. Then A and B are compact and Hausdorff, and
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so A× B → G : (a, b) 7→ ab is a continuous bijection from a compact space
to a Hausdorff one. By 16.Y, it is a homeomorphism.

27.24x An isomorphism is S0 × R>0 → R r 0 : (s, r) 7→ rs.

27.25x An isomorphism is S1 × R>0 → C r 0 : (s, r) 7→ rs.

27.26x An isomorphism is S3 × R>0 → H r 0 : (s, r) 7→ rs.

27.27x This is obvious because the 3-sphere S3 is connected, while
S0 is not. However, the subgroup S0 = {1,−1} of S3 = {z ∈ H : |z| = 1}
is not a direct factor even group-theoretically. Indeed, otherwise any value
±1 of the projection S3 → S0 on the standard generators i, j, and k would
lead to a contradiction.

27.28x Take the quotient group in 27.27x.

28.1x In (1) and (2), the map G → TopX is continuous (see the
solution to 28.Gx). However, if we require TopX to be a topological group,
then we need additional assumptions, e.g., the Hausdorff axiom and local
compactness.

28.2x Each of the angles has the form π/n, n ∈ N. Therefore, there
are only two solutions: (π/2, π/3, π/6) and (π/3, π/3, π/3).

28.3x Such examples are given by the irrational flow (see 28.1x (f)), or

by the action of Z+
√

2Z regarded as a discrete group acting by translations
on R. In the latter case, we have G = G/Gx, while G(x) is not discrete.
(Cf. 26.13x.)

28.4x Let A be closed. In order to prove that G(A) is closed, consider
an orbit G(x) disjoint with G(A). For each g ∈ G, let U(g) ⊂ X and
V (g) ⊂ G be neighborhoods of x and g, respectively, such that V (g)U(g) is
disjoint with G(A). Since G is compact, there is a finite number of elements
gk ∈ G such that V (gk) cover G. Then the saturation of

⋂
U(gk) is an open

set disjoint with G(A) and containing G(x).
If A is compact, then so is G(A) as the image of the compact space G× A
under the continuous action G×A→ X.

28.5x There are two orbits: {0} and Rr0. The corresponding isotropy
subgroups are G and {1G}. The quotient space is a two-point set, say {0, 1},
with nontrivial topology (neither discrete, nor indiscrete).

28.6x The quotient space is canonically homeomorphic to the rectangle
itself. A homeomorphism is induced by the inclusion of the rectangle to R2

(a continuous section of the quotient map). The group G is described in
Problem 28.7x.

28.7x Using the transitivity of factorization, replace R2/G by the quo-
tient of two adjacent rectangles that is obtained by identifying the points
on their distinct edges via the reflection in their common edge. The latter
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quotient is homeomorphic to S2 (a “pillow”).
The group G is the direct square C ×C of the free product C of two copies
of Z/2 (see 43◦7x), and H ⊂ G is a subgroup of elements of even degree.

28.8x Two points belong to the same orbit iff their vectors of absolute
values |z0|, . . . , |zn| are proportional. In other words, the orbits correspond
in a one-to-one manner to “positive quadrant” directions in Rn+1. The
isotropy subgroups are coordinate subtori, i.e., the subtori of G where some
of the coordinates vanish: the same coordinates as the zero coordinates of the
points in the orbit. By transitivity of factorization, X/G is homeomorphic
to the projectivization of the “positive quadrant” Rn+1

>0 /R>0
. The latter is

a closed n-simplex.

28.9x Two points belong to the same orbit iff all symmetric functions
of their coordinates coincide. Thus, at least set-theoretically, the Vieta map
evaluating the unitary (i.e., with leading coefficient 1) polynomial equation
of degree n with given n roots identifies X/G with the space of unitary
polynomials of degree n, i.e., Cn. Since both spaces are locally compact and
the group G = Sn is compact (even finite), the quotient map X/G → Cn is
a homeomorphism.

28.10x Two such matrices belong to the same orbit iff the matri-
ces have the same eigenvalues, counting the multiplicities. Thus, at least
set-theoretically, the map evaluating the eigenvalues in decreasing order,
λ1 ≥ λ2 ≥ λ3, identifies X/G with the subspace of R3 determined by the
above inequalities and the relation λ1 + λ2 + λ3 = 0. Since this map has a
continuous section (that given by diagonal matrices), it follows that X/G is
homeomorphic to the above subspace of R3, which is a plane region bounded
by two rays making an angle of 2π

3 . The isotropy group of an interior point
in the region is Z/2⊕Z/2. For interior points of the rays, the isotropy group
is the normalizer of SO(2), and the orbits are real projective planes. For
λ1 = λ2 = λ3 = 0, the isotropy group is the entire SO(3), while the orbit is
one-point.

28.11x The sphere Sn ⊂ Rn+1 (respectively, S2n−1 ⊂ Cn) is a Haus-
dorff homogeneous G-space, on which G = O(n+1) (respectively, G = U(n))
acts naturally. For any point x ∈ Sn (respectively, x ∈ S2n−1), the isotropy
group is a standardly embedded O(n) ⊂ O(n+ 1) (respectively, U(n− 1) ⊂
U(n)). So, it remains to apply 28.Mx.

28.12x The above action of O(n+ 1) (respectively, U(n)) descends to
RPn (respectively, CPn−1). For any point x ∈ Sn (respectively, x ∈ S2n−1),
the isotropy group is O(n) ×O(1) (respectively, U(n− 1) × U(1)).

28.13x Similarly to 28.11x, this follows from the representation of
S4n−1 ⊂ Hn as a homogeneous Sp(n)-space.
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28.14x The torus is R2/H , where H = Z2 ⊂ R2. To obtain the Klein
bottle in the form R2/G, add to H the reflection (x, y) 7→ (1 − x, y).

28.15x 1) The space of n-tuples (L1, . . . , Ln) of pairwise orthogonal
vector lines Lk in Rn.
2) The Grassmannian of (non-oriented) vector k-planes in Rn.
3) The Grassmannian of oriented vector k-planes in Rn.
4) The Stiefel variety of (n− k)-orthogonal unit frames in Rn.

28.16x 1) Use the fact that the product of two homogeneous spaces is
a homogeneous space. (Over what group?) 2) A more interesting option:
show that S2 ×S2 is homeomorphic to the Grassmannian of oriented vector
2-planes in R4.

28.17x By definition, the group SO(n, 1) acts transitively on the
quadricQ in Rn+1 given by the equation −x2

0+x
2
1+· · ·+x2

n = 0. The isotropy
group of any point of Q is the standardly embedded SO(n) ⊂ SO(n, 1).
By 28.Mx, the quotient space SO(n, 1)/SO(n) is homeomorphic to Q, which

in turn is homeomorphic to a disjoint sum of two open n-balls.

29.1 For each continuous map f : X → I, the map H : H(x, t) =
(1 − t)f(x) is a homotopy between f and the constant map h0 : x 7→ 0.

29.2 Let f0, f1 : Z → X be two constant maps with f0(Z) = {x0}
and f1(Z) = {x1}. If H is a homotopy between f0 and f1, then for
any z∗ ∈ Z the path u : t 7→ H(z∗, t) joins x0 and x1, which thus lie in one
path-connected component of X.

If x0 and x1 are joined by a path u : I → X, then Z×I → X : (z, t) 7→
u(t) is a homotopy between f0 and f1.

29.3 Let us show that an arbitrary map f : I → Y is null-homotopic.
Indeed, if H(s, t) = f(s · (1 − t)), then H(s, 0) = f(s) and H(s, 1) = f(0).
Consider two continuous maps f, g : I → Y . We show that if f(I) and
g(I) lie in one and the same path-connected component of Y , then they are
homotopic. Each of the maps f and g is null-homotopic, therefore, they are
homotopic due to the transitivity of the homotopy relation and the result
of Problem 29.2. To make the picture complete, we present an explicit
homotopy joining f and g:

H(s, t) =





f(s · (1 − 3t)) for t ∈
[
0, 1

3

]
,

u(3s − 1) for t ∈
[

1
3 ,

2
3

]
,

g(s · (3t− 2)) for t ∈
[

2
3 , 1].

29.4 Prove that each continuous map to a star-shaped set is homotopic
to the constant map with image equal to the center of the star.
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29.5 Let f : C → X be a continuous map. Let a be the center of
the set C. Then the required homotopy H : C × I → X is defined by the
formula H(c, t) = f(ta+ (1 − t)c).

29.6 The space X is path-connected.

29.7 Use assertion 29.F and the fact that Sn r point ∼= Rn.

29.8 If a path u : I → Rn r 0 joins x = f(0) and y = g(0), then u
determines a homotopy between f and g because 0 × I ∼= I.

29.9 Consider the maps f and g defined by the formulas f(0) = −1
and g(0) = 1. They are not homotopic because the points 1 and −1 lie in
distinct path-connected components of R r 0.

29.10 If n > 1, then there is a unique homotopy class. For n = 1,
there are (k + 1)m such classes.

29.11 Since for each point x ∈ X and each real t ∈ I we have the
inequality

|(1 − t)f(x) + tg(x)| =
∣∣f(x) + t

(
g(x) − f(x)

)∣∣ ≥ |f(x)| − |g(x) − f(x)| > 0,

it follows that the image of the rectilinear homotopy joining f and g lies in
Rn r 0, therefore, these maps are homotopic.

29.12 For the simplicity, we assume that the leading coefficients of p
and q are equal to 1. Use 29.11 to show that the maps determined by the
polynomial p(x) of degree n and the monomial zn are homotopic.

29.13 The required homotopy is given by the formula

H(x, t) =
(1 − t)f(x) + tg(x)

‖(1 − t)f(x) + tg(x)‖ .

How do you think, where have we used the assumption |f(x) − g(x)| < 2?

29.14 This immediately follows from 29.13.

30.1 To shorten the notation, put α = (uv)w and β = u(vw); by
assumption, α(s) = β(s) for all s ∈ [0, 1]. In the proof of assertion 30.E.2,
we construct a function ϕ such that α◦ϕ = β. Consequently, α(s) = α(ϕ(s)),
whence α(s) = α(ϕn(s)) for all s ∈ [0, 1] and n ∈ N (here ϕn is the n-fold
composition of ϕ). Since ϕ(s) < s for s ∈ (0, 1), it follows that the sequence
ϕn(s) is monotone decreasing, and we easily see that it tends to zero for each
s ∈ (0, 1). By assumption, α : I → X, therefore, α(s) = α(ϕn(s)) → α(0) =
x0 for all s ∈ [0, 1), whence α(s) = x0 also for all s ∈ [0, 1). Consequently,
we also have α(1) = x0.

