
Part 1

General Topology



The goal of this part of the book is to teach the language of math-
ematics. More specifically, one of its most important components: the
language of set-theoretic topology, which treats the basic notions related
to continuity. The term general topology means: this is the topology that
is needed and used by most mathematicians. A permanent usage in the
capacity of a common mathematical language has polished its system of
definitions and theorems. Nowadays, studying general topology really
more resembles studying a language rather than mathematics: one needs
to learn a lot of new words, while proofs of most theorems are extremely
simple. On the other hand, the theorems are numerous because they
play the role of rules regulating usage of words.

We have to warn the students for whom this is one of the first math-
ematical subjects. Do not hurry to fall in love with it, do not let an
imprinting happen. This field may seem to be charming, but it is not
very active. It hardly provides as much room for exciting new research
as many other fields.



CHAPTER 1

Structures and Spaces

§1 Digression on Sets

We begin with a digression, which we would like to consider unnec-
essary. Its subject is the first basic notions of the naive set theory. This
is a part of the common mathematical language, too, but even more
profound than general topology. We would not be able to say anything
about topology without this part (look through the next section to see
that this is not an exaggeration). Naturally, it may be expected that the
naive set theory becomes familiar to a student when she or he studies
Calculus or Algebra, two subjects usually preceding topology. If this is
what really happened to you, then, please, glance through this section
and move to the next one.

§1◦1 Sets and Elements

In any intellectual activity, one of the most profound actions is gath-
ering objects into groups. The gathering is performed in mind and is not
accompanied with any action in the physical world. As soon as the group
has been created and assigned a name, it can be a subject of thoughts
and arguments and, in particular, can be included into other groups.
Mathematics has an elaborated system of notions, which organizes and
regulates creating those groups and manipulating them. This system is
the naive set theory , which is a slightly misleading name because this is
rather a language than a theory.

The first words in this language are set and element. By a set we
understand an arbitrary collection of various objects. An object included
into the collection is an element of the set. A set consists of its elements.
It is also formed by them. To diversify wording, the word set is replaced
by the word collection. Sometimes other words, such as class, family , and
group, are used in the same sense, but this is not quite safe because each
of these words is associated in modern mathematics with a more special
meaning, and hence should be used instead of the word set with caution.

If x is an element of a set A, then we write x ∈ A and say that x
belongs to A and A contains x. The sign ∈ is a variant of the Greek letter
epsilon, which is the first letter of the Latin word element . To make
notation more flexible, the formula x ∈ A is also allowed to be written
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§1. DIGRESSION ON SETS 4

in the form A ∋ x. So, the origin of notation is sort of ignored, but
a more meaningful similarity to the inequality symbols < and > is
emphasized. To state that x is not an element of A, we write x 6∈ A or
A 6∋ x.

§1◦2 Equality of Sets

A set is determined by its elements. It is nothing but a collection of
its elements. This manifests most sharply in the following principle: two

sets are considered equal if and only if they have the same elements. In this
sense, the word set has slightly disparaging meaning. When something
is called a set, this shows, maybe unintentionally, a lack of interest to
whatever organization of the elements of this set.

For example, when we say that a line is a set of points, we assume
that two lines coincide if and only if they consist of the same points. On
the other hand, we commit ourselves to consider all relations between
points on a line (e.g., the distance between points, the order of points on
the line, etc.) separately from the notion of line.

We may think of sets as boxes that can be built effortlessly around
elements, just to distinguish them from the rest of the world. The cost of
this lightness is that such a box is not more than the collection of elements
placed inside. It is a little more than just a name: it is a declaration of
our wish to think about this collection of things as of entity and not to
go into details about the nature of its members-elements. Elements, in
turn, may also be sets, but as long as we consider them elements, they
play the role of atoms, with their own original nature ignored.

In modern Mathematics, the words set and element are very common
and appear in most texts. They are even overused. There are instances
when it is not appropriate to use them. For example, it is not good to
use the word element as a replacement for other, more meaningful words.
When you call something an element , then the set whose element is this
one should be clear. The word element makes sense only in combination
with the word set , unless we deal with a nonmathematical term (like
chemical element), or a rare old-fashioned exception from the common
mathematical terminology (sometimes the expression under the sign of
integral is called an infinitesimal element ; in old texts lines, planes, and
other geometric images are also called elements). Euclid’s famous book
on Geometry is called Elements , too.

§1◦3 The Empty Set

Thus, an element may not be without a set. However, a set may have
no elements. Actually, there is a such set. This set is unique because a
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set is completely determined by its elements. It is the empty set denoted
by ∅. 1

§1◦4 Basic Sets of Numbers

Besides ∅, there are few other sets so important that they have their
own unique names and notation. The set of all positive integers, i.e., 1,
2, 3, 4, 5, . . . , etc., is denoted by N. The set of all integers, both positive,
negative, and the zero, is denoted by Z. The set of all rational numbers
(add to the integers those numbers which can be presented by fractions,
like 2

3
and −7

5
) is denoted by Q. The set of all real numbers (obtained by

adjoining to rational numbers the numbers like
√

2 and π = 3.14 . . . ) is
denoted by R. The set of complex numbers is denoted by C.

§1◦5 Describing a Set by Listing Its Elements

A set presented by a list a, b, . . . , x of its elements is denoted by
the symbol {a, b, . . . , x}. In other words, the list of objects enclosed in
curly brackets denotes the set whose elements are listed. For example,
{1, 2, 123} denotes the set consisting of the numbers 1, 2, and 123. The
symbol {a, x, A} denotes the set consisting of three elements: a, x, and
A, whatever objects these three letters are.

1.1. What is {∅}? How many elements does it contain?

1.2. Which of the following formulas are correct:

1) ∅ ∈ {∅, {∅}}; 2) {∅} ∈ {{∅}}; 3) ∅ ∈ {{∅}}?

A set consisting of a single element is a singleton. This is any set
which can be presented as {a} for some a.

1.3. Is {{∅}} a singleton?

Notice that sets {1, 2, 3} and {3, 2, 1, 2} are equal since they consist
of the same elements. At first glance, lists with repetitions of elements
are never needed. There arises even a temptation to prohibit usage of
lists with repetitions in such a notation. However, as it often happens
to temptations to prohibit something, this would not be wise. In fact,
quite often one cannot say a priori whether there are repetitions or not.
For example, the elements in the list may depend on a parameter, and
under certain values of the parameter some entries of the list coincide,
while for other values they don’t.

1Other notation, like Λ, is also in use, but ∅ has become common one.
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1.4. How many elements do the following sets contain?

1) {1, 2, 1}; 2) {1, 2, {1, 2}}; 3) {{2}};
4) {{1}, 1}; 5) {1, ∅}; 6) {{∅}, ∅};
7) {{∅}, {∅}}; 8) {x, 3x − 1} for x ∈ R.

§1◦6 Subsets

If A and B are sets and every element of A also belongs to B, then
we say that A is a subset of B, or B includes A, and write A ⊂ B or
B ⊃ A.

The inclusion signs ⊂ and ⊃ resemble the inequality signs < and
> for a good reason: in the world of sets, the inclusion signs are obvious
counterparts for the signs of inequalities.

1.A. Let a set A consist of a elements, and a set B of b elements. Prove
that if A ⊂ B, then a ≤ b.

§1◦7 Properties of Inclusion

1.B Reflexivity of Inclusion. Any set includes itself: A ⊂ A holds
true for any A.

Thus, the inclusion signs are not completely true counterparts of the
inequality signs < and >. They are closer to ≤ and ≥. Notice that no
number a satisfies the inequality a < a.

1.C The Empty Set Is Everywhere. ∅ ⊂ A for any set A. In other
words, the empty set is present in each set as a subset.

Thus, each set A has two obvious subsets: the empty set ∅ and A
itself. A subset of A different from ∅ and A is a proper subset of A.
This word is used when we do not want to consider the obvious subsets
(which are improper).

1.D Transitivity of Inclusion. If A, B, and C are sets, A ⊂ B, and
B ⊂ C, then A ⊂ C.

§1◦8 To Prove Equality of Sets, Prove Two Inclusions

Working with sets, we need from time to time to prove that two sets,
say A and B, which may have emerged in quite different ways, are equal.
The most common way to do this is provided by the following theorem.

1.E Criterion of Equality for Sets.
A = B if and only if A ⊂ B and B ⊂ A.
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§1◦9 Inclusion Versus Belonging

1.F. x ∈ A if and only if {x} ⊂ A.

Despite this obvious relation between the notions of belonging ∈ and
inclusion ⊂ and similarity of the symbols ∈ and ⊂, the concepts are
quite different. Indeed, A ∈ B means that A is an element in B (i.e.,
one of the indivisible pieces comprising B), while A ⊂ B means that A
is made of some of the elements of B.

In particular, A ⊂ A, while A 6∈ A for any reasonable A. Thus, be-
longing is not reflexive. One more difference: belonging is not transitive,
while inclusion is.

1.G Nonreflexivity of Belonging. Construct a set A such that A 6∈
A. Cf. 1.B.

1.H Non-Transitivity of Belonging. Construct sets A, B, and C
such that A ∈ B and B ∈ C, but A 6∈ C. Cf. 1.D.

§1◦10 Defining a Set by a Condition

As we know (see §1◦5), a set can be described by presenting a list
of its elements. This simplest way may be not available or, at least,
be not the easiest one. For example, it is easy to say: “the set of all
solutions of the following equation” and write down the equation. This
is a reasonable description of the set. At least, it is unambiguous. Having
accepted it, we may start speaking on the set, studying its properties,
and eventually may be lucky to solve the equation and obtain the list of
its solutions. However, the latter may be difficult and should not prevent
us from discussing the set.

Thus, we see another way for description of a set: to formulate prop-
erties that distinguish the elements of the set among elements of some
wider and already known set. Here is the corresponding notation: the
subset of a set A consisting of the elements x that satisfy a condition
P (x) is denoted by {x ∈ A | P (x)}.

1.5. Present the following sets by lists of their elements (i.e., in the form
{a, b, . . .}):

(a) {x ∈ N | x < 5}, (b) {x ∈ N | x < 0}, (c) {x ∈ Z | x < 0}.

§1◦11 Intersection and Union

The intersection of sets A and B is the set consisting of their common
elements, i.e., elements belonging both to A and B. It is denoted by
A ∩ B and can be described by the formula

A ∩B = {x | x ∈ A and x ∈ B}.
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Two sets A and B are disjoint if their intersection is empty, i.e.,
A ∩ B = ∅.

The union of two sets A and B is the set consisting of all elements
that belong to at least one of these sets. The union of A and B is denoted
by A ∪B. It can be described by the formula

A ∪B = {x | x ∈ A or x ∈ B}.
Here the conjunction or should be understood in the inclusive way: the
statement “x ∈ A or x ∈ B” means that x belongs to at least one of the
sets A and B, but, maybe, to both of them.

A B A B A B

A ∩ B A ∪B
Figure 1. The sets A and B, their intersection A ∩ B,
and their union A ∪B.

1.I Commutativity of ∩ and ∪. For any two sets A and B, we have

A ∩ B = B ∩ A and A ∪B = B ∪A.
1.6. Prove that for any set A we have

A ∩ A = A, A ∪ A = A, A ∪ ∅ = A, and A ∩ ∅ = ∅.

1.7. Prove that for any sets A and B we have

A ⊂ B, iff A ∩ B = A, iff A ∪ B = B.

1.J Associativity of ∩ and ∪. For any sets A, B, and C, we have

(A ∩ B) ∩ C = A ∩ (B ∩ C) and (A ∪B) ∪ C = A ∪ (B ∪ C).

Associativity allows us not to care about brackets and sometimes even
omit them. We define A ∩ B ∩ C = (A ∩ B) ∩ C = A ∩ (B ∩ C) and
A ∪ B ∪ C = (A ∪ B) ∪ C = A ∪ (B ∪ C). However, intersection and
union of an arbitrarily large (in particular, infinite) collection of sets can
be defined directly, without reference to intersection or union of two sets.
Indeed, let Γ be a collection of sets. The intersection of the sets in Γ is
the set formed by the elements that belong to every set in Γ. This set
is denoted by

⋂
A∈ΓA. Similarly, the union of the sets in Γ is the set

formed by elements that belong to at least one of the sets in Γ. This set
is denoted by

⋃
A∈ΓA.

1.K. The notions of intersection and union of an arbitrary collection
of sets generalize the notions of intersection and union of two sets: for
Γ = {A,B}, we have

⋂

C∈Γ

C = A ∩ B and
⋃

C∈Γ

C = A ∪B.
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1.8. Riddle. How do the notions of system of equations and intersection of
sets related to each other?

1.L Two Distributivities. For any sets A, B, and C, we have

(A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C), (1)

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C). (2)

A A BB

C C C

(A ∩B) ∪ C (A ∪ C) (B ∪ C)= ∩

= ∩

Figure 2. The left-hand side (A∩B)∪C of equality (1)
and the sets A ∪ C and B ∪ C, whose intersection is the
right-hand side of the equality (1).

In Figure 2, the first equality of Theorem 1.L is illustrated by a sort
of comics. Such comics are called Venn diagrams or Euler circles. They
are quite useful and we strongly recommend to try to draw them for each
formula about sets (at least, for formulas involving at most three sets).

1.M. Draw a Venn diagram illustrating (2). Prove (1) and (2) by tracing
all details of the proofs in the Venn diagrams. Draw Venn diagrams
illustrating all formulas below in this section.

1.9. Riddle. Generalize Theorem 1.L to the case of arbitrary collections of
sets.

1.N Yet Another Pair of Distributivities. Let A be a set and Γ be a set
consisting of sets. Then we have

A ∩
⋃

B∈Γ

B =
⋃

B∈Γ

(A ∩ B) and A ∪
⋂

B∈Γ

B =
⋂

B∈Γ

(A ∪B).

§1◦12 Different Differences

The difference ArB of two sets A and B is the set of those elements
of A which do not belong to B. Here we do not assume that A ⊃ B.

If A ⊃ B, then the set A r B is also called the complement of B in
A.

1.10. Prove that for any sets A and B their union A∪B is the union of the
following three sets: A r B, B r A, and A ∩ B, which are pairwise disjoint.

1.11. Prove that A r (A r B) = A ∩ B for any sets A and B.

1.12. Prove that A ⊂ B if and only if A r B = ∅.

1.13. Prove that A∩ (B r C) = (A∩B)r (A∩C) for any sets A, B, and C.
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The set (A r B) ∪ (B r A) is the symmetric difference of the sets A
and B. It is denoted by A △ B.

A B A B A B

B r A ArB A △ B

Figure 3. Differences of the sets A and B.

1.14. Prove that for any sets A and B

A △ B = (A ∪ B) r (A ∩ B)

1.15 Associativity of Symmetric Difference. Prove that for any sets
A, B, and C we have

(A △ B) △ C = A △ (B △ C).

1.16. Riddle. Find a symmetric definition of the symmetric difference (A △

B) △ C of three sets and generalize it to arbitrary finite collections of sets.

1.17 Distributivity. Prove that (A △ B) ∩ C = (A ∩ C) △ (B ∩ C) for any
sets A, B, and C.

1.18. Does the following equality hold true for any sets A, B, and C:

(A △ B) ∪ C = (A ∪ C) △ (B ∪ C)?



§2 Topology in a Set

§2◦1 Definition of Topological Space

Let X be a set. Let Ω be a collection of its subsets such that:
(a) the union of any collection of sets that are elements of Ω belongs to

Ω;
(b) the intersection of any finite collection of sets that are elements of

Ω belongs to Ω;
(c) the empty set ∅ and the whole X belong to Ω.

Then
• Ω is a topological structure or just a topology 2 in X;
• the pair (X,Ω) is a topological space;
• elements of X are points of this topological space;
• elements of Ω are open sets of the topological space (X,Ω).

The conditions in the definition above are the axioms of topological

structure.

§2◦2 Simplest Examples

A discrete topological space is a set with the topological structure
consisting of all subsets.

2.A. Check that this is a topological space, i.e., all axioms of topological
structure hold true.

An indiscrete topological space is the opposite example, in which the
topological structure is the most meager. It consists only of X and ∅.

2.B. This is a topological structure, is it not?

Here are slightly less trivial examples.

2.1. Let X be the ray [0, +∞), and let Ω consist of ∅, X , and all rays
(a, +∞) with a ≥ 0. Prove that Ω is a topological structure.

2.2. Let X be a plane. Let Σ consist of ∅, X , and all open disks with center
at the origin. Is this a topological structure?

2.3. Let X consist of four elements: X = {a, b, c, d}. Which of the follow-
ing collections of its subsets are topological structures in X , i.e., satisfy the
axioms of topological structure:
(a) ∅, X , {a}, {b}, {a, c}, {a, b, c}, {a, b};
(b) ∅, X , {a}, {b}, {a, b}, {b, d};
(c) ∅, X , {a, c, d}, {b, c, d}?

The space of 2.1 is the arrow . We denote the space of 2.3 (a) by . It is
a sort of toy space made of 4 points. Both spaces, as well as the space of 2.2,
are not too important, but they provide good simple examples.

2Thus Ω is important: it is called by the same word as the whole branch of
mathematics. Certainly, this does not mean that Ω coincides with the subject of
topology, but nearly everything in this subject is related to Ω.
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§2◦3 The Most Important Example: Real Line

Let X be the set R of all real numbers, Ω the set of unions of all
intervals (a, b) with a, b ∈ R.

2.C. Check whether Ω satisfies the axioms of topological structure.

This is the topological structure which is always meant when R is
considered as a topological space (unless another topological structure is
explicitly specified). This space is usually called the real line, and the
structure is referred to as the canonical or standard topology in R.

§2◦4 Additional Examples

2.4. Let X be R, and let Ω consist of the empty set and all infinite subsets
of R. Is Ω a topological structure?

2.5. Let X be R, and let Ω consists of the empty set and complements of all
finite subsets of R. Is Ω a topological structure?

The space of 2.5 is denoted by RT1 and called the line with T1-topology .

2.6. Let (X, Ω) be a topological space, Y the set obtained from X by adding
a single element a. Is

{{a} ∪ U | U ∈ Ω} ∪ {∅}
a topological structure in Y ?

2.7. Is the set {∅, {0}, {0, 1}} a topological structure in {0, 1}?

If the topology Ω in Problem 2.6 is discrete, then the topology in Y is
called a particular point topology or topology of everywhere dense point. The
topology in Problem 2.7 is a particular point topology; it is also called the
topology of connected pair of points or Sierpiński topology .

2.8. List all topological structures in a two-element set, say, in {0, 1}.

§2◦5 Using New Words: Points, Open Sets, Closed Sets

We recall that, for a topological space (X,Ω), elements of X are
points, and elements of Ω are open sets.3

2.D. Reformulate the axioms of topological structure using the words
open set wherever possible.

A set F ⊂ X is closed in the space (X,Ω) if its complement X r F
is open (i.e., X r F ∈ Ω).

3The letter Ω stands for the letter O which is the initial of the words with the
same meaning: Open in English, Otkrytyj in Russian, Offen in German, Ouvert in
French.
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§2◦6 Set-Theoretic Digression: De Morgan Formulas

2.E. Let Γ be an arbitrary collection of subsets of a set X. Then

X r
⋃

A∈Γ

A =
⋂

A∈Γ

(X rA), (3)

X r
⋂

A∈Γ

A =
⋃

A∈Γ

(X rA). (4)

Formula (4) is deduced from (3) in one step, is it not? These formulas are
nonsymmetric cases of a single formulation, which contains in a symmetric
way sets and their complements, unions, and intersections.

2.9. Riddle. Find such a formulation.

§2◦7 Properties of Closed Sets

2.F. Prove that:
(a) the intersection of any collection of closed sets is closed;
(b) the union of any finite number of closed sets is closed;
(c) the empty set and the whole space (i.e., the underlying set of the

topological structure) are closed.

§2◦8 Being Open or Closed

Notice that the property of being closed is not the negation of the
property of being open. (They are not exact antonyms in everyday usage,
too.)

2.G. Find examples of sets that are
(a) both open and closed simultaneously (open-closed);
(b) neither open, nor closed.

2.10. Give an explicit description of closed sets in
(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) ;
(e) RT1 .

2.H. Is a closed segment [a, b] closed in R?

The concepts of closed and open sets are similar in a number of ways.
The main difference is that the intersection of an infinite collection of
open sets is not necessarily open, while the intersection of any collection
of closed sets is closed. Along the same lines, the union of an infinite
collection of closed sets is not necessarily closed, while the union of any
collection of open sets is open.

2.11. Prove that the half-open interval [0, 1) is neither open nor closed in R,
but is both a union of closed sets and an intersection of open sets.

2.12. Prove that the set A = {0} ∪
{

1
n | n ∈ N

}
is closed in R.
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§2◦9 Characterization of Topology in Terms of Closed Sets

2.13. Suppose a collection F of subsets of X satisfies the following conditions:
(a) the intersection of any family of sets from F belongs to F ;
(b) the union of any finite number sets from F belongs to F ;
(c) ∅ and X belong to F .

Prove that then F is the set of all closed sets of a topological structure (which
one?).

2.14. List all collections of subsets of a three-element set such that there
exist topologies where these collections are complete sets of closed sets.

§2◦10 Neighborhoods

A neighborhood of a point is any open set containing this point. Ana-
lysts and French mathematicians (following N. Bourbaki) prefer a wider
notion of neighborhood: they use this word for any set containing a
neighborhood in the above sense.

2.15. Give an explicit description of all neighborhoods of a point in
(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) ;
(e) connected pair of points; (f) particular point topology.

§2x◦11 Open Sets on Line

2x:A. Prove that every open subset of the real line is a union of disjoint
open intervals.

At first glance, Theorem 2x:A suggests that open sets on the line are
simple. However, an open set may lie on the line in a quite complicated
manner. Its complement can be not that simple. The complement of an
open set is a closed set. One can naively expect that a closed set on R is
a union of closed intervals. The next important example shows that this
is far from being true.

§2x◦12 Cantor Set

Let K be the set of real numbers that are sums of series of the form∑∞
k=1

ak

3k
with ak = 0 or 2. In other words, K is the set of real numbers

that are presented as 0.a1a2 . . . ak . . . without the digit 1 in the positional
system with base 3.

2x:B. Find a geometric description of K.

2x:B.1. Prove that
(a) K is contained in [0, 1],
(b) K does not intersect

(
1
3 , 2

3

)
,

(c) K does not intersect
(

3s+1
3k , 3s+2

3k

)
for any integers k and s.

2x:B.2. Present K as [0, 1] with an infinite family of open intervals removed.
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2x:B.3. Try to sketch K.

The set K is the Cantor set. It has a lot of remarkable properties and
is involved in numerous problems below.

2x:C. Prove that K is a closed set in the real line.

§2x◦13 Topology and Arithmetic Progressions

2x:D*. Consider the following property of a subset F of the set N of
positive integers: there exists N ∈ N such that F contains no arithmetic
progressions of length greater than N . Prove that subsets with this
property together with the whole N form a collection of closed subsets in
some topology in N.

When solving this problem, you probably will need the following com-
binatorial theorem.

2x:E Van der Waerden’s Theorem*. For every n ∈ N, there exists N ∈
N such that for any subset A ⊂ {1, 2, . . . , N}, either A or {1, 2, . . . , N}r

A contains an arithmetic progression of length n.

See R. L. Graham, B. L. Rotschild, and J. H. Spencer, Ramsey The-
ory, John Wiley, 1990.



§3 Bases

§3◦1 Definition of Base

The topological structure is usually presented by describing its part
which is sufficient to recover the whole structure. A collection Σ of open
sets is a base for a topology if each nonempty open set is a union of sets
belonging to Σ. For instance, all intervals form a base for the real line.

3.1. Can two distinct topological structures have the same base?

3.2. Find some bases of topology of
(a) a discrete space; (b) ;
(c) an indiscrete space; (d) the arrow.

Try to choose the smallest possible bases.

3.3. Prove that any base of the canonical topology in R can be decreased.

3.4. Riddle. What topological structures have exactly one base?

§3◦2 When a Collection of Sets is a Base

3.A. A collection Σ of open sets is a base for the topology iff for every
open set U and every point x ∈ U there is a set V ∈ Σ such that x ∈
V ⊂ U .

3.B. A collection Σ of subsets of a set X is a base for a certain topology
in X iff X is a union of sets in Σ and the intersection of any two sets
in Σ is a union of sets in Σ.

3.C. Show that the second condition in 3.B (on the intersection) is
equivalent to the following: the intersection of any two sets in Σ con-
tains, together with any of its points, some set in Σ containing this point
(cf. 3.A).

§3◦3 Bases for Plane

Consider the following three collections of subsets of R2:
• Σ2, which consists of all possible open disks (i.e., disks without their

boundary circles);
• Σ∞, which consists of all possible open squares (i.e., squares without

their sides and vertices) with sides parallel to the coordinate axis;
• Σ1, which consists of all possible open squares with sides parallel to

the bisectors of the coordinate angles.
(The squares in Σ∞ and Σ1 are determined by the inequalities max{|x−

a|, |y − b|} < ρ and |x− a| + |y − b| < ρ, respectively.)

3.5. Prove that every element of Σ2 is a union of elements of Σ∞.

3.6. Prove that the intersection of any two elements of Σ1 is a union of
elements of Σ1.

16
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Figure 4. Elements of Σ∞ (left) and Σ1 (right).

3.7. Prove that each of the collections Σ2, Σ∞, and Σ1 is a base for some
topological structure in R2, and that the structures determined by these
collections coincide.

§3◦4 Subbases

Let (X, Ω) be a topological space. A collection ∆ of its open subsets is a
subbase for Ω provided that the collection

Σ = {V | V = ∩k
i=1Wi, k ∈ N, Wi ∈ ∆}

of all finite intersections of sets in ∆ is a base for Ω.

3.8. Let for any set X ∆ be a collection of its subsets. Prove that ∆ is a
subbase for a topology in X iff X = ∪W∈∆W .

§3◦5 Infiniteness of the Set of Prime Numbers

3.9. Prove that all infinite arithmetic progressions consisting of positive in-
tegers form a base for some topology in N.

3.10. Using this topology, prove that the set of all prime numbers is infinite.

§3◦6 Hierarchy of Topologies

If Ω1 and Ω2 are topological structures in a set X such that Ω1 ⊂
Ω2, then Ω2 is finer than Ω1, and Ω1 is coarser than Ω2. For instance,
the indiscrete topology is the coarsest topology among all topological
structures in the same set, while the discrete topology is the finest one,
is it not?

3.11. Show that the T1-topology in the real line (see §2◦4) is coarser than
the canonical topology.

Two bases determining the same topological structure are equivalent.

3.D. Riddle. Formulate a necessary and sufficient condition for two
bases to be equivalent without explicitly mentioning the topological struc-
tures determined by the bases. (Cf. 3.7: the bases Σ2, Σ∞, and Σ1 must
satisfy the condition you are looking for.)



§4 Metric Spaces

§4◦1 Definition and First Examples

A function ρ : X × X → R+ = { x ∈ R | x ≥ 0 } is a metric (or
distance function) in X if

(a) ρ(x, y) = 0 iff x = y;
(b) ρ(x, y) = ρ(y, x) for any x, y ∈ X;
(c) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

The pair (X, ρ), where ρ is a metric in X, is a metric space. Condition
(c) is the triangle inequality .

4.A. Prove that the function

ρ : X ×X → R+ : (x, y) 7→
{

0 if x = y,

1 if x 6= y

is a metric for any set X.

4.B. Prove that R × R → R+ : (x, y) 7→ |x− y| is a metric.

4.C. Prove that Rn ×Rn → R+ : (x, y) 7→
√∑n

i=1(xi − yi)2 is a metric.

The metrics of4.B and 4.C are always meant when R and Rn are
considered as metric spaces unless another metric is specified explicitly.
The metric of 4.B is a special case of the metric of 4.C. All these metrics
are Euclidean.

§4◦2 Further Examples

4.1. Prove that Rn × Rn → R+ : (x, y) 7→ maxi=1,...,n |xi − yi| is a metric.

4.2. Prove that Rn × Rn → R+ : (x, y) 7→∑n
i=1 |xi − yi| is a metric.

The metrics in Rn introduced in 4.C–4.2 are members of an infinite
series of the metrics:

ρ(p) : (x, y) 7→
( n∑

i=1

|xi − yi|p
) 1

p

, p ≥ 1.

4.3. Prove that ρ(p) is a metric for any p ≥ 1.

4.3.1 Hölder Inequality. Prove that

n∑

i=1

xiyi ≤
(

n∑

i=1

xp
i

)1/p( n∑

i=1

yq
i

)1/q

if xi, yi ≥ 0, p, q > 0, and 1
p + 1

q = 1.

18
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The metric of 4.C is ρ(2), that of 4.2 is ρ(1), and that of 4.1 can be denoted
by ρ(∞) and appended to the series since

lim
p→+∞

( n∑

i=1

ap
i

)1/p

= maxai,

for any positive a1, a2, . . . , an.

4.4. Riddle. How is this related to Σ2, Σ∞, and Σ1 from Section §3?

For a number p ≥ 1 denote by l(p) the set of sequences x = {xi}i=1,2,...

such that the series
∑

∞

i=1 |x|p converges.

4.5. Prove that for any two sequences x, y ∈ l(p) the series
∑

∞

i=1 |xi − yi|p
converges and that

(x, y) 7→
( ∞∑

i=1

|xi − yi|p
)1/p

, p ≥ 1

is a metric in l(p).

§4◦3 Balls and Spheres

Let (X, ρ) be a metric space, a ∈ X a point, r a positive real number.
Then the sets

Br(a) = { x ∈ X | ρ(a, x) < r }, (5)

Dr(a) = { x ∈ X | ρ(a, x) ≤ r }, (6)

Sr(a) = { x ∈ X | ρ(a, x) = r } (7)

are, respectively, the open ball , closed ball , and sphere of the space (X, ρ)
with center a and radius r.

§4◦4 Subspaces of a Metric Space

If (X, ρ) is a metric space and A ⊂ X, then the restriction of the
metric ρ to A × A is a metric in A, and so (A, ρ A×A) is a metric space.
It is a subspace of (X, ρ).

The disk D1(0) and the sphere S1(0) in Rn (with Euclidean metric,
see 4.C) are denoted by Dn and Sn−1 and called the (unit) n-disk and
(n − 1)-sphere. They are regarded as metric spaces (with the metric
induced from Rn).

4.D. Check that D1 is the segment [−1, 1], D2 is a plane disk, S0 is the
pair of points {−1, 1}, S1 is a circle, S2 is a sphere, and D3 is a ball.

The last two assertions clarify the origin of the terms sphere and ball
(in the context of metric spaces).

Some properties of balls and spheres in an arbitrary metric space
resemble familiar properties of planar disks and circles and spatial balls
and spheres.
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4.E. Prove that for any points x and a of any metric space and any
r > ρ(a, x) we have

Br−ρ(a,x)(x) ⊂ Br(a) and Dr−ρ(a,x)(x) ⊂ Dr(a).

4.6. Riddle. What if r < ρ(x, a)? What is an analog for the statement of
Problem 4.E in this case?

§4◦5 Surprising Balls

However, balls and spheres in other metric spaces may have rather
surprising properties.

4.7. What are balls and spheres in R2 equipped with the metrics of 4.1

and 4.2? (Cf. 4.4.)

4.8. Find D1(a), D 1
2
(a), and S 1

2
(a) in the space of 4.A.

4.9. Find a metric space and two balls in it such that the ball with the
smaller radius contains the ball with the bigger one and does not coincide
with it.

4.10. What is the minimal number of points in the space which is required
to be constructed in 4.9?

4.11. Prove that in 4.9 the largest radius does not exceed double the smaller
radius.

§4◦6 Segments (What Is Between)

4.12. Prove that the segment with endpoints a, b ∈ Rn can be described as

{ x ∈ Rn | ρ(a, x) + ρ(x, b) = ρ(a, b) },

where ρ is the Euclidean metric.

4.13. How does the set defined as in 4.12 look like if ρ is the metric defined
in 4.1 or 4.2? (Consider the case, where n = 2 if it seems to be easier.)

§4◦7 Bounded Sets and Balls

A subset A of a metric space (X, ρ) is bounded if there is a number
d > 0 such that ρ(x, y) < d for any x, y ∈ A. The greatest lower bound
for such d is the diameter of A, it is denoted by diam(A).

4.F. Prove that a set A is bounded iff A is contained in a ball.

4.14. What is the relation between the minimal radius of such a ball and
diam(A)?
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§4◦8 Norms and Normed Spaces

Let X be a vector space (over R). A function X → R+ : x 7→ ||x|| is a
norm if

(a) ||x|| = 0 iff x = 0;
(b) ||λx|| = |λ|||x|| for any λ ∈ R and x ∈ X ;
(c) ||x + y|| ≤ ||x|| + ||y|| for any x, y ∈ X .

4.15. Prove that if x 7→ ||x|| is a norm, then

ρ : X × X → R+ : (x, y) 7→ ||x − y||

is a metric.

A vector space equipped with a norm is a normed space. The metric
determined by the norm as in 4.15 transforms the normed space into a metric
space in a canonical way.

4.16. Look through the problems of this section and figure out which of the
metric spaces involved are, in fact, normed vector spaces.

4.17. Prove that every ball in a normed space is a convex4 set symmetric
with respect to the center of the ball.

4.18*. Prove that every convex closed bounded set in Rn that has a center
of symmetry and is not contained in any affine space except Rn itself is a
unit ball with respect to a certain norm, which is uniquely determined by
this ball.

§4◦9 Metric Topology

4.G. The collection of all open balls in the metric space is a base for
some topology

This topology is the metric topology . This topological structure is al-
ways meant whenever the metric space is regarded as a topological space
(for instance, when we speak about open and closed sets, neighborhoods,
etc. in this space).

4.H. Prove that the standard topological structure in R introduced in
Section §2 is generated by the metric (x, y) 7→ |x− y|.

4.19. What topological structure is generated by the metric of 4.A?

4.I. A set A is open in a metric space iff, together with each of its points,
A contains a ball centered at this point.

4Recall that a set A is convex if for any x, y ∈ A the segment connecting x and
y is contained in A. Certainly, this definition involves the notion of segment, so it
makes sense only for subsets of those spaces where the notion of segment connecting
two points makes sense. This is the case in vector and affine spaces over R.
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§4◦10 Openness and Closedness of Balls and Spheres

4.20. Prove that a closed ball is closed (with respect to the metric topology).

4.21. Find a closed ball that is open (with respect to the metric topology).

4.22. Find an open ball that is closed (with respect to the metric topology).

4.23. Prove that a sphere is closed.

4.24. Find a sphere that is open.

§4◦11 Metrizable Topological Spaces

A topological space is metrizable if its topological structure is gener-
ated by a certain metric.

4.J. An indiscrete space is not metrizable unless it is one-point (it has
too few open sets).

4.K. A finite space X is metrizable iff it is discrete.

4.25. Which of the topological spaces described in Section §2 are metrizable?

§4◦12 Equivalent Metrics

Two metrics in the same set are equivalent if they generate the same
topology.

4.26. Are the metrics of 4.C, 4.1, and 4.2 equivalent?

4.27. Prove that two metrics ρ1 and ρ2 in X are equivalent if there are
numbers c, C > 0 such that

cρ1(x, y) ≤ ρ2(x, y) ≤ Cρ1(x, y)

for any x, y ∈ X .

4.28. Generally speaking, the converse is not true.

4.29. Riddle. Hence, the condition of equivalence of metrics formulated
in 4.27 can be weakened. How?

4.30. The metrics ρ(p) in Rn defined right before Problem 4.3 are equivalent.

4.31*. Prove that the following two metrics ρ1 and ρC in the set of all
continuous functions [0, 1] → R are not equivalent:

ρ1(f, g) =

∫ 1

0

∣∣f(x) − g(x)
∣∣dx, ρC(f, g) = max

x∈[0,1]

∣∣f(x) − g(x)
∣∣.

Is it true that one of the topological structures generated by them is finer
than another?
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§4◦13 Operations With Metrics

4.32. 1) Prove that if ρ1 and ρ2 are two metrics in X , then ρ1 + ρ2 and

max{ρ1, ρ2} also are metrics. 2) Are the functions min{ρ1, ρ2},
ρ1

ρ2
, and ρ1ρ2

metrics? By definition, for ρ =
ρ1

ρ2
we put ρ(x, x) = 0.

4.33. Prove that if ρ : X × X → R+ is a metric, then

(a) the function

(x, y) 7→ ρ(x, y)

1 + ρ(x, y)

is a metric;
(b) the function

(x, y) 7→ min{ρ(x, y), 1}
is a metric;

(c) the function

(x, y) 7→ f
(
ρ(x, y)

)

is a metric if f satisfies the following conditions:
(1) f(0) = 0,
(2) f is a monotone increasing function, and
(3) f(x + y) ≤ f(x) + f(y) for any x, y ∈ R.

4.34. Prove that the metrics ρ and
ρ

1 + ρ
are equivalent.

§4◦14 Distances Between Points and Sets

Let (X, ρ) be a metric space, A ⊂ X, b ∈ X. The number ρ(b, A) =
inf{ ρ(b, a) | a ∈ A } is the distance from the point b to the set A.

4.L. Let A be a closed set. Prove that ρ(b, A) = 0 iff b ∈ A.

4.35. Prove that |ρ(x, A) − ρ(y, A)| ≤ ρ(x, y) for any set A and any points
x and y in a metric space.

§4x◦15 Distance Between Sets

Let A and B be two bounded subsets in a metric space (X, ρ). Put

dρ(A,B) = max
{

sup
a∈A

ρ(a,B), sup
b∈B

ρ(b, A)
}
.

This number is the Hausdorff distance between A and B.

4x:A. Prove that the Hausdorff distance between bounded subsets of a
metric space satisfies conditions (b) and (c) in the definition of a metric.

4x:B. Prove that for every metric space the Hausdorff distance is a metric
in the set of its closed bounded subsets.
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Let A and B be two bounded polygons in the plane.5 We define

d∆(A,B) = S(A) + S(B) − 2S(A ∩ B),

where S(C) is the area of the polygon C.

4x:C. Prove that d∆ is a metric in the set of all bounded plane polygons.

We will call d∆ the area metric.

4x:D. Prove that the area metric is not equivalent to the Hausdorff
metric in the set of all bounded plane polygons.

4x:E. Prove that the area metric is equivalent to the Hausdorff metric
in the set of convex bounded plane polygons.

§4x◦16 Ultrametrics and p-Adic Numbers

A metric ρ is an ultrametric if it satisfies the ultrametric triangle in-

equality :

ρ(x, y) ≤ max{ρ(x, z), ρ(z, y)}
for any x, y, and z.

A metric space (X, ρ), where ρ is an ultrametric, is an ultrametric

space.

4x:F. Check that only one metric in 4.A–4.2 is an ultrametric. Which
one?

4x:G. Prove that all triangles in an ultrametric space are isosceles (i.e.,
for any three points a, b, and c two of the three distances ρ(a, b), ρ(b, c),
and ρ(a, c) are equal).

4x:H. Prove that spheres in an ultrametric space are not only closed (see
4.23), but also open.

The most important example of an ultrametric is the p-adic metric in
the set Q of rational numbers. Let p be a prime number. For x, y ∈ Q,
present the difference x− y as r

s
pα, where r, s, and α are integers, and r

and s are co-prime with p. Put ρ(x, y) = p−α.

4x:I. Prove that this is an ultrametric.

5Although we assume that the notion of bounded polygon is well known from
elementary geometry, nevertheless, we recall the definition. A bounded plane polygon

is the set of the points of a simple closed polygonal line γ and the points surrounded by
γ. A simple closed polygonal line is a cyclic sequence of segments each of which starts
at the point where the previous one ends and these are the only pairwise intersections
of the segments.
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§4x◦17 Asymmetrics

A function ρ : X ×X → R+ is an asymmetric in a set X if
(a) ρ(x, y) = 0 and ρ(y, x) = 0, iff x = y;
(b) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X.

Thus, an asymmetric satisfies conditions a and c of the definition of
a metric, but, maybe, does not satisfy condition b.

Here is example of an asymmetric taken from “the real life”: the
shortest length of path from one point to another by car in a city where
there exist one-way streets.

4x:J. Prove that if ρ : X×X → R+ is an asymmetric, then the function

(x, y) 7→ ρ(x, y) + ρ(y, x)

is a metric in X.

Let A and B be two bounded subsets of a metric space (X, ρ). The
number aρ(A,B) = supb∈B ρ(b, A) is the asymmetric distance from A to

B.

4x:K. The function aρ on the set of bounded subsets of a metric space
satisfies the triangle inequality in the definition of an asymmetric.

4x:L. Let (X, ρ) be a metric space. A set B ⊂ X is contained in all
closed sets containing A ⊂ X iff aρ(A,B) = 0.

4x:M. Prove that aρ is an asymmetric in the set of all bounded closed
subsets of a metric space (X, ρ).

Let A and B be two polygons on the plane. Put

a∆(A, B) = S(B) − S(A ∩ B) = S(B r A),

where S(C) is the area of polygon C.

4x:1. Prove that a∆ is an asymmetric in the set of all planar polygons.

A pair (X, ρ), where ρ is an asymmetric in X, is an asymmetric space.
Of course, any metric space is an asymmetric space, too. In an asym-
metric space, balls (open and closed) and spheres are defined like in a
metric space, see §4◦3.

4x:N. The set of all open balls of an asymmetric space is a base of a
certain topology.

This topology is generated by the asymmetric.

4x:2. Prove that the formula a(x, y) = max{x − y, 0} determines an asym-
metric in [0,∞), and the topology generated by this asymmetric is the arrow
topology, see §2◦2.



§5 Subspaces

§5◦1 Topology for a Subset of a Space

Let (X,Ω) be a topological space, A ⊂ X. Denote by ΩA the collec-
tion of sets A ∩ V , where V ∈ Ω: ΩA = {A ∩ V | V ∈ Ω}.

5.A. ΩA is a topological structure in A.

The pair (A,ΩA) is a subspace of the space (X,Ω). The collection ΩA

is the subspace topology , the relative topology , or the topology induced

on A by Ω, and its elements are open sets in A.

5.B. The canonical topology in R1 coincides with the topology induced
on R1 as on a subspace of R2.

5.1. Riddle. How to construct a base for the topology induced on A by
using a base for the topology in X?

5.2. Describe the topological structures induced

(a) on the set N of positive integers by the topology of the real line;
(b) on N by the topology of the arrow;
(c) on the two-point set {1, 2} by the topology of RT1 ;
(d) on the same set by the topology of the arrow.

5.3. Is the half-open interval [0, 1) open in the segment [0, 2] regarded as a
subspace of the real line?

5.C. A set F is closed in a subspace A ⊂ X iff F is the intersection of
A and a closed subset of X.