30.2 The solution of Problem 30.D implies that we must construct
three paths u, v, and w in a certain space such that α(ϕ(s)) = α(s) for all
s ∈ [0, 1] (here, as in 30.1, α = (uv)w). Consider, for example, the paths
I → [0, 3] defined by the formulas u(s) = s, v(s) = s+ 1, and w(s) = s+ 2;
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the path α : [0, 1] → [0, 3] is a bijection. We introduce in [0, 3] the following
equivalence relation: x ∼ y if there are n, k ∈ N such that x = α(ϕk(s)) and
y = α(ϕn(s)). Let X be the quotient space of [0, 3] by this relation. Then
the paths u′ = pr ◦u, v′ = pr ◦v, and w′ = pr ◦w satisfy (u′v′)w′ = u′(v′w′).

30.4 If u(s) = eau(s), then

u(s) =

{
a if s ∈

[
0, 1

2

]
,

u(2s − 1) if s ∈
[
1
2 , 1

]
.

Thus, u(s) = a for all s ∈
[
0, 1

2

]
. Further, if s ∈

[
1
2 ,

3
4

]
, then 2s− 1 ∈

[
0, 1

2

]
,

whence it follows that u(s) = u(2s−1) = a also for all s ∈
[

1
2 ,

3
4

]
. Reasoning

further in a similar way, we see as a result that u(s) = a for all s ∈ [0, 1).
If we put no restrictions on the space X, then it is quite possible that
u(1) = x 6= a (show this). Also show that the assumptions of the problem
imply that u(1) = a (cf. 30.1).

30.5 This is quite obvious.

31.1 The homotopies h such that h(0, t) = h(1, t) for all t ∈ I.

31.2 See Problem 31.3.

31.3 If z = e2πis, then

uv
(
e2πis

)
=

{
u
(
e4πis

)
if s ∈

[
0, 1

2

]
,

v
(
e4πis

)
if s ∈

[
1
2 , 1

] =

{
U(z2) if Imz ≥ 0,

V (z2) if Imz ≤ 0.

31.4 Consider the set of homotopy classes of circular loops at a certain
point x0, where the operation is defined as in Problem 31.3.

31.5 The group is trivial because any map to such a space is continuous,
and so any two loops (at the same point) are homotopic.

31.6 This group is trivial because the quotient space in question is
homeomorphic to D2.

31.7 Up to homeomorphism, a two-point set admits only three topo-
logical structures: the indiscrete one, the discrete one, and the topology
where only one point of the two is open. The first case is considered in 31.5,
while the discrete space is not path-connected. Therefore, we should only
consider the case where ΩX = {∅,X, {a}}, a ∈ X. Let u be a loop at a.
The formula

h(s, t) =

{
u(s) if t = 0,

a if t ∈ (0, 1]
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determines a homotopy between u and a constant loop. Indeed, the continu-
ity of h follows from the fact that the set h−1(a) =

(
u−1(a)×I

)
∪

(
I× (0, 1]

)

is open in the square I × I.

31.9 Use Theorem 31.H, the fact that Rn r 0 ∼= R × Sn−1, and Theo-
rem 31.G.

31.10 A discrete space is simply connected iff it is a singleton. An in-
discrete space, Rn, a convex set, and a star-shaped set are simply connected.
The sphere Sn is simply connected iff n ≥ 2. The space Rn r 0 is simply
connected iff n ≥ 3.

31.11 We observe that since the space X is path-connected, we have
U ∩ V 6= ∅. Consider a loop u : I → X, for the sake of definiteness, let
u(0) = u(1) = x0 ∈ U . By 31.G.3, there is a sequence of points a1, . . . aN ∈
I, where 0 = a1 < a2 < . . . < aN−1 < aN = 1, such that for each i the image
u([ai, ai+1]) is contained in U or in V . Furthermore, (uniting the segments)
we can assume that if u([ak−1, ak]) 6⊂ U (or V ), then u([ak, ak+1]) ⊂ U
(respectively, U), whence u(ak) ∈ U ∩V for all k = 1, 2, . . . , N−1. Consider
the segment [ak, ak+1] such that u([ak, ak+1]) ⊂ V . The points u(ak) and
u(ak+1) are joined by a path vk : [ak, ak+1] → U ∩ V . Since V is simply
connected, there exists a homotopy hk : [ak, ak+1]×I → V joining u|[ak,ak+1]

and vk, consequently, u is homotopic to a loop v : I → U . Since the set U is
also simply connected, it follows that v is null-homotopic, thus, X is simply
connected.

31.12 Actually, at the moment we cannot give a complete solution of
the problem because up to now we have not seen any example of a non-
simply connected space. In what follows, we prove, e.g., that the circle is
not simply connected. Put

U = {(x, y) ∈ S1 | y > 0} ∪ {(1, 0)}, V = {(x, y) ∈ S1 | y ≤ 0}.

Each of the sets is homeomorphi to an interval, therefore, they are simply
connected, and their intersection is a singleton, which is path-connected.
However, the space U ∪ V = S1 is not is simply connected.

31.13 Consider an arbitrary loop s : I → U . Since U ∪ V is simply
connected, it follows that this loop is null-homotopic in U ∪ V , therefore,
there exists a homotopy H : I × I → U ∪ V between s and a constant path.
We subdivide the unit square I × I by segments parallel to its sides into
smaller squares Kn so that the image of each of these squares be entirely
contained in U or V . Consider the union K of those squares of the partition
whose images are contained in V . Let L be a contour consisting of the
boundaries of the squares in K, enclosing a certain part of K. It is clear
that L ⊂ U ∩ V ⊂ U , therefore, the homotopy H extends from L to the set
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bounded by L so that the image of the set be contained in U . Reasoning
further in a similar way, we obtain a homotopy H ′ : I × I → U .

32.1 It is easy to describe a family of loops at constituting a free
homotopy between the loop a and a loop representing the element Ts(α).
Namely, the loop at starts at s(t), it reaches the point x0 = s(0) at the
moment t

3 , after that it runs along the path a and returns to the point x0

at the moment 1− t
3 , and, finally, returns to the point s(t). In this case, the

loop a0 is the initial loop a. The loop a1 is defined by the formulas

a1(τ) =





s(1 − 3τ) if τ ∈
[
0, 1

3

]
,

a(3τ − 1) if τ ∈
[

1
3 ,

2
3

]
,

s(3τ − 2) if τ ∈
[

2
3 , 1

]
,

and, consequently, the homotopy class of a1 is that of σ−1ασ. To complete
the argument, we present a formula for the above homotopy:

H(τ, t) =





s(t− 3τ) if τ ∈
[
0, t3

]
,

a
(

3τ−t
3−2t

)
if τ ∈

[
t
3 ,

3−t
3

]
,

s(3τ + t− 3) if τ ∈
[

3−t
3 , 1

]
.

32.2 Consider the homotopy defined by the formula

H ′(τ, t) =





s(1 − 3τ) if τ ∈
[
0, 1−t

3

]
,

H
(

3τ+t−1
2t+1 , t

)
if τ ∈

[
1−t
3 , t+2

3

]
,

s(3τ − 2) if τ ∈
[
t+2
3 , 1

]
,

and verify that H ′(τ, 1) = b(τ), and the correspondence τ 7→ H ′(τ, 0) deter-
mines a path in the homotopy class [s−1as].

32.1x This immediately follows from assertion 32.Bx.

33.1 If p|Vα : Vα → U is a homeomorphism, then p homeomorphically
maps Vα ∩ p−1(U ′) onto U ′.

33.2 See the proof of assertion 33.F; the coverings p and q are said to
be isomorphic.

33.3 This follows from 33.H and 33.E because C r 0 ∼= S1 × R and
p′ : R → R : x 7→ nx is a trivial covering. Also sketch a trivially covered
neighborhood of a point z ∈ C r 0.

33.4 Consider the following two partitions of the rectangle K = [0, 2]×
[0, 1]. The partition R consists of the two-point sets {(0, y), (2, y) | y ∈
[0, 1]}, all the remaining elements of R are singletons. The partition R′

consists of the two-point sets {(x, y), (x + 1, 1 − y) | x ∈ (0, 1), y ∈ [0, 1]}
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and the three-point sets {(0, y), (1, 1 − y), (2, y) | x ∈ (0, 1), y ∈ [0, 1]}.
Since each element of the first partition is contained in a certain element
of the second partition, it follows that a quotient map p : K/R → K/R′ is
defined, which is the required covering of the Möbius strip by a cylinder.
There is also a simpler option. We introduce an equivalence relation on
S1 × I : (z, t) ∼ (−z, 1 − t). Verify that the quotient space by this relation
is homeomorphi to the Möbius strip, and the factorization projection is a
covering.

33.5 The solution is similar to that of Problem 33.4. Consider two
partitions of the rectangle K = [0, 3]× [0, 1]. The two-point elements of the
first of them are the pairs {(0, y), (3, 1 − y) | y ∈ [0, 1]}, and the four-point
elements of the second one are quadruples {(0, y), (1, 1−y), (2, y), (3, 1−y) |
x ∈ (0, 1), y ∈ [0, 1]}.

33.6 Modify the solution of Problem 33.4, including into the partition R
the quadruple of the vertices of the rectangle K and the pairs {(x, 0), (x, 1) |
x ∈ (0, 2)}. Another approach to constructing the same covering involves
introducing the following equivalence relation in S1 × S1: (z,w) ∼ (−z,w)
(see the solution of Problem 33.4).

33.7 There are standard coverings R × S1 → S1 × S1 and R × R →
S1 × S1 such that their compositions with the covering whose construction
was outlined in the solution of Problem 33.6 are coverings of the Klein bottle
by a cylinder and by the plane. Modifying the solution of Problem 33.5, we
obtain a nontrivial covering of the Klein bottle by the Klein bottle. We
also present a more geometric description of the required covering. Let
q : M → M be a covering of the Möbius strip by the Möbius strip, let
M1 and M2 be two copies of the Möbius strip, and let q1 : M1 → M1 and
q2 : M2 → M2 be two copies of q. If we paste M1 and M2 together along
their common boundary, then we obtain the Klein bottle. It is clear that as
a result we construct a covering of the Klein bottle by the Klein bottle.

33.8 The preimages of points have the form
{(
x+ k, 1

2 + (−1)k−1(1
2 −

y) + l
)
| k, l ∈ Z

}
.

33.9 We already have coverings S2 → RP 2 and S1×S1 → K, where K
is the Klein bottle, thus, we have coverings of the sphere with k crosscaps by
a sphere with k−1 handles for k = 1, 2. We prove that such a covering exists
for each k. Let S1 and S2 be two copies of the sphere with k holes. Denote
by S the “basic” sphere with k holes and consider the map p′ : S1 ⊔S2 → S.
Now we fill the holes in S by crosscaps (i.e., by Möbius strips), and we fill
the pairs of holes in S1 and, respectively, S2 by the cylinders S1 × I. As a
result, we obtain K, which is a sphere with k crosscaps, and S1 ⊔ S2 with
k attached cylinders is homeomorphi to the sphere M with k − 1 handles.
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Since the Möbius strip is covered by a cylinder, p′ extends to a two-fold
covering p : M → K.

33.10 Actually, we prove that each local homeomorphism is an open
map, and, as it follows from 33.11, each covering is a local homeomorphism.
So, let the set V be open in X, V ′ = p(V ). Consider a point b = p(x) ∈
V ′, where x ∈ V . By the definition of a local homeomorphism, x has a
neighborhood U such that p(U) is an open set and p| : U → p(U) is a
homeomorphism. Therefore, the set p(U ∩ V ) is open in V ′, thus, it is open
in B, and hence it is a neighborhood of b lying in p(V ). Thus, p(U) is an
open set.

33.11 If x ∈ X, U is a trivially covered neighborhood of the point
b = p(x), and p−1(U) =

⋃
Vα, then there is a set Vα containing x. By the

definition of a covering, p|Vα : Vα → U is a homeomorphism.

33.12 See, e.g., 33.K.

33.13 Let f : X → Y be a local homeomorphism, let G be an open
subset of X, and let x ∈ G. Assume that U is a neighborhood of x (in
X) such that f(U) is open in Y and the restriction f |U : U → f(U) is a
homeomorphism. If V = W∩U , then f(W ) is open in f(U), therefore, f(W )
is also open in Y . It is clear that f |W : W → f(W ) is a homeomorphism.

33.14 Only for the entire line. We show that if A is a proper subset
of R, then p|A : A → S1 is not a covering. Indeed, A has a boundary point
x0, let b0 = p(x0). We easily see that b0 has no trivially covered (for p|A)
neighborhood.

33.15 See, for example, 33.H.

33.16 For example, the covering of Problem 33.I is pq-fold. In many
examples, the number of sheets is infinite (countable).

33.17 All even positive integers and only they. The first assertion
is obvious (cf. 33.4), but at the moment we actually cannot prove the
second one. The argument below involves methods and results presented in
subsequent sections (cf. 39.3). Consider the homomorphism p∗ : π1(S

1 ×
I) → π1(M), which is a monomorphism. It is known that π1(S

1 × I) ∼= Z ∼=
π1(M), and, furthermore, the generator of π1(S

1 × I) is taken to the 2k-fold
generator of π1(M). Consequently, by 39.G (or 39.H), the covering has an
even number of sheets.

33.18 All odd positive integers (cf. 33.5) and only them (see 39.4).

33.19 All even positive integers (cf. 33.6) and only them (see 39.5).

33.20 All positive integers (cf. 33.7).

33.21 Consider the covering T1 = S1 × S1 → T2 = S1 × S1 : (z,w) 7→
(zd, w). Denote by S2 the surface obtained from the torus T2 by making p−1
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holes. The preimage of S2 under this covering is a surface S1 homeomorphi
to a torus with d(p − 1) holes. If we fill each of the holes (in S1 and S2) by
a handle, then we attach p − 1 handles to S2, and as a result we obtain a
surface M2, which is a sphere with p handles, and we attach d(p−1) handles
to S1 thus obtaining a surfaceM1, which is a sphere with d(p−1)+1 handles.
It is clear that the covering S1 → S2 extends to a d-fold covering M1 →M2.

33.22 Consider an arbitrary point z ∈ Z, let q−1(z) = {y1, y2, . . . , yd}.
If a neighborhood V of z is trivially covered with respect to the projection
q, and Wk are neighborhoods of the points yk, k = 1, 2, . . . , d, trivially

covered with respect to the projection p, then U =
⋂d
k=1 q

(
Wk ∩ q−1(V )

)
is

a neighborhood of z trivially covered with respect to the projection q ◦ p.
Therefore, q ◦ p : X → Z is a covering.

33.23 Let Z be the union of an infinite set of the circles determined by
the equations x2 + y2 = 2x

n , n ∈ N, and let Y be the union of the y axis and

the “twice” infinite family x2 + (y − k)2 = 2x
n , where n ∈ N, n > 1, k ∈ Z.

The covering q : Y → Z has the following structure: the y axis coversthe
outer circle of Z, while the restrictions of q to the other circles are parallel
translations. Construct a covering p : X → Y whose composition with q is
not a covering. Furthermore, the covering p can even be two-fold.

33.24 1) We observe that the topology in the fiber (induced from X)
is discrete. Therefore, if X is compact, then the fiber F = p−1(b) is closed
in X and, consequently, is compact. Therefore, the set F is finite, thus the
covering is finite-sheeted. 2) Since B is compact and Hausdorff, it follows
that B is regular, therefore, each point has a neighborhood Ux such that
the compact closure ClUx lies in a certain trivially covered neighborhood.
Since the base is compact, we have B = ∪Uxi

, X = ∪p−1(ClUxi
). Since the

covering is finite-sheeted, X is thus covered by a finite number of compact
sets, therefore, X is compact itself.

33.25 Let U ∩ V = G0 ∪ G1, where G0 and G1 are open subsets.
Consider the product X × Z and the subset

Y = {(x, k) | x ∈ U, k even} ∪ {(x, k) | x ∈ V, k odd},
which is a disjoint union of countably many copies of U and V . We introduce
in Y the following relation:

(x, k) ∼ (x, k + 1) if x ∈ G1, k even,
(x, k) ∼ (x, k − 1) if x ∈ G0, k odd.

Consider the partition of Y into the pairs of points equivalent to each other
and into singletons in

(
Y r(U ∩V )

)
×Z. Denote by Z the quotient space by

this partition. Let p : Z → X be the factorization of the restriction prX |Y ,
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where prX : X×Z → X is the standard projection. Verify that p : Z → X is
an infinite-sheeted covering. Apply the described construction to the circle
S1, which is the union of two open arcs with disconnected intersection; what
covering will result?

34.1 By assumption, we have X = B×F , where F is a discrete space,
and p = prB . Let y0 ∈ F be the second coordinate of the point x0. The

correspondence a 7→ (f(a), y0) determines a continuous lifting f̃ : A→ X of
f .

34.2 Let x0 = (b0, y0) ∈ B × F = X. Consider the map g = prF ◦f̃ :
A → F . Since the set A is connected and the topology in F is discrete, it
follows that g is a constant map. Therefore, f̃(a) = (f(a), y0), consequently,
the lifting is unique.

34.3 Consider the coincidence set G = {a ∈ A | f(a) = g(a)} of f and
g; by assumption, G 6= ∅. For each point a ∈ A, take a connected neigh-
borhood Va ⊂ ϕ−1(Ub), where Ub is a certain trivially covered neighborhood
of b = ϕ(a). If Va ∩ G 6= ∅, then Va ⊂ G by 34.2. In particular, if a ∈ G,
then Va ⊂ G, consequently, the set G is open. Similarly, if a /∈ G, then
Va ∩ G = ∅, i.e., Va ⊂ A r G, therefore, the set A r G is also open. By
assumption, A is connected and G 6= ∅, whence A = G.

34.5 Show that if b0 = −1, x0 = 1
2 , then the path u : t 7→ e3πit has no

lifting.

34.6 We have: ũ(t) = ln(2 − t), ṽ(t) = ln(1 + t) + 2πit, ũv = ũ ṽ, and

ṽu = ṽ ˜̃u, where ˜̃u = ln(2 − t) + 2πi.

34.F If the covering is nontrivial and the covering space is path-
connected, then there exists a path s joining two distinct points x0, x1 ∈
p−1(b0). By assertion 34.E, the loop p ◦ s is not null-homotopic, therefore,
B is not simply connected.

34.7 This follows from 34.F.

34.8 For example, RP 2 is not simply connected.

34.9 For example, generalize Theorem 34.C to the case of maps f :
Sn → B with n > 1 (cf. 39.Xx and 39.Yx).

35.1 This is the class α. Indeed, the path s̃(t) = t2 covering the loop
ends at the point 1 ∈ R, therefore, s̃ is homotopic to s1.

35.2 If [s] = αn, then s ∼ sn, therefore, the paths s̃ and s̃n end at the
same point.

35.3 The universal covering space for the n-dimensional torus is Rn,
the covering p is defined by the formula p(x1, . . . , xn) = (e2πix1 , . . . , e2πixn).
The map deg : π1((S

1)n, (1, 1, . . . , 1)) → Zn is defined as follows. If u is a
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loop on the torus and ũ is the path covering u and starting at the origin,
then deg([u]) = ũ(1) ∈ Zn ⊂ Rn. Prove that this map is well defined and is
an isomorphism.

35.4 This assumption was used where we used the fact that the n-sphere
is simply connected, in other words, the covering Sn → RP 2 is universal only
for n ≥ 2.

31.7 Consider the following three cases, where X: 1) contains no open
singletons (i.e., no “open points”); 2) contains a unique open singleton; 3)
contains two open singletons.

35.7 For example, construct an infinite-sheeted covering (in a narrow
sense) of X (see 7.V).

35.8 Let us show that π1(X) ∼= Z. The universal covering space of X
is Z = (Z,Ω4), where the topology Ω4 is determined by the base consisting
of singletons {2k}, k ∈ Z, and 3-point sets {2k, 2k + 1, 2k + 2}, k ∈ Z. The
projection p : Z → X is such that

p−1(a) = {4k | k ∈ Z}, p−1(b) = {4k + 1 | k ∈ Z},

p−1(c) = {4k + 2 | k ∈ Z}, p−1(d) = {4k + 3 | k ∈ Z}.
As when calculating the fundamental group of the circle, it suffices to show
that Z is simply connected. We can start, e.g., with the fact that the sets
U = {0, 1, 2} and V = {2, 3, 4} are open in U ∪V and simply connected, and
their intersection U ∪ V is path connected. Therefore, their union U ∪ V is
also simply connected (see 31.11). After that, use induction. Here is another
argument showing that Z is simply connected. Put Jn = {0, 1, . . . , 2n} and
define Hn : Jn × I → Jn as follows:

Hn(x, t) = x for x ∈ Jn−1, Hn(2n − 1, t) =

{
2n− 1 if t = 0,

2n− 2 if t ∈ (0, 1],

Hn(2n, t) =





2n if t ∈
[
0, 1

3

)
,

2n− 1 if t ∈
[

1
3 ,

2
3

]
,

2n− 2 if t ∈
(

2
3 , 1

]
.