5.4. If a subset of a subspace is open (respectively, closed) in the ambient
space, then it is also open (respectively, closed) in the subspace.

§5◦2 Relativity of Openness and Closedness

Sets that are open in a subspace are not necessarily open in the
ambient space.

5.D. The unique open set in R1 which is also open in R2 is ∅.

However, the following is true.

5.E. An open set of an open subspace is open in the ambient space, i.e.,
if A ∈ Ω, then ΩA ⊂ Ω.

The same relation holds true for closed sets. Sets that are closed in
the subspace are not necessarily closed in the ambient space. However,
the following is true.

5.F. Closed sets of a closed subspace are closed in the ambient space.
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5.5. Prove that a set U is open in X iff each point in U has a neighborhood
V in X such that U ∩ V is open in V .

This allows us to say that the property of being open is local. Indeed, we
can reformulate 5.5 as follows: a set is open iff it is open in a neighborhood
of each of its points.

5.6. Show that the property of being closed is not local.

5.G Transitivity of Induced Topology. Let (X,Ω) be a topological
space, X ⊃ A ⊃ B. Then (ΩA)B = ΩB, i.e., the topology induced on
B by the relative topology of A coincides with the topology induced on B
directly from X.

5.7. Let (X, ρ) be a metric space, A ⊂ X . Then the topology in A generated
by the metric ρ A×A coincides with the relative topology on A by the topology
in X generated by the metric ρ.

5.8. Riddle. The statement 5.7 is equivalent to a pair of inclusions. Which
of them is less obvious?

§5◦3 Agreement on Notation of Topological Spaces

Different topological structures in the same set are not considered
simultaneously very often. That is why a topological space is usually
denoted by the same symbol as the set of its points, i.e., instead of
(X,Ω) we write just X. The same applies to metric spaces: instead of
(X, ρ) we write just X.



§6 Position of a Point with Respect to a Set

This section is devoted to further expanding the vocabulary needed
when we speak about phenomena in a topological space.

§6◦1 Interior, Exterior, and Boundary Points

Let X be a topological space, A ⊂ X a subset, and b ∈ X a point.
The point b is

• an interior point of A if b has a neighborhood contained in A;
• an exterior point of A if b has a neighborhood disjoint with A;
• a boundary point of A if each neighborhood of b intersects both A

and the complement of A.

§6◦2 Interior and Exterior

The interior of a set A in a topological space X is the greatest (with
respect to inclusion) open set in X contained in A, i.e., an open set that
contains any other open subset of A. It is denoted by IntA or, in more
detail, by IntX A.

6.A. Every subset of a topological space has interior. It is the union of
all open sets contained in this set.

6.B. The interior of a set A is the set of interior points of A.

6.C. A set is open iff it coincides with its interior.

6.D. Prove that in R:
(a) Int[0, 1) = (0, 1),
(b) Int Q = ∅ and
(c) Int(R r Q) = ∅.

6.1. Find the interior of {a, b, d} in the space .

6.2. Find the interior of the interval (0, 1) on the line with the Zariski topol-
ogy.

The exterior of a set is the greatest open set disjoint with A. It is
obvious that the exterior of A is Int(X rA).

§6◦3 Closure

The closure of a set A is the smallest closed set containing A. It is
denoted ClA or, more specifically, ClX A.

6.E. Every subset of topological space has closure. It is the intersection
of all closed sets containing this set.

28
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6.3. Prove that if A is a subspace of X and B ⊂ A, then ClA B = (ClX B)∩A.
Is it true that IntA B = (IntX B) ∩ A?

A point b is an adherent point for a set A if all neighborhoods of b
intersect A.

6.F. The closure of a set A is the set of the adherent points of A.

6.G. A set A is closed iff A = ClA.

6.H. The closure of a set A is the complement of the exterior of A. In
formulas: ClA = X r Int(X rA), where X is the space and A ⊂ X.

6.I. Prove that in R we have:
(a) Cl[0, 1) = [0, 1],
(b) Cl Q = R,
(c) Cl(R r Q) = R.

6.4. Find the closure of {a} in .

§6◦4 Closure in Metric Space

Let A be a subset and b a point of a metric space (X, ρ). Recall that
the distance ρ(b, A) from b to A is inf{ ρ(b, a) | a ∈ A } (see §4).

6.J. Prove that b ∈ ClA iff ρ(b, A) = 0.

§6◦5 Boundary

The boundary of a set A is the set ClAr IntA. It is denoted by FrA
or, in more detail, FrX A.

6.5. Find the boundary of {a} in .

6.K. The boundary of a set is the set of its boundary points.

6.L. Prove that a set A is closed iff FrA ⊂ A.

6.6. 1) Prove that Fr A = Fr(X r A). 2) Find a formula for Fr A which is
symmetric with respect to A and X r A.

6.7. The boundary of a set A equals the intersection of the closure of A and
the closure of the complement of A:

FrA = Cl A ∩ Cl(X r A).

§6◦6 Closure and Interior with Respect to a Finer Topology

6.8. Let Ω1 and Ω2 be two topological structures in X , and Ω1 ⊂ Ω2. Let
Cli denote the closure with respect to Ωi. Prove that Cl1 A ⊃ Cl2 A for any
A ⊂ X .

6.9. Formulate and prove an analogous statement about interior.
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§6◦7 Properties of Interior and Closure

6.10. Prove that if A ⊂ B, then IntA ⊂ IntB.

6.11. Prove that Int IntA = IntA.

6.12. Do the following equalities hold true that for any sets A and B:

Int(A ∩ B) = IntA ∩ IntB, (8)

Int(A ∪ B) = IntA ∪ IntB? (9)

6.13. Give an example in where one of equalities (8) and (9) is wrong.

6.14. In the example that you found when solving Problem 6.12, an inclusion
of one side into another one holds true. Does this inclusion hold true for any
A and B?

6.15. Study the operator Cl in a way suggested by the investigation of Int
undertaken in 6.10–6.14.

6.16. Find Cl{1}, Int[0, 1], and Fr(2, +∞) in the arrow.

6.17. Find Int
(
(0, 1] ∪ {2}

)
, Cl{ 1

n | n ∈ N }, and Fr Q in R.

6.18. Find Cl N, Int(0, 1), and Fr[0, 1] in RT1 . How to find the closure and
interior of a set in this space?

6.19. Does a sphere contain the boundary of the open ball with the same
center and radius?

6.20. Does a sphere contain the boundary of the closed ball with the same
center and radius?

6.21. Find an example in which a sphere is disjoint with the closure of the
open ball with the same center and radius.

§6◦8 Compositions of Closure and Interior

6.22 The Kuratowski Problem. How many pairwise distinct sets can one
obtain from of a single set by using the operators Cl and Int?

The following problems will help you to solve problem 6.22.

6.22.1. Find a set A ⊂ R such that the sets A, ClA, and Int A
would be pairwise distinct.

6.22.2. Is there a set A ⊂ R such that

(a) A, Cl A, Int A, and Cl IntA are pairwise distinct;
(b) A, Cl A, Int A, and IntClA are pairwise distinct;
(c) A, Cl A, Int A, Cl Int A, and IntCl A are pairwise distinct?

If you find such sets, keep on going in the same way, and when
you fail to proceed, try to formulate a theorem explaining the fail-
ure.

6.22.3. Prove that Cl Int Cl IntA = Cl Int A.
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§6◦9 Sets with Common Boundary

6.23*. Find three open sets in the real line that have the same boundary.
Is it possible to increase the number of such sets?

§6◦10 Convexity and Int, Cl, Fr

Recall that a set A ⊂ Rn is convex if together with any two points it
contains the entire segment connecting them (i.e., for any x, y ∈ A every
point z belonging to the segment [x, y] belongs to A).

Let A be a convex set in Rn.

6.24. Prove that Cl A and IntA are convex.

6.25. Prove that A contains a ball, unless A is contained in an (n − 1)-
dimensional affine subspace of Rn.

6.26. When is Fr A convex?

§6◦11 Characterization of Topology by Closure and Interior
Operations

6.27*. Suppose that Cl∗ is an operator in the set of all subsets of a set X ,
which has the following properties:
(a) Cl∗ ∅ = ∅,
(b) Cl∗ A ⊃ A,
(c) Cl∗(A ∪ B) = Cl∗ A ∪ Cl∗ B,
(d) Cl∗ Cl∗ A = Cl∗ A.

Prove that Ω = {U ⊂ X | Cl∗(XrU) = XrU } is a topological structure
and Cl∗ A is the closure of a set A in the space (X, Ω).

6.28. Find an analogous system of axioms for Int.

§6◦12 Dense Sets

Let A and B be two sets in a topological space X. A is dense in B if
ClA ⊃ B, and A is everywhere dense if ClA = X.

6.M. A set is everywhere dense iff it intersects any nonempty open set.

6.N. The set Q is everywhere dense in R.

6.29. Give a characterization of everywhere dense sets 1) in an indiscrete
space, 2) in the arrow, and 3) in RT1 .

6.30. Prove that a topological space is discrete iff it has a unique everywhere
dense set. (By the way, which one?)

6.31. Formulate a necessary and sufficient condition on the topology of a
space which has an everywhere-dense point. Find spaces satisfying this con-
dition in §2.

6.32. 1) Is it true that the union of everywhere dense sets is everywhere
dense? 2) Is it true that the intersection of two everywhere-dense sets is
everywhere dense?
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6.33. Prove that the intersection of two open everywhere-dense sets is ev-
erywhere dense.

6.34. Which condition in the Problem 6.33 is redundant?

6.35*. 1) Prove that a countable intersection of open everywhere-dense sets
in R is everywhere dense. 2) Is it possible to replace R here by an arbitrary
topological space?

6.36*. Prove that Q is not an intersection of a countable collection of open
sets in R.

§6◦13 Nowhere Dense Sets

A set is nowhere dense if its exterior is everywhere dense.

6.37. Can a set be everywhere dense and nowhere dense simultaneously?

6.O. A set A is nowhere dense in X iff each neighborhood of each point
x ∈ X contains a point y such that the complement of A contains y
together with a neighborhood of y.

6.38. Riddle. What can you say about the interior of a nowhere dense set?

6.39. Is R nowhere dense in R2?

6.40. Prove that if A is nowhere dense, then IntCl A = ∅.

6.41. 1) Prove that the boundary of a closed set is nowhere dense. 2) Is this
true for the boundary of an open set? 3) Is this true for the boundary of an
arbitrary set?

6.42. Prove that a finite union of nowhere dense sets is nowhere dense.

6.43. Prove that for every set A there exists a greatest open set B in which
A is dense. The extreme cases B = X and B = ∅ mean that A is either
everywhere dense or nowhere dense respectively.

6.44*. Prove that R is not a union of a countable collection of nowhere-
dense sets in R.

§6◦14 Limit Points and Isolated Points

A point b is a limit point of a set A, if each neighborhood of b intersects
Ar b.

6.P. Every limit point of a set is its adherent point.

6.45. Give an example where an adherent point is not a limit one.

A point b is an isolated point of a set A if b ∈ A and b has a neigh-
borhood disjoint with Ar b.

6.Q. A set A is closed iff A contains all of its limit points.

6.46. Find limit and isolated points of the sets (0, 1] ∪ {2}, { 1
n | n ∈ N }

in Q and in R.

6.47. Find limit and isolated points of the set N in RT1 .
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§6◦15 Locally Closed Sets

A subset A of a topological space X is locally closed if each point of A
has a neighborhood U such that A ∩ U is closed in U (cf. 5.5–5.6).

6.48. Prove that the following conditions are equivalent:
(a) A is locally closed in X ;
(b) A is an open subset of its closure Cl A;
(c) A is the intersection of open and closed subsets of X .



§7 Ordered Sets

This section is devoted to orders. They are structures in sets and oc-
cupy in Mathematics a position almost as profound as topological struc-
tures. After a short general introduction, we will focus on relations be-
tween structures of these two types. Like metric spaces, partially ordered
sets possess natural topological structures. This is a source of interesting
and important examples of topological spaces. As we will see later (in
Section ??), essentially all finite topological spaces appear in this way.

§7◦1 Strict Orders

A binary relation in a set X is a set of ordered pairs of elements of
X, i.e., a subset R ⊂ X × X. Many relations are denoted by special
symbols, like ≺, ⊢, ≡, or ∼. In the case where such a notation is used,
there is a tradition to write xRy instead of writing (x, y) ∈ R. So, we
write x ⊢ y, or x ∼ y, or x ≺ y, etc. This generalizes the usual notation
for the classical binary relations =, <, >, ≤, ⊂, etc.

A binary relation ≺ in a set X is a strict partial order , or just a strict

order if it satisfies the following two conditions:
• Irreflexivity : There is no a ∈ X such that a ≺ a.
• Transitivity : a ≺ b and b ≺ c imply a ≺ c for any a, b, c ∈ X.

7.A Antisymmetry. Let ≺ be a strict partial order in a set X. There
are no x, y ∈ X such that x ≺ y and y ≺ x simultaneously.

7.B. Relation < in the set R of real numbers is a strict order.

Formula a ≺ b is read sometimes as “a is less than b” or “b is greater
than a”, but it is often read as “b follows a” or “a precedes b”. The
advantage of the latter two ways of reading is that then the relation ≺
is not associated too closely with the inequality between real numbers.

§7◦2 Nonstrict Orders

A binary relation � in a set X is a nonstrict partial order , or just
nonstrict order , if it satisfies the following three conditions:

• Transitivity : If a � b and b � c, then a � c for any a, b, c ∈ X.
• Antisymmetry : If a � b and b � a, then a = b for any a, b ∈ X.
• Reflexivity : a � a for any a ∈ X.

7.C. Relation ≤ in R is a nonstrict order.

7.D. In the set N of positive integers, the relation a|b (a divides b) is a
nonstrict partial order.

7.1. Is the relation a|b a nonstrict partial order in the set Z of integers?

7.E. In the set of subsets of a set X, inclusion is a nonstrict partial
order.

34
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§7◦3 Relation between Strict and Nonstrict Orders

7.F. For each strict order ≺, there is a relation � defined in the same
set as follows: a � b if either a ≺ b, or a = b. This relation is a nonstrict
order.

The nonstrict order � of 7.F is associated with the original strict
order ≺.

7.G. For each nonstrict order �, there is a relation ≺ defined in the
same set as follows: a ≺ b if a � b and a 6= b. This relation is a strict
order.

The strict order ≺ of 7.G is associated with the original nonstrict
order �.

7.H. The constructions of Problems 7.F and 7.G are mutually inverse:
applied one after another in any order, they give the initial relation.

Thus, strict and nonstrict orders determine each other. They are just
different incarnations of the same structure of order. We have already met
a similar phenomenon in topology: open and closed sets in a topological
space determine each other and provide different ways for describing a
topological structure.

A set equipped with a partial order (either strict or nonstrict) is a
partially ordered set or poset. More formally speaking, a partially ordered
set is a pair (X,≺) formed by a set X and a strict partial order ≺ in X.
Certainly, instead of a strict partial order ≺ we can use the corresponding
nonstrict order �.

Which of the orders, strict or nonstrict, prevails in each specific case
is a matter of convenience, taste, and tradition. Although it would be
handy to keep both of them available, nonstrict orders conquer situation
by situation. For instance, nobody introduces notation for strict divisi-
bility. Another example: the symbol ⊆, which is used to denote nonstrict
inclusion, is replaced by the symbol ⊂, which is almost never understood
as notation solely for strict inclusion.

In abstract considerations, we will use both kinds of orders: strict
partial order are denoted by symbol ≺, nonstrict ones by symbol �.

§7◦4 Cones

Let (X,≺) be a poset and let a ∈ X. The set {x ∈ X | a ≺ x} is the
upper cone of a, and the set {x ∈ X | x ≺ a} the lower cone of a. The
element a does not belong to its cones. Adding a to them, we obtain
completed cones: the upper completed cone or star C+

X(a) = {x ∈ X |
a � x} and the lower completed cone C−

X(a) = {x ∈ X | x � a}.
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7.I Properties of Cones. Let (X,≺) be a poset.
(a) C+

X(b) ⊂ C+
X(a), provided that b ∈ C+

X(a);
(b) a ∈ C+

X(a) for each a ∈ X.
(c) C+

X(a) = C+
X(b) implies a = b;

7.J Cones Determine an Order. Let X be an arbitrary set. Suppose for
each a ∈ X we fix a subset Ca ⊂ X so that
(a) b ∈ Ca implies Cb ⊂ Ca,
(b) a ∈ Ca for each a ∈ X, and
(c) Ca = Cb implies a = b.
We write a ≺ b if b ∈ Ca. Then the relation ≺ is a nonstrict order in X,
and for this order we have C+

X(a) = Ca.

7.2. Let C ⊂ R3 be a set. Consider the relation ⊳C in R3 defined as follows:
a ⊳C b if b − a ∈ C. What properties of C imply that ⊳C is a partial order
in R3? What are the upper and lower cones in the poset (R3, ⊳C)?

7.3. Prove that any convex cone C in R3 with vertex (0, 0, 0) such that
P ∩ C = {(0, 0, 0)} for some plane P satisfies the conditions found in the
solution of Problem 7.2.

7.4. The space-time R4 of special relativity theory (where points represent
moment point events, the first three coordinates x1, x2, x3 are the spatial co-
ordinates, while the fourth one, t, is the time) carries a relation the event

(x1, x2, x3, t) precedes (and may influence) the event (x̃1, x̃2, x̃3, t̃). This re-
lation is defined by the inequality

c(t̃ − t) ≥
√

(x̃1 − x1)2 + (x̃2 − x2)2 + (x̃3 − x3)2.

Is this a partial order? If yes, then what are the upper and lower cones of an
event?

7.5. Answer the versions of questions of the preceding problem in the case
two-dimensional and three-dimensional analogues of this space, where the
number of spatial coordinates is 1 and 2, respectively.

§7◦5 Position of an Element with Respect to a Set

Let (X,≺) be a poset, A ⊂ X a subset. Then b is the greatest element

of A if b ∈ A and c � b for every c ∈ A. Similarly, b is the smallest element

of A if b ∈ A and b � c for every c ∈ A.

7.K. An element b ∈ A is the smallest element of A iff A ⊂ C+
X(b); an

element b ∈ A is the greatest element of A iff A ⊂ C−
X(b).

7.L. Each set has at most one greatest and at most one smallest element.

An element b of a set A is a maximal element of A if A contains no
element c such that b ≺ c. An element b is a minimal element of A if A
contains no element c such that c ≺ b.

7.M. An element b of A is maximal iff A ∩ C−
X(b) = b; an element b of

A is minimal iff A ∩ C+
X(b) = b.
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7.6. Riddle. 1) How are the notions of maximal and greatest elements
related? 2) What can you say about a poset in which these notions coincide
for each subset?

§7◦6 Linear Orders

Please, notice: the definition of a strict order does not require that for
any a, b ∈ X we have either a ≺ b, or b ≺ a, or a = b. This condition is
called a trichotomy . In terms of the corresponding nonstrict order, it can
be reformulated as follows: any two elements a, b ∈ X are comparable:
either a � b, or b � a.

A strict order satisfying trichotomy is linear . The corresponding poset
is linearly ordered. It is also called just an ordered set.6 Some orders do
satisfy trichotomy.

7.N. The order < in the set R of real numbers is linear.

This is the most important example of a linearly ordered set. The
words and images rooted in it are often extended to all linearly ordered
sets. For example, cones are called rays, upper cones become right rays,
while lower cones become left rays.

7.7. A poset (X,≺) is linearly ordered iff X = C+
X(a)∪C−

X (a) for each a ∈ X .

7.8. In the set N of positive integers, the order a|b is not linear.

7.9. For which X is the relation of inclusion in the set of all subsets of X a
linear order?

§7◦7 Topologies Determined by Linear Order

7.O. Let (X,≺) be a linearly ordered set. Then set of all right rays of
X, i.e., sets of the form {x ∈ X | a ≺ x}, where a runs through X, and
the set X itself constitute a base for a topological structure in X.

The topological structure determined by this base is the right ray

topology of the linearly ordered set (X,≺). The left ray topology is defined
similarly: it is generated by the base consisting of X and sets of the form
{x ∈ X | x ≺ a} with a ∈ X.

6Quite a bit of confusion was brought into the terminology by Bourbaki. Then
total orders were called orders, non-total orders were called partial orders, and in
occasions when it was not known if the order under consideration was total, the fact
that this was unknown was explicitly stated. Bourbaki suggested to withdraw the
word partial . Their motivation for this was that a partial order, as a phenomenon
more general than a linear order, deserves a shorter and simpler name. In French
literature, this suggestion was commonly accepted, but in English it would imply
abolishing a nice short word poset , which seems to be an absolutely impossible thing
to do.
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7.10. The topology of the arrow (see §2) is the right ray topology of the
half-line [0,∞) equipped with the order <.

7.11. Riddle. To what extent is the assumption that the order is linear
necessary in Theorem 7.O? Find a weaker condition that implies the conclu-
sion of Theorem 7.O and allows us to speak about the topological structure
described in Problem 2.2 as the right ray topology of an appropriate partial
order on the plane.

7.P. Let (X,≺) be a linearly ordered set. Then the subsets of X having
the forms

• {x ∈ X | a ≺ x}, where a runs through X,
• {x ∈ X | x ≺ a}, where a runs through X,
• {x ∈ X | a ≺ x ≺ b}, where a and b run through X

constitute a base for a topological structure in X.

The topological structure determined by this base is the interval topol-

ogy of the linearly ordered set (X,≺).

7.12. Prove that the interval topology is the smallest topological structure
containing the right ray and left ray topological structures.

7.Q. The canonical topology of the line is the interval topology of (R, <).

§7◦8 Poset Topology

7.R. Let (X,�) be a poset. Then the subsets of X having the form
{x ∈ X | a � x}, where a runs through the entire X, constitute a base of
for topological structure in X.

The topological structure generated by this base is the poset topology .

7.S. In the poset topology, each point a ∈ X has the smallest (with
respect to inclusion) neighborhood. This is {x ∈ X | a � x}.
7.T. The following properties of a topological space are equivalent:
(a) each point has a smallest neighborhood,
(b) the intersection of any collection of open sets is open,
(c) the union of any collection of closed sets is closed.

A space satisfying the conditions of Theorem 7.T is a smallest neigh-

borhood space.7 In a smallest neighborhood space, open and closed sets
satisfy the same conditions. In particular, the set of all closed sets of a
smallest neighborhood space also is a topological structure, which is dual

to the original one. It corresponds to the opposite partial order.

7This class of topological spaces was introduced and studied by P. S. Alexandrov
in 1935. Alexandrov called them discrete. Nowadays, the term discrete space is used
for a much narrower class of topological spaces (see Section §2). The term smallest

neighborhood space was introduced by Christer Kiselman.
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7.13. How to characterize points open in the poset topology in terms of the
partial order? The same question about closed points.

7.14. Directly describe open sets in the poset topology of R with order <.

7.15. Consider a partial order in the set {a, b, c, d} where the strict inequal-
ities are: c ≺ a, d ≺ c, d ≺ a, and d ≺ b. Check that this is a partial
order and the corresponding poset topology is the topology of described in
Problem 2.3 (a).

7.16. Describe the closure of a point in a poset topology.

7.17. Which singletons are dense in a poset topology?

§7◦9 How to Draw a Poset

Now we can explain the pictogram , which we use to denote the space
introduced in Problem 2.3 (a). It describes the partial order in {a, b, c, d}
that determines the topology of this space by 7.15. Indeed, if we place
a, b, c, and d the elements of the set under consideration at vertices of the

graph of the pictogram, as shown in the picture, then the
vertices corresponding to comparable elements are con-
nected by a segment or ascending broken line, and the
greater element corresponds to the higher vertex. d

c

a

b

In this way, we can represent any finite poset by a diagram. Elements
of the poset are represented by points. We have a ≺ b if and only if
the following two conditions are fulfilled: 1) the point representing b lies
above the point representing a and 2) those points are connected either by
a segment or by a broken line consisting of segments which connect points
representing intermediate elements of a chain a ≺ c1 ≺ c2 ≺ · · · ≺ cn ≺ b.
We could have connected by a segment any two points corresponding
to comparable elements, but this would make the diagram excessively
cumbersome. This is why the segments that can be recovered from the
others by transitivity are not drawn. Such a diagram representing a poset
is its Hasse diagram.

7.U. Prove that any finite poset can be determined by a Hasse diagram.

7.V. Describe the poset topology in the set Z of integers defined by the
following Hasse diagram:

0

−1

−2

−3

−4

−5 1

2

3

4

5

6

The space of Problem 7.V is the digital line, or Khalimsky line. In this
space, each even number is closed and each odd one is open.
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7.18. Associate with each even integer 2k the interval (2k − 1, 2k + 1) of
length 2 centered at this point, and with each odd integer 2k−1, the singleton
{2k − 1}. Prove that a set of integers is open in the Khalimsky topology iff
the union of sets associated to its elements is open in R with the standard
topology.

7.19. Among the topological spaces described in Section §2, find all thhose
can be obtained as posets with the poset topology. In the cases of finite sets,
draw Hasse diagrams describing the corresponding partial orders.

§7◦10 Cyclic Orders in Finite Sets

Recall that a cyclic order in a finite set X is a linear order consid-
ered up to cyclic permutation. The linear order allows us to enumerate
elements of the set X by positive integers, so that X = {x1, x2, . . . , xn}.
A cyclic permutation transposes the first k elements with the last n− k
elements without changing the order inside each of the two parts of the
set:

(x1, x2, . . . , xk, xk+1, xk+2, . . . , xn) 7→ (xk+1, xk+2, . . . , xn, x1, x2, . . . , xk).

When we consider a cyclic order, it makes no sense to say that one
of its elements is greater than another one, since an appropriate cyclic
permutation put the two elements in the opposite order. However, it
makes sense to say that an element is immediately followed by another
one. Certainly, the very last element is immediately followed by the very
first: indeed, any non-identity cyclic permutation puts the first element
immediately after the last one.

In a cyclicly ordered finite set, each element a has a unique element
b next to a, i.e., which follows a immediately. This determines a map of
the set onto itself, namely the simplest cyclic permutation

xi 7→
{
xi+1 if i < n,

x1 if i = n.

This permutation acts transitively (i.e., any element is mapped to any
other one by an appropriate iteration of it).

7.W. Any map T : X → X that acts transitively in X determines a
cyclic order in X such that each a ∈ X is followed by T (a).

7.X. A set consisting of n elements possesses exactly (n − 1)! pairwise
distinct cyclic orders.

In particular, a two-element set has only one cyclic order (which is
so uninteresting that sometimes it is said to make no sense), while any
three-element set possesses two cyclic orders.
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§7x◦11 Cyclic Orders in Infinite Sets

One can consider cyclic orders in an infinite set. However, most of
what was said above does not apply to cyclic orders in infinite sets with-
out an adjustment. In particular, most of them cannot be described by
showing pairs of elements that are next to each other. For example, points
of a circle can be cyclically ordered clockwise (or counter-clockwise), but
no point immediately follows another point with respect to this cyclic
order.

Such “continuous” cyclic orders can be defined almost in the same
way as cyclic orders in finite sets were defined above. The difference is
that sometimes it is impossible to define cyclic permutations of the set
in necessary quantity, and they have to be replaced by cyclic transfor-
mations of the linear orders. Namely, a cyclic order is defined as a linear
order considered up to cyclic transformations, where by a cyclic trans-
formation of a linear order ≺ in a set X we mean a passage from ≺ to
a linear order ≺′ such that X splits into subsets A and B such that the
restrictions of ≺ and ≺′ to each of them coincide, while a ≺ b and b ≺′ a
for any a ∈ A and b ∈ B.

7x:A. Existence of a cyclic transformation transforming linear orders
to each other determines an equivalence relation on the set of all linear
orders in a set.

A cyclic order in a set is an equivalence class of linear orders under
the relation of existence of a cyclic transformation.

7x:B. Prove that for a finite set this definition is equivalent to the defi-
nition in the preceding Section.

7x:C. Prove that the cyclic “counter-clockwise” order on a circle can
be defined along the definition of this Section, but cannot be defined
as a linear order modulo cyclic transformations of the set for whatever
definition of cyclic transformations of circle. Describe the linear orders
on the circle that determine this cyclic order up to cyclic transformations
of orders.

7x:D. Let A be a subset of a set X. If two linear orders ≺′ and ≺
on X are obtained from each other by a cyclic transformation, then
their restrictions to A are also obtained from each other by a cyclic
transformation.

7x:E Corollary. A cyclic order in a set induces a well-defined cyclic
order in every subset of this set.

7x:F. A cyclic order in a set X can be recovered from the cyclic orders
induced by it in all three-element subsets of X.
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7x:F.1. A cyclic order in a set X can be recovered from the cyclic orders
induced by it in all three-element subsets of X containing a fixed element
a ∈ X.

Theorem 7x:F allows us to describe a cyclic order as a ternary relation.
Namely, let a, b, c be elements of a cyclically ordered set. Then we write
[a ≺ b ≺ c] if the induced cyclic order on {a, b, c} is determined by the
linear order in which the inequalities in the brackets hold true (i.e., b
follows a and c follows b).

7x:G. Let X be a cyclically ordered set. Then the ternary relation [a ≺
b ≺ c] on X has the following properties:
(a) for any pairwise distinct a, b, c ∈ X, we have either [a ≺ b ≺ c], or

[b ≺ a ≺ c] is true, but not both;
(b) [a ≺ b ≺ c], iff [b ≺ c ≺ a], iff [c ≺ a ≺ b], for any a, b, c ∈ X;
(c) if [a ≺ b ≺ c] and [a ≺ c ≺ d], then [a ≺ b ≺ d].
Vice versa, a ternary relation having these four properties in a set X
determines a cyclic order in X.

§7x◦12 Topology of Cyclic Order

7x:H. Let X be a cyclically ordered set. Then the sets that belong to the
interval topology of every linear order determining the cyclic order on X
constitute a topological structure in X.

The topology defined in 7x:H is the cyclic order topology .

7x:I. The cyclic order topology determined by the cyclic counterclock-
wise order of S1 is the topology generated by the metric ρ(x, y) = |x− y|
on S1 ⊂ C.



Proofs and Comments

1.A The question is so elementary that it is difficult to find more
elementary facts which we could use in the proof. What does it mean that
A consists of a elements? This means, say, that we can count elements
of A one by one assigning to them numbers 1, 2, 3, and the last element
will receive number a. It is known that the result does not depend
on the order in which we count. (In fact, one can develop a set theory
which would include a theory of counting, and in which this is a theorem.
However, since we have no doubts in this fact, let us use it without
proof.) Therefore we can start counting of elements of B with counting
the elements of A. The counting of elements of A will be done first, and
then, if there are some elements of B that are not in A, counting will be
continued. Thus, the number of elements in A is less than or equal to
the number of elements in B.

1.B Recall that, by the definition of an inclusion, A ⊂ B means that
each element of A is an element of B. Therefore, the statement that we
must prove can be rephrased as follows: each element of A is an element
of A. This is a tautology.

1.C Recall that, by the definition of an inclusion, A ⊂ B means that
each element of A is an element of B. Thus we need to prove that any
element of ∅ belongs to A. This is correct because there are no elements
in ∅. If you are not satisfied with this argument (since it sounds too
crazy), then let us resort to the question whether this can be wrong.
How can it happen that ∅ is not a subset of A? This is possible only if
there is an element of ∅ which is not an element of A. However, there is
no such elements in ∅ because ∅ has no elements at all.

1.D We must prove that each element of A is an element of C. Let
x ∈ A. Since A ⊂ B, it follows that x ∈ B. Since B ⊂ C, the latter
belonging (i.e., x ∈ B) implies x ∈ C. This is what we had to prove.

1.E We have already seen that A ⊂ A. Hence if A = B, then,
indeed, A ⊂ B and B ⊂ A. On the other hand, A ⊂ B means that each
element of A belongs to B, while B ⊂ A means that each element of
B belongs to A. Hence A and B have the same elements, i.e., they are
equal.

1.G It is easy to construct a set A with A 6∈ A. Take A = ∅, or
A = N, or A = {1}, . . .

1.H Take A = {1}, B = {{1}}, and C = {{{1}}}. It is more
difficult to construct sets A, B, and C such that A ∈ B, B ∈ C, and
A ∈ C. Take A = {1}, B = {{1}}, and C = {{1}, {{1}}}.

2.A What should we check? The first axiom reads here that the
union of any collection of subsets of X is a subset of X? Well, this is

43
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true. If A ⊂ X for each A ∈ Γ, then, obviously,
⋃

A∈ΓA ⊂ X. Exactly
in the same way we check the second axiom. Finally, of course, ∅ ⊂ X
and X ⊂ X.

2.B Yes, it is. If one of the united sets is X, then the union is X,
otherwise the union in empty. If one of the sets to intersect is ∅, then
the intersection is ∅. Otherwise, the intersection equals X.

2.C First, show that
⋃

A∈Γ

A∩ ⋃
B∈Σ

B =
⋃

A∈Γ,B∈Σ

(A∩B). Therefore, if

A and B are intervals, then the right-hand side is a union of intervals.

If you think that a set which is a union of intervals is too simple,
then, please, try to answer the following question (which has nothing to
do with the problem under consideration, though). Let {rn}∞n=1 = Q (i.e.,
we numbered all rational numbers). Prove that

⋃
(r−2−n, r+ 2−n) 6= R,

although this is a union of some intervals, that contains all (!) rational
numbers.

2.D The union of any collection of open sets is open. The intersec-
tion of any finite collection of open sets is open. The empty set and the
whole space are open.

2.E
(a)

x ∈
⋂

A∈Γ

(X r A) ⇐⇒ ∀A ∈ Γ : x ∈ X r A

⇐⇒ ∀A ∈ Γ : x /∈ A ⇐⇒ x /∈
⋃

A∈Γ

A ⇐⇒ x ∈ X r
⋃

A∈Γ

A.

(b) Replace both sides of the formula by their complements in X and
put B = X r A.

2.F (a) Let Γ = {Fα} be a collection of closed sets. We must verify
that

⋂
Fα is closed, i.e. X r

⋂
Fα is open. Indeed, by the second De

Morgan formula we have

X r
⋂

Fα =
⋃

(X r Fα),

which is open by the first axiom of topological structure.
(b) Similar to (a); use the first De Morgan formula and the second axiom
of topological structure.
(c) Obvious.

2.G In any topological space, the empty set and the whole space
are both open and closed. Any set in a discrete space is both open and
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closed. Half-open intervals on the line are neither open nor closed. Cf.
the next problem.

2.H Yes, it is, because its complement Rr[a, b] = (−∞, a)∪(b,+∞)
is open.

2x:A Let U ⊂ R be an open set. For each x ∈ U , let (mx,Mx) ⊂ U
be the largest open interval containing x (take the union of all open
intervals in U that contain x). Since U is open, such intervals exist. Any
two such intervals either coincide or are disjoint.

2x:D Conditions (a) and (c) from 2.13 are obviously fulfilled. To
prove (b), let us use 2x:E and argue by contradiction. Suppose that
sets A and B contain no arithmetic progressions of length at least n. If
A ∪ B contains a sufficiently long progression, then A or B contains a
progression of length more than n, a contradiction.

3.A Present U as a union of elements of Σ. Each point x ∈ U
is contained in at least one of these sets. Such a set can be chosen as V .
It is contained in U since it participates in a union equal to U .

We must prove that each U ∈ Ω is a union of elements of Σ. For
each point x ∈ U , choose according to the assumption a set Vx ∈ Σ
such that x ∈ Vx ⊂ U and consider ∪x∈UVx. Notice that ∪x∈UVx ⊂ U
because Vx ⊂ U for each x ∈ U . On the other hand, each point x ∈ U is
contained in its own Vx and hence in ∪x∈UVx. Therefore, U ⊂ ∪x∈UVx.
Thus, U = ∪x∈UVx.

3.B X, being an open set in any topology, is a union of some
sets in Σ. The intersection of any two sets in to Σ is open, therefore it
also is a union of base sets. Let us prove that the set of unions of all
collections of elements of Σ satisfies the axioms of topological structure.
The first axiom is obviously fulfilled since the union of unions is a union.
Let us prove the second axiom (the intersection of two open sets is open).
Let U = ∪αAα and V = ∪βBβ, where Aα, Bβ ∈ Σ. Then

U ∩ V = (∪αAα) ∩ (∪βBβ) = ∪α,β(Aα ∩Bβ),

and since, by assumption, Aα ∩Bβ is a union of elements of Σ, so is the
intersection U ∩ V . In the third axiom, we need to check only the part
concerning the entire X. By assumption, X is a union of sets belonging
to Σ.

3.D Let Σ1 and Σ2 be bases of topological structures Ω1 and Ω2 in a
set X. Obviously, Ω1 ⊂ Ω2 iff ∀U ∈ Σ1 ∀x ∈ U ∃V ∈ Σ2 : x ∈ V ⊂ U .
Now recall that Ω1 = Ω2 iff Ω1 ⊂ Ω2 and Ω2 ⊂ Ω1.

4.A Indeed, it makes sense to check that all conditions in the defi-
nition of a metric are fulfilled for each triple of points x, y, and z.
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4.B The triangle inequality in this case takes the form |x − y| ≤
|x − z| + |z − y|. Putting a = x − z and b = z − y, we transform the
triangle inequality into the well-known inequality |a+ b| ≤ |a| + |b|.

4.C As in the solution of Problem 4.B, the triangle inequality takes

the form:
√∑n

i=1(ai + bi)2 ≤
√∑n

i=1 a
2
i +

√∑n
i=1 b

2
i . Two squarings

followed by an obvious simplification reduce this inequality to the well-
known Cauchy inequality (

∑
aibi)

2 ≤∑ a2
i

∑
b2i .

4.E We must prove that every point y ∈ Br−ρ(a,x)(x) belongs to
Br(a). In terms of distances, this means that ρ(y, a) < r if ρ(y, x) <
r−ρ(a, x) and ρ(a, x) < r. By the triangle inequality, ρ(y, a) ≤ ρ(y, x) +
ρ(x, a). Replacing the first summand on the right-hand side of the lat-
ter inequality by a greater number r − ρ(a, x), we obtain the required
inequality. The second inclusion is proved similarly.

4.F Show that if d = diamA and a ∈ A, then A ⊂ Dd(a).
Use the fact that diamDd(a) ≤ 2d. (Cf. 4.11.)

4.G This follows from Problem 4.E, Theorem 3.B and Assertion
3.C.

4.H For this metric, the balls are open intervals. Each open interval
in R is as a ball. The standard topology in R is determined by the base
consisting of all open intervals.

4.I If a ∈ A, then a ∈ Br(x) ⊂ A and Br−ρ(a,x)(a) ∈ Br(x) ⊂
U , see 4.E. A is a union of balls, therefore, A is open in the metric
topology.

4.J An indiscrete space does not have sufficiently many open sets.
For x, y ∈ X and r = ρ(x, y) > 0, the ball Dr(x) is nonempty and does
not coincide with the whole space (it does not contain y).

4.K For x ∈ X, put r = min{ρ(x, y) | y ∈ X r x}. Which
points are in Br(x)? Obvious. (Cf. 4.19.)

4.L The condition ρ(b, A) = 0 means that each ball centered
at b meets A, i.e., b does not belong to the complement of A (since A is
closed, the complement of A is open). Obvious.

4x:A Condition (b) is obviously fulfilled. Put r(A,B) = sup
a∈A

ρ(a,B),

so that dρ(A,B) = max{r(A,B), r(B,A)}. To prove that (c) is also
fulfilled, it suffices to prove that r(A,C) ≤ r(A,B) + r(B,C) for any
A,B,C ⊂ X. We easily see that ρ(a, C) ≤ ρ(a, b) + ρ(b, C) for all a ∈ A
and b ∈ B. Hence, ρ(a, C) ≤ ρ(a, b) + r(B,C), whence

ρ(a, C) ≤ inf
b∈B

ρ(a, b) + r(B,C) = ρ(a,B) + r(B,C) ≤ r(A,B) + r(B,C),

which implies the required inequality.
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4x:B By 4x:A, dρ satisfies conditions (b) and (c) from the definition
of a metric. From 4.L it follows that if the Hausdorff distance between
two closed sets A and B equals zero, then A ⊂ B and B ⊂ A, i.e., A = B.
Thus, dρ satisfies the condition (a).

4x:C d∆(A,B) is the area of the symmetric difference A△B =
(A r B) ∪ (B r A) of A and B. The first two axioms of metric are
obviously fulfilled. Prove the triangle inequality by using the inclusion
Ar B ⊂ (C rB) ∪ (Ar C).

4x:F Clearly, the metric in 4.A is an ultrametric. The other metrics
are not: for each of them you can find points x, y, and z such that
ρ(x, y) = ρ(x, z) + ρ(z, y).

4x:G The definition of an ultrametric implies that none of the pair-
wise distances between the points a, b, and c is greater than each of the
other two.

4x:H By 4x:G, if y ∈ Sr(x) and r > s > 0, then Bs(y) ⊂ Sr(x).

4x:I Let x− z = r1

s1

pα1 and z− y = r2

s2

pα2 , where α1 ≤ α2. Then we

have

x− y = pα1

(
r1

s1

+ r2

s2

pα2−α1

)
= pα1

r1s2 + r2s1p
α2−α1

s1s2
,

whence p(x, y) ≤ p−α1 = max{ρ(x, z), ρ(z, y)}.

5.A We must check that ΩA satisfies the axioms of topological struc-
ture. Consider the first axiom. Let Γ ⊂ ΩA be a collection of sets in ΩA.
We must prove that

⋃
U∈Γ U ∈ ΩA. For each U ∈ Γ, find UX ∈ Ω such

that U = A∩UX . This is possible due to the definition of ΩA. Transform
the union under consideration:

⋃
U∈Γ U =

⋃
U∈Γ(A∩UX) = A∩⋃U∈Γ UX .

The union
⋃

U∈Γ UX belongs to Ω (i.e., is open in X) as the union of sets

open in X. (Here we use the fact that Ω, being a topology in X, satisfies
the first axiom of topological structure.) Therefore, A ∩ ⋃U∈Γ UX be-
longs to ΩA. Similarly we can check the second axiom. The third axiom:
A = A ∩X, and ∅ = A ∩ ∅.

5.B Let us prove that a subset of R1 is open in the relative topology
iff it is open in the canonical topology. The intersection of an
open disk with R1 is either an open interval or the empty set. Any open
set in the plane is a union of open disks. Therefore the intersection of
any open set of the plane with R1 is a union of open intervals. Thus, it
is open in R1. Prove this part on your own.