Let u be a loop at 0 with image lying in Jn. Then the formula hn(s, t) =
Hn

(
u(s), t

)
determines a homotopy between u and a loop with image lying

in Jn−1. Using induction, we see that u is null-homotopic.

35.9 1) The results of Problems 31.7, 35.6, and 35.7 imply that n0 = 4.
2) The computation presented in the solution of Problem 35.8 implies that
Z is the fundamental group of a certain 4-point space. Show that is the only
option.
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35.10 1) Consider the 7-point space Z = {a, b, c, d, e, f, g}, where the
topology is determined by the base {{a}, {b}, {c}, {a, b, d}, {b, c, e}, {a, b, f}, {b, c, g}}.
To see that Z is not simply connected, observe that the universal covering
of Z is constructed in the same way as that of the bouquet of two cir-
cles, with minor changes only. Instead of the “cross” K, use the space

K̃ = {a, b+, b−, c+, c−, d, e, f, g}. 2) By 35.9, at least five points are needed.
Consider the 5-point space Y = {a, b, c, d, e}, where the topology is de-
termined by the base {{a}, {c}, {a, b, c}, {a, c, d}, {a, c, e}}. Verify that the
fundamental group of Y is a free group with two generators.

35.12 Consider a topological space

X = {a0, b0, c0, a1, a
′
1, b1, b

′
1, c1, c

′
1, a2, b2, c2, d2}

with topology determined by the base

{a0}, {a0, b0, c1}, {a0, b0, c
′
1}, {a0, b0, c0, a1, b

′
1, c

′
1, a2},

{b0}, {a0, b1, c0}, {a0, b
′
1, c0}, {a0, b0, c0, a

′
1, b1, c

′
1, b2},

{c0}, {a1, b0, c0}, {a′1, b0, c0}, {a0, b0, c0, a
′
1, b

′
1, c1, c2},

{a0, b0, c0, a1, b1, c1, d2}.

36.1 First of all, we observe that, since the fundamental group of the
punctured plane is Abelian, the operator of translation along any loop is the
identity homomorphism. Consequently, two homotopic maps f, g : C r 0 →
C r 0 induce the same homomorphism on the level of fundamental groups.
Let f be the map z 7→ z3. The generator of the group π1(C r 0, 1) is the
class α of the loop s(t) = e2πit. The image of f∗(α) is the class of the
loop f#(u) = f ◦ u, therefore, f#(u)(t) = e6πit, whence f∗(α) = α3 6= α.
Consequently, f∗ 6= idπ1(Cr0,1), whence it follows that f is not homotopic to
the identity.

36.2 Denote by i the inclusion X → Rn. If the map f extends to
F : Rn → Y , then f = F ◦i, whence f∗ = F∗◦i∗. However, since Rn is simply
connected, it follows that the homomorphism F∗ is trivial, consequently, so
is the homomorphism f∗.

36.3.1 Denote by ϕ a homeomorphism of an open set U ⊂ X onto
S1 × S1 r (1, 1). If X = U , then the assertion is obvious because the group
π1(S

1×S1r(1, 1)) is a free group with two generators. Otherwise, we define
f : X → S1 × S1 by letting

f(x) =

{
ϕ(x) for x ∈ U,
(1, 1) for x /∈ U.
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Verify that f is a continuous map. Now we take a point x0 ∈ U and consider
the homomorphism

f∗ : π1(X,x0) → π1(S
1 × S1, f(x0)).

We easily see that f∗ is an epimorphism.

36.4 Let f(z) = diag{z, 1, 1, . . . , 1} for each point z ∈ S1, and let

g(A) = det(A)
|det(A)| for each matrix A ∈ GL(n,C). We have thus defined the

maps f : S1 → GL(n,C) and g : GL(n,C) → S1 whose composition g ◦ f
is the identity map. Since g∗ ◦ f∗ = (g ◦ f)∗ = idπ1(S1), it follows that g∗ is

an is an epimorphism, consequently, the fundamental group of GL(n,C) is
infinite.

36.1x This is assertion 36.Dx.

36.2x By 36.1x, it is sufficient to check that if a ∈ IntD2 and i is the
standard embedding of the standard circle S1 into R2 r a, then the circular
loop i determines a nontrivial element in the group π1(R

2 r a). Indeed, the
formula h(z, t) = z + ta determines a homotopy between i and a circular
loop whose class obviously generates the fundamental group of R2 r a.

36.3x Take an arbitrary point a ∈ R2, let R > |a| +m. Consider the
circular loops ϕ : S1 → R2 r a : z 7→ f(Rz) and iR : S1 → R2 r a : z 7→ Rz.
If h(z, t) = tϕ(z) + (1 − t)iR(z), then

|h(z, t)| = |Rz + t(f(Rz) −Rz)| ≥ R− |f(Rz) − rz| ≥ R−m > |a|,
therefore, h determines a homotopy between ϕ and iR in R2 r a. Since the
loop iR is not null-homotopic in R2 r a, it follows that ϕ is also not null-
homotopic. By 36.1x, a = f(Rz), where |z| < 1, thus, the point a belongs
to the image of f .

36.4x.1 The easiest way here would be to check that the corresponding
circular loop is not null-homotopic in R2 r 0 and to use Theorem 36.1x.
Certainly, the latter theorem concerns a disk, and not a square, but the
square is homeomorphi to a disk, so that from the topological point of view
there is no difference between the pairs (I2,Fr I2) and (D2, S1). However,
to help the reader better grasp the main idea of the proof of Theorem 36.1x,
we also present a solution making no use of the theorem. Assume that
w(x, y) 6= 0 for all (x, y) ∈ I2. Consider the following paths going along the
sides of the square:

s1(τ) = (1, τ); s2(τ) = (1 − τ, 1); s3(τ) = (0, 1 − τ); s4(τ) = (τ, 0).

It is clear that the product s = s1s2s3s4 is defined, which is a null-homotopic
loop in the square I2. Now we consider the loop w◦s and show that it is not
null-homotopic in the punctured plane R2 r0. Since w(s1(τ)) = u(1)−v(τ),
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the image of the path w ◦ s1 lies in the first quadrant. It starts at the point
u(1) − v(0) = (1, 0) and ends at the point u(1) − v(1) = (0, 1). Since the
first quadrant is a simply connected set, it follows that the path w ◦ s1
is homotopic there to any path joining the same points, for example, the
paths ϕ1(t) = eπit/2. Similarly, the path w ◦ s2 lies in the second quadrant

and is homotopic there to the path ϕ2(t) = eπi(t+1)/2. Thus, the path
w ◦ s is homotopic in R2 r 0 to the path ϕ = ϕ1ϕ2ϕ3ϕ4 defined by the
formula ϕ(τ) = e2πiτ . Consequently, the class of the loop w ◦ s generates
π1(R

2 r (1, 0)), in particular, this loop is not null-homotopic. On the other
hand, the loop w◦s is null-homotopic in R2r0 by 36.G.4. The contradiction
obtained proves that u(x) − v(y) = w(x, y) = 0 for certain x ∈ I and y ∈ I,
i.e., the paths u and v intersect.

36.5x For example, consider the sets

F = {(1, 1)} ∪
(
[0, 1) × 0

)
∪

∞⋃

n=1

(
2n−1
2n × [0, 2n−1

2n ]
)

G = {(1, 0)} ∪
(
[0, 1) × 1

)
∪

∞⋃

n=1

(
2n

2n+1 × [ 1
2n+1 , 1]

)
.

36.6x No, we cannot. We argue by contradiction. Let ε = ρ(F,G) > 0.
The result of Problem 13.17 implies that the points (0, 0), (1, 1) ∈ F are
joined by a path u with image in the ε/2-neighborhood of F , and the points
(0, 1), (1, 0) ∈ G are joined by a path v with image in the ε/2-neighborhood
of G. Furthermore, u(I) ∩ v(I) = ∅ by our choice of ε, which contradicts
the assertion of Problem 36.4x.
Now we also present another solution of this problem. The result of Prob-
lem 13.4x implies that there exists a simple broken line joining (0, 0) and
(1, 1) and disjoint with G. Consider the polygon K0 . . . KnPQR. One of
the remaining vertices lies inside the polygon, while the other one lies out-
side, whence these points cannot belong to a connected set disjoint with the
polygon.

36.8x We prove that if x and y are joined by a path that does not
intersect the set u(S1), then ind(u, x) = ind(u, y). Indeed, if there exists
such a path s, then the formula

h(z, t) = ϕu,s(t)(z) =
u(z) − s(t)

|u(z) − s(t)|

determines a homotopy between ϕu,x and ϕu,y; we proceed further as in the
proof of 36.Ex. Thus, if ind(u, x) 6= ind(u, y), then x and y cannot be joined
by a path whose image not meet the set u(S1).
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36.9x Assume for the simplicity that the disk contains the origin. The
formula

h(z, t) =
(1 − t)u(z) − x

|(1 − t)u(z) − x|
shows that ϕu,x is null-homotopic, whence ind(u, x) = 0.

36.10x (a) ind(u, x) = 1 if |x| < 1, and ind(u, x) = 0 if |x| > 1. (b)
ind(u, x) = −1 if |x| < 1, and ind(u, x) = 0 if |x| > 1. (c) {ind(u, x) | x ∈
R2 r u(S1)} = {0, 1,−1}.

36.11x The lemniscate L splits the plane in three components. The
index of any loop with image L with respect to any point in the unbounded
component is equal to zero. For each pair (k, l) of integers, there is a loop u
such that the index of u with respect to points in one bounded component is
equal to k, while the index of u with respect to points in the other bounded
component is equal to l.

36.12x See the solution of Problem36.11x.

36.13x We can assume that x is the origin and the ray R is the positive
half of the x axis. It is more convenient to consider the loop u : I → S1,

u(t) = f(e2πit)
|f(e2πit)| . Assume that the set f−1(R) is finite and consists of n

points. Consequently, u−1(1) = {t0, t1, . . . , tn}, and we have t0 = 0 and
tn = 1. The loop u is homotopic to the product of loops ui, i = 1, 2, . . . , n,
each of which has the following property: ui(t) = 1 only for t = 0, 1. Prove
that [ui] is equal either to zero, or to a generator of π1(S

1). Therefore, if
the integer ki is the image of [ui] under the isomorphism π1(S

1) → Z and
k = ind(f, x) is the image of [u] under this isomorphism, then

|k| = |k1 + k2 + . . . kn| ≤ |k1| + |k2| + . . .+ |kn| ≤ n

because each of the numbers ki is 0 or ±1.

36.14x Apply the Borsuk–Ulam Theorem to the function taking each
point on the surface of Earth to the pair of numbers (t, p), where t is the
temperature at the point and p is the pressure.

37.1 If ρ1 : X → A and ρ2 : A→ B are retractions, then ρ2◦ρ1 : X → B
is also a retraction.

37.2 If ρ1 : X → A and ρ2 : Y → B are retractions, then so is
ρ1 × ρ2 : X × Y → A×B.

37.3 Put f(x) = a for x ≤ a, f(x) = x for x ∈ [a, b], f(x) = b for x ≥ b
(i.e., f(x) = max{a,min{x, b}}). Then f : R → [a, b] is a retraction.

37.4 This follows from 37.6, or, in a more customary way: if f(x) = x
for all x ∈ (a, b), then the continuity of f implies that f(b) = b, thus, there
exists no continuous function on R with image (a, b).
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37.5 The properties that are transferred from topological spaces to
their subspaces and (or) to continuous images. For example, the Hausdorff
axiom, connectedness, compactness, etc.

37.6 This follows from 14.4.

37.7 Since this space is not path-connected.

37.8 No, it is not. Indeed, the group π1(RP
2) ∼= Z2 is finite, while

the group π1(RP
1) = π1(S

1) ∼= Z is infinite, consequently, the former group
admits no epimorphism onto the latter one (there also is no monomorphism
in the opposite direction). Therefore, by assertion 37.F, there exists no
retraction RP 2 → RP 1.

37.9 Let L be the boundary circle of a Möbius strip M . It is clear that
π1(L) ∼= π1(M) ∼= Z. However (cf. 33.4), we easily see (verify this!), that the
homomorphism i∗ induced by the inclusion i : L → M takes the generator
α ∈ π1(L) to the element 2β, where β is the generator of π1(M) ∼= Z. If
there exists a retraction ρ : M → L, then the composition ρ∗ ◦ i∗ takes the
generator α ∈ π1(L) to the element 2ρ∗(β) 6= α, contrary to the fact that
this composition is the identical isomorphism of π1(L).

37.10 Let L be the boundary circle of a handle K. It is clear that
π1(L) ∼= Z, and π1(K) is a free group with two generators a and b. Fur-
thermore, it can be checked (do it!), that the inclusion homomorphism
i∗ : π1(L) → π1(K) takes the generator α ∈ π1(L) to the commutator
aba−1b−1. Assume the contrary: let ρ : K → L be a retraction. Then the
composition ρ∗ ◦ i∗ takes the generator α ∈ π1(L) to the neutral element of
π1(L) because the element

ρ∗ ◦ i∗(α) = ρ∗(aba
−1b−1) = ρ∗(a)ρ∗(b)ρ∗(a)

−1ρ∗(b)
−1

is neutral since the group Z is Abelian. On the other hand, this composition
must coincide with idπ1(L). A contradiction.

37.11 The assertion is obvious because each property stated in topo-
logical terms is topological. However, the following question is of interest.
Let a space X have the fixed point property, and let h : X → Y be a home-
omorphism. Thus, we know that each continuous map f : X → X has a
fixed point. How, knowing this, can we prove that an arbitrary continuous
map g : Y → Y also has a fixed point? Show that one of the fixed points of
g is h(x), where x is a fixed point of a certain map X → X.

37.12 Consider a continuous function f : [a, b] → [a, b] and the auxiliary
function g(x) = f(x)−x. Since g(a) = f(a)−a ≥ 0 and g(b) = f(b)−b ≤ 0,
there is a point x ∈ [a, b] such that g(x) = 0. Thus, f(x) = x, i.e., x is a
fixed point of f .

37.13 Let ρ : X → A be a retraction. Consider an arbitrary continuous
map f : A → A and the composition g = in ◦f ◦ ρ : X → X. Let x be a



442 Hints, comments, advices,

fixed point of g, whence x = f(ρ(x)). Since ρ(x) ∈ A, we also have x ∈ A,
so that ρ(x) = x, whence x = f(x).

37.14 Denote by ω the point of the bouquet which is the image of the
pair {x0, y0} under the factorization map. This follows from 37.13.

Consider an arbitrary continuous map f : X ∨ Y → X ∨ Y . For the
sake of definiteness, assume that f(ω) ∈ X. Let i : X → X ∨ Y be the
standard inclusion, and let ρ : X ∨ Y → X be a retraction mapping the
entire Y to the point ω. By assumption, the map ρ ◦ f ◦ i has a fixed point
x ∈ X, ρ(f(i(x))) = x, so that ρ(f(x)) = x. If f(x) ∈ Y , then ρ(f(x)) = ω,
so that x = ω. On the other hand, we assumed that f(ω) ∈ X, consequently,
f(ω) = ω is a fixed point of f . Now we assume that f(x) ∈ X. In this case,
we have

x = (ρ ◦ f ◦ i)(x) = ρ(f(x)) = f(x),

therefore, x is a fixed point of f .

37.15 Since the segment has the fixed point property (see 37.12),
hence, by 37.14, reasoning by induction, we see that each finite tree has this
property. An arbitrary infinite tree does not necessarily have this property;
an example is the real line. However, try to state an additional assumption
under which an infinite tree also has the fixed point property.

37.16 For example, a parallel translation has no fixed points.

37.17 For example, the antipodal map x 7→ −x has no fixed points.

37.18 Let n = 2k − 1. For example, the map

(x1 : x2 : . . . : x2k−1 : x2k) 7→ (−x2 : x1 : . . . : −x2k : x2k−1)

has no fixed points.

37.19 Let n = 2k − 1. For example, the map

(z1 : z2 : . . . : z2k−1 : z2k) 7→ (−z̄2 : z̄1 : . . . : −z̄2k : z̄2k−1)

has no fixed points.

38.1 The map f : [0, 1] → {0} is a homotopy equivalence; the corre-
sponding homotopically inverse map is, for example, the inclusion i : {0} →
[0, 1]. The composition i◦f is homotopic to idI because any two continuous
maps I → I are homotopic, and the composition f ◦ i : {0} → {0} is the
identity map itself. Certainly, f is not a homeomorphism.

38.2 Let X and Y be two homotopy equivalent spaces and denote
by π0(X) and π0(Y ) the sets of path-connected components of X and
Y , respectively. Let f : X → Y and g : Y → X be two mutually in-
verse homotopy equivalences. Since f is a continuous map, it maps path-
connected sets to path-connected ones. Consequently, f and g induce maps

f̂ : π0(X) → π0(Y ) and ĝ : π0(Y ) → π0(X). Since the composition g ◦ f is
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homotopic to idX , it follows that each point x ∈ X lies in the same path-
connected component as the point g(f(x)). Consequently, the composition

ĝ ◦ f̂ is the identity map. Similarly, f̂ ◦ ĝ is also identical. Consequently, f̂
and ĝ are mutually inverse maps, in particular, the sets π0(X) and π0(Y )
have equal cardinalities.

38.3 The proof is similar to that of 38.2.

38.4 For example, consider: a point, a segment, a bouquet of n seg-
ments with n ≥ 3.

38.5 We prove that the midline L of the Möbius strip M (i.e., the
image of the segment I × 1

2 under factorization I × I → M) is a strong
deformation retract of M . The geometric argument is obvious: we define ht
as the contraction of M towards L with ratio 1 − t. Thus, h0 is identical,
while h1 maps M to L. Now we present the corresponding formulas. Since
M is a quotient space of the square, first, consider the homotopy

H : I × I × I → I × I : (u, v, t) 7→
(
u, (1 − t)v + t

2

)
.

Furthermore, we have H
(
u, 1

2 , t
)

=
(
u, 1

2

)
for all t ∈ I. Since (1 − t)v +

t
2 + (1 − t)(1− v) + t

2 = 1, it follows that this homotopy is compatible with
the factorization and thus induces a homotopy h : M × I → M . We have
H(u, v, 0) = (u, v), whence h0 = idM and H1(u, v) =

(
u, 1

2

)
.

38.6 The letters E,F,G,H,I,J,K,L,M,N,S,T,U,V,W,X,Y,Z are homotopy
equivalent to a point; A,O,P,Q,R are homotopy equivalent to a circle; finally,
B is homotopy equivalent to a bouquet of two circles.

38.7 This can be proved in various ways. For example, we can produce
circles lying in the handle H whose union is a strong deformation retract
of H. For this purpose, we present the handle as a result of factorizing the
annulus A = {z | 1

2 ≤ |z| ≤ 1} by the following relation: eiϕ ∼ −e−iϕ for

ϕ ∈
[
−π

4 ,
π
4

]
, and eiϕ ∼ e−iϕ for ϕ ∈

[
π
4 ,

3π
4

]
. The image of the standard

unit circle under the factorization by the above equivalence relation is the
required bouquet of two circles lying in of the handle. The formula H(z, t) =
(1 − t)z + t z|z| determines a homotopy between the identity map of A and

the map z 7→ z
|z| of A onto the outer rim of A, and H(z, t) = z for all z ∈ S1

and t ∈ I. The quotient map of H is the required homotopy.

38.8 This follows from 38.7 and 38.I.

38.9 Embed each of these spaces in R3 r S1 so that the image of the
embedding be a deformation retract of R3 r S1. Let us present one more
space homotopy equivalent to our two spaces: the union X of S2 with one
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of the diameters. This X can also be embedded in R3 rS1 as a deformation
retract.

38.10 Put A = {(z1, z2) | 4z2 = z2
1} ⊂ C2. Consider the map f : C ×

(Cr0) → C2rA : (z1, z2) 7→
(
z1, z2+

z21
4

)
. Verify that f is a homeomorphism

and C2 rA ≃ C × (C r 0) ≃ S1. Furthermore, the circle can be embedded
in C rA as a deformation retract.