5.C The complement ArF is open in A, i.e., ArF = A∩U ,
where U is open in X. What closed set cuts F on A? It is cut by XrU .
Indeed, A ∩ (X r U) = Ar (A ∩ U) = Ar (Ar F ) = F . This is
proved in a similar way.
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5.D No disk of R2 is contained in R.

5.E If A ∈ Ω and B ∈ ΩA, then B = A∩U , where U ∈ Ω. Therefore,
B ∈ Ω as the intersection of two sets, A and U , belonging to Ω.

5.F Act as in the solution of the preceding problem 5.E, but use 5.C
instead of the definition of the relative topology.

5.G The core of the proof is the equality (U ∩ A) ∩ B = U ∩ B.
It holds true because B ⊂ A, and we apply it to U ∈ Ω. As U runs
through Ω, the right-hand side of the equality (U ∩ A) ∩ B = U ∩ B
runs through ΩB, while the left-hand side runs through (ΩA)B. Indeed,
elements of ΩB are intersections U ∩ B with U ∈ Ω, and elements of
(ΩA)B are intersections V ∩ B with V ∈ ΩA, but V , in turn, being an
element of ΩA, is the intersection U ∩A with U ∈ Ω.

6.A The union of all open sets contained in A, firstly, is open (as
a union of open sets), and, secondly, contains every open set that is
contained in A (i.e., it is the greatest one among those sets).

6.B Let x be an interior point of A (i.e., there exists an open set Ux

such that x ∈ Ux ⊂ A). Then Ux ⊂ IntA (because IntA is the greatest
open set contained in A), whence x ∈ IntA. Vice versa, if x ∈ IntA,
then the set IntA itself is a neighborhood of x contained in A.

6.C If U is open, then U is the greatest open subset of U ,
and hence coincides with the interior ofU . A set coinciding with
its interior is open since the interior is open.

6.D

(a) [0, 1) is not open in the line, while (0, 1) is. Therefore Int[0, 1) =
(0, 1).

(b) Since any interval contains irrational points, Q contains no nonempty
sets open in the classical topology of R. Therefore, Int Q = ∅.

(c) Since any interval contains rational points, RrQ does not contain a
nonempty set open in the classical topology of R. Therefore, Int(Rr

Q) = ∅.

6.E The intersection of all closed sets containing A, firstly, is closed
(as an intersection of closed sets), and, secondly, is contained in every
closed set that contains A (i.e., it is the smallest one among those sets).
Cf. the proof of Theorem 6.A. In general, properties of closure can be
obtained from properties of interior by replacing unions with intersections
and vice versa.

6.F If x /∈ ClA, then there exists a closed set F such that F ⊃ A
and x /∈ F , whence x ∈ U = X r F . Thus, x is not an adherent point
for A. Prove the inverse implication on your own, cf. 6.H.

6.G Cf. the proof of Theorem 6.C.
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6.H The intersection of all closed sets containing A is the comple-
ment of the union of all open sets contained in X r A.

6.I (a) The half-open interval [0, 1) is not closed, and [0, 1] is closed;
(b)–(c) The exterior of each of the sets Q and R r Q is empty since each
interval contains both rational and irrational numbers.

6.J If b is an adherent point forA, then ∀ ε > 0 ∃ a ∈ A∩Dε(b),
whence ∀ ε > 0 ∃ a ∈ A : ρ(a, b) < ε. Thus, ρ(b, A) = 0. This is
an easy exercise.

6.K If x ∈ FrA, then x ∈ ClA and x /∈ IntA. Hence, firstly, each
neighborhood of x meets A, secondly, no neighborhood of x is contained
in A, and therefore each neighborhood of x meets X r A. Thus, x is a
boundary point of A. Prove the converse on your own.

6.L Since IntA ⊂ A, it follows that ClA = A iff FrA ⊂ A.

6.M Argue by contradiction. A set A disjoint with an open
set U is contained in the closed set X r U . Therefore, if U is nonempty,
then A is not everywhere dense. A set meeting each nonempty
open set is contained in only one closed set: the entire space. Hence, its
closure is the whole space, and this set is everywhere dense.

6.N This is 6.I(b).

6.O The condition means that each neighborhood of each point
contains an exterior point of A. This, in turn, means that the exterior of
A is everywhere dense.

6.Q This is 6.P. Hint: any point of ClArA is a limit
point of A.

7.F We need to check that the relation “a ≺ b or a = b” satisfies the
three conditions from the definition of a nonstrict order. Doing this, we
can use only the fact that ≺ satisfies the conditions from the definition
of a strict order. Let us check the transitivity. Suppose that a � b and
b � c. This means that either 1) a ≺ b ≺ c, or 2) a = b ≺ c, or 3)
a ≺ b = c, or 4) a = b = c.
1) In this case, a ≺ c by transitivity of ≺, and so a � c. 2) We have
a ≺ c, whence a � c. 3) We have a ≺ c, whence a � c. 4) Finally, a = c,
whence a � c. Other conditions are checked similarly.

7.I Assertion (a) follows from transitivity of the order. Indeed, con-
sider an arbitrary an c ∈ C+

X(b). By the definition of a cone, we have

b � c, while the condition b ∈ C+
X(a) means that a � b. By transitivity,

this implies that a � c, i.e., c ∈ C+
X(a). We have thus proved that each

element of C+
X(b) belongs to C+

X(a). Hence, C+
X(b) ⊂ C+

X(a), as required.
Assertion (b) follows from the definition of a cone and the reflexivity of
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order. Indeed, by definition, C+
X(a) consists of all b such that a � b, and,

by reflexivity of order, a � a.
Assertion (c) follows similarly from antisymmetry: the assumption C+

X(a) =

C+
X(b) together with assertion (b) implies that a � b and b � a, which

together with antisymmetry implies that a = b.

7.J By Theorem 7.I, cones in a poset have the properties that form
the hypothesis of the theorem to be proved. When proving Theorem 7.I,
we showed that these properties follow from the corresponding conditions
in the definition of a partial nonstrict order. In fact, they are equivalent
to these conditions. Permuting words in the proof of Theorem 7.I, we to
obtain a proof of Theorem 7.J.

7.O By Theorem 3.B, it suffices to prove that the intersection of
any two right rays is a union of right rays. Let a, b ∈ X. Since the order
is linear, either a ≺ b, or b ≺ a. Let a ≺ b. Then

{x ∈ X | a ≺ x} ∩ {x ∈ X | b ≺ x} = {x ∈ X | b ≺ x}.

7.R By Theorem 3.C, it suffices to prove that each element of the
intersection of two cones, say, C+

X(a) and C+
X(b), is contained in the

intersection together with a whole cone of the same kind. Assume that
c ∈ C+

X(a) ∩ C+
X(b) and d ∈ C+

X(c). Then a � c � d and b � c � d,

whence a � d and b � d. Therefore d ∈ C+
X(a)∩C+

X(b). Hence, C+
X(c) ⊂

C+
X(a) ∩ C+

X(b).

7.T Equivalence of the second and third properties follows from
the De Morgan formulas, as in 2.F. Let us prove that the first property
implies the second one. Consider the intersection of an arbitrary collec-
tion of open sets. For each of its points, every set of this collection is a
neighborhood. Therefore, its smallest neighborhood is contained in each
of the sets to be intersected. Hence, the smallest neighborhood of the
point is contained in the intersection, which we denote by U . Thus, each
point of U lies in U together with its neighborhood. Since U is the union
of these neighborhoods, it is open.
Now let us prove that if the intersection of any collection of open sets is
open, then any point has a smallest neighborhood. Where can one get
such a neighborhood from? How to construct it? Take all neighborhoods
of a point x and consider their intersection U . By assumption, U is open.
It contains x. Therefore, U is a neighborhood of x. This neighborhood,
being the intersection of all neighborhoods, is contained in each of the
neighborhoods. Thus, U is the smallest neighborhood.

7.V The minimal base of this topology consists of singletons of the
form {2k−1} with k ∈ Z and three-point sets of the form {2k−1, 2k, 2k+
1}, where again k ∈ Z.



CHAPTER 2

Continuity

§8 Set-Theoretic Digression: Maps

§8◦1 Maps and Main Classes of Maps

A mapping f of a set X to a set Y is a triple consisting of X, Y , and
a rule,1 which assigns to every element of X exactly one element of Y .
There are other words with the same meaning: map, function, etc.

If f is a mapping of X to Y , then we write f : X → Y , or X
f→ Y .

The element b of Y assigned by f to an element a of X is denoted by
f(a) and called the image of a under f , or the f -image of a. We write

b = f(a), or a
f7→ b, or f : a 7→ b.

A mapping f : X → Y is a surjective map, or just a surjection if
every element of Y is the image of at least one element of X. A mapping
f : X → Y is an injective map, injection, or one-to-one map if every
element of Y is the image of at most one element of X. A mapping is
a bijective map, bijection, or invertible map if it is both surjective and
injective.

§8◦2 Image and Preimage

The image of a set A ⊂ X under a map f : X → Y is the set of
images of all points of A. It is denoted by f(A). Thus

f(A) = {f(x) | x ∈ A}.
The image of the entire set X (i.e., the set f(X)) is the image of f , it is
denoted by Im f .

The preimage of a set B ⊂ Y under a map f : X → Y is the set of
elements of X whith images in to B. It is denoted by f−1(B). Thus

f−1(B) = {a ∈ X | f(a) ∈ B}.
1Certainly, the rule (as everything in set theory) may be thought of as a set.

Namely, we consider the set of the ordered pairs (x, y) with x ∈ X and y ∈ Y such
that the rule assigns y to x. This is the graph of f . It is a subset of X × Y . (Recall
that X × Y is the set of all ordered pairs (x, y) with x ∈ X and y ∈ Y .)

51
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Be careful with these terms: their etymology can be misleading. For
example, the image of the preimage of a set B can differ from B. And
even if it does not differ, it may happen that the preimage is not the only
set with this property. Hence, the preimage cannot be defined as a set
whose image is the given set.

8.A. We have f
(
f−1(B)

)
⊂ B for any map f : X → Y and any B ⊂ Y .

8.B. f
(
f−1(B)

)
= B iff B ⊂ Im f .

8.C. Let f : X → Y be a map and let B ⊂ Y be such that f
(
f−1(B)

)
=

B. Then the following statements are equivalent:

(a) f−1(B) is the unique subset of X whose image equals B;
(b) for any a1, a2 ∈ f−1(B) the equality f(a1) = f(a2) implies a1 = a2.

8.D. A map f : X → Y is an injection iff for each B ⊂ Y such that
f
(
f−1(B)

)
= B the preimage f−1(B) is the unique subset of X with

image equal to B.

8.E. We have f−1
(
f(A)

)
⊃ A for any map f : X → Y and any A ⊂ X.

8.F. f−1
(
f(A)

)
= A iff f(A) ∩ f(X r A) = ∅.

8.1. Do the following equalities hold true for any A, B ⊂ Y and f : X → Y :

f−1(A ∪ B) = f−1(A) ∪ f−1(B), (10)

f−1(A ∩ B) = f−1(A) ∩ f−1(B), (11)

f−1(Y r A) = X r f−1(A)? (12)

8.2. Do the following equalities hold true for any A, B ⊂ X and any f : X →
Y :

f(A ∪ B) = f(A) ∪ f(B), (13)

f(A ∩ B) = f(A) ∩ f(B), (14)

f(X r A) = Y r f(A)? (15)

8.3. Give examples in which two of the above equalities (13)–(15) are false.

8.4. Replace false equalities of 8.2 by correct inclusions.

8.5. Riddle. What simple condition on f : X → Y should be imposed in
order to make correct all equalities of 8.2 for any A, B ⊂ X ?

8.6. Prove that for any map f : X → Y and any subsets A ⊂ X and B ⊂ Y
we have:

B ∩ f(A) = f
(
f−1(B) ∩ A

)
.
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§8◦3 Identity and Inclusion

The identity map of a set X is the map idX : X → X : x 7→ x. It is
denoted just by id if there is no ambiguity. If A is a subset of X, then
the map in : A→ X : x 7→ x is the inclusion map, or just inclusion, of A
into X. It is denoted just by in when A and X are clear.

8.G. The preimage of a set B under the inclusion in : A→ X is B ∩A.

§8◦4 Composition

The composition of mappings f : X → Y and g : Y → Z is the
mapping g ◦ f : X → Z : x 7→ g

(
f(x)

)
.

8.H Associativity. h ◦ (g ◦ f) = (h ◦ g) ◦ f for any maps f : X → Y ,
g : Y → Z, and h : Z → U .

8.I. f ◦ idX = f = idY ◦f for any f : X → Y .

8.J. Composition of injections is injective.

8.K. If the composition g ◦ f is injective, then so is f .

8.L. Composition of surjections is surjective.

8.M. If the composition g ◦ f is surjective, then so is g.

8.N. The composition of bijections is a bijection.

8.7. Let a composition g ◦f be bijective. Is then f or g necessarily bijective?

§8◦5 Inverse and Invertible

A map g : Y → X is inverse to a map f : X → Y if g ◦ f = idX and
f ◦ g = idY . A map having an inverse map is invertible.

8.O. A mapping is invertible iff it is a bijection.

8.P. If an inverse map exists, then it is unique.

§8◦6 Submappings

If A ⊂ X and B ⊂ Y , then for every f : X → Y such that f(A) ⊂ B
we have a mapping ab(f) : A → B : x 7→ f(x), which is called the
abbreviation of f to A and B, a submapping , or a submap. If B = Y , then
ab(f) : A → Y is denoted by f A and called the restriction of f to A. If
B 6= Y , then ab(f) : A→ B is denoted by f A,B or even simply f |.
8.Q. The restriction of a map f : X → Y to A ⊂ X is the composition
of the inclusion in : A→ X and f . In other words, f |A = f ◦ in.

8.R. Any submapping (in particular, any restriction) of an injection is
injective.

8.S. If a mapping possesses a surjective restriction, then it is surjective.



§9 Continuous Maps

§9◦1 Definition and Main Properties of Continuous Maps

Let X and Y be two topological spaces. A map f : X → Y is
continuous if the preimage of any open subset of Y is an open subset of
X.

9.A. A map is continuous iff the preimage of each closed set is closed.

9.B. The identity map of any topological space is continuous.

9.1. Let Ω1 and Ω2 be two topological structures in a space X . Prove that
the identity mapping

id : (X, Ω1) → (X, Ω2)

is continuous iff Ω2 ⊂ Ω1.

9.2. Let f : X → Y be a continuous map. Find out whether or not it is
continuous with respect to

(a) a finer topology in X and the same topology in Y ,
(b) a coarser topology in X and the same topology in Y ,
(c) a finer topology in Y and the same topology in X ,
(d) a coarser topology in Y and the same topology in X .

9.3. Let X be a discrete space and Y an arbitrary space. 1) Which maps
X → Y are continuous? 2) Which maps Y → X are continuous?

9.4. Let X be an indiscrete space and Y an arbitrary space. 1) Which maps
X → Y are continuous? 2) Which maps Y → X are continuous?

9.C. Let A be a subspace of X. The inclusion in : A→ X is continuous.

9.D. The topology ΩA induced on A ⊂ X by the topology of X is the
coarsest topology in A with respect to which the inclusion in : A→ X is
continuous.

9.5. Riddle. The statement 9.D admits a natural generalization with the
inclusion map replaced by an arbitrary map f : A → X of an arbitrary set
A. Find this generalization.

9.E. A composition of continuous maps is continuous.

9.F. A submap of a continuous map is continuous.

9.G. A map f : X → Y is continuous iff ab f : X → f(X) is continuous.

9.H. Any constant map (i.e., a map with image consisting of a single
point) is continuous.

§9◦2 Reformulations of Definition

54
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9.6. Prove that a mapping f : X → Y is continuous iff

Cl f−1(A) ⊂ f−1(Cl A)

for any A ⊂ Y .

9.7. Formulate and prove similar criteria of continuity in terms of Int f−1(A)
and f−1(IntA). Do the same for Cl f(A) and f(ClA).

9.8. Let Σ be a base for topology in Y . Prove that a map f : X → Y is
continuous iff f−1(U) is open for each U ∈ Σ.

§9◦3 More Examples

9.9. Consider the mapping

f : [0, 2] → [0, 2] : f(x) =

{
x if x ∈ [0, 1),

3 − x if x ∈ [1, 2].

Is it continuous (with respect to the topology induced from the real line)?

9.10. Consider the map f from the segment [0, 2] (with the relative topology
induced by the topology of the real line) into the arrow (see Section §2)
defined by the formula

f(x) =

{
x if x ∈ [0, 1],

x + 1 if x ∈ (1, 2].

Is it continuous?

9.11. Give an explicit characterization of continuous mappings of RT1 (see
Section §2) to R.

9.12. Which maps RT1 → RT1 are continuous?

9.13. Give an explicit characterization of continuous mappings of the arrow
to itself.

9.14. Let f be a mapping of the set Z+ of nonnegative numbers onto R

defined by formula

f(x) =

{
1
x if x 6= 0,

0 if x = 0.

Let g : Z+ → f(Z+) be its submap. Induce a topology on Z+ and f(Z+)
from R. Are f and the map g−1 inverse to g continuous?

§9◦4 Behavior of Dense Sets

9.15. Prove that the image of an everywhere dense set under a surjective
continuous map is everywhere dense.

9.16. Is it true that the image of nowhere dense set under a continuous map
is nowhere dense?

9.17*. Do there exist a nowhere dense set A of [0, 1] (with the topology
induced from the real line) and a continuous map f : [0, 1] → [0, 1] such that
f(A) = [0, 1]?
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§9◦5 Local Continuity

A map f from a topological space X to a topological space Y is said
to be continuous at a point a ∈ X if for every neighborhood V of f(a)
there exists a neighborhood U of a such that f(U) ⊂ V .

9.I. A map f : X → Y is continuous iff it is continuous at each point
of X.

9.J. Let X and Y be two metric spaces, a ∈ X. A map f : X → Y is
continuous at a iff for every ball with center at f(a) there exists a ball
with center at a whose image is contained in the first ball.

9.K. Let X and Y be two metric spaces. A mapping f : X → Y is
continuous at a point a ∈ X iff for every ε > 0 there exists δ > 0 such that
for every point x ∈ X the inequality ρ(x, a) < δ implies ρ

(
f(x), f(a)

)
<

ε.

Theorem 9.K means that the definition of continuity usually studied
in Calculus, when applicable, is equivalent to the above definition stated
in terms of topological structures.

§9◦6 Properties of Continuous Functions

9.18. Let f, g : X → R be continuous. Prove that the mappings X → R

defined by formulas

x 7→f(x) + g(x), (16)

x 7→f(x)g(x), (17)

x 7→f(x) − g(x), (18)

x 7→
∣∣f(x)

∣∣, (19)

x 7→max{f(x), g(x)}, (20)

x 7→min{f(x), g(x)} (21)

are continuous.

9.19. Prove that if 0 /∈ g(X), then the mapping

X → R : x 7→ f(x)

g(x)

is continuous.

9.20. Find a sequence of continuous functions fi : R → R, (i ∈ N), such that
the function

R → R : x 7→ sup{ fi(x) | i ∈ N }
is not continuous.

9.21. Let X be a topological space. Prove that a function f : X → Rn :
x 7→ (f1(x), . . . , fn(x)) is continuous iff so are all functions fi : X → R with
i = 1, . . . , n.
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Real p × q-matrices form a space Mat(p × q, R), which differs from Rpq

only in the way of numeration of its natural coordinates (they are numerated
by pairs of indices).

9.22. Let f : X → Mat(p × q, R) and g : X → Mat(q × r, R) be continuous
maps. Prove that then

X → Mat(p × r, R) : x 7→ g(x)f(x)

is a continuous map.

Recall that GL(n; R) is the subspace of Mat(n × n, R) consisting of all
invertible matrices.

9.23. Let f : X → GL(n; R) be a continuous map. Prove that X →
GL(n; R) : x 7→ (f(x))−1 is continuous.

§9◦7 Continuity of Distances

9.L. For every subset A of a metric space X, the function X → R : x 7→
ρ(x,A) (see Section §4) is continuous.

9.24. Prove that a topology of a metric space is the coarsest topology with
respect to which the function X → R : x 7→ ρ(x, A) is continuous for every
A ⊂ X .

§9◦8 Isometry

A mapping f of a metric space X into a metric space Y is an iso-

metric embedding if ρ
(
f(a), f(b)

)
= ρ(a, b) for any a, b ∈ X. A bijective

isometric embedding is an isometry .

9.M. Every isometric embedding is injective.

9.N. Every isometric embedding is continuous.

§9◦9 Contractive Maps

A mapping f : X → X of a metric space X is contractive if there exists
α ∈ (0, 1) such that ρ

(
f(a), f(b)

)
≤ αρ(a, b) for any a, b ∈ X .

9.25. Prove that every contractive mapping is continuous.

Let X and Y be metric spaces. A mapping f : X → Y is a Hölder

mapping if there exist C > 0 and α > 0 such that ρ
(
f(a), f(b)

)
≤ Cρ(a, b)α

for any a, b ∈ X .

9.26. Prove that every Hölder mapping is continuous.
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§9◦10 Sets Defined by Systems of Equations and Inequalities

9.O. Let fi (i = 1, . . . , n) be continuous mappings X → R. Then the
subset of X consisting of solutions of the system of equations

f1(x) = 0, . . . , fn(x) = 0

is closed.

9.P. Let fi (i = 1, . . . , n) be continuous mappings X → R. Then the
subset of X consisting of solutions of the system of inequalities

f1(x) ≥ 0, . . . , fn(x) ≥ 0

is closed, while the set consisting of solutions of the system of inequalities

f1(x) > 0, . . . , fn(x) > 0

is open.

9.27. Where in 9.O and 9.P a finite system can be replaced by an infinite
one?

9.28. Prove that in Rn (n ≥ 1) every proper algebraic set (i.e., a set defined
by algebraic equations) is nowhere dense.

§9◦11 Set-Theoretic Digression: Covers

A collection Γ of subsets of a set X is a cover or a covering of X if
X is the union of sets belonging to Γ, i.e., X =

⋃
A∈ΓA. In this case,

elements of Γ cover X.

There is also a more general meaning of these words. A collection Γ
of subsets of a set Y is a cover or a covering of a set X ⊂ Y if X is
contained in the union of the sets in Γ, i.e., X ⊂ ⋃

A∈ΓA. In this case,
the sets belonging to Γ are also said to cover X.

§9◦12 Fundamental Covers

Consider a cover Γ of a topological space X. Each element of Γ inher-
its a topological structure from X. When are these structures sufficient
for recovering the topology of X? In particular, under what conditions
on Γ does the continuity of a map f : X → Y follow from that of its
restrictions to elements of Γ? To answer these questions, solve Prob-
lems 9.29–9.30 and 9.Q–9.V.

9.29. Find out whether or not this is true for the following covers:
(a) X = [0, 2], and Γ = {[0, 1], (1, 2]};
(b) X = [0, 2], and Γ = {[0, 1], [1, 2]};
(c) X = R, and Γ = {Q, R r Q};
(d) X = R, and Γ is a set of all one-point subsets of R.

A cover Γ of a space X is fundamental if a set U ⊂ X is open iff for
every A ∈ Γ the set U ∩A is open in A.
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9.Q. A cover Γ of a space X is fundamental iff a set U ⊂ X is open,
provided U ∩A is open in A for every A ∈ Γ.

9.R. A cover Γ of a space X is fundamental iff a set F ⊂ X is closed,
provided F ∩A is closed A for every A ∈ Γ.

9.30. The cover of a topological space by singletons is fundamental iff the
space is discrete.

A cover of a topological space is open if it consists of open sets, and
it is closed if it consists of closed sets. A cover of a topological space is
locally finite if every point of the space has a neighborhood intersecting
only a finite number of elements of the cover.

9.S. Every open cover is fundamental.

9.T. A finite closed cover is fundamental.

9.U. Every locally finite closed cover is fundamental.

9.V. Let Γ be a fundamental cover of a topological space X, and let
f : X → Y be a mapping. If the restriction of f to each element of Γ is
continuous, then so is f .

A cover Γ′ is a refinement of a cover Γ if every element of Γ′ is contained
in an element of Γ.

9.31. Prove that if a cover Γ′ is a refinement of a cover Γ and Γ′ is funda-
mental, then so is Γ.

9.32. Let ∆ be a fundamental cover of a topological space X , and Γ be a
cover of X such that ΓA = {U ∩ A | U ∈ Γ } is a fundamental cover for
subspace A ⊂ X for every A ∈ ∆. Prove that Γ is a fundamental cover.

9.33. Prove that the property of being fundamental is local, i.e., if every
point of a space X has a neighborhood V such that ΓV = {U ∩ V | U ∈ Γ }
is fundamental, then Γ is fundamental.

§9x◦13 Monotone Maps

Let (X,≺) and (Y,≺) be posets. A map f : X → Y is
• (non-strictly ) monotonically increasing or just monotone if
f(a) � f(b) for any a, b ∈ X with a � b;

• (non-strictly ) monotonically decreasing or antimonotone if
f(b) � f(a) for any a, b ∈ X with a � b;

• strictly monotonically increasing or just strictly monotone if
f(a) ≺ f(b) for any a, b ∈ X with a ≺ b;

• strictly monotonically decreasing or strictly antimonotone if
f(b) ≺ f(a) for any a, b ∈ X with a ≺ b.

9x:A. Let X and Y be linearly ordered sets. With respect to the interval
topology in X and Y any surjective strictly monotone or antimonotone
mapping X → Y is continuous.
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9x:1. Show that the surjectivity condition in 9x:A is needed.

9x:2. Is it possible to remove the word strictly from the hypothesis of The-
orem 9x:A?

9x:3. Under conditions of Theorem 9x:A, is f continuous with respect to the
right-ray or left-ray topologies?

9x:B. A mapping of a poset to a poset is monotone iff it is continuous
with respect to the poset topologies.

§9x◦14 Gromov–Hausdorff Distance

9x:C. For any metric spaces X and Y , there exists a metric space Z
such that X and Y can be isometrically embedded into Z.

Having isometrically embedded two metric space in a single one, we
can consider the Hausdorff distance between their images (see. §4x◦15).
The infimum of such Hausdorff distances over all pairs of isometric em-
beddings of metric spaces X and Y into metric spaces is the Gromov–

Hausdorff distance between X and Y .

9x:D. Does there exist metric spaces with infinite Gromov–Hausdorff
distance?

9x:E. Prove that the Gromov–Hausdorff distance is symmetric and sat-
isfies the triangle inequality.

9x:F. Riddle. In what sense the Gromov–Hausdorff distance can satisfy
the first axiom of metric?

§9x◦15 Functions on the Cantor Set and Square-Filling Curves

Recall that the Cantor set K is the set of real numbers that can be
presented as sums of series of the form

∑∞
n=1

an

3n with an ∈ {0, 2}.

9x:G. Consider the map

γ1 : K → [0, 1] :

∞∑

n=1

an

3n
7→ 1

2

∞∑

n=1

an

2n
.

Prove that it is a continuous surjection. Sketch the graph of γ1.

9x:H. Prove that the function

K → K :

∞∑

n=1

an

3n
7→

∞∑

n=1

a2n

3n

is continuous.

Denote by K2 the set {(x, y) ∈ R2 | x ∈ K, y ∈ K}.
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9x:I. Prove that the map

γ2 : K → K2 :
∞∑

n=1

an

3n
7→
(

∞∑

n=1

a2n−1

3n
,

∞∑

n=1

a2n

3n

)

is a continuous surjection.

The unit segment [0, 1] is denoted by I, the set

{(x1, . . . , xn) ⊂ Rn | 0 ≤ xi ≤ 1 for each i}
is denoted by In and called the (unit) n-cube.

9x:J. Prove that the map γ3 : K → I2 defined as the composition of
γ2 : K → K2 and K2 → I2 : (x, y) 7→ (γ1(x), γ1(y)) is a continuous
surjection.

9x:K. Prove that the map γ3 : K → I2 is a restriction of a continuous
map. (Cf. 2x:B.2.)

The latter map is a continuous surjection I → I2. Thus, this is a curve
filling the square. A curve with this property was first constructed by
G. Peano in 1890. Though the construction sketched above involves the
same ideas as the original Peano’s construction, the two constructions
are slightly different. Since then a lot of other similar examples have
been found. You may find a nice survey of them in Hans Sagan’s book
Space-Filling Curves, Springer-Verlag 1994. Here is a sketch of Hilbert’s
construction.

9x:L. Prove that there exists a sequence of polygonal maps fn : I → I2

such that
(a) fn connects all centers of the squares forming the obvious subdivision

of I2 into 4n equal squares with side 1/2n;

(b) dist(fn(x), fn−1(x)) ≤
√

2/2n+1 for any x ∈ I (here dist denotes the
metric induced on I2 from the standard Euclidean metric of R2).

9x:M. Prove that any sequence of paths fn : I → I2 satisfying the
conditions of 9x:L converges to a map f : I → I2 (i.e., for any x ∈ I
there exists a limit f(x) = limn→∞ fn(x)), this map is continuous, and
its image is dense in I2.

9x:N.2 Prove that any continuous map I → I2 with dense image is
surjective.

9x:O. Generalize 9x:I – 9x:K, 9x:L – 9x:N to obtain a continuous surjec-
tion of I onto In.

2Although this problem can be solved by using theorems that are well known
from Calculus, we have to mention that it would be more appropriate to solve it after
Section §16. Cf. Problems 16.P, 16.U, and 16.K.



§10 Homeomorphisms

§10◦1 Definition and Main Properties of Homeomorphisms

An invertible mapping is a homeomorphism if both this mapping and
its inverse are continuous.

10.A. Find an example of a continuous bijection which is not a homeo-
morphism.

10.B. Find a continuous bijection [0, 1) → S1 which is not a homeomor-
phism.

10.C. The identity map of a topological space is a homeomorphism.

10.D. A composition of homeomorphisms is a homeomorphism.

10.E. The inverse of a homeomorphism is a homeomorphism.

§10◦2 Homeomorphic Spaces

A topological space X is homeomorphic to a space Y if there exists a
homeomorphism X → Y .

10.F. Being homeomorphic is an equivalence relation.

10.1. Riddle. How is Theorem 10.F related to 10.C–10.E?

§10◦3 Role of Homeomorphisms

10.G. Let f : X → Y be a homeomorphism. Then U ⊂ X is open (in
X) iff f(U) is open (in Y ).

10.H. f : X → Y is a homeomorphism iff f is a bijection and determines
a bijection between the topological structures of X and Y .

10.I. Let f : X → Y be a homeomorphism. Then for every A ⊂ X
(a) A is closed in X iff f(A) is closed in Y ;
(b) f(ClA) = Cl(f(A));
(c) f(IntA) = Int(f(A));
(d) f(FrA) = Fr(f(A));
(e) A is a neighborhood of a point x ∈ X iff f(A) is a neighborhood of

the point f(x);
(f) etc.

Therefore, from the topological point of view, homeomorphic spaces
are completely identical: a homeomorphism X → Y establishes a one-
to-one correspondence between all phenomena in X and Y that can be
expressed in terms of topological structures. 3

3This phenomenon was used as a basis for a definition of the subject of topol-
ogy in the first stages of its development, when the notion of topological space had

62
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§10◦4 More Examples of Homeomorphisms

10.J. Let f : X → Y be a homeomorphism. Prove that for every A ⊂ X
the submapping ab(f) : A→ f(A) is also a homeomorphism.

10.K. Prove that every isometry (see Section §9) is a homeomorphism.

10.L. Prove that every nondegenerate affine transformation of Rn is a
homeomorphism.

10.M. Let X and Y be two linearly ordered sets. Any strictly monotone
surjection f : X → Y is a homeomorphism with respect to the interval
topological structures in X and Y .

10.N Corollary. Any strictly monotone surjection f : [a, b] → [c, d] is a
homeomorphism.

10.2. Let R be a positive real. Prove that the inversion

τ : Rn r 0 → Rn r 0 : x 7→ Rx

|x|2

is a homeomorphism.

10.3. Let H = { z ∈ C | Im z > 0 } be the upper half-plane, let a, b, c, d ∈ R,

and let

∣∣∣∣
a b
c d

∣∣∣∣ > 0. Prove that

f : H → H : z 7→ az + b

cz + d

is a homeomorphism.

10.4. Let f : R → R be a bijection. Prove that f is a homeomorphism iff f
is a monotone function.

10.5. 1) Prove that every bijection of an indiscrete space onto itself is a
homeomorphism. Prove the same 2) for a discrete space and 3) RT1 .

10.6. Find all homeomorphisms of the space (see Section §2) to itself.

10.7. Prove that every continuous bijection of the arrow onto itself is a
homeomorphism.

10.8. Find two homeomorphic spaces X and Y and a continuous bijection
X → Y which is not a homeomorphism.

not been developed yet. Then mathematicians studied only subspaces of Euclidean
spaces, their continuous mappings, and homeomorphisms. Felix Klein in his famous
Erlangen Program classified various geometries that had emerged up to that time,
like Euclidean, Lobachevsky, affine, and projective geometries, and defined topology
as a part of geometry that deals with properties preserved by homeomorphisms. In
fact, it was not assumed to be a program in the sense of being planned, although it
became a kind of program. It was a sort of dissertation presented by Klein for getting
a professor position at the Erlangen University.
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10.9. Is γ2 : K → K2 considered in Problem 9x:I a homeomorphism? Recall
that K is the Cantor set, K2 = {(x, y) ∈ R2 | x ∈ K, y ∈ K} and γ2 is defined
by

∞∑

k=1

ak

3k
7→
(

∞∑

k=1

a2k−1

3k
,

∞∑

k=1

a2k

3k

)

§10◦5 Examples of Homeomorphic Spaces

Below the homeomorphism relation is denoted by ∼=. This notation
it is not commonly accepted. In other textbooks, any sign close to, but
distinct from =, e.g., ∼, ≃, ≈, is used.

10.O. Prove that
(a) [0, 1] ∼= [a, b] for any a < b;
(b) [0, 1) ∼= [a, b) ∼= (0, 1] ∼= (a, b] for any a < b;
(c) (0, 1) ∼= (a, b) for any a < b;
(d) (−1, 1) ∼= R;
(e) [0, 1) ∼= [0,+∞) and (0, 1) ∼= (0,+∞).

10.P. Let N = (0, 1) ∈ S1 be the North Pole of the unit circle. Prove
that S1 rN ∼= R1.

10.Q. The graph of a continuous real-valued function defined on an
interval is homeomorphic to the interval.

10.R. Sn r point ∼= Rn. (The first space is the “punctured sphere”.)

10.10. Prove that the following plane domains are homeomorphic. (Here and
below, our notation is sometimes slightly incorrect: in the curly brackets, we
drop the initial part “(x, y) ∈ R2 |”.)
(a) The whole plane R2;
(b) open square Int I2 = { x, y ∈ (0, 1) };
(c) open strip { x ∈ (0, 1) };
(d) open half-plane H = { y > 0 };
(e) open half-strip { x > 0, y ∈ (0, 1) };
(f) open disk B2 = { x2 + y2 < 1 };
(g) open rectangle { a < x < b, c < y < d };
(h) open quadrant { x, y > 0 };
(i) open angle { x > y > 0 };
(j) { y2 + |x| > x }, i.e., plane without the ray { y = 0 ≤ x };
(k) open half-disk { x2 + y2 < 1, y > 0 };
(l) open sector { x2 + y2 < 1, x > y > 0 }.

10.S. Prove that
(a) the closed disk D2 is homeomorphic to the square I2 = { (x, y) ∈

R2 | x, y ∈ [0, 1] };
(b) the open disk B2 = { (x, y) ∈ R2 | x2 + y2 < 1 } is homeomorphic to

the open square Int I2 = { (x, y) ∈ R2 | x, y ∈ (0, 1) };
(c) the circle S1 is homeomorphic to the boundary ∂I2 = I2 r Int I2 of

the square.
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10.T. Let ∆ ⊂ R2 be a planar bounded closed convex set with nonempty
interior U . Prove that
(a) ∆ is homeomorphic to the closed disk D2;
(b) U is homeomorphic to the open disk B2;
(c) Fr ∆ = FrU is homeomorphic to S1.

10.11. In which of the assertions in 10.T can we omit the assumption that
the closed convex set ∆ be bounded?

10.12. Classify up to homeomorphism all (nonempty) closed convex sets
in the plane. (Make a list without repeats; prove that every such a set is
homeomorphic to one in the list; postpone a proof of nonexistence of home-
omorphisms till Section §11.)

10.13*. Generalize the previous three problems to the case of sets in Rn

with arbitrary n.

The latter four problems show that angles are not essential in topol-
ogy, i.e., for a line or the boundary of a domain the property of having
angles is not preserved by homeomorphism. Here are two more problems
on this.

10.14. Prove that every simple (i.e., without self-intersections) closed poly-
gon in R2 (as well as in Rn with n > 2) is homeomorphic to the circle S1.

10.15. Prove that every nonclosed simple finite unit polyline in R2 (as well
as in Rn with n > 2) is homeomorphic to the segment [0, 1].

The following problem generalizes the technique used in the previous two
problems and is used more often than it may seem at first glance.

10.16. Let X and Y be two topological spaces equipped with fundamental
covers: X =

⋃
α Xα and Y =

⋃
α Yα. Suppose f : X → Y is a map such

that f(Xα) = Yα for each α and the submapping ab(f) : Xα → Yα is a
homeomorphism. Then f is a homeomorphism.

10.17. Prove that R2 r { |x|, |y| > 1 } ∼= I2 r {x, y ∈ {0, 1}}. (An “infinite
cross” is homeomorphic to a square without vertices.)

10.18*. A nonempty set Σ ⊂ R2 is “star-shaped with respect to a point
c” if Σ is a union of segments and rays with an endpoint at c. Prove that if
Σ is open, then Σ ∼= B2. (What can you say about a closed star-shaped set
with nonempty interior?)

10.19. Prove that the following plane figures are homeomorphic to each
other. (See 10.10 for our agreement about notation.)
(a) A half-plane: { x ≥ 0 };
(b) a quadrant: { x, y ≥ 0 };
(c) an angle: { x ≥ y ≥ 0 };
(d) a semi-open strip: { y ∈ [0, 1) };
(e) a square without three sides: { 0 < x < 1, 0 ≤ y < 1 };
(f) a square without two sides: { 0 ≤ x, y < 1 };
(g) a square without a side: { 0 ≤ x ≤ 1, 0 ≤ y < 1 };
(h) a square without a vertex: { 0 ≤ x, y ≤ 1 } r (1, 1);
(i) a disk without a boundary point: { x2 + y2 ≤ 1, y 6= 1 };
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(j) a half-disk without the diameter: { x2 + y2 ≤ 1, y > 0 };
(k) a disk without a radius: { x2 + y2 ≤ 1 } r [0, 1];
(l) a square without a half of the diagonal: { |x| + |y| ≤ 1 } r [0, 1].

10.20. Prove that the following plane domains are homeomorphic to each
other:
(a) punctured plane R2 r (0, 0);
(b) punctured open disk B2 r (0, 0) = { 0 < x2 + y2 < 1 };
(c) annulus { a < x2 + y2 < b }, where 0 < a < b;
(d) plane without a disk: R2 r D2;
(e) plane without a square: R2 r I2;
(f) plane without a segment: R2 r [0, 1];
(g) R2 r ∆, where ∆ is a closed bounded convex set with Int∆ 6= ∅.

10.21. Let X ⊂ R2 be an union of several segments with a common endpoint.
Prove that the complement R2 rX is homeomorphic to the punctured plane.

10.22. Let X ⊂ R2 be a simple nonclosed finite polyline. Prove that its
complement R2 r X is homeomorphic to the punctured plane.

10.23. Let K = {a1, . . . , an} ⊂ R2 be a finite set. The complement R2 r K
is a plane with n punctures. Prove that any two planes with n punctures
are homeomorphic, i.e., the position of a1, . . . , an in R2 does not affect the
topological type of R2 r {a1, . . . , an}.
10.24. Let D1, . . . , Dn ⊂ R2 be pairwise disjoint closed disks. The comple-
ment of the union of its interiors is said to be plane with n holes. Prove that
a plane with n holes is homeomorphic to a plane with n punctures.

10.25. Prove that any two planes with n holes are homeomorphic, i.e., the
location of disks D1, . . . , Dn does not affect the topological type of R2 r

∪n
i=1 IntDi.

10.26. Let f, g : R → R be two continuous functions such that f < g. Prove
that the “strip” { (x, y) ∈ R2 | f(x) ≤ y ≤ g(x) } bounded by their graphs is
homeomorphic to the closed strip { (x, y) | y ∈ [0, 1] }.
10.27. Prove that a mug (with a handle) is homeomorphic to a doughnut.

10.28. Arrange the following items to homeomorphism classes: a cup, a
saucer, a glass, a spoon, a fork, a knife, a plate, a coin, a nail, a screw, a bolt,
a nut, a wedding ring, a drill, a flower pot (with a hole in the bottom), a key.

10.29. In a spherical shell (the space between two concentric spheres), one
drilled out a cylindrical hole connecting the boundary spheres. Prove that
the rest is homeomorphic to D3.

10.30. In a spherical shell, one made a hole connecting the boundary spheres
and having the shape of a knotted tube (see Figure 1). Prove that the rest
of the shell is homeomorphic to D3.

10.31. Prove that surfaces shown in Figure 2 are homeomorphic (they are
called handles).

10.32. Prove that surfaces shown in the Figure 3 are homeomorphic. (They
are homeomorphic to a Klein bottle with two holes. More details about this is
given in Section §21.)
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Figure 1.

Figure 2.

Figure 3.

10.33*. Prove that R3 r S1 ∼= R3 r
(
R1 ∪ (0, 0, 1)

)
. (What can you say in

the case of Rn?)

10.34. Prove that the subset of Sn defined in the standard coordinates in
Rn+1 by the inequality x2

1 +x2
2 + · · ·+x2

k < x2
k+1 + · · ·+x2

n is homeomorphic

to Rn r Rn−k.

§10◦6 Examples of Nonhomeomorphic Spaces

10.U. Spaces consisting of different number of points are not homeo-
morphic.

10.V. A discrete space and an indiscrete space (having more than one
point) are not homeomorphic.
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10.35. Prove that the spaces Z, Q (with topology induced from R), R, RT1 ,
and the arrow are pairwise not homeomorphic.

10.36. Find two spaces X and Y that are not homeomorphic, but there exist
continuous bijections X → Y and Y → X .

§10◦7 Homeomorphism Problem and Topological Properties

One of the classical problems in topology is the homeomorphism prob-

lem: to find out whether two given topological spaces are homeomorphic.
In each special case, the character of solution depends mainly on the an-
swer. In order to prove that two spaces are homeomorphic, it suffices
to present a homeomorphism between them. Essentially this is what
one usually does in this case (see the examples above). To prove that
two spaces are not homeomorphic, it does not suffice to consider any
special mapping, and usually it is impossible to review all the mappings.
Therefore, for proving the nonexistence of a homeomorphism one uses in-
direct arguments. In particular, we can find a property or a characteristic
shared by homeomorphic spaces and such that one of the spaces has it,
while the other does not. Properties and characteristics that are shared
by homeomorphic spaces are called topological properties and invariants.
Obvious examples are the cardinality (i.e., the number of elements) of
the set of points and the set of open sets (cf. Problems 10.34 and 10.U).
Less obvious properties are the main object of the next chapter.

§10◦8 Information: Nonhomeomorphic Spaces

Euclidean spaces of different dimensions are not homeomorphic. The
disks Dp and Dq with p 6= q are not homeomorphic. The spheres Sp, Sq

with p 6= q are not homeomorphic. Euclidean spaces are homeomorphic
neither to balls, nor to spheres (of any dimension). Letters A and B

are not homeomorphic (if the lines are absolutely thin!). The punctured
plane R2 r point is not homeomorphic to the plane with a hole: R2 r

{ x2 + y2 < 1 }.

These statements are of different degrees of difficulty. Some of them
will be considered in the next section. However, some of them can
not be proved by techniques of this course. (See, e.g., D. B. Fuchs,
V. A. Rokhlin. Beginner’s course in topology: Geometric chapters.
Berlin, New York: Springer-Verlag, 1984.)

§10◦9 Embeddings

A continuous mapping f : X → Y is a (topological) embedding if the
submapping ab(f) : X → f(X) is a homeomorphism.

10.W. The inclusion of a subspace into a space is an embedding.

10.X. Composition of embeddings is an embedding.
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10.Y. Give an example of a continuous injection which is not a topo-
logical embedding. (Find such an example above and create a new one.)

10.37. Find topological spaces X and Y such that X can be embedded into
Y , Y can be embedded into X , but X 6∼= Y .

10.38. Prove that Q cannot be embedded into Z.

10.39. 1) Can a discrete space be embedded into an indiscrete space? 2) How
about vice versa?

10.40. Prove that the spaces R, RT1 , and the arrow cannot be embedded
into each other.

10.41 Corollary of Inverse Function Theorem. Deduce from the Inver-
se Function Theorem (see, e.g., any course of advanced calculus) the following
statement:

Let f : Rn → Rn be a continuously differentiable mapping whose Jaco-
bian det(∂fi/∂xj) does not vanish at the origin 0 ∈ Rn. Then there exists a
neighborhood U of the origin such that the restriction f |U : U → Rn is an
embedding and f(U) is open.

It is of interest that if U ⊂ Rn is an open set, then any continuous
injection f : U → Rn is an embedding and f(U) is also open in Rn.

§10◦10 Equivalence of Embeddings

Two embeddings f1, f2 : X → Y are equivalent if there exist homeo-
morphisms hX : X → X and hY : Y → Y such that f2 ◦ hX = hY ◦ f1.
(The latter equality may be stated as follows: the diagram

X
f1−−−→ Y

hX

y
yhY

X
f2−−−→ Y

is commutative.)

An embedding S1 → R3 is a knot.

10.42. Prove that knots f1, f2 : S1 → R3 with f1(S
1) = f2(S

1) are equiva-
lent.

10.43. Prove that knots with images are equivalent.

§10◦11 Information
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There are nonequivalent knots. For instance, those with images

and .



Proofs and Comments

8.A If x ∈ f−1(B), then f(x) ∈ B.

8.B Obvious. For each y ∈ B, there exists an element
x such that f(x) = y. By the definition of the preimage, x ∈ f−1(B),
whence y ∈ f(f−1(B)). Thus, B ⊂ f(f−1(B)). The opposite inclusion
holds true for any set, see 8.A.

8.C (a) =⇒ (b) Assume that f(C) = B implies C = f−1(B). If
there exist distinct a1, a2 ∈ f−1(B) such that f(a1) = f(a2), then also
f(f−1(B) r a2) = B, which contradicts the assumption.
(b) =⇒ (a) Assume now that there exists C 6= f−1(B) such that f(C) =
B. Clearly, C ⊂ f−1(B). Therefore, C can differ from f−1(B) only if
f−1(B) rC 6= ∅. Take a1 ∈ f−1(B) rC, let b = f(a1). Since f(C) = B,
there exists a2 ∈ C with f(a2) = f(a1), but a2 6= a1 because a2 ∈ C,
while a1 6∈ C.

8.D This follows from 8.C.

8.E Let x ∈ A. Then f(x) = y ∈ f(A), whence x ∈ f−1(f(A)).

8.F Both equalities are obviously equivalent to the following state-
ment: f(x) /∈ f(A) for each x /∈ A.

8.G in−1(B) = {x ∈ A | x ∈ B} = A ∩ B.

8.H Let x ∈ X. Then

h◦ (g ◦f)(x) = h(g ◦f)(x)) = h(g(f(x))) = (h◦ g)(f(x)) = (h◦ g)◦f(x).

8.J Let x1 6= x2. Then f(x1) 6= f(x2), because f is injective, and
g(f(x1)) 6= g(f(x2)), because g is injective.

8.K If f is not injective, then there exist x1 6= x2 with f(x1) = f(x2).
However, then (g ◦ f)(x1) = (g ◦ f)(x2), which contradicts the injectivity
of g ◦ f .

8.L Let f : X → Y and g : Y → Z be surjective. Then we have
f(X) = Y , whence g(f(X)) = g(Y ) = Z.

8.M This follows from the obvious inclusion Im(g ◦ f) ⊂ Im g.

8.N This follows from 8.J and 8.L.

8.O Use 8.K and 8.M. Let f : X → Y be a bijection.
Then, by the surjectivity, for each y ∈ Y there exists x ∈ X such that
y = f(x), and, by the injectivity, such an element of X is unique. Putting
g(y) = x, we obtain a mapping g : Y → X. It is easy to check (please,
do it!) that g is inverse to f .

8.P This is actually obvious. On the other hand, it is interesting
to look at “mechanical” proof.Let two maps g, h : Y → X be inverse to

71



PROOFS AND COMMENTS 72

a map f : X → Y . Consider the composition g ◦ f ◦ h : Y → X. On
the one hand, g ◦ f ◦ h = (g ◦ f) ◦ h = idX ◦h = h. On the other hand,
g ◦ f ◦ h = g ◦ (f ◦ h) = g ◦ idY = g.

9.A Let f : X → Y be a map. If f : X → Y is continuous,
then, for each closed set F ⊂ Y , the set X r f−1(F ) = f−1(Y r F ) is
open, and therefore f−1(F ) is closed. Exchange the words open
and closed in the above argument.

9.C If a set U is open in X, then its preimage in−1(U) = U ∩ A is
open in A by the definition of the relative topology.

9.D If U ∈ ΩA, then U = V ∩ A for some V ∈ Ω. If the map in :
(A,Ω′) → (X,Ω) is continuous, then the preimage U = in−1(V ) = V ∩A
of a set V ∈ Ω belongs to Ω′. Thus, ΩA ⊂ Ω′.

9.E Let f : X → Y and g : Y → Z be continuous maps. We must
show that for every U ⊂ Z which is open in Z its preimage (g◦f)−1(U) =
f−1(g−1(U)) is open in X. The set g−1(U) is open in Y by continuity of
g. In turn, its preimage f−1(g−1(U)) is open in X by the continuity of
f .

9.F (f |A,B)−1(V ) = (f |A,B)−1(U ∩ B) = A ∩ f−1(U).

9.G Use 9.F. Use the fact that f = inf(X) ◦ ab f .

9.H The preimage of any set under a continuous map either is empty
or coincides with the whole space.

9.I Let a ∈ X. Then for any neighborhood U of f(a) we can
construct a desired neighborhood V of a just by putting V = f−1(U):
indeed, f(V ) = f(f−1(U)) ⊂ U . We must check that the preimage
of each open set is open. Let U ⊂ Y be an open set in Y . Take a ∈
f−1(U). By continuity of f at a, there exists a neighborhood V of a such
that f(V ) ⊂ U . Then, obviously, V ⊂ f−1(U). This proves that any
point of f−1(U) is internal, and hence f−1(U) is open.

9.J Proving each of the implications, use Theorem 4.I, according
to which any neighborhood of a point in a metric space contains a ball
centered at the point.

9.K The condition “for every point x ∈ X the inequality ρ(x, a) < δ

implies ρ
(
f(x), f(a)

)
< ε” means that f(Bδ(a)) ⊂ BGe(f(a)). Now,

apply 9.J.

9.L This immediately follows from the inequality of Problem 4.35.

9.M If f(x) = f(y), then ρ(f(x), f(y)) = 0, whence ρ(x, y) = 0.

9.N Use the obvious fact that the primage of any open ball under
isometric embedding is an open ball of the same radius.
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9.O The set of solutions of the system is the intersection of the
preimages of the point 0 ∈ R. As the maps are continuos and the point
is closed, the preimages of the point are closed, and hence the intersection
of the preimages is closed.

9.P The set of solutions of a system of nonstrict inequalities is the
intersection of preimages of closed ray [0,+∞), the set of solutions of a
system of strict inequalities is the intersection of the preimages of open
ray (0,+∞).

9.Q Indeed, it makes no sense to require the necessity: the intersec-
tion of an open set with any set A is open in A anyway.

9.R Consider the complement X r F of F and apply 9.Q.

9.S Let Γ be an open cover of a space X. Let U ⊂ X be a set such
that U ∩ A is open in A for any A ∈ Γ. By 5.E, open subset of open
subspace is open in the whole space. Therefore, A ∩ U is open in X.
Then U =

⋃
A∈ΓA ∩ U is open as a union of open sets.

9.T Argue as in the preceding proof, but instead of the definition of a
fundamental cover use its reformulation 9.R, and instead of Theorem 5.E
use Theorem 5.F, according to which a closed set of a closed subspace is
closed in the entire space.

9.U Denote the space by X and the cover by Γ. As Γ is locally finite,
each point a ∈ X has a neighborhood Ua meeting only a finite number
of elements of Γ. Form the cover Σ = {Ua | a ∈ X} of X. Let U ⊂ X be
a set such that U ∩A is open for each A ∈ Γ. By 9.T, {A ∩ Ua | A ∈ Γ}
is a fundamental cover of Ua for any a ∈ X. Hence Ua ∩U is open in Ua.
By 9.S, Σ is fundamental. Hence, U is open.

9.V Let U be a set open in Y . As the restrictions of f to elements of
Γ are continuous, the preimage of U under restriction of f to any A ∈ Γ
is open. Obviously, (f |A)−1(U) = f−1(U)∩A. Hence f−1(U)∩A is open
in A for any A ∈ Γ. By hypothesis, Γ is fundamental. Therefore f−1(U)
is open in X. We have proved that the preimage of any open set under
f is open. Thus f is continuous.

9x:A It suffices to prove that the preimage of any base open set is
open. The proof is quite straight-forward. For instance, the preimage of
{x | a ≺ x ≺ b} is {x | c ≺ x ≺ d}, where f(c) = a and f(d) = b, which
is a base open set.

9x:B Let X and Y be two posets, f : X → Y a map. Assume
that f : X → Y is monotone. To prove the continuity of f it suffices to
prove that the preimage of each base open set is open. Put U = C+

Y (b)

and V = f−1(U). If x ∈ V (i.e., b ≺ f(x)), then for any y ∈ C+
X(x) (i.e.,

x ≺ y) we have y ∈ V . Therefore, V =
⋃

f(x)∈U

C+
X(x). This set is open as
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a union of open base sets (in the poset topology of X).
Let a, b ∈ X and a ≺ b. Then b is contained in any neighborhood

of a. The set C+
Y (f(a)) is a neighborhood of f(a) in Y . By continuity of

f , a has a neighborhood in X whose f -image is contained in C+
Y (f(a)).

However, then the minimal neighborhood of a in X (i.e., C+
X(a)) also

has this property. Therefore, f(b) ∈ f(C+
X(a)) ⊂ C+

Y (f(a)), and hence
f(a) ≺ f(b).

9x:C Construct Z as the disjoint union of X and Y . In the union,
put the distance between two points in (the copy of) X (respectively, Y )
to be equal to the distance between the corresponding points in X (re-
spectively, Y ). To define the distance between points of different copies,
choose points x0 ∈ X and y0 ∈ Y , and put ρ(a, b) = ρX(a, x0)+ρY (y0, b)+
1 for a ∈ X and b ∈ Y . Check (this is easy, really), that this defines a
metric.

9x:D Yes. For example, consider a singleton and any unbounded
space.

9x:E Although, as we have seen solving the previous problem, the
Gromov–Hausdorff distance can be infinite, while symmetricity and the
triangle inequality were formulated above only for functions with finite
values, these two properties make sense if infinite values are admitted.
(The triangle inequality should be considered fulfilled if two or three
of the quantities involved are infinite, and not fulfilled if only one of
them is infinite.) The following construction helps to prove the triangle
inequality. Let metric spaces X and Y are isometrically embedded into a
metric space A, and metric spaces Y and Z are isometrically embedded
into a metric space B. Construct a new metric space in which A and B
would be isometrically embedded meeting in Y . To do this, add to A all
points of B r A. Put distances between these points to be equal to the
distances between them in B. Put the distance between x ∈ Ar B and
z ∈ B r A equal to inf{ρA(x, y) + ρB(y, z) | y ∈ A ∩ B}. Compare this
construction with the construction from the solution of Problem 9x:C.
Prove that this gives a metric space and use the triangle inequality for
the Hausdorff distance between X, Y , and Z in this space.

9x:F Partially, the answer is obvious. Certainly, the Gromov–
Hausdorff distance is nonnegative! But what if it is zero, in what sense
the spaces should be equal then? First, the most optimistic idea is that
then there should exist an isometric bijection between the spaces. But
this is not true, as we can see looking at the spaces Q and R with standard
distances in them. However, it is true for compact metric spaces.

10.A For example, consider the identity map of a discrete topolog-
ical space X onto the same set but equipped with indiscrete topology.
For another example, see 10.B.
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10.B Consider the map x 7→ (cos 2πx, sin 2πx).

10.C This and the next two statements directly follow from the
definition of a homeomorphism.

10.F See the solution of 10.1.

10.G Denote f(U) ⊂ Y by V . Since f is a bijection, we have
U = f−1(V ). We also denote f−1 : Y → X by g. We have
V = g−1(U), which is open by continuity of g. If V = f(U) is
open, then U = g(V ) is open as the preimage of an open set under a
continuous map.

10.H See 10.G.

10.I (a) A homeomorphism establishes a one-to-one correspondence
between open sets of X and Y . Hence, it also establishes a one-to-one
correspondence between closed sets of X and Y .
(b)–(f) Use the fact that the definitions of the closure, interior, boundary,
etc. can be given in terms of open and closed sets.

10.J Obviously, ab(f) is a bijection. The continuity of ab(f) and
(ab f)−1 follows from the general theorem 9.F on the continuity of a
submap of a continuous map.

10.K Any isometry is continuous, see 9.N ; the map inverse to an
isometry is an isometry.

10.L Recall that an affine transformation f : Rn → Rn is given by
the formula y = f(x) = Ax + b, where A is a matrix and b a vector; f
is nondegenerate if A is invertible, whence x = A−1(y − b) = A−1(y) −
A−1(b), which means that f is a bijection and f−1 is also a nondegenerate
affine transformation. Finally, f and f−1 are continuous, e.g., because
they are given in coordinates by linear formulas (see 9.18 and 9.21).

10.M Prove that f is invertible and f−1 is also strictly monotone.
Then apply 9x:A.

10.O Homeomorphisms of the form 〈0, 1〉 → 〈a, b〉 are defined,
for example, by the formula x 7→ a + (b − a)x, and homeomorphisms
(−1; 1) → R1 and 〈0, 1) → 〈0,+∞) by the formula x 7→ tan(πx/2). (In
the latter case, you can easily find, e.g., a rational formula, but it is of
interest that the above homeomorphism also arises quite often!)

10.P Observe that (1/4, 5/4) → S1 r N : t 7→ (cos 2πt, sin 2πt)
is a homeomorphism and use assertions (c) and (d) of the preceding
problem. Here is another, more sophisticated construction, which can be
of use in higher dimensions. The restriction f of the central projection
R2 r N → R1 (the x axis) to S1 r N is a homeomorphism. Indeed,
f is obviously invertible: f−1 is a restriction of the central projection
R2 r N → S1 r N . The map S1 r N → R is presented by formula
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(x, y) 7→ x
1−y

, and the inverse map by formula x 7→ ( 2x
x2+1

, x2−1
x2+1

). (Why

are these maps continuous?)

10.Q Check that the vertical projection to the x axis determines a
homeomorphism.

10.R As usual, we identify Rn and {x ∈ Rn+1 | xn+1 = 0}. Then
the restriction of the central projection

Rn+1 r (0, . . . , 0, 1) → Rn

to Sn r (0, . . . , 0, 1) is a homeomorphism, which is called the stereo-
graphic projection. For n = 2, it is used in cartography. It is in-
vertible: the inverse map is the restriction of the central projection
Rn+1 r (0, . . . , 0, 1) → Sn r (0, . . . , 0, 1) to Rn. The first map is defined
by formula

x = (x1, . . . , xn+1) 7→
(

x2

1 − xn+1

, . . . ,
xn

1 − xn+1

)
,

and the second one by

x = (x1, . . . , xn) 7→
(

2x1

|x|2 + 1
, . . . ,

2xn

|x|2 + 1
,
|x|2 − 1

|x|2 + 1

)
.

Check this. (Why are these maps continuous?) Explain how we can
obtain a solution of this problem geometrically from the second solution
to Problem 10.P.

10.S After reading the proof, you may see that sometimes formulas
are cumbersome, while a clearer verbal description is possible.
(a) Instead of I2 it is convenient to consider the homeomorphic square
K = {(x, y) | |x| ≤ 1, |y| ≤ 1} of double size centered at the origin.
(There is a linear homeomorphism I2 → K : (x, y) 7→ (2x − 1, 2y − 1).)
We have a homeomorphism

K → D2 : (x, y) 7→
(
xmax{|x|, |y|}√

x2 + y2
,
ymax{|x|, |y|}√

x2 + y2

)
.

Geometrically, this means that each segment joining the origin with a
point on the contour of the square is linearly mapped to the part of the
segment that lies within the circle.
(b), (c) Take suitable submappings of the above homeomorphism K →
D2. Certainly, assertion (b) follows from the previous problem. It is also
of interest that in case (c) we can use a much simpler formula:

∂K → S1 : (x, y) 7→
(

x√
x2 + y2

,
y√

x2 + y2

)
.
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(This is simply a central projection!) We can also divide the circle into
four arcs and map each of them to a side of K, cf. below.

10.T (a) For simplicity, assume that D2 ⊂ ∆. For x ∈ R2 r 0, let
a(x) be the (unique) positive number such that a(x) x

|x|
∈ Fr ∆. Then we

have a homeomorphism

∆ → D2 : x 7→ x

a(x)
if x 6= 0, while 0 7→ 0.

(Observe that in the case where ∆ is the square K, we obtain the home-
omorphism described in the preceding problem.)
(b), (c) Take suitable submappings of the above homeomorphism ∆ →
D2.

10.U There is no bijection between them.

10.V These spaces have different numbers of open sets.

10.W Indeed, if in : A → X is an inclusion, then the submapping
ab(in) : A→ A is the identity homeomorphism.

10.X Let f : X → Y and g : Y → Z be two embeddings. Then
the submapping ab(g ◦ f) : X → g(f(X)) is the composition of the
homeomorphisms ab(f) : X → f(X) and ab(g) : f(X) → g(f(X)).

10.Y The previous examples are [0, 1) → S1 and Z+ → {0} ∪
{

1
n

}∞
n=1

. Here is another one: Let f : Z → Q be a bijection and inQ : Q →
R the inclusion. Then the composition inQ ◦f : Z → R is a continuous
injection, but not an embedding.



CHAPTER 3

Topological Properties

§11 Connectedness

§11◦1 Definitions of Connectedness and First Examples

A topological space X is connected if X has only two subsets that
are both open and closed: the empty set ∅ and the entire X. Otherwise,
X is disconnected .

A partition of a set is a cover of this set with pairwise disjoint subsets.
To partition a set means to construct such a cover.

11.A. A topological space is connected, iff it has no partition into two
nonempty open sets, iff it has no partition into two nonempty closed sets.

11.1. 1) Is an indiscrete space connected? The same question for 2) the
arrow and 3) RT1 .

11.2. Describe explicitly all connected discrete spaces.

11.3. Describe explicitly all disconnected two-point spaces.

11.4. 1) Is the set Q of rational numbers (with the relative topology induced
from R) connected? 2) The same question for the set of irrational numbers.

11.5. Let Ω1 and Ω2 be two topologies in a set X , and let Ω2 be finer than
Ω1 (i.e., Ω1 ⊂ Ω2). 1) If (X, Ω1) is connected, is (X, Ω2) connected? 2) If
(X, Ω2) is connected, is (X, Ω1) connected?

§11◦2 Connected Sets

When we say that a set A is connected, this means that A lies in some
topological space (which should be clear from the context) and, equipped
with the relative topology, A a connected space.

11.6. Characterize disconnected subsets without mentioning the relative
topology.

11.7. Is the set {0, 1} connected 1) in R, 2) in the arrow, 3) in RT1?

11.8. Describe explicitly all connected subsets 1) of the arrow, 2) of RT1 .

11.9. Show that the set [0, 1] ∪ (2, 3] is disconnected in R.

11.10. Prove that every nonconvex subset of the real line is disconnected.
(In other words, each connected subset of the real line is a singleton or an
interval.)
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11.11. Let A be a subset of a space X . Prove that A is disconnected iff A
has two nonempty subsets B and C such that A = B ∪ C, B ∩ ClX C = ∅,
and C ∩ ClX B = ∅.

11.12. Find a space X and a disconnected subset A ⊂ X such that if U
and V are any two open sets partitioning X , then we have either U ⊃ A, or
V ⊃ A.

11.13. Prove that for every disconnected set A in Rn there are disjoint open
sets U, V ⊂ Rn such that A ⊂ U ∪ V , U ∩ A 6= ∅, and V ∩ A 6= ∅.

Compare 11.11–11.13 with 11.6.

§11◦3 Properties of Connected Sets

11.14. Let X be a space. If a set M ⊂ X is connected and A ⊂ X is
open-closed, then either M ⊂ A, or M ⊂ X r A.

11.B. The closure of a connected set is connected.

11.15. Prove that if a set A is connected and A ⊂ B ⊂ Cl A, then B is
connected.

11.C. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. As-
sume that any two sets in this family intersect. Then

⋃
λ∈ΛAλ is con-

nected. (In other words: the union of pairwise intersecting connected sets
is connected.)

11.D Special case. If A,B ⊂ X are two connected sets with A∩B 6= ∅,
then A ∪ B is also connected.

11.E. Let {Aλ}λ∈Λ be a family of connected subsets of a space X. As-
sume that each set in this family intersects Aλ0

for some λ0 ∈ Λ. Then⋃
λ∈ΛAλ is connected.

11.F. Let {Ak}k∈Z be a family of connected sets such that Ak∩Ak+1 6= ∅

for any k ∈ Z. Prove that
⋃

k∈ZAk is connected.

11.16. Let A and B be two connected sets such that A ∩ Cl B 6= ∅. Prove
that A ∪ B is also connected.

11.17. Let A be a connected subset of a connected space X , and let B ⊂
X r A be an open-closed set in the relative topology of X r A. Prove that
A ∪ B is connected.

11.18. Does the connectedness of A∪B and A∩B imply that of A and B?

11.19. Let A and B be two sets such that both their union and intersection
are connected. Prove that A and B are connected if both of them are 1) open
or 2) closed.

11.20. Let A1 ⊃ A2 ⊃ · · · be an infinite decreasing sequence of closed
connected sets in the plane R2. Is

⋂
∞

k=1 Ak a connected set?
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§11◦4 Connected Components

A connected component of a space X is a maximal connected subset
of X, i.e., a connected subset that is not contained in any other (strictly)
larger connected subset of X.

11.G. Every point belongs to some connected component. Furthermore,
this component is unique. It is the union of all connected sets containing
this point.

11.H. Two connected components either are disjoint or coincide.

A connected component of a space X is also called just a component

of X. Theorems 11.G and 11.H mean that connected components con-
stitute a partition of the whole space. The next theorem describes the
corresponding equivalence relation.

11.I. Prove that two points lie in the same component iff they belong to
the same connected set.

11.J Corollary. A space is connected iff any two of its points belong to
the same connected set.

11.K. Connected components are closed.

11.21. If each point of a space X has a connected neighborhood, then each
connected component of X is open.

11.22. Let x and y belong to the same component. Prove that any open-
closed set contains either both x and y, or none of them (cf. 11.36).

§11◦5 Totally Disconnected Spaces

A topological space is totally disconnected if all of its components are
singletons.

11.L Obvious Example. Any discrete space is totally disconnected.

11.M. The space Q (with the topology induced from R) is totally dis-
connected.

Note that Q is not discrete.

11.23. Give an example of an uncountable closed totally disconnected subset
of the line.

11.24. Prove that Cantor set (see 2x:B) is totally disconnected.

§11◦6 Boundary and Connectedness

11.25. Prove that if A is a proper nonempty subset of a connected space,
then Fr A 6= ∅.

11.26. Let F be a connected subset of a space X . Prove that if A ⊂ X and
neither F ∩ A, nor F ∩ (X r A) is empty, then F ∩ Fr A 6= ∅.



§11. CONNECTEDNESS 81

11.27. Let A be a subset of a connected space. Prove that if Fr A is con-
nected, then so is Cl A.

§11◦7 Connectedness and Continuous Maps

A continuous image of a space is its image under a continuous map-
ping.

11.N. A continuous image of a connected space is connected. (In other
words, if f : X → Y is a continuous map and X is connected, then f(X)
is also connected.)

11.O Corollary. Connectedness is a topological property.

11.P Corollary. The number of connected components is a topological
invariant.

11.Q. A space X is disconnected iff there is a continuous surjection
X → S0.

11.28. Theorem 11.Q often yields shorter proofs of various results concerning
connected sets. Apply it for proving, e.g., Theorems 11.B–11.F and Prob-
lems 11.D and 11.16.

11.29. Let X be a connected space and f : X → R a continuous function.
Then f(X) is an interval of R.

11.30. Suppose a space X has a group structure and the multiplication by
any element of the group is a continuous map. Prove that the component of
unity is a normal subgroup.

§11◦8 Connectedness on Line

11.R. The segment I = [0, 1] is connected.

There are several ways to prove Theorem 11.R. One of them is sug-
gested by 11.Q, but refers to a famous Intermediate Value Theorem from
calculus, see 12.A. However, when studying topology, it would be more
natural to find an independent proof and deduce Intermediate Value Theo-
rem from Theorems 11.R and 11.Q. Two problems below provide a sketch
of basically the same proof of 11.R. Cf. 2x:A below.

11.R.1 Bisection Method. Let U , V be subsets of I with V = I r U .
Let a ∈ U , b ∈ V , and a < b. Prove that there exists a nondecreasing
sequence an with a1 = a, an ∈ U , and a nonincreasing sequence bn with
b1 = b, bn ∈ V , such that bn − an = b−a

2n−1 .

11.R.2. Under assumptions of 11.R.1, if U and V are closed in I, then
which of them contains c = sup{an} = inf{bn}?

11.31. Deduce 11.R from the result of Problem 2x:A.

11.S. Prove that an open set in R has countably many connected com-
ponents.
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11.T. Prove that R1 is connected.

11.U. Each convex set in Rn is connected. (In particular, so are Rn

itself, the ball Bn, and the disk Dn.)

11.V Corollary. Intervals in R1 are connected.

11.W. Every star-shaped set in Rn is connected.

11.X Connectedness on Line. A subset of a line is connected iff it is an
interval.

11.Y. Describe explicitly all nonempty connected subsets of the real
line.

11.Z. Prove that the n-sphere Sn is connected. In particular, the circle
S1 is connected.

11.32. Consider the union of spiral

r = exp

(
1

1 + ϕ2

)
, with ϕ ≥ 0

(r, ϕ are the polar coordinates) and circle S1. 1) Is this set connected? 2) Will
the answer change if we replace the entire circle by some of its subsets?
(Cf. 11.15.)

11.33. Are the following subsets of the plane R2 connected:
(a) the set of points with both coordinates rational;
(b) the set of points with at least one rational coordinate;
(c) the set of points whose coordinates are either both irrational, or both

rational?

11.34. Prove that for any ε > 0 the ε-neighborhood of a connected subset
of Euclidean space is connected.

11.35. Prove that each neighborhood U of a connected subset A of Euclidean
space contains a connected neighborhood of A.

11.36. Find a space X and two points belonging to distinct components of
X such that each simultaneously open and closed set contains either both
points, or neither of them. (Cf. 11.22.)



§12 Application of Connectedness

§12◦1 Intermediate Value Theorem and Its Generalizations

The following theorem is usually included in Calculus. You can easily
deduce it from the material of this section. In fact, in a sense it is
equivalent to connectedness of the segment.

12.A Intermediate Value Theorem. A continuous function

f : [a, b] → R

takes every value between f(a) and f(b).

Many problems that can be solved by using Intermediate Value Theorem
can be found in Calculus textbooks. Here are few of them.

12.1. Prove that any polynomial of odd degree in one variable with real
coefficients has at least one real root.

12.B Generalization of 12.A. Let X be a connected space and f : X →
R a continuous function. Then f(X) is an interval of R.

12.C Corollary. Let J ⊂ R be an interval of the real line, f : X → R a
continuous function. Then f(J) is also an interval of R. (In other words,
continuous functions map intervals to intervals.)

§12◦2 Applications to Homeomorphism Problem

Connectedness is a topological property, and the number of connected
components is a topological invariant (see Section §10).

12.D. [0, 2] and [0, 1] ∪ [2, 3] are not homeomorphic.

Simple constructions assigning homeomorphic spaces to homeomor-
phic ones (e.g., deleting one or several points), allow us to use connect-
edness for proving that some connected spaces are not homeomorphic.

12.E. I, [0,∞), R1, and S1 are pairwise nonhomeomorphic.

12.2. Prove that a circle is not homeomorphic to a subspace of R1.

12.3. Give a topological classification of the letters of the alphabet: A, B, C,
D, . . . , regarded as subsets of the plane (the arcs comprising the letters are
assumed to have zero thickness).

12.4. Prove that square and segment are not homeomorphic.

Recall that there exist continuous surjections of the segment onto
square, which are called Peano curves, see Section §9.

12.F. R1 and Rn are not homeomorphic if n > 1.

83



§12. APPLICATION OF CONNECTEDNESS 84

Information. Rp and Rq are not homeomorphic unless p = q. This
follows, for instance, from the Lebesgue–Brouwer Theorem on the invari-
ance of dimension (see, e.g., W. Hurewicz and H. Wallman, Dimension
Theory , Princeton, NJ, 1941).

12.5. The statement “Rp is not homeomorphic to Rq unless p = q” implies
that Sp is not homeomorphic to Sq unless p = q.

§12x◦3 Induction on Connectedness

A mapping f is locally constant if each point of its source space has a
neighborhood U such that the restriction of f to U is constant.

12x:1. Prove that any locally constant mapping is continuous.

12x:2. A locally constant mapping on a connected set is constant.

12x:3. Riddle. How are 11.26 and 12x:2 related?

12x:4. Let G be a group equipped with a topology such that for any g ∈ G
the map G → G : x 7→ xgx−1 is continuous, and let G with this topology
be connected. Prove that if the topology induced in a normal subgroup H of
G is discrete, then H is contained in the center of G (i.e., hg = gh for any
h ∈ H and g ∈ G).

12x:5 Induction on Connectedness. Let E be a property of subsets of
a topological space X such that the union of sets with nonempty pairwise
intersections inherits this property from the sets involved. Prove that if X is
connected and each point in X has a neighborhood with property E , then X
also has property E .

12x:6. Prove 12x:2 and solve 12x:4 using 12x:5.

For more applications of induction on connectedness, see 13.U, 13x:4,
13x:6, and 13x:8.

§12x◦4 Dividing Pancakes

12x:7. Any irregularly shaped pancake can be cut in half by one stroke of
the knife made in any prescribed direction. In other words, if A is a bounded
open set in the plane and l is a line in the plane, then there exists a line L
parallel to l that divides A in half by area.

12x:8. If, under the assumptions of 12x:7, A is connected, then L is unique.

12x:9. Suppose two irregularly shaped pancakes lie on the same platter; show
that it is possible to cut both exactly in half by one stroke of the knife. In
other words: if A and B are two bounded regions in the plane, then there
exists a line in the plane that halves each region by area.

12x:10. Prove that a plane pancake of any shape can be divided to four
pieces of equal area by two straight cuts orthogonal to each other. In other
words, if A is a bounded connected open set in the plane, then there are two
perpendicular lines that divide A into four parts having equal areas.
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12x:11. Riddle. What if the knife is curved and makes cuts of a shape
different from the straight line? For what shapes of the cuts can you formulate
and solve problems similar to 12x:7–12x:10?

12x:12. Riddle. Formulate and solve counterparts of Problems 12x:7–
12x:10 for regions in three-space. Can you increase the number of regions
in the counterpart of 12x:7 and 12x:9?

12x:13. Riddle. What about pancakes in Rn?



§13 Path-Connectedness

§13◦1 Paths

A path in a topological space X is a continuous mapping of the seg-
ment I = [0, 1] to X. The point s(0) is the initial point of a path
s : I → X, while s(1) is the final point of s. We say that the path
s connects s(0) with s(1). This terminology is inspired by an image of
a moving point: at the moment t ∈ [0, 1], the point is at s(t). To tell
the truth, this is more than what is usually called a path, since besides
information on the trajectory of the point it contains a complete account
on the movement: the schedule saying when the point goes through each
point.

13.1. If s : I → X is a path, then the image s(I) ⊂ X is connected.

13.1. Let s : I → X be a path connecting a point in a set A ⊂ X
with a point in X r A. Prove that s(I) ∩ Fr(A) 6= ∅.

13.2. Let A be a subset of a space X , inA : A → X the inclusion. Prove
that u : I → A is a path in A iff the composition inA ◦u : I → X is a path in
X .

A constant map sa : I → X : x 7→ a is a stationary path. For a
path s, the inverse path is defined by t 7→ s(1 − t). It is denoted by s−1.
Although, strictly speaking, this notation is already used (for the inverse
mapping), the ambiguity of notation usually leads to no confusion: as a
rule, inverse mappings do not appear in contexts involving paths.

Let u : I → X and v : I → X be paths such that u(1) = v(0). We
define

uv : I → X : t 7→
{
u(2t) if t ∈ [0, 1

2
],

v(2t− 1) if t ∈ [1
2
, 1].

(22)

13.B. Prove that the above map uv : I → X is continuous (i.e., it is a
path). Cf. 9.T and 9.V.

The path uv is the product of u and v. Recall that it is defined only
if the final point u(1) of u is the initial point v(0) of v.

§13◦2 Path-Connected Spaces

A topological space is path-connected (or arcwise connected) if any
two points can be connected in it by a path.

13.C. Prove that I is path-connected.

13.D. Prove that the Euclidean space of any dimension is path-connected.

13.E. Prove that the n-sphere Sn with n > 0 is path-connected.
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13.F. Prove that the 0-sphere S0 is not path-connected.

13.3. Which of the following spaces are path-connected:

(a) a discrete space; (b) an indiscrete space;
(c) the arrow; (d) RT1 ;
(e) ?

§13◦3 Path-Connected Sets

A path-connected set (or arcwise connected set) is a subset of a topolog-
ical space (which should be clear from the context) that is path-connected
as a space with the relative topology.

13.4. Prove that a subset A of a space X is path-connected iff any two points
in A are connected by a path s : I → X with s(I) ⊂ A.

13.5. Prove that a convex subset of Euclidean space is path-connected.

13.6. Every star-shaped set in Rn is path-connected.

13.7. The image of a path is a path-connected set.

13.8. Prove that the set of plane convex polygons with topology generated
by the Hausdorff metric is path-connected. (What can you say about the set
of convex n-gons with fixed n?)

13.9. Riddle. What can you say about the assertion of Problem 13.8 in the
case of arbitrary (not necessarily convex) polygons?

§13◦4 Properties of Path-Connected Sets

Path-connectedness is very similar to connectedness. Further, in
some important situations it is even equivalent to connectedness. How-
ever, some properties of connectedness do not carry over to the path-
connectedness (see 13.R and 13.S). For the properties that do carry over,
proofs are usually easier in the case of path-connectedness.

13.G. The union of a family of pairwise intersecting path-connected sets
is path-connected.

13.10. Prove that if two sets A and B are both closed or both open and
their union and intersection are path-connected, then A and B are also path-
connected.

13.11. 1) Prove that the interior and boundary of a path-connected set may
not be path-connected. 2) Connectedness shares this property.

13.12. Let A be a subset of Euclidean space. Prove that if Fr A is path-
connected, then so is Cl A.

13.13. Prove that the same holds true for a subset of an arbitrary path-
connected space.
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§13◦5 Path-Connected Components

A path-connected component or arcwise connected component of a
space X is a path-connected subset of X that is not contained in any
other path-connected subset of X.

13.H. Every point belongs to a path-connected component.

13.I. Two path-connected components either coincide or are disjoint.

Theorems 13.H and 13.I mean that path-connected components con-
stitute a partition of the entire space. The next theorem describes the
corresponding equivalence relation.

13.J. Prove that two points belong to the same path-connected compo-
nent iff they can be connected by a path (cf. 11.I).

Unlike to the case of connectedness, path-connected components are
not necessarily closed. (See 13.R, cf. 13.Q and 13.S.)

§13◦6 Path-Connectedness and Continuous Maps

13.K. A continuous image of a path-connected space is path-connected.

13.L Corollary. Path-connectedness is a topological property.

13.M Corollary. The number of path-connected components is a topo-
logical invariant.

§13◦7 Path-Connectedness Versus Connectedness

13.N. Any path-connected space is connected.

Put

A = { (x, y) ∈ R2 | x > 0, y = sin(1/x) }, X = A ∪ (0, 0).

13.14. Sketch A.

13.O. Prove that A is path-connected and X is connected.

13.P. Prove that deleting any point fromAmakes A andX disconnected
(and hence, not path-connected).

13.Q. X is not path-connected.

13.R. Find an example of a path-connected set, whose closure is not
path-connected.

13.S. Find an example of a path-connected component that is not closed.

13.T. If each point of a space has a path-connected neighborhood, then
each path-connected component is open. (Cf. 11.21.)

13.U. Assume that each point of a space X has a path-connected neigh-
borhood. Then X is path-connected iff X is connected.
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13.V. For open subsets of Euclidean space connectedness is equivalent
to path-connectedness.

13.15. For subsets of the real line path-connectedness and connectedness are
equivalent.

13.16. Prove that for any ε > 0 the ε-neighborhood of a connected subset
of Euclidean space is path-connected.

13.17. Prove that any neighborhood U of a connected subset A of Euclidean
space contains a path-connected neighborhood of A.

§13x◦8 Polygon-Connectedness

A subset A of Euclidean space is polygon-connected if any two points of
A are connected by a finite polyline contained in A.

13x:1. Each polygon-connected set in Rn is path-connected, and thus also
connected.

13x:2. Each convex set in Rn is polygon-connected.

13x:3. Each star-shaped set in Rn is polygon-connected.

13x:4. Prove that for open subsets of Euclidean space connectedness is equiv-
alent to polygon-connectedness.

13x:5. Construct a path-connected subset A of Euclidean space such that
A consists of more than one point and no two distinct points of A can be
connected by a polygon in A.

13x:6. Let X ⊂ R2 be a countable set. Prove that then R2 r X is polygon-
connected.

13x:7. Let X ⊂ Rn be the union of a countable collection of affine subspaces
with dimensions not greater than n− 2. Prove that then Rn r X is polygon-
connected.

13x:8. Let X ⊂ Cn be the union of a countable collection of algebraic sub-
sets (i.e., subsets defined by systems of algebraic equations in the standard
coordinates of Cn). Prove that then Cn r X is polygon-connected.

§13x◦9 Connectedness of Some Sets of Matrices

Recall that real n×n-matrices constitute a space, which differs from Rn2

only in the way of enumerating its natural coordinates (they are numerated
by pairs of indices). The same relation holds true between the set of complex

n × n-matrix and Cn2

(homeomorphic to R2n2

).

13x:9. Find connected and path-connected components of the following sub-
spaces of the space of real n × n-matrices:
(a) GL(n; R) = {A | detA 6= 0};
(b) O(n; R) = {A | A · (tA) = E};
(c) Symm(n; R) = {A | tA = A};
(d) Symm(n; R) ∩ GL(n; R);
(e) {A | A2 = E}.
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13x:10. Find connected and path-connected components of the following
subspaces of the space of complex n × n-matrices:
(a) GL(n; C) = {A | detA 6= 0};
(b) U(n; C) = {A | A · (tĀ) = E};
(c) Herm(n; C) = {A | tA = Ā};
(d) Herm(n; C) ∩ GL(n; C).



§14 Separation Axioms

The aim of this section is to consider natural restrictions on the topo-
logical structure making the structure closer to being metrizable. A lot
of separation axioms are known. We restrict ourselves to the five most
important of them. They are numerated, and denoted by T0, T1, T2, T3,
and T4, respectively.1

§14◦1 The Hausdorff Axiom

We start with the second axiom, which is most important. Besides
the notation T2, it has a name: the Hausdorff axiom. A topological space
satisfying T2 is a Hausdorff space. This axiom is stated as follows: any
two distinct points possess disjoint neighborhoods. We can state it more
formally: ∀x, y ∈ X, x 6= y ∃Ux, Vy : Ux ∩ Vy = ∅.

14.A. Any metric space is Hausdorff.

14.1. Which of the following spaces are Hausdorff:

(a) a discrete space;
(b) an indiscrete space;
(c) the arrow;
(d) RT1 ;
(e) ?

If the next problem holds you up even for a minute, we advise you to
think over all definitions and solve all simple problems.

14.B. Is the segment [0, 1] with the topology induced from R a Hausdorff
space? Do the points 0 and 1 possess disjoint neighborhoods? Which if
any?

14.C. A space X is Hausdorff iff for each x ∈ X we have {x} =
⋂

U∋x

ClU .

§14◦2 Limits of Sequence

Let {an} be a sequence of points of a topological space X. A point
b ∈ X is the limit of the sequence if for any neighborhood U of b there
exists a number N such that an ∈ U for any n ≥ N .2 In this case, we
say that the sequence converges or tends to b as n tends to infinity.