38.11 We prove that O(n) is a deformation retract of GL(n,R). Let
(f1, f2, . . . , fn) be the collection of columns of a matrix A ∈ GL(n,R), each of
which is regarded as an element of Rn. Let (e1, e2, . . . , en) be a result of the
Gram–Schmidt orthogonalization procedure. Thus the matrix with columns
formed by the coordinates of these vectors is orthogonal. The vectors ek are
expressed via fk by the formulas

e1 = λ11f1,
e2 = λ21f1 + λ22f2,
. . . ,
en = λn1f1 + λn2f2 + . . .+ λnnfn,

where λkk > 0 for all k = 1, 2, . . . , n.
We introduce the vectors

wk(t) = t(λn1f1 + λn2f2 + . . . + λkk−1fk−1) + (tλkk + 1 − t)fk

and consider the matrix h(A, t) with columns consisting of the coordinates of
these vectors. It is clear that the correspondence (A, t) 7→ h(A, t) determines
a continuous map GL(n,R)×I → GL(n,R). We easily see that h(A, 0) = A,
h(A, 1) ∈ O(n), and h(B, t) = B for all B ∈ O(n). Thus, the map A 7→
h(A, 1) is the required deformation retraction.

38.13 Use, e.g., 19.43.

38.14 We need the notion of the cylinder Zf of a continuous map
f : X → Y . By definition, Zf is obtained by attaching the ordinary cylinder
X × I to Y via the map X × 0 → Y , (x, 0) 7→ f(x). Hence, Zf is a result
of factorization of the disjoint union (X × I) ⊔ Y , under which the point
(x, 0) ∈ X × 0 is identified with the point f(x) ∈ Y . We identify X and
X × 1 ⊂ Zf , and it is also natural to assume that the space Y lies in
the mapping cylinder. There is an obvious strong deformation retraction
pY : Zf → Y , which leaves Y fixed and takes the point (x, t) ∈ X × (0, 1)
to f(x). It remains to prove that if f is a homotopy equivalence, then X is
also a deformation retract of Zf . Let g : Y → X be a homotopy equivalence
inverse to f . Thus, there exists a homotopy H : X × I → X such that
H(x, 0) = g(f(x)) and H(x, 1) = x. We define the retraction ρ : Zf → X as
a quotient map of the map (X × I)⊔Y → X : (x, t) 7→ h(x, t), y 7→ g(y). It
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remains to prove that the map ρ is a deformation retraction, i.e., to verify
that inX ◦ρ is homotopic to idZf

. This follows from the following chain,
where the ∼ sign denotes a homotopy between compositions of homotopic
maps:

inX ◦ρ = ρ = ρ ◦ idZf
∼ ρ ◦ pY = g ◦ pY = idZf

◦(g ◦ pY ) ∼

∼ pY ◦ (g ◦ pY ) = (pY ◦ g) ◦ pY = (f ◦ g) ◦ pY ∼ idY ◦pY = pY ∼ idZf
.

38.15 Use the rectilinear homotopies.

38.16 Let h : X×I → X be a homotopy between idX and the constant
map x 7→ x0. The formula ux(t) = h(x, t) determines a path joining (an
arbitrary) point x in X with x0. Consequently, X is path-connected.

38.17 Assertions (a)–(d) are obviously pairwise equivalent. We prove
that they are also equivalent to assertions (e) and (f).
(a) =⇒ (e): Let h : X × I → X be a homotopy between idX and a constant
map. For each continuous map f : Y → X, the formula H = h ◦ (f × idI)
(or, in a different way: H(y, t) = h(f(y), t)) determines a homotopy between
f and a constant map.
(e) =⇒ (a): Put Y = X and f = idX .
(a) =⇒ (f): Let h be the same as before. The formula H = f ◦h determines
a homotopy between f : X → Y and a constant map.
(f) =⇒ (a): Put Y = X and f = idX .

38.18 Assertion (b) is true; assertion (a) holds true iff Y is path-
connected.

38.19 Each of the spaces (a)–(e) is contractible.

38.20 Let H be a homotopy between idX×Y and a constant
map (x, y) 7→ (x0, y0). Then X× I : (x, t) 7→ prX

(
H(x, y0, t)

)
is a homotopy

between idX and the constant map x 7→ x0. The contractibility of Y is
proved in a similar way.

Assume that X and Y are contractible, h is a homotopy between idX
and the constant map x 7→ x0, and g is a homotopy between idY and the
constant map y 7→ y0. The formula H(x, y, t) =

(
h(x, t), g(y, t)

)
determines

a homotopy between idX×Y and the constant map (x, y) 7→ (x0), y0).

38.21 (a) Since X = R3rR1 ∼= (R2r0)×R1 ≃ S1, we have π1(X) ∼= Z.
(b) It is clear that X = RN r Rn ∼= (RN−n r 0) × Rn ≃ SN−n−1. Conse-
quently, if N = n + 1, then X ≃ S0; if N = n + 2, then X ≃ S1, whence
π1(X) ∼= Z; if N > n+ 2, then X is simply connected.
(c)Since S3 r S1 ∼= R2 × S1, we have π1(S

3 r S1) ∼= Z.
(d) If N = n+1, then X = RN rSN−1 has two components, one of which is
an open N -ball, and hence is contractible, while the second one is homotopy
equivalent to SN−1. If N > n + 1, then X is homotopy equivalent to the
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bouquet SN−1 ∨ SN−n−1. Consequently, for N = 2 and n = 0 π1(X) is a
free group with two generators; for N > 2 or N = n + 2, we obtain the
group Z; in all remaining cases, X is simply connected.
(e) R3 r S1 admits a deformation retraction to a sphere with two points
identified, which is homotopy equivalent to the bouquet X = S1 ∨ S2

by 38.9. The universal covering of X is the real line R1, to which at
all of the integer points 2-spheres are attached (a “garland”). Therefore,
π1(R

3 r S1) ∼= π1(X) ∼= Z.
(f) If N = k+1, then SN rSN−1 is homeomorphic to the union of two open
N -balls, so that each of its two components is simply connected. Certainly,
this fact is a consequence from the following general result: SN r Sk ∼=
SN−k−1 × Rk+1, whence π1(S

N r Sk) ∼= Z for N = k + 2 and this group is
trivial in other cases.
(g) It can be shown that RP 3 rRP 1 ∼= R2×S1, but it is easier to show that
this space admits a deformation retraction to S1. In both cases, it is clear
that π1(RP

3 r RP 1) ∼= Z.
(h) Since a handle is homotopy equivalent to a bouquet of two circles, it has
free fundamental group with two generators.
(i) The midline (the core circle) of the Möbius strip M is a deformation
retract of M , therefore, the fundamental group of M is isomorphic to Z.
(j) The sphere with s holes is homotopy equivalent to a bouquet of s − 1
circles and so has free fundamental group with s− 1 generators (which, cer-
tainly, is trivial for s = 1).
(k) The punctured Klein bottle is homotopy equivalent to a bouquet of two
circles, and so has free fundamental group with two generators.
(l) the punctured Möbius strip is homotopy equivalent to the letter θ, which,
in turn, is homotopy equivalent to a bouquet of two circles. The Möbius
strip with s punctures is homotopy equivalent to a bouquet of s+ 1 circles
and thus has free fundamental group with s+ 1 generators.

38.22 Let K be the boundary circle of a Möbius strip M , L the midline
of M , and T a solid torus whose boundary contains K. Consider the embed-
dings i : K → T r S and j : T r S → R3 r S. Since T rS ∼= (D2 r 0)× S1,
we have π1(T r S) ∼= Z ⊕ Z. Denote by a and b the generators of the
group π1(T r S). Let α be the generator of π1K ∼= Z, then i∗(α) = a+ 2b.
Furthermore, j∗(a) is a generator of π1(R

3 r S), and j∗(b) = 0. Therefore,
j∗(i∗(α)) 6= 0. If there existed a disk D spanning K and having no other
common points with M , then we would have D ⊂ R3 rS. Consequently, K
would determine a null-homotopic loop in R3 r S. However, j∗(i∗(α)) 6= 0.

38.23 1) Using the notation introduced in 38.10, consider the map

Q→ (C r 0) × (C2 rA) ≃ S1 × S1 : (a, b, c) 7→
(
a, ba ,

c
a

)
.
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This is a homeomorphism. Therefore, the fundamental group of Q is iso-
morphic to Z ⊕ Z.

2) The result of Problem 38.10 implies that Q1 is homotopy equivalent
to the circle, and, consequently, has fundamental group isomorphic to Z.

39.1 This follows from 39.H since the group p∗(π1(X,x0)) of the uni-
versal covering is trivial, and therefore its index is equal to the order of the
fundamental group π1(B, b0) of the base of the covering.

39.2 This follows from 39.H because a group having a subgroup of
nonzero index is obviously nontrivial.

39.3 All even positive integers. It can be proved that each of the
boundary circles of the cylinder is mapped onto the boundary S of the
Möbius strip M . Let α be the generator of the group π1(S

1 × I), then
p∗(1) = bk, where the element b ∈ π1(M) is the image of the generator of
π1(S) under the embedding S → M . It remains to observe that b = a2,
where a is the generator of the group π1(M) ∼= Z. Thus, p∗(α) = a2k,
consequently, the index of p∗(π1(S

1 × I)) is an even positive integer. We
easily see that there are coverings with an arbitrary even number of sheets
(see 33.4).

39.4 All odd positive integers, see 39.10x.

39.5 All even positive numbers, see 39.10x.

39.6 All positive integers, see 39.10x.

39.7 If the base of the covering is compact, while the covering space is
not, then the covering is infinite-sheeted by 33.24.

39.8 See the hint to Problem 39.7.

39.9 The class of the identity map.

39.1x For example, consider the union of the standard unit segments
on the x and y axes and of the segments In =

{(
1
n , y

)
| y ∈ I

}
, n ∈ N (the

“hair comb”).

39.4x This is obvious because the group π1(X,a) is trivial, and we can
put U = X.

39.5x Consider the circle.

39.6x Let V be the smallest neighborhood of a. Therefore, the topology
on V is indiscrete. Let ht(x) = x for t < 1, h1(x) = a. Prove that h : V ×I →
V is a homotopy.

39.7x This is true because already the inclusion homomorphism π1(V, a) →
π1(U, a) is trivial.

39.8x For example, such a space is D2 r
{(

1
n , 0

)
| n ∈ N

}
(consider the

point (0, 0)).
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39.9x Consider the cone over the space of Problem 39.8x.

39.10x By Theorem 39.Fx, it suffices to describe the hierarchy of the
classes of conjugate subgroups in the fundamental group of the base and
present coverings with a given subgroup. In all examples except (e), the
fundamental group of the space in question (the base) is Abelian. Therefore,
it is sufficient to list all subgroups of the fundamental group and to determine
their order with respect to the inclusion. In each case, all coverings are
subordinate to the universal covering, and the trivial covering is subordinate
to all coverings.
(a) The universal covering is the map p : R → S1. The covering pk : S1 →
S1 : z 7→ zk, where k ∈ N, is subordinate to the covering pl iff k divides l,
and the subordination is the covering pl/k.