14.2. Explain the meaning of the statement “b is not a limit of sequence
an”, using as few negations (i.e., the words no, not , none, etc.) as you can.

1Letter T in these notation originates from the German word Trennungsaxiom,
which means separation axiom.

2You can also rephrase this as follows: each neighborhood of b contains all mem-
bers of the sequence that have sufficiently large indices.
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14.3. The limit of a sequence does not depend on the order of the terms.
More precisely, let an be a convergent sequence: an → b, and let φ : N → N

be a bijection. Then the sequence aφ(n) is also convergent and has the same
limit: aφ(n) → b. For example, if the terms in the sequence are pairwise
distinct, then the convergence and the limit depend only on the set of terms,
which shows that these notions actually belong to geometry.

14.D. In a Hausdorff space any sequence has at most one limit.

14.E. Prove that in the space RT1
each point is a limit of the sequence

an = n.

§14◦3 Coincidence Set and Fixed Point Set

Let f, g : X → Y be maps. Then the set C(f, g) = {x ∈ X | f(x) = g(x)}
is the coincidence set of f and g.

14.4. Prove that the coincidence set of two continuous maps from an arbi-
trary space to a Hausdorff space is closed.

14.5. Construct an example proving that the Hausdorff condition in 14.4 is
essential.

A point x ∈ X is a fixed point of a map f : X → X if f(x) = x. The set
of all fixed points of a map f is the fixed point set of f .

14.6. Prove that the fixed-point set of a continuous map from a Hausdorff
space to itself is closed.

14.7. Construct an example showing that the Hausdorff condition in 14.6 is
essential.

14.8. Prove that if f, g : X → Y are two continuous maps, Y is Hausdorff,
A is everywhere dense in X , and f |A = g|A, then f = g.

14.9. Riddle. How are problems 14.4, 14.6, and 14.8 related to each other?

§14◦4 Hereditary Properties

A topological property is hereditary if it carries over from a space to
its subspaces, i.e., if a space X has this property, then each subspace of
X also has it.

14.10. Which of the following topological properties are hereditary:

(a) finiteness of the set of points;
(b) finiteness of the topological structure;
(c) infiniteness of the set of points;
(d) connectedness;
(e) path-connectedness?

14.F. The property of being a Hausdorff space is hereditary.
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§14◦5 The First Separation Axiom

A topological space X satisfies the first separation axiom T1 if each
one of any two points of X has a neighborhood that does not contain the
other point.3 More formally: ∀x, y ∈ X, x 6= y ∃Uy : x /∈ Uy.

14.G. A space X satisfies the first separation axiom,
• iff all one-point sets in X are closed,
• iff all finite sets in X are closed.

14.11. Prove that a space X satisfies the first separation axiom iff every
point of X is the intersection of all of its neighborhoods.

14.12. Any Hausdorff space satisfies the first separation axiom.

14.H. In a Hausdorff space any finite set is closed.

14.I. A metric space satisfies the first separation axiom.

14.13. Find an example showing that the first separation axiom does not
imply the Hausdorff axiom.

14.J. Show that RT1
meets the first separation axiom, but is not a Haus-

dorff space (cf. 14.13).

14.K. The first separation axiom is hereditary.

14.14. Suppose that for any two distinct points a and b of a space X there
exists a continuous map f from X to a space with the first separation axiom
such that f(a) 6= f(b). Prove that then X also satisfies the first separation
axiom.

14.15. Prove that a continuous mapping of an indiscrete space to a space
satisfying axiom T1 is constant.

14.16. Prove that in every set there exists a coarsest topological structure
satisfying the first separation axiom. Describe this structure.

§14◦6 The Kolmogorov Axiom

The first separation axiom emerges as a weakened Hausdorff axiom.

14.L. Riddle. How can the first separation axiom be weakened?

A topological space satisfies the Kolmogorov axiom or the zeroth sep-

aration axiom T0 if at least one of any two distinct points of this space
has a neighborhood that does not contain the other of these points.

14.M. An indiscrete space containing at least two points does not satisfy
T0.

14.N. The following properties of a space X are equivalent:
(a) X satisfies the Kolmogorov axiom;

3T1 is also called the Tikhonov axiom.
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(b) any two different points of X has different closures;
(c) X contains no indiscrete subspace consisting of two points.
(d) X contains no indiscrete subspace consisting of more than one point;

14.O. A topology is a poset topology iff it is a smallest neighborhood
topology satisfying the Kolmogorov axiom.

Thus, on the one hand, posets give rise to numerous examples of
topological spaces, among which we see the most important spaces, like
the line with the standard topology. On the other hand, all posets are
obtained from topological spaces of a special kind, which are quite far
away from the class of metric spaces.

§14◦7 The Third Separation Axiom

A topological space X satisfies the third separation axiom if every
closed set in X and every point of its complement have disjoint neigh-
borhoods, i.e., for every closed set F ⊂ X and every point b ∈ X r F
there exist open sets U, V ⊂ X such that U ∩V = ∅, F ⊂ U , and b ∈ V .

A space is regular if it satisfies the first and third separation axioms.

14.P. A regular space is a Hausdorff space.

14.Q. A space is regular iff it satisfies the second and third separation
axioms.

14.17. Find a Hausdorff space which is not regular.

14.18. Find a space satisfying the third, but not the second separation ax-
iom.

14.19. Prove that a space X satisfies the third separation axiom iff every
neighborhood of every point x ∈ X contains the closure of a neighborhood of
x.

14.20. Prove that the third separation axiom is hereditary.

14.R. Any metric space is regular.

§14◦8 The Fourth Separation Axiom

A topological space X satisfies the fourth separation axiom if any two
disjoint closed sets in X have disjoint neighborhoods, i.e., for any two
closed sets A,B ⊂ X with A ∩ B = ∅ there exist open sets U, V ⊂ X
such that U ∩ V = ∅, A ⊂ U , and B ⊂ V .

A space is normal if it satisfies the first and fourth separation axioms.

14.S. A normal space is regular (and hence Hausdorff).

14.T. A space is normal iff it satisfies the second and fourth separation
axioms.
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14.21. Find a space which satisfies the fourth, but not second separation
axiom.

14.22. Prove that a space X satisfies the fourth separation axiom iff ev-
ery neighborhood of every closed set F ⊂ X contains the closure of some
neighborhood of F .

14.23. Prove that any closed subspace of a normal space is normal.

14.24. Find two closed disjoint subsets A and B of some metric space such
that inf{ρ(a, b) | a ∈ A, b ∈ B} = 0.

14.U. Any metric space is normal.

14.25. Let f : X → Y be a continuous surjection such that the image of any
closed set is closed. Prove that if X is normal, then so is Y .

§14x◦9 Niemytski’s Space

Denote by H the open upper half-plane {(x, y) ∈ R2 | y > 0} equipped
with the topology generated by the Euclidean metric. Denote by N the union
of H and the boundary line R1: N = H∪R1, but equip it with the topology
obtained by adjoining to the Euclidean topology the sets of the form x ∪ D,
where x ∈ R1 and D is an open disk in H touching R1 at the point x. This
is the Niemytski space. It can be used to clarify properties of the fourth
separation axiom.

14x:1. Prove that the Niemytski space is Hausdorff.

14x:2. Prove that the Niemytski space is regular.

14x:3. What topological structure is induced on R1 from N ?

14x:4. Prove that the Niemytski space is not normal.

14x:5 Corollary. There exists a regular space which is not normal.

14x:6. Embed the Niemytski space into a normal space in such a way that
the complement of the image would be a single point.

14x:7 Corollary. Theorem 14.23 does not extend to nonclosed subspaces,
i.e., the property of being normal is not hereditary, is it?

§14x◦10 Urysohn Lemma and Tietze Theorem

14x:8. Let A and B be two disjoint closed subsets of a metric space X .
Then there exists a continuous function f : X → I such that f−1(0) = A and
f−1(1) = B.

14x:9. Let F be a closed subset of a metric space X . Then any continuous
function f : X → [−1, 1] can be extended over the whole X .

14x:9.1. Let F be a closed subset of a metric space X. For any
continuous function f : F → [−1, 1] there exists a function g : X →
[
−1

3 , 1
3 ] such that |f(x) − g(x)| ≤ 2

3 for each x ∈ F .

14x:A Urysohn Lemma. Let A and B be two disjoint closed subsets
of a normal space X. Then there exists a continuous function f : X → I
such that f(A) = 0 and f(B) = 1.
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14x:A.1. Let A and B be two disjoint closed subsets of a normal space X.
Consider the set Λ =

{
k
2n | k, n ∈ Z+, k ≤ 2n

}
. There exists a collection

{Up}p∈Λ of open subsets of X such that for any p, q ∈ Λ we have: 1) A ⊂ U0

and B ⊂ X r U1 and 2) if p < q then ClUp ⊂ Uq.

14x:B Tietze Extension Theorem. Let A be a closed subset of a
normal space X. Let f : A → [−1, 1] be a continuous function. Prove
that there exists a continuous function F : X → [−1, 1] such that F A = f .

14x:C Corollary. Let A be a closed subset of a normal space X. Any
continuous function A → R can be extended to a function on the whole
space.

14x:10. Will the statement of the Tietze theorem remain true if in the hy-
pothesis we replace the segment [−1, 1] by R, Rn, S1, or S2?

14x:11. Derive the Urysohn Lemma from the Tietze Extension Theorem.



§15 Countability Axioms

In this section, we continue to study topological properties that are
additionally imposed on a topological structure to make the abstract
situation under consideration closer to special situations and hence richer
in contents. The restrictions studied in this section bound a topological
structure from above: they require that something be countable.

§15◦1 Set-Theoretic Digression: Countability

Recall that two sets have equal cardinality if there exists a bijection
of one of them onto the other. A set of the same cardinality as a subset
of the set N of positive integers is countable.

15.1. A set X is countable iff there exists an injection X → N (or, more
generally, an injection of X into another countable set).

Sometimes this term is used only for infinite countable sets, i.e., for
sets of the cardinality of the whole set N of positive integers, while sets
countable in the above sense are said to be at most countable. This is
less convenient. In particular, if we adopted this terminology, this section
would be called “At Most Countability Axioms”. This would also lead
to other more serious inconveniences as well. Our terminology has the
following advantageous properties.

15.A. Any subset of a countable set is countable.

15.B. The image of a countable set under any mapping is countable.

15.C. Z is countable.

15.D. The set N2 = {(k, n) | k, n ∈ N} is countable.

15.E. The union of a countable family of countable sets is countable.

15.F. Q is countable.

15.G. R is not countable.

15.2. Prove that any set Σ of disjoint figure eight curves in the plane is
countable.

§15◦2 Second Countability and Separability

In this section, we study three restrictions on the topological struc-
ture. Two of them have numbers (one and two), the third one has no
number. As in the previous section, we start from the restriction having
number two.

A topological space X satisfies the second axiom of countability or is
second countable if X has a countable base. A space is separable if it
contains a countable dense set. (This is the countability axiom without
a number that we mentioned above.)
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15.H. The second axiom of countability implies separability.

15.I. The second axiom of countability is hereditary.

15.3. Are the arrow and RT1 second countable?

15.4. Are the arrow and RT1 separable?

15.5. Construct an example proving that separability is not hereditary.

15.J. A metric separable space is second countable.

15.K Corollary. For metrizable spaces, separability is equivalent to the
second axiom of countability.

15.L. (Cf. 15.5.) Prove that for metrizable spaces separability is hered-
itary.

15.M. Prove that Euclidean spaces and all their subspaces are separable
and second countable.

15.6. Construct a metric space which is not second countable.

15.7. Prove that in a separable space any collection of pairwise disjoint open
sets is countable.

15.8. Prove that the set of components of an open set A ⊂ Rn is countable.

15.N. A continuous image of a separable space is separable.

15.9. Construct an example proving that a continuous image of a second
countable space may be not second countable.

15.O Lindelöf Theorem. Any open cover of a second countable space
contains a countable part that also covers the space.

15.10. Prove that each base of a second countable space contains a countable
part which is also a base.

15.11 Brouwer Theorem*. Let {Kλ} be a family of closed sets of a second
countable space and assume that for every decreasing sequence K1 ⊃ K2 ⊃
. . . of sets belonging to this family the intersection ∩∞

1 Kn also belongs to
the family. Then the family contains a minimal set A, i.e., a set such that no
proper subset of A belongs to the family.

§15◦3 Bases at a Point

Let X be a space, a a point of X. A neighborhood base at a or just
a base of X at a is a collection Σ of neighborhoods of a such that each
neighborhood of a contains a neighborhood from Σ.

15.P. If Σ is a base of a space X, then {U ∈ Σ | a ∈ U} is a base of X
at a.
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15.12. In a metric space the following collections of balls are neighborhood
bases at a point a:

• the set of all open balls of center a;
• the set of all open balls of center a and rational radii;
• the set of all open balls of center a and radii rn, where {rn} is any

sequence of positive numbers converging to zero.

15.13. What are the minimal bases at a point in the discrete and indiscrete
spaces?

§15◦4 First Countability

A topological space X satisfies the first axiom of countability or is
a first countable space if X has a countable neighborhood base at each
point.

15.Q. Any metric space is first countable.

15.R. The second axiom of countability implies the first one.

15.S. Find a first countable space which is not second countable. (Cf. 15.6.)

15.14. Which of the following spaces are first countable:

(a) the arrow; (b) RT1 ;
(c) a discrete space; (d) an indiscrete space?

15.15. Find a first countable separable space which is not second countable.

15.16. Prove that if X is a first countable space, then at each point it has a
decreasing countable neighborhood base: U1 ⊃ U2 ⊃ . . . .

§15◦5 Sequential Approach to Topology

Specialists in Mathematical Analysis love sequences and their limits.
Moreover, they like to talk about all topological notions relying on the
notions of sequence and its limit. This tradition has almost no mathe-
matical justification, except for a long history descending from the XIX
century studies on the foundations of analysis. In fact, almost always4

it is more convenient to avoid sequences, provided you deal with topo-
logical notions, except summing of series, where sequences are involved
in the underlying definitions. Paying a tribute to this tradition, here we
explain how and in what situations topological notions can be described
in terms of sequences.

Let A be a subset of a spaceX. The set SClA of limits of all sequences
an with an ∈ A is the sequential closure of A.

15.T. Prove that SClA ⊂ ClA.

4The exceptions which one may find in the standard curriculum of a mathematical
department can be counted on two hands.
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15.U. If a space X is first countable, then the for any A ⊂ X the opposite
inclusion ClA ⊂ SClA also holds true, whence SClA = ClA.

Therefore, in a first countable space (in particular, any metric spaces)
we can recover (hence, define) the closure of a set provided it is known
which sequences are convergent and what the limits are. In turn, the
knowledge of closures allows one to determine which sets are closed. As
a consequence, knowledge of closed sets allows one to recover open sets
and all other topological notions.

15.17. Let X be the set of real numbers equipped with the topology con-
sisting of ∅ and complements of all countable subsets. (Check that this is
actually a topology.) Describe convergent sequences, sequential closure and
closure in X . Prove that in X there exists a set A with SCl A 6= Cl A.

§15◦6 Sequential Continuity

Now we consider the continuity of maps along the same lines. A map
f : X → Y is sequentially continuous if for each b ∈ X and each sequence
an ∈ X converging to b the sequence f(an) converges to f(b).

15.V. Any continuous map is sequentially continuous.

15.W. The preimage of a sequentially closed set under a sequentially
continuous map is sequentially closed.

15.X. If X is a first countable space, then any sequentially continuous
map f : X → Y is continuous.

Thus for mappings of a first countable space continuity and sequential
continuity are equivalent.

15.18. Construct a sequentially continuous, but discontinuous map. (Cf. 15.17)

§15x◦7 Embedding and Metrization Theorems

15x:A. Prove that the space l2 is separable and second countable.

15x:B. Prove that a regular second countable space is normal.

15x:C. Prove that a normal second countable space can be embedded
into l2. (Use the Urysohn Lemma 14x:A.)

15x:D. Prove that a second countable space is metrizable iff it is regular.



§16 Compactness

§16◦1 Definition of Compactness

This section is devoted to a topological property playing a very special
role in topology and its applications. It is a sort of topological counter-
part for the property of being finite in the context of set theory. (It seems
though that this analogy has never been formalized.)

A topological space X is compact if each open cover of X contains a
finite part that also covers X.

If Γ is a cover of X and Σ ⊂ Γ is a cover of X, then Σ is a subcover

(or subcovering) of Γ. Thus, a space X is compact if every open cover of
X contains a finite subcovering.

16.A. Any finite space and indiscrete space are compact.

16.B. Which discrete spaces are compact?

16.1. Let Ω1 ⊂ Ω2 be two topological structures in X . 1) Does the com-
pactness of (X, Ω2) imply that of (X, Ω1)? 2) And vice versa?

16.C. The line R is not compact.

16.D. A space X is not compact iff it has an open cover containing no
finite subcovering.

16.2. Is the arrow compact? Is RT1 compact?

§16◦2 Terminology Remarks

Originally the word compactness was used for the following weaker
property: any countable open cover contains a finite subcovering.

16.E. For a second countable space, the original definition of compact-
ness is equivalent to the modern one.

The modern notion of compactness was introduced by P. S. Alexan-
drov (1896–1982) and P. S. Urysohn (1898–1924). They suggested for it
the term bicompactness. This notion appeared to be so successful that
it has displaced the original one and even took its name, i.e., compact-
ness. The term bicompactness is sometimes used (mainly by topologists
of Alexandrov’s school).

Another deviation from the terminology used here comes from Bour-
baki: we do not include the Hausdorff property into the definition of
compactness, which Bourbaki includes. According to our definition, RT1

is compact, according to Bourbaki it is not.
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§16◦3 Compactness in Terms of Closed Sets

A collection of subsets of a set is said to have the finite intersection

property if the intersection of any finite subcollection is nonempty.

16.F. A collection Σ of subsets of a set X has the finite intersection
property iff there exists no finite Σ1 ⊂ Σ such that the complements of
the sets in Σ1 cover X.

16.G. A space is compact iff for every collection of its closed sets having
the finite intersection property its intersection is nonempty.

§16◦4 Compact Sets

A compact set is a subset A of a topological space X (the latter must
be clear from the context) provided A is compact as a space with the
relative topology induced from X.

16.H. A subset A of a space X is compact iff each cover of A with sets
open in X contains a finite subcovering.

16.3. Is [1, 2) ⊂ R compact?

16.4. Is the same set [1, 2) compact in the arrow?

16.5. Find a necessary and sufficient condition (formulated not in topological
terms) for a subset of the arrow to be compact?

16.6. Prove that any subset of RT1 is compact.

16.7. Let A and B be two compact subsets of a space X . 1) Does it follow
that A ∪ B is compact? 2) Does it follow that A ∩ B is compact?

16.8. Prove that the set A = 0 ∪
{

1
n

}∞
n=1

in R is compact.

§16◦5 Compact Sets Versus Closed Sets

16.I. Is compactness hereditary?

16.J. Any closed subset of a compact space is compact.

16.K. Any compact subset of a Hausdorff space is closed.

16.L Lemma to 16.K, but not only . . . . Let A be a compact subset
of a Hausdorff space X and b a point of X that does not belong to A.
Then there exist open sets U, V ⊂ X such that b ∈ V , A ⊂ U , and
U ∩ V = ∅.

16.9. Construct a nonclosed compact subset of some topological space. What
is the minimal number of points needed?
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§16◦6 Compactness and Separation Axioms

16.M. A compact Hausdorff space is regular.

16.N. Prove that a compact Hausdorff space is normal.

16.O Lemma to 16.N. In a Hausdorff space, any two disjoint compact
subsets possess disjoint neighborhoods.

16.10. Prove that the intersection of any family of compact subsets of a
Hausdorff space is compact. (Cf. 16.7.)

16.11. Let X be a Hausdorff space, let {Kλ}λ∈Λ be a family of its compact
subsets, and let U be an open set containing

⋂
λ∈Λ Kλ. Prove that for some

finite A ⊂ Λ we have U ⊃ ⋂λ∈A Kλ.

16.12. Let {Kn}∞1 be a decreasing sequence of nonempty compact connected
sets in a Hausdorff space. Prove that the intersection

⋂
∞

1 Kn is nonempty
and connected. (Cf. 11.20)

§16◦7 Compactness in Euclidean Space

16.P. The segment I is compact.

Recall that n-dimensional cube is the set

In = {x ∈ Rn | xi ∈ [0, 1] for i = 1, . . . , n}.
16.Q. The cube In is compact.

16.R. Any compact subset of a metric space is bounded.

Therefore, any compact subset of a metric space is closed and bounded
(see Theorems 14.A, 16.K, and 16.R).

16.S. Construct a closed and bounded, but noncompact set in a metric
space.

16.13. Are the metric spaces of Problem 4.A compact?

16.T. A subset of a Euclidean space is compact iff it is closed and
bounded.

16.14. Which of the following sets are compact:

(a) [0, 1); (b) ray R+ = {x ∈ R | x ≥ 0}; (c) S1;
(d) Sn; (e) one-sheeted hyperboloid; (f) ellipsoid;
(g) [0, 1] ∩ Q?

An (n × k)-matrix (aij) with real entries can be regarded as a point in

Rnk. To do this, we only need to enumerate somehow (e.g., lexicographically)
the entries of (aij) by numbers from 1 to nk. This identifies the set L(n, k)

of all matrices like that with Rnk and endows it with a topological structure.
(Cf. Section §13.)
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16.15. Which of the following subsets of L(n, n) are compact:

(a) GL(n) = {A ∈ L(n, n) | detA 6= 0};
(b) SL(n) = {A ∈ L(n, n) | detA = 1};
(c) O(n) = {A ∈ L(n, n) | A is an orthogonal matrix};
(d) {A ∈ L(n, n) | A2 = E}, where E is the unit matrix?

§16◦8 Compactness and Continuous Maps

16.U. A continuous image of a compact space is compact. (In other
words, if X is a compact space and f : X → Y is a continuous map,
then f(X) is compact.)

16.V. A continuous numerical function on a compact space is bounded
and attains its maximal and minimal values. (In other words, if X is
a compact space and f : X → R is a continuous function, then there
exist a, b ∈ X such that f(a) ≤ f(x) ≤ f(b) for every x ∈ X.) Cf. 16.U
and 16.T.

16.16. Prove that if f : I → R is a continuous function, then f(I) is a
segment.

16.17. Let A be a subset of Rn. Prove that A is compact iff each continuous
numerical function on A is bounded.

16.18. Prove that if F and G are disjoint subsets of a metric space, F is
closed, and G is compact, then ρ(G, F ) = inf {ρ(x, y) | x ∈ F, y ∈ G} > 0.

16.19. Prove that any open set U containing a compact set A of a metric
space X contains an ε-neighborhood of A (i.e., the set {x ∈ X | ρ(x, A) < ε})
for some ε > 0.

16.20. Let A be a closed connected subset of Rn and let V be the closed

ε-neighborhood of A (i.e., V = {x ∈ Rn | ρ(x, A) ≤ ε}). Prove that V is
path-connected.

16.21. Prove that if the closure of each open ball in a compact metric space
is the closed ball with the same center and radius, then any ball in this space
is connected.

16.22. Let X be a compact metric space, and let f : X → X be a map such
that ρ(f(x), f(y)) < ρ(x, y) for any x, y ∈ X with x 6= y. Prove that f has
a unique fixed point. (Recall that a fixed point of f is a point x such that
f(x) = x, see 14.6.)

16.23. Prove that for any open cover of a compact metric space there exists
a (sufficiently small) number r > 0 such that each open ball of radius r is
contained in an element of the cover.

16.W Lebesgue Lemma. Let f : X → Y be a continuous map from a
compact metric space X to a topological space Y , and let Γ be an open
cover of Y . Then there exists a number δ > 0 such that for any set
A ⊂ X with diameter diam(A) < δ the image f(A) is contained in an
element of Γ.
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§16◦9 Closed Maps

A continuous map is closed if the image of each closed set under this
map is closed.

16.24. A continuous bijection is a homeomorphism iff it is closed.

16.X. A continuous map of a compact space to a Hausdorff space is
closed.

Here are two important corollaries of this theorem.

16.Y. A continuous bijection of a compact space onto a Hausdorff space
is a homeomorphism.

16.Z. A continuous injection of a compact space into a Hausdorff space
is a topological embedding.

16.25. Show that none of the assumptions in 16.Y can be omitted without
making the statement false.

16.26. Does there exist a noncompact subspace A of the Euclidian space
such that any continuous map of A to a Hausdorff space is closed? (Cf. 16.V

and 16.X.)

16.27. A restriction of a closed map to a closed subset is a also closed map.)

§16x◦10 Norms in Rn

16x:1. Prove that each norm Rn → R (see Section §4) is a continuous func-
tion (with respect to the standard topology of Rn).

16x:2. Prove that any two norms in Rn are equivalent (i.e., determine the
same topological structure). See 4.27, cf. 4.31.

16x:3. Does the same hold true for metrics in Rn?

§16x◦11 Induction on Compactness

A function f : X → R is locally bounded if for each point a ∈ X there
exist a neighborhood U and a number M > 0 such that |f(x)| ≤ M for x ∈ U
(i.e., each point has a neighborhood U such that the restriction of f to U is
bounded).

16x:4. Prove that if a space X is compact and a function f : X → R is
locally bounded, then f is bounded.

This statement is a simplest application of a general principle formu-
lated below in 16x:5. This principle may be called induction on compactness

(cf. induction on connectedness, which was discussed in Section §11).

Let X be a topological space, C a property of subsets of X . We say that
C is additive if the union of any finite family of sets having C also has C.
The space X possesses C locally if each point of X has a neighborhood with
property C.
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16x:5. Prove that a compact space which locally possesses an additive prop-
erty has this property itself.

16x:6. Deduce from this principle the statements of Problems 16.R, 17.M,
and 17.N.



§17 Sequential Compactness

§17◦1 Sequential Compactness Versus Compactness

A topological space is sequentially compact if every sequence of its
points contains a convergent subsequence.

17.A. If a first countable space is compact, then it is sequentially com-
pact.

A point b is an accumulation point of a set A if each neighborhood of b
contains infinitely many points of A.

17.A.1. Prove that in a space satisfying the first separation axiom a point
is an accumulation point iff it is a limit point.

17.A.2. In a compact space, any infinite set has an accumulation point.

17.A.3. A space in which each infinite set has an accumulation point is

sequentially compact.

17.B. A sequentially compact second countable space is compact.

17.B.1. In a sequentially compact space a decreasing sequence of nonempty

closed sets has a nonempty intersection.

17.B.2. Prove that each nested sequence of nonempty closed sets in a space
X has nonempty intersection iff each countable collection of closed sets in
Xthe finite intersection property has nonempty intersection.

17.B.3. Derive Theorem 17.B from 17.B.1 and 17.B.2.

17.C. For second countable spaces, compactness and sequential compact-
ness are equivalent.

§17◦2 In Metric Space

A subset A of a metric space X is an ε-net (where ε is a positive
number) if ρ(x,A) < ε for each point x ∈ X.

17.D. Prove that in any compact metric space for any ε > 0 there exists
a finite ε-net.

17.E. Prove that in any sequentially compact metric space for any ε > 0
there exists a finite ε-net.

17.F. Prove that a subset A of a metric space is everywhere dense iff A
is an ε-net for each ε > 0.

17.G. Any sequentially compact metric space is separable.

17.H. Any sequentially compact metric space is second countable.

17.I. For metric spaces compactness and sequential compactness are
equivalent.
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17.1. Prove that a sequentially compact metric space is bounded. (Cf. 17.E

and 17.I.)

17.2. Prove that in any metric space for any ε > 0 there exists
(a) a discrete ε-net and even
(b) an ε-net such that the distance between any two of its points is greater

than ε.

§17◦3 Completeness and Compactness

A sequence {xn}n∈N of points of a metric space is a Cauchy sequence

if for every ε > 0 there exists a number N such that ρ(xn, xm) < ε for
any n,m ≥ N . A metric space X is complete if every Cauchy sequence
in X converges.

17.J. A Cauchy sequence containing a convergent subsequence con-
verges.

17.K. Prove that a metric space M is complete iff every nested decreas-
ing sequence of closed balls in M with radii tending to 0 has nonempty
intersection.

17.L. Prove that a compact metric space is complete.

17.M. Prove that a complete metric space is compact iff for each ε > 0
it contains a finite ε-net.

17.N. Prove that a complete metric space is compact iff for any ε > 0
it contains a compact ε-net.

§17x◦4 Noncompact Balls in Infinite Dimension

By l∞ denote the set of all bounded sequences of real numbers. This is
a vector space with respect to the component-wise operations. There is a
natural norm in it: ||x|| = sup{|xn| | n ∈ N}.
17x:1. Are closed balls of l∞ compact? What about spheres?

17x:2. Is the set {x ∈ l∞ | |xn| ≤ 2−n, n ∈ N} compact?

17x:3. Prove that the set {x ∈ l∞ | |xn| = 2−n, n ∈ N} is homeomorphic to
the Cantor set K introduced in Section §2.

17x:4*. Does there exist an infinitely dimensional normed space in which
closed balls are compact?

§17x◦5 p-Adic Numbers

Fix a prime integer p. By Zp denote the set of series of the form a0 +
a1p+ · · ·+anpn + . . . with 0 ≤ an < p, an ∈ N. For x, y ∈ Zp, put ρ(x, y) = 0
if x = y, and ρ(x, y) = p−m if m is the smallest number such that the mth
coefficients in the series x and y differ.

17x:5. Prove that ρ is a metric in Zp.
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This metric space is the space of integer p-adic numbers. There is an
injection Z → Zp assigning to a0 + a1p + · · ·+ anpn ∈ Z with 0 ≤ ak < p the
series

a0 + a1p + · · · + anpn + 0pn+1 + 0pn+2 + · · · ∈ Zp

and to −(a0 + a1p + · · · + anpn) ∈ Z with 0 ≤ ak < p the series

b0 + b1p + · · · + bnpn + (p − 1)pn+1 + (p − 1)pn+2 + . . . ,

where

b0 + b1p + · · · + bnpn = pn+1 − (a0 + a1p + · · · + anpn).

Cf. 4x:I.

17x:6. Prove that the image of the injection Z → Zp is dense in Zp.

17x:7. Is Zp a complete metric space?

17x:8. Is Zp compact?

§17x◦6 Spaces of Convex Figures

Let D ⊂ R2 be a closed disk of radius p. Consider the set Pn of all convex
polygons P with the following properties:

• the perimeter of P is at most p;
• P is contained in D;
• P has at most n vertices (the cases of one and two vertices are not

excluded; the perimeter of a segment is twice its length).
See 4x:A, cf. 4x:C.

17x:9. Equip Pn with a natural topological structure. For instance, define a
natural metric on Pn.

17x:10. Prove that Pn is compact.

17x:11. Prove that there exists a polygon belonging to Pn and having the
maximal area.

17x:12. Prove that this polygon is a regular n-gon.

Consider now the set P∞ of all convex polygons that have perimeter at
most p and are contained in D. In other words, P∞ =

⋃
∞

n=1 Pn.

17x:13. Construct a topological structure in P∞ inducing the structures
introduced above in the spaces Pn.

17x:14. Prove that the space P∞ is not compact.

Consider now the set P of all convex closed subsets of the plane that have
perimeter at most p and are contained in D. (Observe that all sets in P are
compact.)

17x:15. Construct a topological structure in P that induces the structure
introduced above in the space P∞.

17x:16. Prove that the space P is compact.

17x:17. Prove that there exists a convex plane set with perimeter at most p
having a maximal area.

17x:18. Prove that this is a disk of radius p
2π .



§18x Local Compactness and Paracompactness

§18x◦1 Local Compactness

A topological space X is locally compact if each point of X has a
neighborhood with compact closure.

18x:1. Compact spaces are locally compact.

18x:2. Which of the following spaces are locally compact: (a) R; (b) Q; (c)
Rn; (d) a discrete space?

18x:3. Find two locally compact sets on the line such that their union is not
locally compact.

18x:A. Is the local compactness hereditary?

18x:B. A closed subset of a locally compact space is locally compact.

18x:C. Is it true that an open subset of a locally compact space is locally
compact?

18x:D. A Hausdorff locally compact space is regular.

18x:E. An open subset of a locally compact Hausdorff space is locally
compact.

18x:F. Local compactness is a local property for a Hausdorff space, i.e.,
a Hausdorff space is locally compact iff each of its points has a locally
compact neighborhood.

§18x◦2 One-Point Compactification

Let (X,Ω) be a Hausdorff topological space. Let X∗ be the set ob-
tained by adding a point x∗ to X (of course, x∗ does not belong to X).
Let Ω∗ be the collection of subsets of X∗ consisting of
• sets open in X and
• sets of the form X∗ r C, where C ⊂ X is a compact set:

Ω∗ = Ω ∪ {X∗ r C | C ⊂ X is a compact set}.
18x:G. Prove that Ω∗ is a topological structure on X∗.

18x:H. Prove that the space (X∗,Ω∗) is compact.

18x:I. Prove that the inclusion (X,Ω) →֒ (X∗,Ω∗) is a topological em-
bedding.

18x:J. Prove that if X is locally compact, then the space (X∗,Ω∗) is
Hausdorff. (Recall that in the definition of X∗ we assumed that X is
Hausdorff.)

A topological embedding of a space X into a compact space Y is a
compactification of X if the image of X is dense in Y . In this situation,
Y is also called a compactification of X. (To simplify the notation, we
identify X with its image in Y .)
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18x:K. Prove that if X is a locally compact Hausdorff space and Y
is a compactification of X with one-point Y r X, then there exists a
homeomorphism Y → X∗ which is the identity on X.

Any space Y of Problem 18x:K is called a one-point compactification

or Alexandrov compactification of X. Problem 18x:K says Y is essentially
unique.

18x:L. Prove that the one-point compactification of the plane is home-
omorphic to S2.

18x:4. Prove that the one-point compactification of Rn is homeomorphic to
Sn.

18x:5. Give explicit descriptions of one-point compactifications of the fol-
lowing spaces:

(a) annulus {(x, y) ∈ R2 | 1 < x2 + y2 < 2};
(b) square without vertices {(x, y) ∈ R2 | x, y ∈ [−1, 1], |xy| < 1};
(c) strip {(x, y) ∈ R2 | x ∈ [0, 1]};
(d) a compact space.

18x:M. Prove that a locally compact Hausdorff space is regular.

18x:6. Let X be a locally compact Hausdorff space, K a compact subset of
X , U a neighborhood of K. Then there exists a neighborhood V of K such
that the closure Cl V is compact and contained in U .

§18x◦3 Proper Maps

A continuous map f : X → Y is proper if each compact subset of Y
has compact preimage.

Let X, Y be Hausdorff spaces. Any map f : X → Y obviously
extends to the map

f ∗ : X∗ → Y ∗ : x 7→
{
f(x) if x ∈ X,

y∗ if x = x∗.

18x:N. Prove that f ∗ is continuous iff f is a proper continuous map.

18x:O. Prove that any proper map of a Hausdorff space to a Hausdorff
locally compact space is closed.

Problem 18x:O is related to Theorem 16.X.

18x:P. Extend this analogy: formulate and prove statements corre-
sponding to Theorems 16.Z and 16.Y.
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§18x◦4 Locally Finite Collections of Subsets

A collection Γ of subsets of a space X is locally finite if each point
b ∈ X has a neighborhood U such that A ∩ U = ∅ for all sets A ∈ Γ
except, maybe, a finite number.

18x:Q. A locally finite cover of a compact space is finite.

18x:7. If a collection Γ of subsets of a space X is locally finite, then so is
{ClA | A ∈ Γ}.

18x:8. If a collection Γ of subsets of a space X is locally finite, then each
compact set A ⊂ X intersects only a finite number of elements of Γ.

18x:9. If a collection Γ of subsets of a space X is locally finite and each
A ∈ Γ has compact closure, then each A ∈ Γ intersects only a finite number
of elements of Γ.

18x:10. Any locally finite cover of a sequentially compact space is finite.

18x:R. Find an open cover of Rn that has no locally finite subcovering.

Let Γ and ∆ be two covers of a set X. The cover ∆ is a refinement

of Γ if for each A ∈ ∆ there exists B ∈ Γ such that A ⊂ B.

18x:S. Prove that any open cover of Rn has a locally finite open refine-
ment.

18x:T. Let {Ui}i∈N be a (locally finite) open cover of Rn. Prove that
there exists an open cover {Vi}i∈N of Rn such that ClVi ⊂ Ui for each
i ∈ N.

§18x◦5 Paracompact Spaces

A space X is paracompact if every open cover of X has a locally finite
open refinement.

18x:U. Any compact space is paracompact.

18x:V. Rn is paracompact.

18x:W. Let X =
⋃∞

i=1Xi, where Xi are compact sets such that Xi ⊂
IntXi+1. Then X is paracompact.

18x:X. Let X be a locally compact space. If X has a countable cover
by compact sets, then X is paracompact.

18x:11. Prove that if a locally compact space is second countable, then it is
paracompact.

18x:12. A closed subspace of a paracompact space is paracompact.

18x:13. A disjoint union of paracompact spaces is paracompact.
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§18x◦6 Paracompactness and Separation Axioms

18x:14. Let X be a paracompact topological space, and let F and M be two
disjoint subsets of X , where F is closed. Suppose that F is covered by open
sets Uα whose closures are disjoint with M : Cl Uα ∩M = ∅. Then F and M
have disjoint neighborhoods.

18x:15. A Hausdorff paracompact space is regular.

18x:16. A Hausdorff paracompact space is normal.

18x:17. Let X be a Hausdorff locally compact and paracompact space, Γ a
locally finite open cover of X . Then X has a locally finite open cover ∆ such
that the closures Cl V , where V ∈ ∆, are compact sets and {ClV | V ∈ ∆}
is a refinement of Γ.

Here is a more general (though formally weaker) fact.

18x:18. Let X be a normal space, Γ a locally finite open cover of X . Then
X has a locally finite open cover ∆ such that {Cl V | V ∈ ∆} is a refinement
of Γ.

Information. Metrizable spaces are paracompact.

§18x◦7 Partitions of Unity

Let X be a topological space, f : X → R a function. Then the set
supp f = Cl{x ∈ X | f(x) 6= 0} is the support of f .

18x:19. Let X be a topological space, and let {fα : X → R}α∈Λ be a family
of continuous functions whose supports supp(fα) constitute a locally finite
cover of X . Prove that the formula

f(x) =
∑

α∈Λ

fα(x)

determines a continuous function f : X → R.

A family of nonnegative functions fα : X → R+ is a partition of unity

if the supports supp(fα) constitute a locally finite cover of the space X
and

∑
α∈Λ fα(x) = 1.

A partition of unity {fα} is subordinate to a cover Γ if supp(fα) is
contained in an element of Γ for each α. We also say that Γ dominates

{fα}.

18x:Y. Let X be a normal space. Then each locally finite open cover of
X dominates a certain partition of unity.

18x:20. Let X be a Hausdorff space. If each open cover of X dominates a
certain partition of unity, then X is paracompact.

Information. A Hausdorff space X is paracompact iff each open
cover of X dominates a certain partition of unity.
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§18x◦8 Application: Making Embeddings From Pieces

18x:21. Let X be a topological space, {Ui}k
i=1 an open cover of X . If Ui

can be embedded in Rn for each i = 1, . . . , k, then X can be embedded in
Rk(n+1).

18x:21.1. Let hi : Ui → Rn, i = 1, . . . , k, be embeddings, and let
fi : X → R form a partition of unity subordinate to the cover

{Ui}k
i=1. We put ĥi(x) = (hi(x), 1) ∈ Rn+1. Show that the map

X → Rk(n+1) : x 7→ (fi(x)ĥi(x))ki=1 is an embedding.

18x:22. Riddle. How can you generalize 18x:21?



Proofs and Comments

11.A A set A is open and closed, iff A and X r A are open, iff A
and X rA are closed.

11.B It suffices to prove the following apparently less general asser-
tion: A space having a connected everywhere dense subset is connected .
(See 6.3.) Let X ⊃ A be the space and the subset. To prove that X is
connected, let X = U ∪ V , where U and V are disjoint sets open in X,
and prove that one of them is empty (cf. 11.A). U ∩ A and V ∩ A are
disjoint sets open in A, and

A = X ∩A = (U ∪ V ) ∩A = (U ∩ A) ∪ (V ∩ A).

Since A is connected, one of these sets, say U ∩ A, is empty. Then U is
empty since A is dense, see 6.M.

11.C To simplify the notation, we may assume that X =
⋃

λAλ.
By Theorem 11.A, it suffices to prove that if U and V are two open sets
partitioning X, then either U = ∅ or V = ∅. For each λ ∈ Λ, since Aλ is
connected, we have either Aλ ⊂ U or Aλ ⊂ V (see 11.14). Fix a λ0 ∈ Λ.
To be definite, let Aλ0

⊂ U . Since each of the sets Aλ meets Aλ0
, all sets

Aλ also lie in U , and so none of them meets V , whence

V = V ∩X = V ∩
⋃

λ

Aλ =
⋃

λ

(V ∩ Aλ) = ∅.

11.E Apply Theorem 11.C to the family {Aλ ∪ Aλ0
}λ∈Λ, which

consists of connected sets by 11.D. (Or just repeat the proof of Theo-
rem 11.C.)

11.F Using 11.D, prove by induction that
⋃n

−nAk is connected, and
apply Theorem 11.C.

11.G The union of all connected sets containing a given point is
connected (by 11.C) and obviously maximal.

11.H Let A and B be two connected components with A ∩ B 6=
∅. Then A ∪ B is connected by 11.D. By the maximality of connected
components, we have A ⊃ A ∪B ⊂ B, whence A = A ∪ B = B.

11.I This is obvious since the component is connected.
Since the components of the points are not disjoint, they coincide.

11.K If A is a connected component, then its closure ClA is con-
nected by 11.B. Therefore, ClA ⊂ A by the maximality of connected
components. Hence, A = ClA, because the opposite inclusion holds true
for any set A.

11.L See 11.10.
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11.N Passing to the map ab f : X → f(X), we see that it suffices
to prove the following theorem:

If X is a connected space and f : X → Y is a continuous surjection,
then Y is also connected .

Consider a partition of Y in two open sets U and V and prove that
one of them is empty. The preimages f−1(U) and f−1(V ) are open by
continuity of f and constitute a partition of X. Since X is connected,
one of them, say f−1(U), is empty. Since f is surjective, we also have
U = ∅.

11.Q Let X = U ∪ V , where U and V are nonempty disjoint
sets open in X. Set f(x) = −1 for x ∈ U and f(x) = 1 for x ∈ V . Then
f is continuous and surjective, is it not? Assume the contrary: let
X be connected. Then S0 is also connected by 11.N, a contradiction.

11.R By Theorem 11.Q, this statement follows from Cauchy Inter-
mediate Value Theorem. However, it is more natural to deduce Interme-
diate Value Theorem from 11.Q and the connectedness of I.

Thus assume the contrary: let I = [0, 1] be disconnected. Then
[0, 1] = U ∪ V , where U and V are disjoint and open in [0, 1]. Suppose
0 ∈ U , consider the set C = {x ∈ [0, 1] | [0, x) ⊂ U} and put c =
supC. Show that each of the possibilities c ∈ U and c ∈ V gives rise to
contradiction. A slightly different proof of Theorem 11.R is sketched in
Lemmas 11.R.1 and 11.R.2.

11.R.1 Use induction: for n = 1, 2, 3, . . . , put

(an+1, bn+1) :=

{
(an+bn

2
, bn) if an+bn

2
∈ U ,

(an,
an+bn

2
) if an+bn

2
∈ V .

11.R.2 On the one hand, we have c ∈ U since c ∈ Cl{an | n ∈ N},
and an belong to U , which is closed in I. On the other hand, we have
c ∈ V since c ∈ Cl{bn | n ∈ N}, and bn belong to V , which is also closed
in I. The contradiction means that U and V cannot be both closed, i.e.,
I is connected.

11.S Every open set on a line is a union of disjoint open intervals
(see 2x:A), each of which contains a rational point. Therefore each open
subset U of a line is a union of a countable collection of open intervals.
Each of them is open and connected, and thus is a connected component
of U (see 11.T).

11.T Apply 11.R and 11.J. (Cf. 11.U and 11.X.)
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11.U Apply 11.R and 11.J. (Recall that a set K ⊂ Rn is said to be
convex if for any p, q ∈ K we have [p, q] ⊂ K.)

11.V Combine 11.R and 11.C.

11.X This is 11.10. This is 11.V.

11.Y Singletons and all kinds of intervals (including open and closed
rays and the whole line).

11.Y Use 10.R, 11.U, and, say Theorem 11.B (or 11.I).

12.A Since the segment [a, b] is connected by 11.R, its image is
an interval by 11.29. Therefore, it contains all points between f(a) and
f(b).

12.B Combine 11.N and 11.10.

12.C Combine 11.V and 11.29.

12.D One of them is connected, while the other one is not.

12.E For each of the spaces, find the number of points with con-
nected complement. (This is obviously a topological invariant.)

12.F Cf. 12.4.

13.B Since the cover
{

[0, 1
2
], [1

2
, 1]
}

of [0, 1] is fundamental and the
restriction of uv to each element of the cover is continuous, the entire
mapping uv is also continuous.

13.C If x, y ∈ I, then I → I : t 7→ (1− t)x+ ty is a path connecting
x and y.

13.D If x, y ∈ Rn, then [0, 1] → Rn : t 7→ (1 − t)x + ty is a path
connecting x and y.

13.E Use 10.R and 13.D.

13.F Combine 11.R and 11.Q.

13.6 Use (the formula of) 13.D, 13.B, and 13.4.

13.G Let x and y be two points in the union, and let A and B be
the sets in the family that contain x and y. If A = B, there is nothing
to prove. If A 6= B, take z ∈ A∩B, join x with z in A by a path u, and
join y with z in B by a path v. Then the path uv joins x and y in the
union, and it remains to use 13.4.

13.H Consider the union of all path-connected sets containing the
point and use 13.G. (Cf. 11.G.)

13.I Similarly to 11.H, only instead of 11.D use 13.G.

13.J Recall the definition of a path-connected component.
This follows from (the proof of) 13.H.
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13.K Let X be path-connected, let f : X → Y be a continuous
map, and let y1, y2 ∈ f(X). If yi = f(xi), i = 1, 2, and u is a path
joining x1 and x2, then how can you construct a path joining y1 and y2?

13.N Combine 13.7 and 11.J.

13.O By 10.Q, A is homeomorphic to (0,+∞) ∼= R, which is path-
connected by 13.D, and so A is also path-connected by 13.L. Since A is
connected (combine 11.T and 11.O, or use 13.N) and, obviously, A ⊂
X ⊂ ClA (what is ClA, by the way?), it follows form 11.15 that X is
also connected.

13.P This is especially obvious for A since A ∼= (0,∞) (you can also
use 11.2).

13.Q Prove that any path in X starting at (0, 0) is constant.

13.R Let A and X be as above. Check that A is dense in X (cf. the
solution to 13.O) and plug in Problems 13.O and 13.Q.

13.S See 13.R.

13.T Let C be a path-connected component of X, x ∈ C an arbi-
trary point. If Ux is a path-connected neighborhood of x, then Ux lies
entirely in C (by the definition of a path-connected component!), and so
x is an interior point of C, which is thus open.

13.U This is 13.N. Since path-connected components
of X are open (see Problem 13.T) and X is connected, there can be only
one path-connected component.

13.V This follows from 13.U because spherical neighborhoods in Rn

(i.e., open balls) are path-connected (by 13.5 or 13.6).

14.A If r1 + r2 ≤ ρ(x1, x2), then the balls Br1
(x1) and Br2

(x2) are
disjoint.

14.B Certainly, I is Hausdorff since it is metrizable. The intervals[
0, 1

2

)
and

(
1
2
, 1
]

are disjoint neighborhoods of 0 and 1, respectively.

14.C If y 6= x, then there exist disjoint neighborhoods Ux

and Vy. Therefore, y /∈ ClUx, whence y /∈ ⋂
U∋x

ClU .

If y 6= x, then y /∈ ⋂
U∋x

ClU , it follows that there exists a neighbor-

hood Ux such that y /∈ ClUx. Set Vy = X r ClUx.

14.D Assume the contrary: let xn → a and xn → b, where a 6= b.
Let U and V be disjoint neighborhoods of a and b, respectively. Then
for sufficiently large n we have xn ∈ U ∩ V = ∅, a contradiction.
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14.E A neighborhood of a point in RT1
has the form U = R r

{x1, . . . , xN}, where, say, x1 < x2 < · · · < xN . Then, obviously, an ∈ U
for each n > xN .

14.F Assume that X is a space, A ⊂ X is a subspace, and x, y ∈ A
are two distinct points. If X is Hausdorff, then x and y have disjoint
neighborhoods U and V in X. In this case, U ∩A and V ∩A are disjoint
neighborhoods of x and y in A. (Recall the definition of the relative
topology!)

14.G (a) Let X satisfy T1 and let x ∈ X. By Axiom T1,
each point y ∈ Xrx has a neighborhood U that does not contain x, i.e.,
U ⊂ X r x, which means that all points in X r x are inner. Therefore,
X r x is open, and so its complement {x} is closed. If singletons
in X are closed and x, y ∈ X are two distinct points, then X r x is a
neighborhood of y that does not contain x, as required in T1.

(b) If singletons in X are closed, then so are finite subsets of
X, which are finite unions of singletons. Obvious.

14.H Combine 14.12 and 14.G.

14.I Combine 14.A and 14.12.

14.J Each point in RT1
is closed, as required by T1, but any two

nonempty sets intersect, which contradicts T2.

14.K Combine 14.G and 5.4, and once more use 14.G; or just modify
the proof of 14.F.

14.N (a) ⇒ (b) Actually, T0 precisely says that at least one of the
points does not lie in the closure of the other (to see this, use Theo-
rem 6.F).
(b) ⇒ (a) Use the above reformulation of T0 and the fact that if x ∈ Cl{y}
and y ∈ Cl{x}, then Cl{x} = Cl{y}.
(a) ⇔ (c) This is obvious. (Recall the definition of the relative topology!)
(c) ⇔ (d) This is also obvious.

14.O This is obvious. Let X be a T0 space such that
each point x ∈ X has a smallest neighborhood Cx. Then we say that
x � y if y ∈ Cx. Let us verify the axioms of order. Reflexivity is obvious.
Transitivity: assume that x � y and y � z. Then Cx is a neighborhood
of y, whence Cy ⊂ Cx, and so also z ∈ Cx, which means that x � z.
Antisymmetry: if x � y and y � x, then y ∈ Cx and x ∈ Cy, whence
Cx = Cy. By T0, this is possible only if x = y. Verify that this order
generates the initial topology.

14.P Let X be a regular space, and let x, y ∈ X be two distinct
points. Since X satisfies T1, the singleton {y} is closed, and so we can
apply T3 to x and {y}.
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14.Q See Problem 14.P. See Problem 14.12.

14.R Let X be a metric space, x ∈ X, and r > 0. Prove that, e.g.,
ClBr(x) ⊂ B2r(x), and use 14.19.

14.S Apply T4 to a closed set and a singleton, which is also closed
by T1.

14.T See Problem 14.S. See Problem 14.12.

14.U Let A and B be two disjoint closed sets in a metric space
(X, ρ). Then, obviously, A ⊂ U := {x ∈ X | ρ(x,A) < ρ(x,B)} and
B ⊂ V := {x ∈ X | ρ(x,A) > ρ(x,B)}. U and V are open (use 9.L) and
disjoint.

14x:A.1 Put U1 = X r B. Since X is normal, there exists an
open neighborhood U0 ⊃ A such that ClU0 ⊂ U1. Let U1/2 be an open
neighborhood of ClU0 such that ClU1/2 ⊂ U1. Repeating the process,
we obtain the required collection {Up}p∈Λ.

14x:A Put f(x) = inf{λ ∈ Λ | x ∈ ClUλ}. We easily see that f
continuous.

14x:B Slightly modify the proof of 14x:9, using Urysohn Lemma
14x:A instead of 14x:9.1.

15.A Let f : X → N be an injection and let A ⊂ X. Then the
restriction f |A : A→ N is also an injection. Use 15.1.

15.B Let X be a countable set, and let f : X → Y be a map. Taking
each y ∈ f(X) to a point in f−1(y) , we obtain an injection f(X) → X.
Hence, f(X) is countable by 15.1.

15.D Suggest an algorithm (or even a formula!) for enumerating
elements in N2.

15.E Use 15.D.

15.G Derive this from 6.44.

15.H Construct a countable set A intersecting each base set (at
least) at one point and prove that A is everywhere dense.

15.I Let X be a second countable space, A ⊂ X a subspace. If
{Ui}∞1 is a countable base in X, then {Ui ∩ A}∞1 is a countable base in
A. (See 5.1.)

15.J Show that if the set A = {xn}∞n=1 is everywhere dense, then
the collection {Br(x) | x ∈ A, r ∈ Q, r > 0} is a countable base of X.
(Use Theorems 4.I and 3.A to show that this is a base and 15.E to show
that it is countable.)

15.L Use 15.K and 15.I.
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15.M By 15.K and 15.I (or, more to the point, combine 15.J, 15.I,
and 15.H), it is sufficient to find a countable everywhere-dense set in Rn.
For example, take Qn = {x ∈ Rn | xi ∈ Q, i = 1, . . . , n}. To see that Qn

is dense in Rn, use the metric ρ(∞). To see that Qn is countable, use 15.F
and 15.E.

15.N Use 9.15.

15.O Let X be the space, let {U} be a countable base in X, and let
Γ = {V } be a cover of X. Let {Ui}∞i=1 be the base sets that are contained
in at least element of the cover: let Ui ⊂ Vi. Using the definition of a
base, we easily see that {Ui}∞i=1 is a cover of X. Then {Vi}∞i=1 is the
required countable subcovering of Γ.

15.P Use 3.A.

15.Q Use 15.12

15.R Use 15.P and 15.A.

15.S Consider an uncountable discrete space.

15.T If xn ∈ A and xn → a, then, obviously, a is an adherent point
for A.

15.U Let a ∈ ClA, and let {Un}n∈N be a decreasing neighborhood
base at a (see 15.16). For each n, there is xn ∈ Un ∩A, and we easily see
that xn → a.

15.V Indeed, let f : X → Y be a continuous map, let b ∈ X, and
let an → b in X. We must prove that f(an) → f(b) in Y . Let V ⊂ Y
be a neighborhood of f(b). Since f is continuous, f−1(V ) ⊂ X is a
neighborhood of b, and since an → b, we have an ∈ f−1(V ) for n > N .
Then also f(an) ∈ V for n > N , as required.

15.W Assume that f : X → Y is a sequentially continuous map and
A ⊂ Y is a sequentially closed set. To prove that f−1(A) is sequentially
closed, we must prove that if {xn} ⊂ f−1(A) and xn → a, then a ∈
f−1(A). Since f is sequentially continuous, we have f(xn) → f(a), and
since A is sequentially closed, we have f(a) ∈ A, whence a ∈ f−1(A), as
required.

15.X It suffices to check that if F ⊂ Y is a closed set, then so is the
preimage f−1(F ) ⊂ X, i.e., Cl(f−1(F )) ⊂ f−1(F ). Let a ∈ Cl(f−1(F )).
Since X is first countable, we also have a ∈ SCl(f−1(F )) (see 15.U),
and so there is a sequence {xn} ⊂ f−1(F ) such that xn → a, whence
f(xn) → f(a) because f is sequentially continuous. Since F is closed, we
have f(a) ∈ F (by 15.T), i.e., a ∈ f−1(F ), as required.

15x:A Since l2 is a metric space, it is sufficient to prove that l2
is separable (see 15.K), i.e., to find a countable everywhere dense set
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A ⊂ l2. The first idea here might be to consider the set of sequences
with rational components, but this set is uncountable! Instead of this,
let A be the set of all rational sequences {xi} such that xi = 0 for all
sufficiently large i. (To show that A is countable, use 15.F and 15.E.
To show that A is everywhere dense, use the fact that if a series

∑
x2

i

converges, then for each ε > 0 there is k such that
∑∞

i=k x
2
i < ε.)

16.A Each of the spaces has only a finite number of open sets, and
so each open cover is finite.

16.B Only the finite ones. (Consider the cover consisting of all
singletons.)

16.C Consider the cover of R by the open intervals (−n, n), n ∈ N.

16.D The latter condition is precisely the negation of compactness.

16.E This follows from the Lindelöf theorem 15.O.

16.F This follows from the second De Morgan formula (see 2.E).
Indeed,

⋂
Aλ 6= ∅ iff

⋃
(X rAλ) = X r

⋂
Aλ 6= X.

16.G Let X be a compact space and let Γ = {Fλ} be a family
of closed subsets of X with the finite intersection property. Assume the
contrary: let

⋂
Fλ = ∅. Then by the second De Morgan formula we have⋃

(XrFλ) = Xr
⋂
Fλ = X, i.e., {XrFλ} is an open cover of X. Since

X is compact, this cover contains a finite subcovering:
⋃n

1 (XrFi) = X,
whence

⋂n
1 Fi = ∅, which contradicts the finite intersection property of

Γ.
Prove the converse implication on your own.

16.H Let Γ = {Uα} be a cover of A by open subsets of X.
Since A is a compact set, the cover of A with the sets A∩Uα contains a
finite subcovering {A ∩ Uαi

}n
1 . Hence {Uαi

} is a finite subcovering of Γ.
Prove the converse implication on your own.

16.I Certainly not.

16.J Let X be a compact space, F ⊂ X a closed subset, and {Uα}
an open cover of A. Then {X rF} ∪ {Uα} is an open cover of X, which
contains a finite subcovering {X r F} ∪ {Ui}n

1 . Clearly, {Ui}n
1 is a cover

of F .

16.K This follows from 16.L.

16.L Since X is Hausdorff, for each x ∈ A the points x and b possess
disjoint neighborhoods Ux and Vb(x). Obviously, {Ux}x∈A is an open
cover of A. Since A is compact, the cover contains a finite subcovering
{Uxi

}n
1 . Put U =

⋃n
1 Uxi

and V =
⋂n

1 Vb(xi). Then U and V are the
required sets. (Check that they are disjoint.)

16.M Combine 16.J and 16.L.
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16.N This follows from 16.O.

16.O (Cf. the proof of Lemma 16.L.) Let X be a Hausdorff space,
and let A,B ⊂ X be two compact sets. By Lemma 16.L, each x ∈ B
has a neighborhood Vx disjoint with a certain neighborhood U(x) of A.
Obviously, {Vx}x∈B is an open cover of B. Since B is compact, the cover
contains a finite subcovering {Uxi

}n
1 . Put V =

⋃n
1 Vxi

and U =
⋂n

1 Ub(xi).
Then U and V are the required neighborhoods. (Check that they are
disjoint.)

16.P Let us argue by contradiction. If I is not compact, then I has
a cover Γ0 such that no finite part of Γ0 covers I (see 16.D). We bisect
I and denote by I1 the half that also is not covered by any finite part of
Γ0. Then we bisect I1, etc. As a result, we obtain a sequence of nested
segments In, where the length of In is equal to 2−n. By the completeness
axiom, they have a unique point in common:

⋂∞
1 In = {x0}. Consider

an element U0 ∈ Γ0 containing x0. Since U0 is open, we have In ⊂ U0 for
sufficiently large n, in contradiction to the fact that, by construction, In
is covered by no finite part of Γ0.

16.Q Repeat the argument used in the proof of Theorem 16.P, only
instead of bisecting the segment each time subdivide the current cube
into 2n equal smaller cubes.

16.R Consider the cover by open balls, {Bn(x0)}∞n=1.

16.S Let, e.g., X = [0, 1) ∪ [2, 3]. (Or just put X = [0, 1).) The set
[0, 1) is bounded, it is also closed in X, but it is not compact.

16.T Combine Theorems 14.A, 16.K, and 16.R.
If a subset F ⊂ Rn is bounded, then F lies in a certain cube, which

is compact (see Theorem 16.Q). If, in addition, F is closed, then F is
also compact by 16.J.

16.U We use Theorem 16.H. Let Γ = {Uλ} be a cover of f(X) by
open subsets of Y . Since f is continuous, {f−1(Uλ)} is an open cover of
X. Since X is compact, this cover has a finite subcovering {f−1(Uλi

)}n
i=1.

Then {Uλi
}n

i=1 is a finite subcovering of Γ.

16.V By 16.U and 16.T, the set f(X) ⊂ R is closed and bounded.
Since f(X) is bounded, there exist finite numbers m = inf f(X) and
M = sup f(X), whence, in particular, m ≤ f(x) ≤ M . Since f(X) is
closed, we have m,M ∈ f(X), whence it follows that there are a, b ∈ X
with f(a) = m and f(b) = M , as required.

16.W This follows from 16.23: consider the cover {f−1(U) | U ∈ Γ}
of X.

16.X This immediately follows from 16.J, 16.K, and 16.U.

16.Y Combine 16.X and 16.24.
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16.Z See Problem 16.Y.

17.A.1 This is obvious. Let x be a limit point. If x
is not an accumulation point of A, then x has a neighborhood Ux such
that the set Ux ∩ A is finite. Show that x has a neighborhood Wx such
that (Wx r x) ∩ A = ∅.

17.A.2 Argue by contradiction: consider the cover of the space by
neighborhoods having finite intersections with the infinite set.

17.A.3 Let X be a space, and let {an} be a sequence of points in X.
Let A be the set of all points in the sequence. If A is finite, there is not
much to prove. So, we assume that A is infinite. By Theorem 17.A.2,
A has an accumulation point x0. Let {Un} be a countable neighborhood
base of x0 and xn1

∈ U1 ∩ A. Since the set U2 ∩ A is infinite, there is
n2 > n1 such that xn2

∈ U2 ∩A. Prove that the subsequence {xnk
} thus

constructed converges to x0. If A is finite, then the argument simplifies
a great deal.

17.B.1 Consider a sequence {xn}, xn ∈ Fn and show that if xnk
→ x0,

then xn ∈ Fn for all n ∈ N.

17.B.2 Let {Fk} ⊂ X be a sequence of closed sets the finite
intersection property. Then

⋂n
1{Fk} is a nested sequence of nonempty

closed sets, whence
⋂∞

1 Fk 6= ∅. This is obvious.

17.B.3 By the Lindelöf theorem 15.O, it is sufficient to consider
countable covers {Un}. If no finite collection of sets in this cover is not a
cover, then the closed sets Fn = X rUn form a collection with the finite
intersection property.

17.C This follows from 17.B and 17.A.

17.D Reformulate the definition of an ε-net: A is an ε-net if
{Bε(x)}x∈A is a cover of X. Now the proof is obvious.

17.E We argue by contradiction. If {xi}k−1
i=1 is not an ε-net, then

there is a point xk such that ρ(xi, xk) ≥ ε, i = 1, . . . , k − 1. As a result,
we obtain a sequence in which the distance between any two points is at
least ε, and so it has no convergent subsequences.

17.F This is obvious because open balls in a metric space are
open sets. Use the definition of the metric topology.

17.G The union of finite 1
n
-nets of the space is countable and ev-

erywhere dense. (see 17.E).

17.H Use 13.82.

17.I If X is compact, then X is sequentially compact by 17.A.
If X is sequentially compact, then X is separable, and hence X has a
countable base. Then 17.C implies that X is compact.
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17.J Assume that {xn} is a Cauchy sequence and its subsequence
xnk

converges to a point a. Find a number m such that ρ(xl, xk) < ε
2

for

k, l ≥ m, and i such that ni > m and ρ(xni
, a) < ε

2
. Then for all l ≥ m

we have the inequality ρ(xl, a) ≤ ρ(xl, xni
) + ρ(xni

, a) < ε.

17.K Obvious. Let {xn} be a Cauchy sequence. Let n1

be such that ρ(xn, xm) < 1
2

for all n,m ≥ n1. Therefore, xn ∈ B1/2(xn1
)

for all n ≥ n1. Further, take n2 > n1 so that ρ(xn, xm) < 1
4

for all

n,m ≥ n2, then B1/4(xn2
) ⊂ B1/2(xn1

). Proceeding the construction,
we obtain a sequence of decreasing disks such that their unique common
point x0 satisfies xn → x0.

17.L Let {xn} be a Cauchy sequence of points of a compact metric
space X. Since X is also sequentially compact, {xn} contains a conver-
gent subsequence, and then the initial sequence also converges.

17.M Each compact space contains a finite ε-net.
Let us show that the space is sequentially compact. Consider an

arbitrary sequence {xn}. We denote by An a finite 1
n
-net in X. Since

X =
⋃

x∈A1
B1(x), one of the balls contains infinitely many points of

the sequence; let xn1
be the first of them. From the remaining members

lying in the first ball, we let xn2
be the first one of those lying in the

ball B1/2(x), x ∈ A2. Proceeding with this construction, we obtain a
subsequence {xnk

}. Let us show that the latter is fundamental. Since by
assumption the space is complete, the constructed sequence has a limit.
We have thus proved that the space is sequentially compact, hence, it is
also compact.

17.N Obvious. This follows from assertion 17.M
because an ε

2
-net for a ε

2
-net is an ε-net for the entire space.

18x:A No, it is not: consider Q ⊂ R.

18x:B Let X be a locally compact space, F ⊂ X a closed subset
space, x ∈ F . Let Ux ⊂ X be a neighborhood of x with compact closure.
Then Ux ∩ F is a neighborhood of x in F . Since F is closed, the set
ClF (U ∩ F ) = (ClU) ∩ F (see 6.3) is compact as a closed subset of a
compact set.

18x:C No, this is wrong in general. Take any space (X,Ω) that
is not locally compact (e.g., let X = Q). We put X∗ = X ∪ x∗ and
Ω∗ = {X∗} ∪ Ω. The space (X∗,Ω∗) is compact for a trivial reason
(which one?), hence, it is locally compact. Now, X is an open subset of
X∗, but it is not locally compact by our choice of X.

18x:D Let X be the space, W be a neighborhood of a point x ∈ X.
Let U0 be a neighborhood of x with compact closure. Since X is Haus-
dorff, it follows that {x} =

⋂
U∋x ClU , whence {x} =

⋂
U∋x

(
ClU0∩ClU

)
.
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Since each of the sets ClU0 ∩ ClU is compact, 16.11 implies that x has
neighborhoods U1, . . . , Un such that ClU0 ∩ ClU1 ∩ . . . ∩ ClUn ⊂ W .
Put V = U0 ∩ U1 ∩ . . . ∩ Un. Then ClV ⊂ W . Therefore, each neigh-
borhood of x contains the closure of a certain neighborhood (a “closed
neighborhood”) of x. By 14.19, X is regular.

18x:E Let X be the space, V ⊂ X the open subset, x ∈ V a point.
Let U be a neighborhood of x such that ClU is compact. By 18x:D
and 14.19, x has a neighborhood W such that ClW ⊂ U ∩V . Therefore,
ClV W = ClW is compact, and so the space V is locally compact.

18x:F Obvious. See the idea used in 18x:E.

18x:G Since ∅ is both open and compact in X, we have ∅, X∗ ∈ Ω∗.
Let us verify that unions and finite intersections of subsets in Ω∗ lie in
Ω∗. This is obvious for subsets in Ω. Let X∗ rKλ ∈ Ω∗, where Kλ ⊂ X
are compact sets, λ ∈ Λ. Then we have

⋃
(X∗ rKλ) = X∗ r

⋂
Kλ ∈ Ω∗

because X is Hausdorff and so
⋂
Kλ is compact. Similarly, if Ω is finite,

then we also have
⋂

(X∗rKλ) = X∗r
⋃
Kλ ∈ Ω∗. Therefore, it suffices to

consider the case where a set in Ω∗ and a set in Ω are united (intersected).
We leave this as an exercise.

18x:H Let U = X∗ r K0 be an element of the cover that contains
the added point. Then the remaining elements of the cover provide an
open cover of the compact set K0.

18x:I In other words, the topology of X∗ induced on X the initial
topology of X (i.e., Ω∗ ∩ 2X = Ω). We must check that there arise no
new open sets in X. This is true because compact sets in the Hausdorff
space X are closed.

18x:J If x, y ∈ X, this is obvious. If, say, y = x∗ and Ux is a
neighborhood of x with compact closure, then Ux and X r ClUx are
neighborhoods separating x and x∗.

18x:K Let X∗ rX = {x∗} and Y rX = {y}. We have an obvious
bijection

f : Y → X∗ : x 7→
{
x if x ∈ X,

x∗ if x = y.

If U ⊂ X∗ and U = X∗ r K, where K is a compact set in X, then the
set f−1(U) = Y rK is open in Y . Therefore, f is continuous. It remains
to apply 16.Y.

18x:L Verify that if an open set U ⊂ S2 contains the “North Pole”
(0, 0, 1) of S2, then the complement of the image of U under the stereo-
graphic projection is compact in R2.

18x:M X∗ is compact and Hausdorff by 18x:H and 18x:J, therefore,
X∗ is regular by 16.M. Since X is a subspace of X∗ by 18x:I, it remains
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to use the fact that regularity is hereditary by 14.20. (Also try to prove
the required assertion without using the one-point compactification.)

18x:N If1 f ∗ is continuous, then, obviously, so is f (by 18x:I).
Let K ⊂ Y be a compact set, and let U = Y rK. Since f ∗ is continuous,
the set (f ∗)−1(U) = X∗ r f−1(K) is open in X∗, i.e., f−1(K) is compact
in X. Therefore, f is proper. Use a similar argument.

18x:O Let f ∗ : X∗ → Y ∗ be the canonical of a mapping f : X → Y .
Prove that if F is closed in X, then F ∪ {x∗} is closed in X∗, and hence
compact. After that, use 18x:N, 16.X, and 18x:I.

18x:P A proper injection of a Hausdorff space into a locally com-
pact Hausdorff space is a topological embedding. A proper bijection of a
Hausdorff space onto a locally compact Hausdorff space is a homeomor-
phism.

18x:Q Let Γ be a locally finite cover, and let ∆ be a cover of X
by neighborhoods each of which meets only a finite number of sets in
Γ. Since X is compact, we can assume that ∆ is finite. In this case,
obviously, Γ is also finite.

18x:R Cover Rn by the balls Bn(0), n ∈ N.

18x:S Use a locally finite covering of Rn by equal open cubes.

18x:T Cf. 18x:17.

18x:U This is obvious.

18x:V This is 18x:S.

18x:W Let Γ be an open cover of X. Since each of the sets Ki =
XirIntXi−1 is compact, Γ contains a finite subcovering Γi ofKi. Observe
that the sets Wi = IntXi+1 rXi−2 ⊃ Ki form a locally finite open cover
of X. Intersecting for each i elements of Γi with Wi, we obtain a locally
finite refinement of Γ.

18x:X Using assertion 18x:6, construct a sequence of open sets Ui

such that for each i the closure Xi := ClUi is compact and lies in Ui+1 ⊂
IntXi+1. After that, apply 18x:W.

18x:13 This is obvious. (Recall the definitions.)

18x:Y Let Γ = {Uα} be the cover. By 18x:18, there exists an open
cover ∆ = {Vα} such that ClVα ⊂ Uα for each α. Let ϕα : X → I
be an Urysohn function with suppϕα = X r Uα and ϕ−1

α (1) = ClVα

(see 14x:A). Put ϕ(x) =
∑

α ϕα(x). Then the collection {ϕα(x)/ϕ(x)} is
the required partition of unity.



CHAPTER 4

Topological Constructions

§19 Multiplication

§19◦1 Set-Theoretic Digression: Product of Sets

Let X and Y be sets. The set of ordered pairs (x, y) with x ∈ X and
y ∈ Y is called the direct product or Cartesian product or just product of X
and Y and denoted by X×Y . If A ⊂ X and B ⊂ Y , then A×B ⊂ X×Y .
Sets X × b with b ∈ Y and a × Y with a ∈ X are fibers of the product
X × Y .

19.A. Prove that for any A1, A2 ⊂ X and B1, B2 ⊂ Y we have

(A1 ∪A2)× (B1 ∪B2) = (A1 ×B1)∪ (A1 ×B2)∪ (A2 ×B1)∪ (A2 ×B2),

(A1 × B1) ∩ (A2 ×B2) = (A1 ∩A2) × (B1 ∩ B2),

(A1 × B1) r (A2 × B2) =
(
(A1 r A2) × B1

)
∩
(
A1 × (B1 rB2)

)
.

The natural maps

prX : X × Y → X : (x, y) 7→ x and prY : X × Y → Y : (x, y) 7→ y

are (natural) projections.

19.B. Prove that pr−1
X (A) = A× Y for any A ⊂ X.

19.1. Find the corresponding formula for B ⊂ Y .

§19◦2 Graphs

A map f : X → Y determines a subset Γf of X × Y defined by
Γf = {(x, f(x)) | x ∈ X}, it is called the graph of f .

19.C. A set Γ ⊂ X×Y is the graph of a map X → Y iff for each a ∈ X
the intersection Γ ∩ (a× Y ) is one-point.

19.2. Prove that for any map f : X → Y and any set A ⊂ X , we have

f(A) = prY (Γf ∩ (A × Y )) = prY (Γf ∩ pr−1
X (A))

and f−1(B) = prX(Γ ∩ (X × B)) for any B ⊂ Y .

The set ∆ = {(x, x) | x ∈ X} = {(x, y) ∈ X × X | x = y} is the diagonal

of X × X .
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19.3. Let A and B be two subsets of X . Prove that (A × B) ∩ ∆ = ∅ iff
A ∩ B = ∅.

19.4. Prove that the map prX

∣∣
Γf

is bijective.

19.5. Prove that f is injective iff prY

∣∣
Γf

is injective.

19.6. Consider the map T : X × Y → Y × X : (x, y) 7→ (y, x). Prove that
Γf−1 = T (Γf) for any invertible map f : X → Y .

§19◦3 Product of Topologies

Let X and Y be two topological spaces. If U is an open set of X and
B is an open set of Y , then we say that U × V is an elementary set of
X × Y .

19.D. The set of elementary sets of X × Y is a base of a topological
structure in X × Y .

The product of two spaces X and Y is the set X × Y with the topo-
logical structure determined by the base consisting of elementary sets.

19.7. Prove that for any subspaces A and B of spaces X and Y the product
topology on A × B coincides with the topology induced from X × Y via the
natural inclusion A × B ⊂ X × Y .

19.E. Y ×X is canonically homeomorphic to X × Y .

The word canonically means here that a homeomorphism between
X × Y and Y × X, which exists according to the statement, can be
chosen in a nice special (or even obvious?) way, so that we may expect
that it has additional pleasant properties.

19.F. The canonical bijection X × (Y × Z) → (X × Y ) × Z is a home-
omorphism.

19.8. Prove that if A is closed in X and B is closed in Y , then A × B is
closed in X × Y .

19.9. Prove that Cl(A × B) = Cl A × ClB for any A ⊂ X and B ⊂ Y .

19.10. Is it true that Int(A × B) = IntA × IntB?

19.11. Is it true that Fr(A × B) = Fr A × FrB?

19.12. Is it true that Fr(A × B) = (Fr A × B) ∪ (A × FrB)?

19.13. Prove that Fr(A×B) = (Fr A×B)∪ (A×Fr B) for closed A and B.

19.14. Find a formula for Fr(A × B) in terms of A, Fr A, B, and Fr B.



§19. MULTIPLICATION 130

§19◦4 Topological Properties of Projections and Fibers

19.G. The natural projections prX : X × Y → X and prY : X × Y → Y
are continuous for any topological spaces X and Y .

19.H. The topology of product is the coarsest topology with respect to
which prX and prY are continuous.

19.I. A fiber of a product is canonically homeomorphic to the correspond-
ing factor. The canonical homeomorphism is the restriction to the fiber
of the natural projection of the product onto the factor.

19.J. Prove that R1 × R1 = R2, (R1)n = Rn, and (I)n = In. (We
remind the reader that In is the n-dimensional unit cube in Rn.)

19.15. Let ΣX and ΣY be bases of spaces X and Y . Prove that the sets
U × V with U ∈ ΣX and V ∈ ΣY constitute a base for X × Y .

19.16. Prove that a map f : X → Y is continuous iff prX |Γf
: Γf → X is a

homeomorphism.

19.17. Prove that if W is open in X × Y , then prX(W ) is open in X .

A map from a space X to a space Y is open if the image of any open set
under this map is open. Therefore, 19.17 states that prX : X × Y → X is an
open map.

19.18. Is prX a closed map?

19.19. Prove that for each space X and each compact space Y the map
prX : X × Y → X is closed.

§19◦5 Cartesian Products of Maps

Let X, Y , and Z be three sets. A map f : Z → X × Y determines
the compositions f1 = prX ◦f : Z → X and f2 = prY ◦f : Z → Y , which
are called the factors (or components) of f . Indeed, f can be recovered
from them as a sort of product.

19.K. Prove that for any maps f1 : Z → X and f2 : Z → Y there exists
a unique map f : Z → X × Y with prX ◦f = f1 and prY ◦f = f2.

19.20. Prove that f−1(A × B) = f−1
1 (A) ∩ f−1

2 (B) for any A ⊂ X and
B ⊂ Y .

19.L. Let X, Y , and Z be three spaces. Prove that f : Z → X × Y is
continuous iff so are f1 and f2.

Any two maps g1 : X1 → Y1 and g2 : X2 → Y2 determine a map

g1 × g2 : X1 ×X2 → Y1 × Y2 : (x1, x2) 7→ (g1(x1), g2(x2)),

which is their (Cartesian) product.
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19.21. Prove that (g1 × g2)(A1 × A2) = g1(A1) × g2(A2) for any A1 ⊂ X1

and A2 ⊂ X2.

19.22. Prove that (g1×g2)
−1(B1×B2) = g−1

1 (B1)×g−1
2 (B2) for any B1 ⊂ Y1

and B2 ⊂ Y2.

19.M. Prove that the Cartesian product of continuous maps is contin-
uous.

19.23. Prove that the Cartesian product of open maps is open.

19.24. Prove that a metric ρ : X ×X → R is continuous with respect to the
topology generated by the metric.

19.25. Let f : X → Y be a map. Prove that the graph Γf is the preimage
of the diagonal ∆Y = {(y, y) | y ∈ Y } ⊂ Y × Y under the mapping f × idY :
X × Y → Y × Y .

§19◦6 Properties of Diagonal and Other Graphs

19.26. Prove that a space X is Hausdorff iff the diagonal ∆ = {(x, x) | x ∈
X} is closed in X × X .

19.27. Prove that if Y is a Hausdorff space and f : X → Y is a continuous
map, then the graph Γf is closed in X × Y .

19.28. Let Y be a compact space. Prove that if a map f : X → Y has closed
graph Γf , then f is continuous.

19.29. Prove that the hypothesis on compactness in 19.28 is necessary.

19.30. Let f : R → R be a continuous function. Prove that its graph is:
(a) closed;
(b) connected;
(c) path connected;
(d) locally connected;
(e) locally compact.

19.31. Consider the following functions

1) R → R : x 7→
{

0 if x = 0,

1/x, otherwise.
; 2) R → R : x 7→

{
0 if x = 0,

1/sinx, otherwise.

Do their graphs possess the properties listed in 19.30?

19.32. Does any of the properties of the graph of a function f that are
mentioned in 19.30 imply that f is continuous?

19.33. Let Γf be closed. Then the following assertions are equivalent:
(a) f is continuous;
(b) f is locally bounded;
(c) the graph Γf of f is connected;
(d) the graph Γf of f is path-connected.

19.34. Prove that if Γf is connected and locally connected, then f is con-
tinuous.

19.35. Prove that if Γf is connected and locally compact, then f is contin-
uous.

19.36. Are some of the assertions in Problems 19.33–19.35 true for mappings
f : R2 → R?
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§19◦7 Topological Properties of Products

19.N. The product of Hausdorff spaces is Hausdorff.

19.37. Prove that the product of regular spaces is regular.

19.38. The product of normal spaces is not necessarily normal.

19.38.1*. Prove that the space R formed by real numbers with
the topology determined by the base consisting of all semi-open
intervals [a, b) is normal.

19.38.2. Prove that in the Cartesian square of the space introduced
in 19.38.1 the subspace {(x, y) | x = −y} is closed and discrete.

19.38.3. Find two disjoint subsets of {(x, y) | x = −y} that have
no disjoint neighborhoods in the Cartesian square of the space
of 19.38.1.

19.O. The product of separable spaces is separable.

19.P. First countability of factors implies first countability of the prod-
uct.

19.Q. The product of second countable spaces is second countable.

19.R. The product of metrizable spaces is metrizable.

19.S. The product of connected spaces is connected.

19.39. Prove that for connected spaces X and Y and any proper subsets
A ⊂ X , B ⊂ Y the set X × Y r A × B is connected.

19.T. The product of path-connected spaces is path-connected.

19.U. The product of compact spaces is compact.

19.40. Prove that the product of locally compact spaces is locally compact.

19.41. If X is a paracompact space and Y is compact, then X × Y is para-
compact.

19.42. For which of the topological properties studied above is it true that
if X × Y possesses the property, then so does X?

§19◦8 Representation of Special Spaces as Products

19.V. Prove that R2 r 0 is homeomorphic to S1 × R.

19.43. Prove that Rn r Rk is homeomorphic to Sn−k−1 × Rk+1.

19.44. Prove that Sn ∩ {x ∈ Rn+1 | x2
1 + · · · + x2

k ≤ x2
k+1 + · · · + x2

n+1} is

homeomorphic to Sk−1 × Dn−k+1.

19.45. Prove that O(n) is homeomorphic to SO(n) × O(1).

19.46. Prove that GL(n) is homeomorphic to SL(n) × GL(1).
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19.47. Prove that GL+(n) is homeomorphic to SO(n) × R
n(n+1)

2 , where

GL+(n) = {A ∈ L(n, n) | detA > 0}.
19.48. Prove that SO(4) is homeomorphic to S3 × SO(3).

The space S1 × S1 is a torus.

19.W. Construct a topological embedding of the torus to R3.

The product S1 × · · · × S1 of k factors is the k-dimensional torus.

19.X. Prove that the k-dimensional torus can be topologically embedded
into Rk+1.

19.Y. Find topological embeddings of S1 ×D2, S1 ×S1 × I, and S2 × I
into R3.



§20 Quotient Spaces

§20◦1 Set-Theoretic Digression: Partitions and Equivalence Re-
lations

Recall that a partition of a set A is a cover of A consisting of pairwise
disjoint sets.

Each partition of a set X determines an equivalence relation (i.e., a
relation, which is reflexive, symmetric, and transitive): two elements
of X are said to be equivalent if they belong to the same element of
the partition. Vice versa, each equivalence relation in X determines
the partition of X into classes of equivalent elements. Thus, partitions
of a set into nonempty subsets and equivalence relations in the set are
essentially the same. More precisely, they are two ways of describing the
same phenomenon.

Let X be a set, S a partition. The set whose elements are members
of the partition S (which are subsets of X) is the quotient set or factor

set of X by S, it is denoted by X/S. 1

20.1. Riddle. How does this operation relate to division of numbers? Why
is there a similarity in terminology and notation?

The set X/S is also called the set of equivalence classes for the equiv-
alence relation corresponding to the partition S.

The mapping pr : X → X/S that maps x ∈ X to the element of S
containing x is the (canonical) projection or factorization map. A subset of
X which is a union of elements of a partition is saturated . The smallest
saturated set containing a subset A of X is the saturation of A.

20.2. Prove that A ⊂ X is an element of a partition S of X iff A =
pr−1(point), where pr : X → X/S is the natural projection.

20.A. Prove that the saturation of a set A equals pr−1
(
pr(A)

)
.

20.B. Prove that a set is saturated iff it is equal to its saturation.

1At first glance, the definition of a quotient set contradicts one of the very pro-
found principles of the set theory, which states that a set is determined by its elements.
Indeed, according to this principle, we have X/S = S since S and X/S have the same
elements. Hence, there seems to be no need to introduce X/S. The real sense of
the notion of quotient set is not in its literal set-theoretic meaning, but in our way
of thinking of elements of partitions. If we remember that they are subsets of the
original set and want to keep track of their internal structure (at least, of their el-
ements), then we speak of a partition. If we think of them as atoms, getting rid of
their possible internal structure, then we speak about the quotient set.
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§20◦2 Quotient Topology

A quotient set X/S of a topological space X with respect to a parti-
tion S into nonempty subsets is provided with a natural topology: a set
U ⊂ X/S is said to be open in X/S if its preimage pr−1(U) under the
canonical projection pr : X → X/S is open.

20.C. The collection of these sets is a topological structure in the quo-
tient set X/S.

This topological structure is the quotient topology . The set X/S with
this topology is the quotient space of X by partition S.

20.3. Give an explicit description of the quotient space of the segment [0, 1]
by the partition consisting of [0, 1

3 ], (1
3 , 2

3 ], (2
3 , 1].

20.4. What can you say about a partition S of a space X if the quotient
space X/S is known to be discrete?

20.D. A subset of a quotient space X/S is open iff it is the image of an
open saturated set under the canonical projection pr.

20.E. A subset of a quotient space X/S is closed, iff its preimage under
pr is closed in X, iff it is the image of a closed saturated set.

20.F. The canonical projection pr : X → X/S is continuous.