(b) Since R2 r 0 ∼= S1 × R, the answer is similar to the preceding one.
(c) If M is a Möbius strip, then π1(M) ∼= Z. Thus, as and the first example,
all subgroups of the fundamental group of the base have the form kZ. The
difference is as follows: if k is odd, then the covering space is the Möbius
strip, while if k is even, then the covering space is the cylinder S1 × I.
(d) The universal covering was constructed in the solution of Problem 35.7.
Since the fundamental group of this space is isomorphic to Z, it is sufficient
to present coverings with group kZ ⊂ Z. Construct them on your own. In
contrast to example (a), the total spaces are not homeomorphi because each
of them has its own number of points.
(e) The universal covering of the torus is the map p : R1 × R1 → S1 × S1 :
(x, y) 7→

(
e2πix, e2πiy

)
. An example of a covering with group kZ ⊕ lZ is the

following map of the torus to itself:

pk × pl : S1 × S1 → S1 × S1 : (z,w) 7→ (zk, wl).

More generally, for each integer matrix A =
(

a b

c d

)
we can consider the

covering pA : S1 × S1 → S1 × S1 : (z,w) 7→ (zawb, zcwd), the group of
which is the lattice L ⊂ Z ⊕ Z with basis vectors a(a, c) and b(b, d). The
covering pA is subordinate to the covering pA′ determined by the matrix

A′ =
(

a′ b′

c′ d′

)
if the lattice L′ with basis vectors a

′(a′, c′) and b
′(b′, d′) is

contained in the lattice L. In this case, the bases {a,b} in L and {a′,b′} in L′

can be chosen to be coordinated, i.e., so that a
′ = ka and b

′ = lb for certain
k, l ∈ N. The subordination here is the covering pk × pl. Infinite-sheeted
coverings are described up to equivalence by cyclic subgroups in Z×Z, i.e.,
by the cyclic vectors a(a, c) ∈ Z×Z. Every such a vector determines the map
pa : S1×R → S1×S1 : (z, t) 7→ (zae2πit, zb). The covering pa is subordinate
to the covering pb if b = ka, k ∈ Z. In this case, the subordination has
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the form S1 × R → S1 × R : (z, t) 7→ (zk, t). Description of subordinations
between finite-sheeted and infinite-sheeted coverings is left to the reader as
an exercise.

39.11x See the figure.

39.12x Indeed, any subgroup of an Abelian group is normal. We can
also verify directly that for each loop s : I → B either each path in X
covering s is a loop (independently of the starting point), or none of these
paths is a loop.

39.13x This is true because any subgroup of index two is normal.

39.15x See the example constructed in the solution of Problem 39.11x.

39.16x This follows from assertion 39.Px, (d).

40.3 The cellular partition of Z is obvious: if em is an open cell in
X and en is an open cell in Y , then em × en is an open cell in Z because
Bm × Bn ∼= Bm+n. Thus, the n-skeleton of Z is the union of pairwise
products of all cells in X and Y whose of dimensions is at most n. Now we
must describe the attaching maps of the corresponding closed cells. In order
to construct the cellular space X, we start with a discrete topological space
X0, and then for each m ∈ N we construct the space Xm by attaching to
Xm−1 the disjoint union of m-disks Dm

X,α via an attaching map
⊔
α S

m−1
X,α →

Xm−1. Clearly, X is a result of a simultaneous factorization of the disjoint
union

⊔
m,αD

m
X,α by a certain single identification. The same is true for Y .

Since in the present case the operations of factorization and multiplication of
topological spaces commute (see 24.Tx), the product X×Y is homeomorphi
to a result of factorizing the disjoint union

⊔

m, α

n, β

Dm
X,α ×Dn

Y,β

of pairwise products of disks involved in the construction of X and Y . It
remains to observe that this factorization, in turn, can be performed “by
skeletons”, starting with a discrete topological space Z0 =

⊔(
D0
X,α×D0

Y,β

)
.
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Attaching to Z0 1-cells of the form D1
X,α×D0

Y,β and D0
X,α×D1

Y,β, we obtain
the 1-skeleton Z1, etc. In dimensions grater than 1, Description of the
attaching maps can cause difficulties. Consider a cell of the form em × en.
Its characteristic map Dm × Dn → X × Y is simply the product of the
characteristic maps of the cells em and en, which maps the image of the
boundary sphere of the “disk” Dm ×Dn to the skeleton Zn+m−1, which is
already constructed. We have thus defined the attaching map ω : Sn+m−1 →
Zn+m−1. Let us also give an explicit description of ω. To do this, we need
the standard homeomorphism κ : Dm+n → Dm × Dn with κ(Sm+n−1) =
(Sm−1×Dn)∪ (Dm×Sn−1). Let ϕ1 : Sm−1 → Xm−1 and ϕ2 : Sn−1 → Yn−1

be the attaching maps of the cells em and en. Then ω can be described as
a composition

Sm+n−1 → (Dm × Sn−1) ∪ (Sm−1 ×Dn) →

→ [(Xm−1 ∪ϕ1
Dm) × Yn−1] ∪ [Xm−1 × (Yn−1 ∪ϕ2

Dn)] →֒ Zm+n−1,

where the first map is a submap of the homeomorphism κ, the second one
is the obvious map defined on each part as the product of the characteristic
and the attaching map, and the third one is an inclusion.

40.4 No, it does not. Show that the product topology on the product
of two copies of the cellular space of Problem 40.9 is not cellular.

40.5 Actually, when solving Problem 40.H, we used, firstly, the presen-
tation RPn =

⋃n
k=0 RP k, secondly, the fact that RP k r RP k−1 is an open

k-cell. Use the presentation CPn =
⋃n
k=0 CP k. Prove that for all integer

k ≥ 0 the difference CP k r CP k−1 ∼= B2k. Furthermore, it is clear that the
attaching map S2k−1 → CP k−1 is the factorization map.

40.6 (a) Delete from the square a set homeomorphi to the open disk
and bounded by a curve starting and ending at a certain vertex of the square
I2. The rest splits into 10 cells, and the quotient space of the complement
splits into 5 cells and is homeomorphi to a handle.
(b) The Möbius strip is the quotient space of the square, which has a cellular
partition consisting of 9 cells. After factorization, we obtain a partition of
the Möbius strip consisting of 6 cells.
(c) As well as the space in the preceding item, S1 × I is a quotient space of
the square. Or, differently, see 40.3.
(d)–(e) See 40.12.

40.7 (a) 4 cells: present the Möbius strip as a result of factorization of
a triangle under which all three vertices are identified into one. Show that
one 1-cell is insufficient.
(b) 2p+2 cells; (c) q+2 cells. See 40.12. In order to show that this number
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of cells is the smallest possible, use the computation of the fundamental
groups of the above spaces, see 43◦5.

40.8 We need at least three cells: a 0-cell, a 1-cell, and one more cell.

40.9 See 20.6.

40.11 Notice that since any two points in R∞ lie in a certain subspace
RN , the distance between them is easy to define. Thus, we have a metric in
R∞, but it generates in R∞ a wrong topology. To show that the topology
in R∞ is not generated by any metric, use the fact that R∞ is not first
countable (prove this).

40.12 We prove several assertions in this list.
(a) The word aa−1 describes the quotient space of D2 by the partition into
pairs of points of S1 that are symmetric with respect to one of the diameters.
This quotient space is homeomorphi to S2. The cellular partition has two
0-cells, a 1-cell, and a 2-cell.
(b) The word aa describes the quotient space of D2 by the partition into
pairs of centrally symmetric points of the circle (and singletons formed by
the remaining points). It is homeomorphi to the projective plane. The
cellular partition consists of three cells: a 0-cell, a 1-cell, and a 2-cell.
(g) Consider the p-gon P with vertices at the common endpoints of the pairs
of edges marked by a1 and b−1

p , a2 and b−1
1 , . . . , ap and b−1

p−1, and cut the
initial 4p-gon along the sides of P . Factorizing P , we obtain a sphere with
p holes. Factorizing the remaining pentagons, we obtain p handles.

40.13 For example, consider the so-called complete 5-graph K5, i.e.,
the space with 5 vertices pairwise joined by edges. To prove that it cannot
be embedded in R2, use the Euler Theorem 42.3.

41.1x Let ψ : Dn → X be the characteristic map of the attached cell,
let i : A → X be the inclusion. We can assume that x = ψ(0), where 0 is
the center of Dn. We introduce the map

g : X r x→ A : g(z) =

{
z if z ∈ A,

ϕ(ψ−1(z)/|ψ−1(z)|) if z /∈ A.

We prove that the maps idXrx and i ◦ g are A-homotopic. Consider the

rectilinear homotopy h̃ : (Dn r x) × I → Dn r x between the identity map
and the projection ρ : Dn r x→ Dn r x : z 7→ z

|z| . We define the homotopy

h : (A ⊔ (Dn r x)) × I → A ⊔ (Dn r x)

by letting

h(z, t) =

{
z if z ∈ A,

h̃(z, t) if z ∈ Dn.



452 Hints, comments, advices,

The quotient map H : (Xrx)×I → Xrx of h is the required A-homotopy
between idXrA and i ◦ g.

41.2x This follows from 41.1x because closed n-cells together withXn−1

constitute a fundamental cover of X.

41.3x The assertion on RPn follows from 41.1x because RPn is a
result of attaching an n-cell to RPn−1, see 40.H. The assertion about CPn

is proved in a similar way; see 40.5. On the other hand, try to find explicit
formulas for deformation retractions RPn r point → RPn−1 and CPn r

point → CPn−1.

41.4x Consider a cellular partition of the solid torus that has one 3-
cell and 2-skeleton homeomorphic to a torus with a disk attached along the
meridian S1 × 1, and apply assertion 41.1x.