20.G. Prove that the quotient topology is the finest topology in X/S
such that the canonical projection pr is continuous with respect to it.

§20◦3 Topological Properties of Quotient Spaces

20.H. A quotient space of a connected space is connected.

20.I. A quotient space of a path-connected space is path-connected.

20.J. A quotient space of a separable space is separable.

20.K. A quotient space of a compact space is compact.

20.L. The quotient space of the real line by partition R+, R r R+ is
not Hausdorff.

20.M. The quotient space of a space X by a partition S is Hausdorff iff
any two elements of S have disjoint saturated neighborhoods.

20.5. Formulate similar necessary and sufficient conditions for a quotient
space to satisfy other separation axioms and countability axioms.

20.6. Give an example showing that the second countability can may get
lost when we pass to a quotient space.
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§20◦4 Set-Theoretic Digression: Quotients and Maps

Let S be a partition of a set X into nonempty subsets. Let f : X → Y
be a map which is constant on each element of S. Then there is a map
X/S → Y which sends each element A of S to the element f(a), where
a ∈ A. This map is denoted by f/S and called the quotient map or factor

map of f (by the partition S).

20.N. 1) Prove that a map f : X → Y is constant on each element of
a partition S of X iff there exists a map g : X/S → Y such that the
following diagram is commutative:

X
f−−−→ Y

pr

y ր g

X/S

2) Prove that such a map g coincides with f/S.

More generally, if S and T are partitions of sets X and Y , then
every map f : X → Y that maps each element of S to an element of T
determines a map X/S → Y/T which sends an element A of partition S
to the element of partition T containing f(A). This map is denoted by
f/S, T and called the quotient map or factor map of f (with respect to S

and T ).

20.O. Formulate and prove for f/S, T a statement generalizing 20.N.

A map f : X → Y determines a partition of the set X into nonempty
preimages of the elements of Y . This partition is denoted by S(f).

20.P. The map f/S(f) : X/S(f) → Y is injective.

This map is the injective factor (or injective quotient) of f .

§20◦5 Continuity of Quotient Maps

20.Q. Let X and Y be two spaces, S a partition of X into nonempty
sets, and f : X → Y a continuous map constant on each element of S.
Then the factor f/S of f is continuous.

20.7. If the mapping f is open, then so is the quotient map f/S.

20.8. Let X and Y be two spaces, S a partition of X into nonempty sets.
Prove that the formula f 7→ f/S determines a bijection from the set of all
continuous maps X → Y that are constant on each element of S onto the set
of all continuous maps X/S → Y .

20.R. Let X and Y be two spaces, S and T partitions of X and Y ,
respectively, and f : X → Y a continuous map which maps each element
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of S into an element of T . Then the map f/S, T : X/S → Y/T is
continuous.

§20x◦6 Closed Partitions

A partition S of a space X is closed if the saturation of each closed
set is closed.

20x:1. Prove that a partition is closed iff the canonical projection X → X/S
is a closed map.

20x:2. Prove that if a partition S contains only one element consisting of
more than one point, then S is closed if this element is a closed set.

20x:A. Let X be a space satisfying the first separation axiom, S a closed
partition of X. Then the quotient space X/S also satisfies the first
separation axiom.

20x:B. The quotient space of a normal space with respect to a closed
partition is normal.

§20x◦7 Open Partitions

A partition S of a space X is open if the saturation of each open set
is open.

20x:3. Prove that a partition S is open iff the canonical projection X → X/S
is an open map.

20x:4. Prove that if a set A is saturated with respect to an open partition,
then IntA and Cl A are also saturated.

20x:C. The quotient space of a second countable space with respect to an
open partition is second countable.

20x:D. The quotient space of a first countable space with respect to an
open partition is first countable.

20x:E. Let X and Y be two spaces, and let S and T be their open parti-
tions. Denote by S × T the partition of X × Y consisting of A×B with
A ∈ S and B ∈ T . Then the injective factor X × Y/S × T → X/S×Y/T
of pr× prX × Y → X/S × Y/T is a homeomorphism.



§21 Zoo of Quotient Spaces

§21◦1 Tool for Identifying a Quotient Space with a Known
Space

21.A. If X is a compact space, Y is a Hausdorff space, and f : X → Y
is a continuous map, then the injective factor f/S(f) : X/S(f) → Y is

a homeomorphism.

21.B. The injective factor of a continuous map from a compact space to
a Hausdorff one is a topological embedding.

21.1. Describe explicitly partitions of a segment such that the corresponding
quotient spaces are all letters of the alphabet.

21.2. Prove that there exists a partition of a segment I with the quotient
space homeomorphic to square I × I.

§21◦2 Tools for Describing Partitions

An accurate literal description of a partition can often be somewhat
cumbersome, but usually it can be shortened and made more under-
standable. Certainly, this requires a more flexible vocabulary with lots
of words having almost the same meanings. For instance, such words as
factorize and pass to a quotient can be replaced by attach, glue together ,
identify , contract, paste, and other words accompanying these ones in
everyday life.

Some elements of this language are easy to formalize. For instance,
factorization of a space X with respect to a partition consisting of a set
A and one-point subsets of the complement of A is the contraction (of
the subset A to a point), and the result is denoted by X/A.

21.3. Let A, B ⊂ X form a fundamental cover of a space X . Prove that the
quotient map A/A ∩ B → X/B of the inclusion A →֒ X is a homeomorphism.

If A and B are two disjoint subspaces of a space X and f : A → B
is a homeomorphism, then passing to the quotient of X by the partition
into singletons in Xr(A∪B) and two-point sets {x, f(x)}, where x ∈ A,
we glue or identify the sets A and B via the homeomorphism f .

A rather convenient and flexible way for describing partitions is to
describe the corresponding equivalence relations. The main advantage
of this approach is that, by transitivity, it suffices to specify only some
pairs of equivalent elements: if one states that x ∼ y and y ∼ z, then it
is not necessary to state that x ∼ z since this already follows.

Hence, a partition is represented by a list of statements of the form
x ∼ y that are sufficient for recovering the equivalence relation. We
denote the corresponding partition by such a list enclosed into square
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brackets. For example, the quotient of a space X obtained by identify-
ing subsets A and B by a homeomorphism f : A → B is denoted by
X/[a ∼ f(a) for any a ∈ A] or just X/[a ∼ f(a)].

Some partitions are easily described by a picture, especially if the
original space can be embedded in the plane. In such a case, as in the
pictures below, we draw arrows on the segments to be identified to show
the directions to be identified.

Below we introduce all these kinds of descriptions for partitions and
give examples of their usage, simultaneously providing literal descrip-
tions. The latter are not that nice, but they may help the reader to
remain confident about the meaning of the new words. On the other
hand, the reader will appreciate the improvement the new words bring
in.

§21◦3 Welcome to the Zoo

21.C. Prove that I/[0 ∼ 1] is homeomorphic to S1.

In other words, the quotient space of segment I by the partition
consisting of {0, 1} and {a} with a ∈ (0, 1) is homeomorphic to a circle.

21.C.1. Find a surjective continuous map I → S1 such that the corre-
sponding partition into preimages of points consists of one-point subsets of
the interior of the segment and the pair of boundary points of the segment.

21.D. Prove that Dn/Sn−1 is homeomorphic to Sn.

In 21.D, we deal with the quotient space of the n-disk Dn by the
partition {Sn−1} ∪ {{x} | x ∈ Bn}.

Here is a reformulation of 21.D: Contracting the boundary of an n-
dimensional ball to a point, we obtain gives rise an n-dimensional sphere.

21.D.1. Find a continuous map of the n-disk Dn to the n-sphere Sn that
maps the boundary of the disk to a single point and bijectively maps the
interior of the disk onto the complement of this point.

21.E. Prove that I2/[(0, t) ∼ (1, t) for t ∈I] is homeomorphic to S1 × I.

Here the partition consists of pairs of points {(0, t), (1, t)} where t ∈ I,
and one-point subsets of (0, 1) × I.

Reformulation of 21.E: If we glue the side edges of a square by iden-
tifying points on the same hight, then we obtain a cylinder.
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21.F. S1 × I/[(z, 0) ∼ (z, 1) for z ∈ S1] is homeomorphic to S1 × S1.

Here the partition consists of one-point subsets of S1 × (0, 1), and
pairs of points of the basis circles lying on the same generatrix of the
cylinder.

Here is a reformulation of 21.F: If we glue the base circles of a cylinder
by identifying points on the same generatrix, then we obtain a torus.

21.G. I2/[(0, t) ∼ (1, t), (t, 0) ∼ (t, 1)] is homeomorphic to S1 × S1.

In 21.G , the partition consists of
• one-point subsets of the interior (0, 1) × (0, 1) of the square,
• pairs of points on the vertical sides that are the same distance from

the bottom side (i.e., pairs {(0, t), (1, t)} with t ∈ (0, 1)),
• pairs of points on the horizontal sides that lie on the same vertical

line (i.e., pairs {(t, 0), (t, 1)} with t ∈ (0, 1)),
• the four vertices of the square

Reformulation of 21.G: Identifying the sides of a square according to

the picture , we obtain a torus .

§21◦4 Transitivity of Factorization

A solution of Problem 21.G can be based on Problems 21.E and 21.F
and the following general theorem.

21.H Transitivity of Factorization. Let S be a partition of a space
X, and let S ′ be a partition of the space X/S. Then the quotient space
(X/S)/S ′ is canonically homeomorphic to X/T , where T is the partition
of X into preimages of elements of S ′ under the projection X → X/S.

§21◦5 Möbius Strip

The Möbius strip or Möbius band is defined as I2/[(0, t) ∼ (1, 1 − t)].

In other words, this is the quotient space of the square I2 by the partition
into centrally symmetric pairs of points on the vertical edges of I2, and
singletons that do not lie on the vertical edges. The Möbius strip is
obtained, so to speak, by identifying the vertical sides of a square in such
a way that the directions shown on them by arrows are superimposed:

.
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21.I. Prove that the Möbius strip is homeomorphic to the surface that
is swept in R3 by a segment rotating in a half-plane around the midpoint,
while the half-plane rotates around its boundary line. The ratio of the
angular velocities of these rotations is such that the rotation of the half-
plane through 360◦ takes the same time as the rotation of the segment
through 180◦. See Figure 1.

Figure 1.

§21◦6 Contracting Subsets

21.4. Prove that [0, 1]/[ 13 , 2
3 ] is homeomorphic to [0, 1], and [0, 1]/{ 1

3 , 1} is

homeomorphic to letter P.

21.5. Prove that the following spaces are homeomorphic:
(a) R2; (b) R2/I; (c) R2/D2; (d) R2/I2;

(e) R2/A, where A is a union of several segments with a common end
point;

(f) R2/B, where B is a simple finite polygonal line, i.e., a union of a finite
sequence of segments I1, . . . , In such that the initial point of Ii+1 is
the final point of Ii.

21.6. Prove that if f : X → Y is a homeomorphism, then the quotient spaces
X/A and Y/f(A) are homeomorphic.

21.7. Let A ⊂ R2 be a ray {(x, y) | x ≥ 0, y = 0}. Is R2/A homeomorphic
to IntD2 ∪ {(0, 1)}?

§21◦7 Further Examples

21.8. Prove that S1/[z ∼ e2πi/3z] is homeomorphic to S1.

The partition in 21.8 consists of triples of points that are vertices of
equilateral inscribed triangles.

21.9. Prove that the following quotient spaces of the disk D2 are homeomor-
phic to D2:
(a) D2/[(x, y) ∼ (−x,−y)],

(b) D2/[(x, y) ∼ (x,−y)],

(c) D2/[(x, y) ∼ (−y, x)].
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21.10. Find a generalization of 21.9 with Dn substituted for D2.

21.11. Describe explicitly the quotient space of line R1 by equivalence rela-
tion x ∼ y ⇔ x − y ∈ Z.

21.12. Represent the Möbius strip as a quotient space of cylinder S1 × I.

§21◦8 Klein Bottle

Klein bottle is I2/[(t, 0) ∼ (t, 1), (0, t) ∼ (1, 1 − t)]. In other words,

this is the quotient space of square I2 by the partition into

• one-point subsets of its interior,
• pairs of points (t, 0), (t, 1) on horizontal edges that lie on the same

vertical line,
• pairs of points (0, t), (1, 1 − t) symmetric with respect to the center

of the square that lie on the vertical edges, and
• the quadruple of vertices.

21.13. Present the Klein bottle as a quotient space of

(a) a cylinder;
(b) the Möbius strip.

21.14. Prove that S1 × S1/[(z, w) ∼ (−z, w̄)] is homeomorphic to the Klein

bottle. (Here w̄ denotes the complex number conjugate to w.)

21.15. Embed the Klein bottle into R4 (cf. 21.I and 19.W).

21.16. Embed the Klein bottle into R4 so that the image of this embedding
under the orthogonal projection R4 → R3 would look as follows:

§21◦9 Projective Plane

Let us identify each boundary point of the disk D2 with the antipodal
point, i.e., factorize the disk by the partition consisting of one-point
subsets of the interior of the disk and pairs of points on the boundary
circle symmetric with respect to the center of the disk. The result is the
projective plane. This space cannot be embedded in R3, too. Thus we are
not able to draw it. Instead, we present it in other way.

21.J. A projective plane is a result of gluing together a disk and a Möbius
strip via a homeomorphism between their boundary circles.
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§21◦10 You May Have Been Provoked to Perform an Illegal
Operation

Solving the previous problem, you did something that did not fit into
the theory presented above. Indeed, the operation with two spaces called
gluing in 21.J has not appeared yet. It is a combination of two operations:
first, we make a single space consisting of disjoint copies of the original
spaces, and then we factorize this space by identifying points of one copy
with points of another. Let us consider the first operation in detail.

§21◦11 Set-Theoretic Digression: Sums of Sets

The (disjoint) sum of a family of sets {Xα}α∈A is the set of pairs
(xα, α) such that xα ∈ Xα. The sum is denoted by

⊔
α∈AXα. So, we can

write ⊔

α∈A

Xα =
⋃

α∈A

(Xα × {α}).

For each β ∈ A, we have a natural injection

inβ : Xβ →
⊔

α∈A

Xα : x 7→ (x, β).

If only two sets X and Y are involved and they are distinct, then we can
avoid indices and define the sum by setting

X ⊔ Y = {(x,X) | x ∈ X} ∪ {(y, Y ) | y ∈ Y }.

§21◦12 Sums of Spaces

21.K. Let {Xα}α∈A be a collection of topological spaces. Then the
collection of subsets of

⊔
α∈AXα whose preimages under all inclusions

inα, α ∈ A, are open is a topological structure.

The sum
⊔

α∈AXα with this topology is the (disjoint) sum of the

topological spaces Xα (α ∈ A).

21.L. The topology described in 21.K is the finest topology with respect
to which all inclusions inα are continuous.

21.17. The maps inβ : Xβ → ⊔
α∈A Xα are topological embedding, and their

images are both open and closed in
⊔

α∈A Xα.

21.18. Which of the standard topological properties are inherited from sum-
mands Xα by the sum

⊔
α∈A Xα? Which are not?
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§21◦13 Attaching Space

Let X and Y be two spaces, A a subset of Y , and f : A→ X a contin-
uous map. The quotient space X ∪f Y = (X ⊔ Y )/[a ∼ f(a) for a ∈ A]

is said to be the result of attaching or gluing the space Y to the space X
via f . The map f is the attaching map.

Here the partition of X⊔Y consists of one-point subsets of in2(Y rA)

and in1(X r f(A)), and sets in1(x) ∪ in2

(
f−1(x)

)
with x ∈ f(A).

21.19. Prove that the composition of inclusion X → X ⊔ Y and projection
X ⊔ Y → X ∪f Y is a topological embedding.

21.20. Prove that if X is a point, then X ∪f Y is Y/A.

21.M. Prove that attaching the n-disk Dn to its copy via the identity
map of the boundary sphere Sn−1 we obtain a space homeomorphic to
Sn.

21.21. Prove that the Klein bottle is a result of gluing together two copies
of the Möbius strip via the identity map of the boundary circle.

21.22. Prove that the result of gluing together two copies of a cylinder via
the identity map of the boundary circles (of one copy to the boundary circles
of the other) is homeomorphic to S1 × S1.

21.23. Prove that the result of gluing together two copies of the solid torus
S1×D2 via the identity map of the boundary torus S1×S1 is homeomorphic
to S1 × S2.

21.24. Obtain the Klein bottle by gluing two copies of the cylinder S1 × I
to each other.

21.25. Prove that the result of gluing together two copies of the solid torus
S1 × D2 via the map

S1 × S1 → S1 × S1 : (x, y) 7→ (y, x)

of the boundary torus to its copy is homeomorphic to S3.

21.N. LetX and Y be two spaces, A a subset of Y , and f, g : A→ X two
continuous maps. Prove that if there exists a homeomorphism h : X → X
such that h ◦ f = g, then X ∪f Y and X ∪g Y are homeomorphic.

21.O. Prove that Dn ∪h D
n is homeomorphic to Sn for any homeomor-

phism h : Sn−1 → Sn−1.

21.26. Classify up to homeomorphism those spaces which can be obtained
from a square by identifying a pair of opposite sides by a homeomorphism.

21.27. Classify up to homeomorphism the spaces that can be obtained from
two copies of S1 × I by identifying the copies of S1 × {0, 1} by a homeomor-
phism.

.
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21.28. Prove that the topological type of the space resulting from gluing
together two copies of the Möbius strip via a homeomorphism of the boundary
circle does not depend on the homeomorphism.

21.29. Classify up to homeomorphism the spaces that can be obtained from
S1 × I by identifying S1 × 0 and S1 × 1 via a homeomorphism.

§21◦14 Basic Surfaces

A torus S1 × S1 with the interior of an embedded disk deleted is
a handle. A two-sphere with the interior of n disjoint embedded disks
deleted is a sphere with n holes.

21.P. A sphere with a hole is homeomorphic to the disk D2.

21.Q. A sphere with two holes is homeomorphic to the cylinder S1 × I.

A sphere with three holes has a special name. It is called pantaloons

or just pants .

The result of attaching p copies of a handle to a sphere with p holes
via embeddings homeomorphically mapping the boundary circles of the
handles onto those of the holes is a sphere with p handles, or, in a more
ceremonial way (and less understandable, for a while), an orientable con-

nected closed surface of genus p.

21.30. Prove that a sphere with p handles is well defined up to homeomor-
phism (i.e., the topological type of the result of gluing does not depend on
the attaching embeddings).

21.R. A sphere with one handle is homeomorphic to the torus S1 × S1.

21.S. A sphere with two handles is homeomorphic to the result of gluing
together two copies of a handle via the identity map of the boundary
circle.

A sphere with two handles is a pretzel . Sometimes, this word also
denotes a sphere with more handles.

The space obtained from a sphere with q holes by attaching q copies
of the Möbius strip via embeddings of the boundary circles of the Möbius
strips onto the boundary circles of the holes (the boundaries of the holes)
is a sphere with q crosscaps, or a nonorientable connected closed surface of

genus q.

21.31. Prove that a sphere with q crosscaps is well defined up to homeomor-
phism (i.e., the topological type of the result of gluing does not depend on
the attaching embeddings).

21.T. A sphere with a crosscap is homeomorphic to the projective plane.

21.U. A sphere with two crosscaps is homeomorphic to the Klein bottle.
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A sphere, spheres with handles, and spheres with crosscaps are basic

surfaces.

21.V. Prove that a sphere with p handles and q crosscaps is homeomor-
phic to a sphere with 2p+ q crosscaps (here q > 0).

21.32. Classify up to homeomorphism those spaces which are obtained by
attaching p copies of S1 × I to a sphere with 2p holes via embeddings of the
boundary circles of the cylinders onto the boundary circles of the sphere with
holes.



§22 Projective Spaces

This section can be considered as a continuation of the previous one.
The quotient spaces described here are of too great importance to regard
them just as examples of quotient spaces.

§22◦1 Real Projective Space of Dimension n

This space is defined as the quotient space of the sphere Sn by the
partition into pairs of antipodal points, and denoted by RP n.

22.A. The space RP n is homeomorphic to the quotient space of the n-
disk Dn by the partition into one-point subsets of the interior of Dn, and
pairs of antipodal point of the boundary sphere Sn−1.

22.B. RP 0 is a point.

22.C. The space RP 1 is homeomorphic to the circle S1.

22.D. The space RP 2 is homeomorphic to the projective plane defined
in the previous section.

22.E. The space RP n is canonically homeomorphic to the quotient space
of Rn+1r0 by the partition into one-dimensional vector subspaces of Rn+1

punctured at 0.

A point of the space Rn+1 r0 is a sequence of real numbers, which are
not all zeros. These numbers are the homogeneous coordinates of the cor-
responding point of RP n. The point with homogeneous coordinates x0,
x1, . . . , xn is denoted by (x0 : x1 : · · · : xn). Homogeneous coordinates
determine a point of RP n, but are not determined by this point: pro-
portional vectors of coordinates (x0, x1, . . . , xn) and (λx0, λx1, . . . , λxn)
determine the same point of RP n.

22.F. The space RP n is canonically homeomorphic to the metric space,
whose points are lines of Rn+1 through the origin 0 = (0, . . . , 0) and the
metric is defined as the angle between lines (which takes values in [0, π

2
]).

Prove that this is really a metric.

22.G. Prove that the map

i : Rn → RP n : (x1, . . . , xn) 7→ (1 : x1 : · · · : xn)

is a topological embedding. What is its image? What is the inverse map
of its image onto Rn?

22.H. Construct a topological embedding RP n−1 → RP n with image
RP n r i(Rn), where i is the embedding from Problem 22.G.

Therefore the projective space RP n can be considered as the result
of extending Rn by adjoining “improper” or “infinite” points, which con-
stitute a projective space RP n−1.

147
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22.1. Introduce a natural topological structure in the set of all lines on the
plane and prove that the resulting space is homeomorphic to a) RP 2 r {pt};
b) open Möbius strip (i.e., a Möbius strip with the boundary circle removed).

22.2. Prove that the set of all rotations of the space R3 around lines passing
through the origin equipped with the natural topology is homeomorphic to
RP 3.

§22x◦2 Complex Projective Space of Dimension n

This space is defined as the quotient space of the unit sphere S2n+1 in
Cn+1 by the partition into circles cut by (complex) lines of Cn+1 passing
through the point 0. It is denoted by CP n.

22x:A. CP n is homeomorphic to the quotient space of the unit 2n-disk
D2n of the space Cn by the partition whose elements are one-point subsets
of the interior of D2n and circles cut on the boundary sphere S2n−1 by
(complex) lines of Cn passing through the origin 0 ∈ Cn.

22x:B. CP 0 is a point.

The space CP 1 is a complex projective line.

22x:C. The complex projective line CP 1 is homeomorphic to S2.

22x:D. The space CP n is canonically homeomorphic to the quotient
space of the space Cn+1 r 0 by the partition into complex lines of Cn+1

punctured at 0.

Hence, CP n can be regarded as the space of complex-proportional
nonzero complex sequences (x0, x1, . . . , xn). The notation (x0 : x1 : · · · :
xn) and term homogeneous coordinates introduced for the real case are
used in the same way for the complex case.

22x:E. The space CP n is canonically homeomorphic to the metric space,
whose points are the (complex) lines of Cn+1 passing through the origin
0, and the metric is defined as the angle between lines (which takes values
in [0, π

2
]).

§22x◦3 Quaternionic Projective Spaces

Recall that R4 bears a remarkable multiplication, which was discov-
ered by R. W. Hamilton in 1843. It can be defined by the formula

(x1, x1, x3, x4) × (y1, y2, y3, y4) =

(x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,

x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1).
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It is bilinear, and to describe it in a shorter way it suffices to specify the
products of the basis vectors. The latter are traditionally denoted in this
case, following Hamilton, as follows:

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0) and k = (0, 0, 0, 1).

In this notation, 1 is really a unity: (1, 0, 0, 0) × x = x for any x ∈ R4.
The rest of multiplication table looks as follows:

ij = k, jk = i, ki = j, ji = −k, kj = −i and ik = −j.
Together with coordinate-wise addition, this multiplication determines a
structure of algebra in R4. Its elements are quaternions.

22x:F. Check that the quaternion multiplication is associative.

It is not commutative (e.g., ij = k 6= −k = ji). Otherwise, quater-
nions are very similar to complex numbers. As in C, there is a trans-
formation called conjugation acting in the set of quaternions. As the
conjugation of complex numbers, it is also denoted by a bar: x 7→ x. It
is defined by the formula (x1, x2, x3, x4) 7→ (x1,−x2,−x3,−x4) and has
two remarkable properties:

22x:G. We have ab = ba for any two quaternions a and b.

22x:H. We have aa = |a|2, i.e., the product of any quaternion a by the
conjugate quaternion a equals (|a|2, 0, 0, 0).

The latter property allows us to define, for any a ∈ R4, the inverse
quaternion

a−1 = |a|−2a

such that aa−1 = 1.

Hence, the quaternion algebra is a division algebra or a skew field . It
is denoted by H after Hamilton, who discovered it.

In the space Hn = R4n, there are right quaternionic lines, i.e., subsets
{(a1ξ, . . . , anξ) | ξ ∈ H}, and similar left quaternionic lines {(ξa1, . . . , ξan) |
ξ ∈ H}. Each of them is a real 4-dimensional subspace of Hn = R4n.

22x:I. Find a right quaternionic line that is not a left quaternionic line.

22x:J. Prove that two right quaternionic lines in Hn either meet only at
0, or coincide.

The quotient space of the unit sphere S4n+3 of the space Hn+1 = R4n+4

by the partition into its intersections with right quaternionic lines is the
(right) quaternionic projective space of dimension n. Similarly, but with
left quaternionic lines, we define the (left) quaternionic projective space of

dimension n.
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22x:K. Are the right and left quaternionic projective space of the same
dimension homeomorphic?

The left quaternionic projective space of dimension n is denoted by
HP n.

22x:L. HP 0 consists of a single point.

22x:M. HP n is homeomorphic to the quotient space of the closed unit
disk D4n in Hn by the partition into points of the interior of D4n and the
3-spheres that are intersections of the boundary sphere S4n−1 with (left
quaternionic) lines of Hn.

The space HP 1 is the quaternionic projective line.

22x:N. Quaternionic projective line HP 1 is homeomorphic to S4.

22x:O. HP n is canonically homeomorphic to the quotient space of Hn+1r

0 by the partition to left quaternionic lines of Hn+1 passing through the
origin and punctured at it.

Hence, HP n can be presented as the space of classes of left pro-
portional (in the quaternionic sense) nonzero sequences (x0, . . . , xn) of
quaternions. The notation (x0 : x1 : . . . : xn) and the term homogeneous
coordinates introduced above in the real case are used in the same way
in the quaternionic situation.

22x:P. HP n is canonically homeomorphic to the set of (left quaternionic)
lines of Hn+1 equipped with the topology generated by the angular metric
(which takes values in

[
0, π

2

]
).



§23x Finite Topological Spaces

§23x◦1 Set-Theoretic Digression:
Splitting a Transitive Relation
Into Equivalence and Partial Order

In the definitions of equivalence and partial order relations, the con-
dition of transitivity seems to be the most important. Below, we supply
a formal justification of this feeling by showing that the other condi-
tions are natural companions of transitivity, although they are not its
consequences.

23x:A. Let ≺ be a transitive relation in a set X. Then the relation -
defined by

a - b if a ≺ b or a = b

is also transitive (and, furthermore, it is certainly reflexive, i.e., a - a
for each a ∈ X).

A binary relation - in a set X is a preorder if it is transitive and
reflective, i.e., satisfies the following conditions:

• Transitivity . If a - b and b - c, then a - c.
• Reflexivity . We have a - a for any a.

A set X equipped with a preorder is preordered .

If a preorder is antisymmetric, then this is a nonstrict order.

23x:1. Is the relation a|b a preorder in the set Z of integers?

23x:B. If (X,-) is a preordered set, then the relation ∼ defined by

a ∼ b if a - b and b - a

is an equivalence relation (i.e., it is symmetric, reflexive, and transitive)
in X.

23x:2. What equivalence relation is defined in Z by the preorder a|b?

23x:C. Let (X,-) be a preordered set and ∼ be an equivalence relation
defined in X by - according to 23x:B. Then a′ ∼ a, a - b and b ∼ b′

imply a′ - b′ and in this way - determines a relation in the set of
equivalence classes X/∼. This relation is a nonstrict partial order.

Thus any transitive relation generates an equivalence relation and a
partial order in the set of equivalence classes.

23x:D. How this chain of constructions would degenerate if the original
relation was

(a) an equivalence relation, or
(b) nonstrict partial order?
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23x:E. In any topological space, the relation - defined by

a - b if a ∈ Cl{b}
is a preorder.

23x:3. In the set of all subsets of an arbitrary topological space the relation

A - B if A ⊂ Cl B

is a preorder. This preorder determines the following equivalence relation:
sets are equivalent iff they have the same closure.

23x:F. The equivalence relation defined by the preorder of Theorem 23x:E
determines the partition of the space into maximal (with respect to inclu-
sion) indiscrete subspaces. The quotient space satisfies the Kolmogorov
separation axiom T0.

The quotient space of Theorem 23x:F is the maximal T0-quotient of

X.

23x:G. A continuous image of an indiscrete space is indiscrete.

23x:H. Prove that any continuous map X → Y induces a continuous
map of the maximal T0-quotient of X to the maximal T0-quotient of Y .

§23x◦2 The Structure of Finite Topological Spaces

The results of the preceding subsection provide a key to understand-
ing the structure of finite topological spaces. Let X be a finite space.
By Theorem 23x:F, X is partitioned to indiscrete clusters of points.
By 23x:G, continuous maps between finite spaces respect these clusters
and, by 23x:H, induce continuous maps between the maximal T0-quotient
spaces.

This means that we can consider a finite topological space as its
maximal T0-quotient whose points are equipped with multiplicities, that
are positive integers: the numbers of points in the corresponding clusters
of the original space.

The maximal T0-quotient of a finite space is a smallest neighborhood
space (as a finite space). By Theorem 14.O, its topology is determined
by a partial order. By Theorem 9x:B, homeomorphisms between spaces
with poset topologies are monotone bijections.

Thus, a finite topological space is characterized up to homeomor-
phism by a finite poset whose elements are equipped with multiplicities
(positive integers). Two such spaces are homeomorphic iff there exists
a monotone bijection between the corresponding posets that preserves
the multiplicities. To recover the topological space from the poset with
multiplicities, we must equip the poset with the poset topology and then
replace each of its elements by an indiscrete cluster of points, the number
points in which is the multiplicity of the element.
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§23x◦3 Simplicial schemes

Let V be a set, Σ a set of some of subsets of V . A pair (V,Σ) is a
simplicial scheme with set of vertices V and set of simplices Σ if
• each subset of any element of Σ belongs to Σ,
• the intersection of any collection of elements of Σ belongs to Σ,
• each one-element subset of V belongs to Σ.

The set Σ is partially ordered by inclusion. When equipped with the
poset topology of this partial order, it is called the space of simplices of
the simplicial scheme (X,Σ).

Each simplicial scheme gives rise also to another topological space.
Namely, for a simplicial scheme (V,Σ) consider the set S(V,Σ) of all
functions c : V → [0, 1] such that

Supp(c) = {v ∈ V | c(v) 6= 0} ∈ Σ

and
∑

v∈V c(v) = 1. Equip S(V,Σ) with the topology generated by metric

ρ(c1, c2) = sup
v∈V

|c1(v) − c2(v)|.

The space S(V,Σ) is a simplicial or triangulated space. It is covered
by the sets {c ∈ S | Supp(c) = σ}, where σ ∈ Σ, which are called its
(open) simplices.

23x:4. Which open simplices of a simplicial space are open sets, which are
closed, and which are neither closed nor open?

23x:I. For each σ ∈ Σ, find a homeomorphism of the space

{c ∈ S | Supp(c) = σ} ⊂ S(V,Σ)

onto an open simplex whose dimension is one less than the number
of vertices belonging to σ. (Recall that the open n-simplex is the set

{(x1, . . . , xn+1) ∈ Rn+1 | xj > 0 for j = 1, . . . , n+ 1 and
∑n+1

i=1 xi = 1}.)
23x:J. Prove that for any simplicial scheme (V,Σ) the quotient space of
the simplicial space S(V,Σ) by its partition to open simplices is homeo-
morphic to the space Σ of simplices of the simplicial scheme (V,Σ).

§23x◦4 Barycentric Subdivision of a Poset

23x:K. Find a poset which is not isomorphic to the set of simplices
(ordered by inclusion) of whatever simplicial scheme.

Let (X,≺) be a poset. Consider the set X ′ of all nonempty finite
strictly increasing sequences a1 ≺ a2 ≺ · · · ≺ an of elements of X. It can
also be described as the set of all nonempty finite subsets of X in each of
which ≺ determines a linear order. It is naturally ordered by inclusion.

The poset (X ′,⊂) is the barycentric subdivision of (X,≺).
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23x:L. For any poset (X,≺), pair (X,X ′) is a simplicial scheme.

There is a natural map X ′ → X that maps an element of X ′ (i.e., a
nonempty finite linearly ordered subset of X) to its greatest element.

23x:M. Is this map monotone? Strictly monotone? The same questions
concerning a similar map that maps a nonempty finite linearly ordered
subset of X to its smallest element.

Let (V,Σ) be a simplicial scheme and Σ′ be the barycentric subdi-
vision of Σ (ordered by inclusion). The simplicial scheme (Σ,Σ′) is the
barycentric subdivision of the simplicial scheme (V,Σ).

There is a natural mapping Σ → S(V,Σ) that maps a simplex σ ∈ Σ
(i.e., a subset {v0, v1, . . . , vn} of V ) to the function bσ : V → R with
bσ(vi) = 1

n+1
and bσ(v) = 0 for any v 6∈ σ.

Define a map β : S(Σ,Σ′) → S(V,Σ) that maps a function ϕ : Σ → R

to the function
V → R : v 7→

∑

σ∈Σ

ϕ(σ)bσ(v).

23x:N. Prove that the map β : S(Σ,Σ′) → S(V,Σ) is a homeomorphism
and constitutes, together with projections S(V,Σ) → Σ and S(Σ,Σ′) →
Σ′ and the natural map Σ′ → Σ a commutative diagram

S(Σ,Σ′)
β−−−→ S(V,Σ)y

y

Σ′ −−−→ Σ



§24x Spaces of Continuous Maps

§24x◦1 Sets of Continuous Mappings

By C(X, Y ) we denote the set of all continuous mappings of a space
X to a space Y .

24x:1. Let X be non empty. Prove that C(X, Y ) consists of a single element
iff so does Y .

24x:2. Let X be non empty. Prove that there exists an injection Y →
C(X, Y ). In other words, the cardinality cardC(X, Y ) of C(X, Y ) is greater
than or equal to cardY .

24x:3. Riddle. Find natural conditions implying that C(X, Y ) = Y .

24x:4. Let Y = {0, 1} equipped with topology {∅, {0}, Y }. Prove that there
exists a bijection between C(X, Y ) and the topological structure of X .

24x:5. Let X be a set of n points with discrete topology. Prove that C(X, Y )
can be identified with Y × . . . × Y (n times).

24x:6. Let Y be a set of k points with discrete topology. Find necessary and
sufficient condition for the set C(X, Y ) contain k2 elements.

§24x◦2 Topologies on Set of Continuous Mappings

Let X and Y be two topological spaces, A ⊂ X, and B ⊂ Y . We
define W (A,B) = {f ∈ C(X, Y ) | f(A) ⊂ B},

∆(pw) = {W (a, U) | a ∈ X, U is open in Y },
and

∆(co) = {W (C,U) | C ⊂ X is compact, U is open in Y }.

24x:A. ∆(pw) is a subbase of a topological structure on C(X, Y ).

The topological structure generated by ∆(pw) is the topology of point-

wise convergency . The set C(X, Y ) equipped with this structure is de-

noted by C(pw)(X, Y ).

24x:B. ∆(co) is a subbase of a topological structures on C(X, Y ).

The topological structure determined by ∆(co) is the compact-open

topology . Hereafter we denote by C(X, Y ) the space of all continuous
mappings X → Y with the compact-open topology, unless the contrary
is specified explicitly.

24x:C Compact-Open Versus Pointwise. The compact-open topology is
finer than the topology of pointwise convergence.
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24x:7. Prove that C(I, I) is not homeomorphic to C(pw)(I, I).

Denote by Const(X, Y ) the set of all constant mappings f : X → Y .

24x:8. Prove that the topology of pointwise convergence and the compact-
open topology of C(X, Y ) induce the same topological structure on Const(X, Y ),
which, with this topology, is homeomorphic Y .

24x:9. Let X be a discrete space of n points. Prove that C(pw)(X, Y ) is
homeomorphic Y × . . . × Y (n times). Is this true for C(X, Y )?

§24x◦3 Topological Properties of Mapping Spaces

24x:D. Prove that if Y is Hausdorff, then C(pw)(X, Y ) is Hausdorff for
any space X. Is this true for C(X, Y )?

24x:10. Prove that C(I, X) is path connected iff X is path connected.

24x:11. Prove that C(pw)(I, I) is not compact. Is the space C(I, I) compact?

§24x◦4 Metric Case

24x:E. If Y is metrizable and X is compact, then C(X, Y ) is metrizable.

Let (Y, ρ) be a metric space and X a compact space. For continuous
maps f, g : X → Y put

d(f, g) = max{ρ(f(x), g(x)) | x ∈ X}.
24x:F This is a Metric. If X is a compact space and Y a metric space,
then d is a metric on the set C(X, Y ).

Let X be a topological space, Y a metric space with metric ρ. A
sequence fn of maps X → Y uniformly converges to f : X → Y if for any
ε > 0 there exists a positive integer N such that ρ(fn(x), f(x)) < ε for
any n > N and x ∈ X. This is a straightforward generalization of the
notion of uniform convergence which is known from Calculus.

24x:G Metric of Uniform Convergence. Let X be a compact space, (Y, d)
a metric space. A sequence fn of maps X → Y converges to f : X → Y
in the topology generated by d iff fn uniformly converges to f .

24x:H Completeness of C(X, Y ). Let X be a compact space, (Y, ρ) a

complete metric space. Then
(
C(X, Y ), d

)
is a complete metric space.

24x:I Uniform Convergence Versus Compact-Open. Let X be a com-
pact space and Y a metric space. Then the topology generated by d on
C(X, Y ) is the compact-open topology.

24x:12. Prove that the space C(R, I) is metrizable.

24x:13. Let Y be a bounded metric space, X a topological space admitting
a presentation X =

⋃
∞

i=1 Xi, where Xi is compact and Xi ⊂ IntXi+1 for
each i = 1, 2, . . .. Prove that C(X, Y ) is metrizable.
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Denote by Cb(X, Y ) the set of all continuous bounded maps from a
topological space X to a metric space Y . For maps f, g ∈ Cb(X, Y ), put

d∞(f, g) = sup{ρ(f(x), g(x)) | x ∈ X}.
24x:J Metric on Bounded Mappings. This is a metric in Cb(X, Y ).

24x:K d∞ and Uniform Convergence. Let X be a topological space and
Y a metric space. A sequence fn of bounded maps X → Y converges to
f : X → Y in the topology generated by d∞ iff fn uniformly converge to
f .

24x:L When Uniform Is Not Compact-Open. Find X and Y such that
the topology generated by d∞ on Cb(X, Y ) is not the compact-open topol-
ogy.

§24x◦5 Interactions With Other Constructions

24x:M. For any continuous mappings ϕ : X ′ → X and ψ : Y → Y ′ the
mapping C(X, Y ) → C(X ′, Y ′) : f 7→ ψ ◦ f ◦ ϕ is continuous.

24x:N Continuity of Restricting. Let X and Y be two spaces, A ⊂ X.
Prove that the map C(X, Y ) → C(A, Y ) : f 7→ f |A is continuous.

24x:O Extending Target. For any spaces X and Y and any B ⊂ Y , the
map C(X,B) → C(X, Y ) : f 7→ iB ◦ f is a topological embedding.

24x:P Maps to Product. For any three spaces X, Y , and Z, the space
C(X, Y × Z) is canonically homeomorphic to C(X, Y ) × C(X,Z).

24x:Q Restricting to Sets Covering Source. Let {X1, . . . , Xn} be a closed
cover of X. Prove that for any space Y

φ : C(X, Y ) →
n∏

i=1

C(Xi, Y ) : f 7→ (f |X1
, . . . , f |Xn

)

is a topological embedding. What if the cover is not fundamental?

24x:R. Riddle. Can you generalize assertion 24x:Q?

24x:S Continuity of Composing. Let X be a space and Y a locally
compact Hausdorff space. Prove that the map

C(X, Y ) × C(Y, Z) → C(X,Z) : (f, g) 7→ g ◦ f
is continuous.

24x:14. Is local compactness of Y necessary in 24x:S?

24x:T Factorizing Source. Let S be a closed partition2 of a Hausdorff
compact space X. Prove that for any space Y the mapping

φ : C(X/S, Y ) → C(X, Y )

is a topological embedding.

2Recall that a partition is closed if the saturation of each closed set is closed.
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24x:15. Are the conditions imposed on S and X in 24x:T necessary?

24x:U The Evaluation Map. Let X and Y be two spaces. Prove that if
X is locally compact and Hausdorff, then the map

C(X, Y ) ×X → Y : (f, x) 7→ f(x)

is continuous.

24x:16. Are the conditions imposed on X in 24x:U necessary?

§24x◦6 Mappings X × Y → Z and X → C(Y, Z)

24x:V. Let X, Y , and Z be three topological spaces, f : X × Y → Z a
continuous map. Then the map

F : X → C(Y, Z) : F (x) : y 7→ f(x, y),

is continuous.

The converse assertion is also true under certain additional assump-
tions.

24x:W. Let X and Z be two spaces, Y a Hausdorff locally compact
space, F : X → C(Y, Z) a continuous mapping. Then the mapping
f : X × Y → Z : (x, y) 7→ F (x)(y) is continuous.

24x:X. If X is a Hausdorff space and the collection ΣY = {Uα} is a
subbase of the topological structure of Y , then the collection {W (K,U) |
U ∈ Σ} is a subbase of the compact-open topology in C(X, Y ).

24x:Y. Let X, Y , and Z be three spaces. Let the mapping

Φ : C(X × Y, Z) → C(X, C(Y, Z))

be defined by the relation

Φ(f)(x) : y 7→ f(x, y).

Then
(a) if X is a Hausdorff space, then Φ is continuous;
(b) if X is a Hausdorff space, while Y is locally compact and Hausdorff,

then Φ is a homeomorphism.