41.5x Denote by eϕ : Dn+1 → Xϕ and eψ : Dn+1 → Xψ the charac-
teristic maps of the (n + 1)-cell attached to Y . Let h : Sn × I → Y be a
homotopy joining ϕ and ψ. Consider the maps f ′ : Y ⊔ Dn+1 → Xϕ and
g′ : Y ⊔Dn+1 → Xψ that are the standard embeddings on Y , and are defined
on the disks Dn+1 by the formulas

f ′(x) =

{
eψ(2x) for |x| ≤ 1

2 ,
h
(
x
|x| , 2(1 − |x|)

)
for 1

2 ≤ |x| ≤ 1,

g′(x) =

{
eϕ(2x) for |x| ≤ 1

2 ,
h
(
x
|x| , 2|x| − 1

)
for 1

2 ≤ |x| ≤ 1,

We easily see that the quotient maps f : Xϕ → Xψ and g : Xψ → Xϕ of
f ′ and g′ are defined. Show that f and g are mutually inverse homotopy
equivalences.

41.6x Slightly modify the argument used in the solution of Prob-
lem 41.5x.

41.7x Let A be the space obtained by attaching a disk to the circle
via the map α : S1 → S1, α(z) = z2. Then A ∼= RP 2, whence π1(A) ∼= Z2.
Consequently, the map ϕ : S1 → A : z 7→ z3 is homotopic to ψ = idS1.
By 41.5x, X is homotopy equivalent to the space A ∪ψ D2, which coincides
with D2 ∪α D2. Since the map α : S1 → D2 is null-homotopic, it follows
(also by 41.5x) that X is homotopy equivalent to the bouquetD2∨S2, which
is homotopy equivalent to S2:

X ≃ A ∪ψ D2 ≃ D2 ∪α D2 ≃ D2 ∨ S2 ≃ S2.

The sphere has a partition consisting of two cells, which, obviously, is the
smallest possible number of cells.
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41.9x The torus S1 × S1 is obtained from the bouquet S1 ∨ S1 by
attaching a 2-cell via a certain map ϕ : S1 → S1 ∨ S1. Denote by i the
inclusion S1 ∨S1 → A = (1×S1)∪ (D2 × 1) and show that the composition
i◦ϕ : S1 → A is null-homotopic. Indeed, let α, β be the standard generators
of π1(S

1 ∨ S1). Then [ϕ] = αβα−1β−1, and

[i◦ϕ] = i∗([ϕ]) = i∗(αβα
−1β−1) = i∗(α)i∗(β)i∗(α)−1i∗(β)−1 = i∗(α)i∗(α)−1 = 1,

because i∗(β) = 1 ∈ π1(A). By Theorem 41.5x,

A ∪ϕ D2 ≃ A ∨ S2 = S1 ∨D2 ∨ S2 ≃ S1 ∨ S2.

41.10x Use the result of Problem 41.9x and assertion 41.5x.

41.11x Prove that X ≃ S1 ∨ S1 ∨ S2, whence π1(X) ∼= F2, while
Y ≃ S1 × S1, so that π1(Y ) ∼= Z2. Since π1(X) 6∼= π1(Y ), X and Y are not
homotopy equivalent.

41.13x Consider a cellular partition of CP 2 consisting of one 0-cell, one
1-cell, two 2-cells, and one 4-cell. Furthermore, we can assume that the 2-
skeleton of the cellular space obtained is CP 1 ⊂ CP 2, while the 1-skeleton is
the real part RP 1 ⊂ CP 1. Let τ : CP 2 → CP 2 be the involution of complex
conjugation, by which we factorize. Clearly, CP 1/[z ∼ τ(z)] ∼= D2. Consider

the characteristic map ψ : D4 → CP 1 of the 4-cell of the initial cellular
partition. The quotient space D4/[z ∼ τ(z)] is obviously homeomorphi to

D4. Therefore, the quotient map

D4/[z ∼ τ(z)] → CP 1/[z ∼ τ(z)]

is the characteristic map for the 4-cell of X. Thus, X is a cellular space
with 2-skeleton D2. Therefore, by 41.Cx, we have X ≃ S4.

42.1 See 38.21.

42.2 Let X ∼= S2. Denote by v = c0(X), e = c1(X), and f = c2(X)
the number of 0-, 1-, and 2-cells in X, respectively. Deleting a point in each
2-cell of X, we obtain a space X ′ admitting a deformation retraction to its
1-skeleton. On the one hand, by 42.1, π1(X

′) is a free group of rang f − 1.
On the other hand, we have π1(X

′) ∼= π1(X1), and the rang of the latter
group is equal to 1 − χ(X1) = 1 − v + e by 42.B. Thus, f − 1 = 1 − e+ v,
whence it follows that χ(X) = v − e+ f = 2.

42.3 This follows from 42.2.

43.1 The fundamental group of Sn with n > 1 is trivial because there
is a cellular partition of Sn with one-point 1-skeleton.

43.2 The group π1(CP
n) is trivial for the same reason.
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43.1x Take a point (x0 and x1) in each connected component of C so
that we could join them in the 1-skeleton X1 by two embedded segments
eA ⊂ A and eB ⊂ B, whose only common points are x0 and x1. The idea is
to replace all the spaces by homotopy equivalent ones so that the 1-skeleton
of X be the circle formed by the segments eA and eB . For this purpose, we
can use the techniques used in the solution of Problem 41.Fx. As a result,
we obtain a space having 1-skeleton with fundamental group isomorphic to
Z. It remains to observe that the image of the attaching map ϕ of a 2-cell
cannot be the whole 1-skeleton since this cell lies either in A, or B, but not
in both. Therefore, ϕ is null-homotopic, and, consequently, when we attach
a 2-cell, no relations arise.

43.2x No, because in Theorem 43.Ax the sets A and B are open in
X, while in Theorem 43.2x they are cellular subspaces, which are open only
in exceptional cases. On the other hand, we can derive Theorem 43.Cx

from 43.Ax if we construct neighborhoods of the cellular subspaces A, B,
and C that admit deformation retractions to the spaces themselves.

43.3x Generally speaking, no, it may not (give an example).

43.4x Let us see how the fundamental group changes when we attach
2-cells to the 1-skeleton of X. We assume that the 0-skeleton is {x0}. At the
first step, we attach a 2-cell e to X1, let ϕ : S1 → X1 be the attaching map,
and let χ : D2 → X2 be the characteristic map of e. Let F ⊂ D2 be a closed
disk (for example, of radius 1

2), S the boundary of F , A = χ(D2rIntF )∪X1,

B = χ(F ), then C = χ(S) ∼= S1. It is clear that X1 is a (strong) deformation
retract of the set A. Therefore, the group π1(A) ∼= π1(X1) is a free group
with generators αi. On the other hand, we have B ∼= D2. Therefore, B
is simply connected. The map χ|S is homotopic to ϕ, consequently, the
image of the generator of π1(C) is the class ρ = [ϕ] ∈ π1(X,x0) of the
attaching map of e. Consequently, in the fundamental group π1(X,x0) there
is a relation ρ = 1. When we attach cells of the highest dimension, no new
relations on this group arise, because in this case the space C ∼= Sk is simply
connected since k > 1. The Seifert–van Kampen theorem implies that the
relations [ϕi] = 1 exhaust all relations between the standard generators of
the fundamental group of the space.

43.5x If m 6= 0, then the fundamental group is a cyclic group of order
|m|; if m = 0, then the fundamental group is isomorphic to Z.

43.6x These spaces are homeomorphic to S2 ×S1 and S3, respectively.

43.7x Instead of the complement of K, we consider the complement
of a certain open neighborhood U of K homeomorphi to IntD2 × S1, for
which K is the axial circle. It is more convenient to assume that all sets
under consideration lie not in R3, but in S3. Let X = S3 rU . The torus T
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splits S3 into two solid tori G = D2 ×S1 and F = S1 ×D2. Put A = GrU
and B = F r U . Then X = A ∪ B, and C = A ∩ B is the complement
in T of the open strip, which is a neighborhood of the curve determined
on T by the equation pu = qv, whence π1(C) ∼= π1(A) ∼= π1(B) ∼= Z. By
the Seifert–van Kampen Theorem, we have π1(X) = 〈α, β | i∗(γ) = j∗(γ)〉,
where i and j are the inclusions i : C → A and j : C → B. The loop in
C representing the generator of π1(C) p times passes the torus along the
parallel and q times along the meridian, whence i∗(γ) = ap and j∗(γ) = bq.
Therefore, π1(X) = 〈a, b | ap = bq〉. Show that H1(X) ∼= Z (do not forget
that p and q are co-prime).

43.8x (a) This immediately follows from Theorem 43 (or Theorem 43.Cx).
(b) Since the sets A = X ∨ Vy0 and B = Ux0

∨ Y constitute an open cover
of Z and their intersection A ∩B = Ux0

∨ Vy0 is connected, we see that the
fact that Z is simply connected follows from the result of Problem 31.11.
(c)* Let X ⊂ R3 be the cone with vertex (−1, 0, 1) over the union of the
circles determined in the plane R2 by the equations x2 + 2x

n +y2 = 0, n ∈ N,
and let Y be symmetric to X with respect to the z axis. Both X and Y are
obviously contractible and, therefore, simply connected. Try to prove (this
is not easy at all) that their union X ∪ Y is not simply connected.

43.9x Yes, it is.

43.10x The Klein bottle is a union of two Möbius strips pasted together
along their the boundary circles.

43.13x Verify that the class of the matrix
„

0 1

−1 0

«

has order 2, and the

class of
„

0 1

−1 1

«

has order 3.

43.14x Let us cut the torus (respectively, the Klein bottle) along a
circle B so that as a result we obtain a cylinder, which will be our space
C. Denote by β the generator of π1(B) ∼= Z, and by α the generator of
π1(C) ∼= Z. In the case of torus, we have ϕ1 = ϕ2 = α, while for the
Klein bottle we have ϕ1 = α = ϕ−1

2 . Thus, by Theorem 43.Fx, we obtain a
presentation of the fundamental group of the torus 〈α, γ | γα = αγ〉 and of
the Klein bottle 〈α, γ | γα = αγ−1〉.

55.1x The construction from the proof of Theorem 55.Dx provides a
covering with the required properties.

55.2x Prove that for arbitrary covering of this sort there exist a split-
ting to a covering in the narrow sense of a handle and the trivial covering
of the rest, see the proof of 55.Dx. Use such splittings to construct the
homeomorphisms.
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55.3x The simplest example is a pair of coverings S1×S1 → S1×S1 de-
fined by formulas (z,w) 7→ (z4, w) and (z,w) 7→ (z2, w2) with automorphism
groups Z4 and Z2 × Z2, respectfully.

55.4x Yes, it covers a sphere with three crosscaps via the orientation
covering. Another way to obtain the covering is to consider factorization by
the action of symmetry with respect to a point. For this observe that the
two handles can be attached to sphere in a symmetric way. Prove that the
orbit space of the symmetry is non-orientable.