24x:Z. Let S be a partition of a space X, and let pr : X → X/S be the
projection. The space X × Y bears a natural partition S ′ = {A × y |
A ∈ S, y ∈ Y }. If the space Y is Hausdorff and locally compact, then
the natural quotient map f : (X × Y )/S ′ → X/S × Y of the projection
pr× idY is a homeomorphism.

24x:17. Try to prove Theorem 24x:Z directly.



Proofs and Comments

19.A For example, let us prove the second relation:

(x, y) ∈ (A1 ×B1) ∩ (A2 × B2) ⇐⇒ x ∈ A1, y ∈ B1, x ∈ A2, y ∈ B2

⇐⇒ x ∈ A1 ∩ A2, y ∈ B1 ∩ B2 ⇐⇒ (x, y) ∈ (A1 ∩ A2) × (B1 ∩B2).

19.B Indeed,

pr−1
X (A) = {z ∈ X×Y | prX(z) ∈ A} = {(x, y) ∈ X×Y | x ∈ A} = A×Y.

19.C Indeed, Γf ∩ (x× Y ) = {(x, f(x))} is a singleton.
If Γ ∩ (x× Y ) is a singleton {(x, y)}, then we can put f(x) = y.

19.D This follows from 3.A because the intersection of elementary
sets is an elementary set.

19.E Verify that X × Y → Y ×X : (x, y) 7→ (y, x) is a homeomor-
phism.

19.F In view of a canonical bijection, we can identify two sets and
write

(X × Y ) × Z = X × (Y × Z) = {(x, y, z) | x ∈ X, y ∈ Y, z ∈ Z}.
However, elementary sets in the spaces (X × Y ) × Z and X × (Y × Z)
are different. Check that the collection {U × V ×W | U ∈ ΩX , V ∈
ΩY , W ∈ ΩZ} is a base of the topological structures in both spaces.

19.G Indeed, for each open set U ⊂ X the preimage pr−1
X (U) =

U × Y is an elementary open set in X × Y .

19.H Let Ω′ be a topology in X × Y such that the projections prX

and prY are continuous. Then, for any U ∈ ΩX and V ∈ ΩY , we have

pr−1
X (U) ∩ pr−1

Y (V ) = (U × Y ) ∩ (X × V ) = U × V ∈ Ω′.

Therefore, each base set of the product topology lies in Ω′, whence it
follows that Ω′ contains the product topology of X and Y .

19.I Clearly, ab(prX) : X × y0 → X is a continuous bijection. To
see that the inverse mapping is continuous, we must show that each set
open in X × y0 as in a subspace of X × Y has the form U × y0. Indeed,
if W is open in X × Y , then

W∩(X×y0) =
⋃

α

(Uα×Vα)∩(X×y0) =
⋃

α : y0∈Vα

(Uα×y0) =
( ⋃

α : y0∈Vα

Uα

)
×y0.

19.J From the point of view of set theory, we have R1 × R1 = R2.
The collection of open rectangles is a base of topology in R1 × R1 (show
this), therefore, the topologies in R1 ×R1 and R2 have one and the same

159
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base, and so they coincide. The second assertion is proved by induction
and, in turn, implies the third one by 19.7.

19.K Set f(z) = (f1(z), f2(z)). If f(z) = (x, y) ∈ X × Y , then
x = (prX ◦f)(z) = f1(z). We similarly have y = f2(z).

19.L The mappings f1 = prX ◦f and f2 = prY ◦f are contin-
uous as compositions of continuous maps (use 19.G).

Recall the definition of the product topology and use 19.20.

19.M Recall the definition of the product topology and use 19.22.

19.N LetX and Y be two Hausdorff spaces, (x1, y1), (x2, y2) ∈ X×Y
two distinct points. Let, for instance, x1 6= x2. Since X is Hausdorff, x1

and x2 have disjoint neighborhoods: Ux1
∩Ux2

= ∅. Then, e.g., Ux1
× Y

and Ux2
×Y are disjoint neighborhoods of (x1, y1) and (x2, y2) in X ×Y .

19.O If A and B are countable and dense in X and Y , respectively,
then A× B is a dense countable set in X × Y .

19.P See the proof of Theorem 19.Q below.

19.Q If ΣXand ΣY are countable bases in X and Y , respectively,
then Σ = {U × V | U ∈ ΣX , V ∈ ΣY } is a base in X × Y by 19.15.

19.R Show that if ρ1 and ρ2 are metrics on X and Y , respectively,
then ρ

(
(x1, y1), (x2, y2)

)
= max{ρ1(x1, x2), ρ2(y1, y2)} is a metric in X×Y

generating the product topology. What form have the balls in the metric
space (X × Y, ρ)?

19.S For any two points (x1, y1), (x2, y2) ∈ X × Y , the set (X ×
y2) ∪ (x1 × Y ) is connected and contains these points.

19.T If u are v are paths joining x1 with x2 and y1 with y2, respec-
tively, then the path u× v joins (x1, y1) with (x2, y2).

19.U It is sufficient to consider a cover consisting of elementary sets.
Since Y is compact, each fiber x×Y has a finite subcovering {Ux

i ×V x
i }.

Put W x = ∩Ux
i . Since X is compact, the cover {W x}x∈X has a finite

subcovering W xj . Then {Uxj

i × V
xj

i } is the required finite subcovering.

19.V Consider the mapping (x, y) 7→
((

x√
x2+y2

, x√
x2+y2

)
, ln(

√
x2 + y2)

)
.

20.A First, the preimage pr−1
(
pr(A)

)
is saturated, secondly, it is

the least because if B ⊃ A is a saturated set, then B = pr−1
(
pr(B)

)
⊃

pr−1
(
pr(A)

)
.

20.C Put Ω′ = {U ⊂ X/S | pr−1(U) ∈ Ω}. Let Uα ∈ Ω′. Since
the sets p−1(Uα) are open, the set p−1(∪Uα) = ∪p−1(Uα) is also open,
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whence ∪Uα ∈ Ω′. Verify the remaining axioms of topological structure
on your own.

20.D If a set V ⊂ X is open and saturated, then V =
pr−1

(
p(V )

)
, hence, the set U = pr(V ) is open in X/S.

Conversely, if U ⊂ X/S is open, then U = pr
(
pr−1(U)

)
, where

V = pr−1(U) is open and saturated.

20.E The set F closed, iff X/S r F is open, iff pr−1(X/S r F ) =
X r pr−1(F ) is open, iff p−1(F ) is closed.

20.F This immediately follows from the definition of the quotient
topology.

20.G We must prove that if Ω′ is a topology in X/S such that the
factorization map is continuous, then Ω′ ⊂ ΩX/S . Indeed, if U ∈ Ω′,

then p−1(U) ∈ ΩX , whence U ∈ ΩX/S by the definition of the quotient
topology.

20.H It is connected as a continuous image of a connected space.

20.I It is path-connected as a continuous image of a path-connected
space.

20.J It is separable as a continuous image of a separable space.

20.K It is compact as a continuous image of a compact space.

20.L This quotient space consists of two points, one of which is not
open in it.

20.M Let a, b ∈ X/S, and let A,B ⊂ X be the corresponding
elements of the partition. If Ua and Ub are disjoint neighborhoods of a
and b, then p−1(Ua) and p−1(Ub) are disjoint saturated neighborhoods of
A and B. This follows from 20.D.

20.N 1) Put g = f/S. The set f−1(y) = p−1(g−1(y))
is saturated, i.e., it consists of elements of the partition S. Therefore, f
is constant at each of the elements of the partition. 2) If A is an element
of S, a is the point of the quotient set corresponding to A, and x ∈ A,
then f/S(a) = f(A) = g(p(x)) = g(a).

20.O The mapping f maps elements of S to those of T iff there
exists a mapping g : X/S → Y/T such that the diagram

X
f−−−→ Y

prX

y prY

y

X/S
g−−−→ Y/T
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is commutative. Then we have f/(S, T ) = g.

20.P This is so because distinct elements of the partition S(f) are
preimages of distinct points in Y .

20.Q Since p−1((f/S)−1(U)) = (f/S ◦ p)−1(U) = f−1(U), the def-
inition of the quotient topology implies that for each U ∈ ΩY the set
(f/S)−1(U) is open, i.e., the mapping f/S is continuous.

20.R See 20.O and 20.8.

20x:A Each singleton in X/S is the image of a singleton in X. Since
X satisfies T1, each singleton in X is closed, and its image, by 20x:1, is
also closed. Consequently, the quotient space also satisfies T1.

20x:B This follows from 14.25.

20x:C Let Un = p(Vn), n ∈ N, where {Vn}n∈N is a base X. Consider
an open set W in the quotient space. Since pr−1(W ) =

⋃
n∈A Vn, we have

W = pr
(
pr−1(W )

)
=
⋃

n∈A Un, i.e., the collection {Un} is a base in the
quotient space.

20x:D For an arbitrary point y ∈ X/S, consider the image of a
countable neighborhood base at a certain point x ∈ pr−1(y).

20x:E Since the injective factor of a continuous surjection is a con-
tinuous bijection, it only remains to prove that the factor is an open
mapping, which follows by 20.7 from the fact that the mapping X×Y →
X/S × Y/T is open (see 19.23).

21.A This follows from 20.P, 20.Q, 20.K, and 16.Y.

21.B Use 16.Z instead of 16.Y.

21.C.1 If f : t ∈ [0, 1] 7→ (cos 2πt, sin 2πt) ∈ S1, then f/S(f) is

a homeomorphism as a continuous bijection of a compact space onto a
Hausdorff space, and the partition S(f) is the initial one.

21.D.1 If f : x ∈ Rn 7→ (x
r

sin πr,− cosπr) ∈ Sn ⊂ Rn+1, then the

partition S(f) is the initial one and f/S(f) is a homeomorphism.

21.E Consider the mapping g = f × id : I2 = I × I → S1 × I (f
is defined as in 21.C.1). The partition S(g) is the initial one, so that
g/S(g) a homeomorphism.

21.F Check that the partition S(idS1 ×f) is the initial one.

21.G The partition S(f × f) is the initial one.
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21.H Consider the commutative diagram

X
p1−−−→ X/S

p

y p2

y

X/T
q−−−→ X/S/S ′

where the mapping q is obviously a bijection. The assertion of the prob-
lem follows from the fact that a set U is open in X/S/S ′ iff p−1

1

(
p−1

2 (U)
)

=

p−1
(
q−1(U)

)
is open in X iff q−1(U) is open in X/T .

21.I To simplify the formulas, we replace the square I2 ba a rectan-
gle. Here is a formal argument: consider the mapping

ϕ : [0, 2π] × [−1
2
, 1

2
] → R3 : (x, y) 7→

(
(1 + y sin x

2
) cosx, (1 + y sin x

2
) sin x, y sin x

)
.

Check that ϕ really maps the square onto the Möbius strip and that
S(ϕ) is the given partition. Certainly, the starting point of the argument
is not a specific formula. First of all, you should imagine the required
mapping. We map the horizontal midline of the unit square onto the
mid-circle of the Möbius strip, and we map each of the vertical segments
of the square onto a segment of the strip orthogonal to the the mid-circle.
This mapping maps the vertical sides of the square to one and the same
segment, but here the opposite vertices of the square are identified with
each other (check this).

21.J See the following section.

21.K Actually, it is easier to prove a more general assertion. Assume
that we are given topological spaces Xα and mappings fα : Xα → Y .
Then Ω = {U ⊂ Y | f−1

α (U) is open in Xα} is the finest topological
structure in Y with respect to which all mappings fα are continuous.

21.L See the hint to 21.K.

21.M We map Dn
1 ⊔ Dn

2 to Sn so that the images of Dn
1 and Dn

2

are the upper and the lower hemisphere, respectively. The partition
into the preimages is the partition with quotient space Dn ∪id |

Sn−1
Dn.

Consequently, the corresponding quotient map is a homeomorphism.

21.N Consider the mapping F : X⊔Y → X⊔Y such that F |X = idX

and F |Y = h. This mapping maps an element of the partition correspond-
ing to the equivalence relation z ∼ f(x) to an element of the partition
corresponding to the equivalence relation x ∼ g(x). Consequently, there
exists a continuous bijection H : X ∪f Y → X ∪g Y . Since h−1 also is a
homeomorphism, the mapping H−1 is also continuous.
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21.O By 21.N, it is sufficient to prove that any homeomorphism
f : Sn−1 → Sn−1 can be extended to a homeomorphism F : Dn → Dn,
which is obvious.

22.A Consider the composition f of the embedding Dn in Sn onto
a hemisphere and of the projection pr : Sn → RP n. The partition
S(f) is that described in the formulation. Consequently, f/S(f) is a

homeomorphism.

22.C Consider f : S1 → S1 : z 7→ z2 ∈ C. Then S1/S(f)
∼= RP 1.

22.D See 22.A.

22.E Consider the composition f of the embedding of Sn in Rn r 0
and of the projection onto the quotient space by the described the par-
tition. It is clear that the partition S(f) is the partition factorizing by
which we obtain the projective space. Therefore, f/S(f) is a homeomor-

phism.

22.F To see that the described function is a metric, use the triangle
inequality between the plane angles of a trilateral angle. Now, take each
point x ∈ Sn the line l(x) through the origin with direction vector x.
We have thus defined a continuous (check this) mapping of Sn to the
indicated space of lines, whose injective factor is a homeomorphism.

22.G The image of this mapping is the set U0 = {(x0 : x1 : . . . :
xn) | x0 6= 0}, and the inverse mapping j : U0 → Rn is defined by the
formula

(x0 : x1 : . . . : xn) 7→
(
x1

x0
,
x2

x0
, . . . ,

xn

x0

)
.

Since both i and j are continuous, i is a topological embedding.

22.H Consider the embedding Sn−1 = Sn ∩ {xn+1 = 0} → Sn ⊂
Rn+1 and the induced embedding RP n−1 → RP n.

23x:A If a - b - c, then we have a ≺ b ≺ c, a = b = c, a ≺ b = c,
or a = b ≺ c. In all four cases, we have a - c.

23x:B The relation ∼ is obviously reflexive, symmetric, and also
transitive.

23x:C Indeed, if a′ ∼ a, a - b, and b ∼ b′, then a′ - a - b - b′,
whence a′ - b′. Clearly, the relation defined on the equivalence classes is
transitive and reflexive. Now, if two equivalence classes [a] and [b] satisfy
both a - b and b - a, then [a] = [b], i.e., the relation is anti-symmetric,
hence, it is a nonstrict order.
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23x:D (a) In this case, we obtain the trivial nonstrict order on a
singleton; (b) In this case, we obtain the same nonstrict order on the
same set.

23x:E The relation is obviously reflexive. Further, if a - b, then
each neighborhood U of a contains b, and so U also is a neighborhood of
b, hence, if b - c, then c ∈ U . Therefore, a ∈ Cl{c}, whence a - c, and
thus the relation is also transitive.

23x:F Consider the element of the partition that consists by defi-
nition of points each of which lies in the closure of any other point, so
that each open set in X containing one of the points also contains any
other. Therefore, the topology induced on each element of the partition
is indiscrete. It is also clear that each element of the partition is a max-
imal subset which is an indiscrete subspace. Now consider two points in
the quotient space and two points x, y ∈ X lying in the corresponding
elements of the partition. Since x 6∼ y, there is an open set containing
exactly one of these points. Since each open set U in X is saturated
with respect to the partition, the image of U in X/S is the required
neighborhood.

23x:G Obvious.

23x:H This follows from 23x:F, 23x:G, and 20.R.

24x:A It is sufficient to observe that the sets in ∆(pw) cover the
entire set C(X, Y ). (Actually, C(X, Y ) ∈ ∆(pw).)

24x:B Similarly to 24x:A

24x:C Since each one-point subset is compact, it follows that ∆(pw) ⊂
∆(co), whence Ω(pw) ⊂ Ω(co).

24x:D If f 6= g, then there is x ∈ X such that f(x) 6= g(x).
Since Y is Hausdorff, f(x) and g(x) have disjoint neighborhoods U and
V , respectively. The subbase elements W (x, U) and W (x, V ) are disjoint

neighborhoods of f and g in the space C(pw)(X, Y ). They also are disjoint
neighborhoods of f and g in C(X, Y ).

24x:E See assertion 24x:I.

24x:H Consider functions fn ∈ C(X, Y ) such that {fn}∞1 is a Cauchy
sequence. For every point x ∈ X, the sequence {fn(x)} is a Cauchy
sequence in Y . Therefore, since Y is a complete space, this sequence
converges. Put f(x) = lim fn(x). We have thus defined a function f :
X → Y .
Since {fn} is a Cauchy sequence, for each ε > 0 there exists a positive

integer N such that ρ
(
fn(x), fk(x)

)
< ε

4
for any n, k ≥ N and x ∈ X.

Passing to the limit as k → ∞, we see that ρ
(
fn(x), f(x)

)
≤ ε

4
< ε

3
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for any n ≥ N and x ∈ X. Thus, to prove that fn → f as n → ∞,
it remains to show that f ∈ C(X, Y ). For each a ∈ X, there exists a

neighborhood Ua such that ρ
(
fN(x), fN (a)

)
< ε

3
for every x ∈ Ua. The

triangle inequality implies that for every x ∈ Ua we have

ρ
(
f(x), f(a)

)
≤ ρ
(
f(x), fN(x)

)
+ ρ
(
fN (x), fN(a)

)
+ ρ
(
fN(a), f(a)

)
< ε.

Therefore, the function f is a continuous limit of the considered Cauchy
sequence.

24x:I Take an arbitrary set W (K,U) in the subbase. Let f ∈
W (K,U). If r = ρ(f(K), Y r U), then Dr(f) ⊂ W (K,U). As a conse-
quence, we see that each open set in the compact-open topology is open
in the topology generated by the metric of uniform convergence. To
prove the converse assertion, it suffices to show that for each mapping
f : X → Y and each r > 0 there are compact sets K1, K2, . . . , Kn ⊂ X
and open sets U1, U2, . . . , Un ⊂ Y such that

f ∈
n⋂

i=1

W (Ki, Ui) ⊂ Dr(f).

Cover f(X) by a finite number of balls with radius r/4 centered at certain
points f(x1), f(x2), . . . , f(xn). Let Ki be the f -preimage of a closed disk
in Y with radius r/4, and let Ui be the open ball with radius r/2. By
construction, we have f ∈ W (K1, U1) ∩ . . . ∩W (Kn, Un). Consider an
arbitrary mapping g in this intersection. For each x ∈ K1, we see that
f(x) and g(x) lie in one and the same open ball with radius r/2, whence
ρ(f(x), g(x)) < r. Since, by construction, the sets K1, . . . , Kn cover
X, we have ρ(f(x), g(x)) < r for all x ∈ X, whence d(f, g) < r, and,
therefore, g ∈ Dr(f).

24x:13 The proof is similar to that of assertion 24x:12. We only
need to observe that since, obviously, X =

⋃∞
i=1 IntXi, for each compact

set K ⊂ X there is n such that K ⊂ Xn.

24x:M This follows from the fact that for each compact K ⊂ X ′

and U ⊂ Y ′ the preimage of the subbase set W (K,U) ∈ ∆(co)(X ′, Y ′) is

the subbase set W (ϕ(K), ψ−1(U)) ∈ ∆(co)(X, Y ).

24x:N This immediately follows from 24x:M.

24x:O It is clear that the indicated mapping is an injection. To
simplify the notation, we identify the space C(X,B) with its image under
this injection. for each compact set K ⊂ X and U ∈ ΩB we denote by
WB(K,U) the corresponding subbase set in C(X,B). If V ∈ ΩY and
U = B ∩ V , then we have WB(K,U) = C(X,B) ∩W (K, V ), whence it
follows that C(X, Y ) induces the compact-open topology on C(X,B).
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24x:P Verify that the natural mapping f 7→ (prY ◦f, prZ ◦f) is a
homeomorphism.

24x:Q The injectivity of φ follows from the fact that {Xi} is a
cover, while the continuity of φ follows from assertion 24x:N. Once more,
to simplify the notation, we identify the set C(X, Y ) with its image under
the injection φ. Let K ⊂ X be a compact set, U ∈ ΩY . Put Ki = K ∩
Xi and denote by W i(Ki, U) the corresponding element in the subbase

∆(co)(Xi, Y ). Since, obviously,

W (K,U) = C(X, Y ) ∩
(
W 1(K1, U) × . . .×W n(Kn, U)

)
,

the continuous injection φ is indeed a topological embedding.

24x:S Consider the mappings f : X → Y , g : Y → Z, a compact
set K ⊂ X and V ∈ ΩZ such that g(f(K)) ⊂ V , i.e., φ(f, g) ∈W (K, V ).
Then we have an inclusion f(K) ⊂ g−1(V ) ∈ ΩY . Since Y is Hausdorff
and locally compact and the set f(K) is compact, f(K) has a neigh-
borhood U whose closure is compact and also contained in g−1(V ). (see,
18x:6.) In this case, we have φ(W (K,U)×W (ClU, V )) ⊂W (K, V ), and,
consequently, the mapping φ is continuous.

24x:T The continuity of φ follows from 24x:M, and its injectivity
is obvious. Let K ⊂ X/S be a compact set, U ∈ ΩY . The image of
the open subbase set W (K,U) ⊂ C(X/S, Y ) is the set of all mappings
g : X → Y constant on all elements of the partitions and such that
g(pr−1(K)) ⊂ U . It remains to show that the set W (pr−1(K), U) is open
in C(X, Y ). Since the quotient space X/S is Hausdorff, it follows that
the set K is closed. Therefore, the preimage pr−1(K) is closed, and hence
also compact. Consequently, W (pr−1(K), U) is a subbase set in C(X, Y ).

24x:V Assume that x0 ∈ X, K ⊂ Y be a compact set, V ⊂ ΩZ , and
F (x0) ∈W (K, V ), i.e., f({x0}×K) ⊂ V . Let us show that the mapping
F is continuous. For this purpose, let us find a neighborhood U0 of x0 in
X such that F (U0) ⊂W (K, V ). The latter inclusion is equivalent to the
fact that f(U0 ×K) ∈ V . We cover the set {x0} ×K by a finite number
of neighborhoods Ui × Vi such that f(Ui × Vi) ⊂ V . It remains to put
U0 =

⋂
i Ui.

24x:W Let (x0, y0) ∈ X × Y , and let G be a neighborhood of the
point z0 = f(x0, y0) = F (x0)(y0). Since the mapping F (x0) : Y → Z
is continuous, y0 has a neighborhood W such that F (W ) ⊂ G. Since Y
is Hausdorff and locally compact, y0 has a neighborhood V with com-
pact closure such that ClV ⊂ W and, consequently, F (x0)(ClV ) ⊂ G,
i.e., F (x0) ∈ W (ClV,G). Since the mapping F is continuous, x0 has a
neighborhood U such that F (U) ⊂ W (ClV,G). Then, if (x, y) ∈ U × V ,
we have F (x) ∈ W (ClV,G), whence f(x, y) = F (x)(y) ∈ G. Therefore,
f(U × V ) ⊂ G, i.e., the mapping f is continuous.
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24x:X It suffices to show that for each compact set K ⊂ X, each
open set U ⊂ Y , and each mapping f ∈W (K,U) there are compact sets
K1, K2, . . . , Km ⊂ K and open sets U1, U2, . . . , Um ∈ ΣY such that

f ∈W (K1, U1) ∩W (K2, U2) ∩ . . . ∩W (Km, Um) ⊂ W (K,U).

Let x ∈ K. Since f(x) ∈ U , there are sets Ux
1 , U

x
2 , . . . , U

x
nx

∈ ΣY such
that f(x) ∈ Ux

1 ∩ Ux
2 ∩ . . . ∩ Unx

⊂ U . Since f is continuous, x has
a neighborhood Gx such that f(x) ∈ Ux

1 ∩ Ux
2 ∩ · · · ∩ Unx

. Since X
is locally compact and Hausdorff, X is regular, consequently, x has a
neighborhood Vx such that ClVx is compact and Cl Vx ∈ Gx. Since the
set K is compact, K is covered by a finite number of neighborhoods Vxi

,
i = 1, 2, . . . , n. We put Ki = K ∩ Cl Vxi

, i = 1, 2, . . . , n, and Uij = Uxi

j ,
j = 1, 2, . . . , nxi

. Then the set

n⋂

i=1

ni⋂

j=1

W (Kj, Uij)

is the required one.

24x:Y First of all, we observe that assertion 24x:V implies that the
mapping Φ is well defined (i.e., for f ∈ C(X, C(Y, Z)) we indeed have
Φ(f) ∈ C(X, C(Y, Z))), while assertion 24x:W implies that if Y is locally
compact and Hausdorff, then Φ is invertible.
1) Let K ⊂ X and L ⊂ Y be compact sets, V ∈ ΩZ . The sets of the
form W (L, V ) constitute a subbase in C(Y, Z). By 24x:X, the sets of the
form W (K,W (L, V )) constitute a subbase in C(X, C(Y, Z)). It remains

to observe that Φ−1(W (K,W (L, V ))) = W (K×L, V ) ∈ ∆(co)(X×Y, Z).
Therefore, the mapping Φ is continuous.
2) Let Q ⊂ X×Y be a compact set and G ⊂∈ ΩZ . Let ϕ ∈ Φ(W (Q,G)),
so that ϕ(x) : y 7→ f(x, y) for a certain mapping f ∈W (Q,G). For each
q ∈ Q, take a neighborhood Uq × Vq of q such that: the set Cl Vq is
compact and f(Uq × Cl Vq) ⊂ G. Since Q is compact, we have Q ⊂⋃n

i=1(Uqi
× Vqi

). The sets Wi = W (ClVqi
, G) are open in C(Y, Z), hence,

the sets Ti = W (pX(Q)∩ClUqi
,Wi) are open in C(X, C(Y, Z)). Therefore,

T =
⋂n

i=1 Ti is a neighborhood of ϕ. Let us show that T ⊂ Φ(W (Q,G)).
Indeed, if ψ ∈ T , then ψ = Φ(g), and we have g(x, y) ∈ G for (x, y) ∈ Q,
so that g ∈ W (Q,G), whence ψ ∈ Φ(W (Q,G)). Therefore, the set
Φ(W (Q,G)) is open, and so Φ is a homeomorphism.

24x:Z It is obvious that the quotient map f is a continuous bijection.
Consider the factorization mapping p : X×Y → (X × Y )/S ′. By 24x:V,
the mapping Φ : X → C(Y, (X × Y )/S ′), where Φ(x)(y) = p(x, y), is
continuous. We observe that Φ is constant on elements of the partition

S, consequently, the quotient map Φ̃ : X/S → C(Y, (X × Y )/S ′) is con-
tinuous. By 24x:W, the mapping g : X/S × Y → (X × Y )/S ′, where
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g(z, y) = Φ̃(z)(y), is also continuous. It remains to observe that g and f
are mutually inverse mappings.



CHAPTER 5X

A Touch of Topological Algebra

In this chapter, we study topological spaces strongly related to groups:
either the spaces themselves are groups in a nice way (so that all the maps
coming from group theory are continuous), or groups act on topological
spaces and can be thought of as consisting of homeomorphisms.

This material has interdisciplinary character. Although it plays im-
portant roles in many areas of Mathematics, it is not so important in the
framework of general topology. Quite often, this material can be post-
poned till the introductory chapters of the mathematical courses that
really require it (functional analysis, Lie groups, etc.). In the framework
of general topology, this material provides a great collection of exercises.

In the second part of the book, which is devoted to algebraic topology,
groups appear in a more profound way. So, sooner or later, the reader will
meet groups. At latest in the next chapter, when studying fundamental
groups.

Groups are attributed to Algebra. In the mathematics built on sets,
main objects are sets with additional structure. Above, we met a few
of the most fundamental of these structures: topology, metric, partial
order. Topology and metric evolved from geometric considerations. Al-
gebra studied algebraic operations with numbers and similar objects and
introduced into the set-theoretic Mathematics various structures based
on operations. One of the simplest (and most versatile) of these struc-
tures is the structure of a group. It emerges in an overwhelming majority
of mathematical environments. It often appears together with topology
and in a nice interaction with it. This interaction is a subject of Topo-
logical Algebra.

The second part of this book is called Algebraic Topology. It also
treats interaction of Topology and Algebra, spaces and groups. But this
is a completely different interaction. The structures of topological space
and group do not live there on the same set, but the group encodes
topological properties of the space.
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§25x Digression. Generalities on Groups

This section is included mainly to recall the most elementary defi-
nitions and statements concerning groups. We do not mean to present
a self-contained outline of the group theory. The reader is actually as-
sumed to be familiar with groups, homomorphisms, subgroups, quotient
groups, etc.

If this is not yet so, we recommend to read one of the numerous alge-
braic textbooks covering the elementary group theory. The mathemati-
cal culture, which must be acquired for mastering the material presented
above in this book, would make this an easy and pleasant exercise.

As a temporary solution, the reader can read few definitions and prove
few theorems gathered in this section. They provide a sufficient basis for
most of what follows.

§25x◦1 The Notion of Group

Recall that a group is a set G equipped with a group operation. A
group operation in a set G is a map ω : G×G→ G satisfying the following
three conditions (known as group axioms):
• Associativity. ω(a, ω(b, c)) = ω(ω(a, b), c) for any a, b, c ∈ G.
• Existence of Neutral Element. There exists e ∈ G such that
ω(e, a) = ω(a, e) = a for every a ∈ G.

• Existence of Inverse Element. For any a ∈ G, there exists b ∈ G
such that ω(a, b) = ω(b, a) = e.

25x:A Uniqueness of Neutral Element. A group contains a unique neu-
tral element.

25x:B Uniqueness of Inverse Element. Each element of a group has a
unique inverse element.

25x:C First Examples of Groups. In each of the following situations,
check if we have a group. What is its neutral element? How to calculate
the element inverse to a given one?
• The set G is the set Z of integers, and the group operation is addi-

tion: ω(a, b) = a+ b.
• The set G is the set Q>0 of positive rational numbers, and the group

operation is multiplication: ω(a, b) = ab.
• G = R, and ω(a, b) = a+ b.
• G = C, and ω(a, b) = a+ b.
• G = R r 0, and ω(a, b) = ab.
• G is the set of all bijections of a set A onto itself, and the group

operation is composition: ω(a, b) = a ◦ b.
25x:1 Simplest Group. 1) Can a group be empty? 2) Can it consist of one
element?
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A group consisting of one element is trivial .

25x:2 Solving Equations. Let G be a set with an associative operation
ω : G × G → G. Prove that G is a group iff for any a, b ∈ G the set G
contains a unique element x such that ω(a, x) = b and a unique element y
such that ω(y, a) = b.

§25x◦2 Additive Versus Multiplicative

The notation above is never used! (The only exception may
happen, as here, when the definition of group is discussed.) Instead, one
uses either multiplicative or additive notation.

Under multiplicative notation, the group operation is called multipli-

cation and denoted as multiplication: (a, b) 7→ ab. The neutral element
is called unity and denoted by 1 or 1G (or e). The element inverse to a is
denoted by a−1. This notation is borrowed, say, from the case of nonzero
rational numbers with the usual multiplication.

Under additive notation, the group operation is called addition and
denoted as addition: (a, b) 7→ a+b. The neutral element is called zero and
denoted by 0. The element inverse to a is denoted by −a. This notation
is borrowed, say, from the case of integers with the usual addition.

An operation ω : G × G → G is commutative if ω(a, b) = ω(b, a) for
any a, b ∈ G. A group with commutative group operation is commutative

or Abelian. Traditionally, the additive notation is used only in the case
of commutative groups, while the multiplicative notation is used both in
the commutative and noncommutative cases. Below, we mostly use the
multiplicative notation.

25x:3. In each of the following situations, check if we have a group:

(a) a singleton {a} with multiplication aa = a,
(b) the set Sn of bijections of the set {1, 2, . . . , n} of the first n positive

integers onto itself with multiplication determined by composition (the
symmetric group of degree n),

(c) the sets Rn, Cn, and Hn with coordinate-wise addition,
(d) the set Homeo(X) of all homeomorphisms of a topological space X with

multiplication determined by composition,
(e) the set GL(n, R) of invertible real n×n matrices equipped with matrix

multiplication,
(f) the set Mn(R) of all real n × n matrices with addition determined by

addition of matrices,
(g) the set of all subsets of a set X with multiplication determined by the

symmetric difference:

(A, B) 7→ A △ B = (A ∪ B) r (A ∩ B),

(h) the set Zn of classes of positive integers congruent modulo n with ad-
dition determined by addition of positive integers,

(i) the set of complex roots of unity of degree n equipped with usual mul-
tiplication of complex numbers,
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(j) the set R>0 of positive reals with usual multiplication,
(k) S1 ⊂ C with standard multiplication of complex numbers,
(l) the set of translations of a plane with multiplication determined by

composition.

Associativity implies that every finite sequence of elements in a group
has a well-defined product, which can be calculated by a sequence of
pairwise multiplications determined by any placement of parentheses,
say, abcde = (ab)(c(de)). The distribution of the parentheses is imma-
terial. In the case of a sequence of three elements, this is precisely the
associativity: (ab)c = a(bc).

25x:D. Derive from the associativity that the product of any length does
not depend on the position of the parentheses.

For an element a of a group G, the powers an with n ∈ Z are defined
by the following formulas: a0 = 1, an+1 = ana, and a−n = (a−1)n.

25x:E. Prove that raising to a power has the following properties: apaq =
ap+q and (ap)q = apq.

§25x◦3 Homomorphisms

Recall that a map f : G → H of a group to another one is a homo-

morphism if f(xy) = f(x)f(y) for any x, y ∈ G.

25x:4. In the above definition of a homomorphism, the multiplicative nota-
tion is used. How does this definition look in the additive notation? What if
one of the groups is multiplicative, while the other is additive?

25x:5. Let a be an element of a multiplicative group G. Is the map Z → G :
n 7→ an a homomorphism?

25x:F. Let G and H be two groups. Is the constant map G → H
mapping the entire G to the neutral element of H a homomorphism? Is
any other constant map G→ H a homomorphism?

25x:G. A homomorphism maps the neutral element to the neutral el-
ement, and it maps mutually inverse elements to mutually inverse ele-
ments.

25x:H. The identity map of a group is a homomorphism. The composi-
tion of homomorphisms is a homomorphism.

Recall that a homomorphism f is an epimorphism if f is surjective,
f is a monomorphism if f is injective, and f is an isomorphism if f is
bijective.

25x:I. The map inverse to an isomorphism is also an isomorphism.

Two groups are isomorphic if there exists an isomorphism of one of
them onto another one.
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25x:J. Isomorphism is an equivalence relation.

25x:6. Show that the additive group R is isomorphic to the multiplicative
group R>0.

§25x◦4 Subgroups

A subset A of a group G is a subgroup of G if A is invariant under
the group operation of G (i.e., for any a, b ∈ A we have ab ∈ A) and A
equipped with the group operation induced by that in G is a group.

For two subsets A and B of a multiplicative group G, we put AB =
{ab | a ∈ A, b ∈ B} and A−1 = {a−1 | a ∈ A}.

25x:K. A subset A of a multiplicative group G is a subgroup of G iff
AA ⊂ G and A−1 ⊂ A.

25x:7. The singleton consisting of the neutral element is a subgroup.

25x:8. Prove that a subset A of a finite group is a subgroup if AA ⊂ A.
(The condition A−1 ⊂ A is superfluous in this case.)

25x:9. List all subgroups of the additive group Z.

25x:10. Is GL(n, R) a subgroup of Mn(R)? (See 25x:3 for notation.)

25x:L. The image of a group homomorphism f : G → H is a subgroup
of H.

25x:M. Let f : G→ H be a group homomorphism, K a subgroup of H.
Then f−1(K) is a subgroup of G. In short:
The preimage of a subgroup under a group homomorphism is a subgroup.

The preimage of the neutral element under a group homomorphism
f : G→ H is called the kernel of f and denoted by Ker f .

25x:N Corollary of 25x:M. The kernel of a group homomorphism is a
subgroup.

25x:O. A group homomorphism is a monomorphism iff its kernel is triv-
ial.

25x:P. The intersection of any collection of subgroups of a group is also
a subgroup.

A subgroup H of a group G is generated by a subset S ⊂ G if H is
the smallest subgroup of G containing S.

25x:Q. The subgroup H generated by S is the intersection of all sub-
groups of G that contain S. On the other hand, H is the set of all
elements that are products of elements in S and elements inverse to ele-
ments in S.

The elements of a set that generates G are generators of G. A group
generated by one element is cyclic.
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25x:R. A cyclic (multiplicative) group consists of powers of its generator.
(I.e., if G is a cyclic group and a generates G, then G = {an | n ∈ Z}.)
Any cyclic group is commutative.

25x:11. A group G is cyclic iff there exists an epimorphism f : Z → G.

25x:S. A subgroup of a cyclic group is cyclic.

The number of elements in a group G is the order of G. It is denoted
by |G|.
25x:T. Let G be a finite cyclic group, d a positive divisor of |G|. Then
there exists a unique subgroup H of G with |H| = d.

Each element of a group generates a cyclic subgroup, which consists
of all powers of this element. The order of the subgroup generated by a
(nontrivial) element a ∈ G is the order of a. It can be a positive integer
or the infinity.

For each subgroup H of a group G, the right cosets of H are the sets
Ha = {xa | x ∈ H}, a ∈ G. Similarly, the sets aH are the left cosets of
H . The number of distinct right (or left) cosets of H is the index of H .

25x:U Lagrange theorem. If H is a subgroup of a finite group G, then
the order of H divides that of G.

A subgroup H of a group G is normal if for any h ∈ H and a ∈ G
we have aha−1 ∈ H . Normal subgroups are also called normal divisors or
invariant subgroups.

In the case where the subgroup is normal, left cosets coincide with
right cosets, and the set of cosets is a group with multiplication defined
by the formula (aH)(bH) = abH . The group of cosets of H in G is called
the quotient group or factor group of G by H and denoted by G/H .

25x:V. The kernel Ker f of a homomorphism f : G → H is a normal
subgroup of G.

25x:W. The image f(G) of a homomorphism f : G→ H is isomorphic
to the quotient group G/Ker f of G by the kernel of f .

25x:X. The quotient group R/Z is canonically isomorphic to the group
S1. Describe the image of the group Q ⊂ R under this isomorphism.

25x:Y. Let G be a group, A a normal subgroup of G, and B an arbitrary
subgroup of G. Then AB also is a normal subgroup of G, while A∩B is
a normal subgroup of B. Furthermore, we have AB/A ∼= B/A ∩ B.



§26x Topological Groups

§26x◦1 Notion of Topological Group

A topological group is a set G equipped with both a topological struc-
ture and a group structure such that the maps G×G→ G : (x, y) 7→ xy
and G→ G : x 7→ x−1 are continuous.

26x:1. Let G be a group and a topological space simultaneously. Prove that
the maps ω : G × G → G : (x, y) 7→ xy and α : G → G : x 7→ x−1 are
continuous iff so is the map β : G × G → G : (x, y) 7→ xy−1.

26x:2. Prove that if G is a topological group, then the inversion G → G :
x 7→ x−1 is a homeomorphism.

26x:3. Let G be a topological group, X a topological space, f, g : X → G
two maps continuous at a point x0 ∈ X . Prove that the maps X → G : x 7→
f(x)g(x) and X → G : x 7→ (f(x))−1 are continuous at x0.

26x:A. A group equipped with the discrete topology is a topological
group.

26x:4. Is a group equipped with the indiscrete topology a topological group?

§26x◦2 Examples of Topological Groups

26x:B. The groups listed in 25x:C equipped with standard topologies
are topological groups.

26x:5. The unit circle S1 = {|z| = 1} ⊂ C with the standard multiplication
is a topological group.

26x:6. In each of the following situations, check if we have a topological
group.
(a) The spaces Rn, Cn, and Hn with coordinate-wise addition. (Cn is iso-

morphic to R2n, while Hn is isomorphic to C2n.)
(b) The sets Mn(R), Mn(C), and Mn(H) of all n×n matrices with real, com-

plex, and, respectively, quaternion elements, equipped with the prod-

uct topology and element-wise addition. (We identify Mn(R) with Rn2

,

Mn(C) with Cn2

, and Mn(H) with Hn2

.)
(c) The sets GL(n, R), GL(n, C), and GL(n, H) of invertible n×n matrices

with real, complex, and quaternionic entries, respectively, under the
matrix multiplication.

(d) SL(n, R), SL(n, C), O(n), O(n, C), U(n), SO(n), SO(n, C), SU(n),
and other subgroups of GL(n, K) with K = R, C, or H.

26x:7. Introduce a topological group structure on the additive group R that
would be distinct from the usual, discrete, and indiscrete topological struc-
tures.

26x:8. Find two nonisomorphic connected topological groups that are home-
omorphic as topological spaces.

26x:9. On the set G = [0, 1) (equipped with the standard topology), we
define addition as follows: ω(x, y) = x + y (mod 1). Is (G, ω) a topological
group?
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§26x◦3 Self-Homeomorphisms Making a Topological Group Ho-
mogeneous

Let G be a group. Recall that the maps La : G → G : x 7→ ax
and Ra : G → G : x 7→ xa are left and right translations through a,
respectively. Note that La ◦Lb = Lab, while Ra ◦Rb = Rba. (To “repair”
the last relation, some authors define right translations by x 7→ xa−1.)

26x:C. A translation of a topological group is a homeomorphism.

Recall that the conjugation of a group G by an element a ∈ G is the
map G→ G : x 7→ axa−1.

26x:D. The conjugation of a topological group by any of its elements is
a homeomorphism.

The following simple observation allows a certain “uniform” treat-
ment of the topology in a group: neighborhoods of distinct points can be
compared.

26x:E. If U is an open set in a topological group G, then for any x ∈ G
the sets xU , Ux, and U−1 are open.

26x:10. Does the same hold true for closed sets?

26x:11. Prove that if U and V are subsets of a topological group G and U
is open, then UV and V U are open.

26x:12. Will the same hold true if we replace everywhere the word open by
the word closed?

26x:13. Are the following subgroups of the additive group R closed?

(a) Z,

(b)
√

2 Z,

(c) Z +
√

2 Z?

26x:14. Let G be a topological group, U ⊂ G a compact subset, V ⊂ G a
closed subset. Prove that UV and V U are closed.

26x:14.1. Let F and C be two disjoint subsets of a topological group
G. If F is closed and C is compact, then 1G has a neighborhood V
such that CV ∪V C does not meet F . If G is locally compact, then
V can be chosen so that Cl(CV ∪ V C) be compact.

§26x◦4 Neighborhoods

26x:F. Let Γ be a neighborhood base of a topological group G at 1G. Then
Σ = {aU | a ∈ G, U ∈ Γ} is a base for topology of G.

A subset A of a group G is symmetric if A−1 = A.

26x:G. Any neighborhood of 1 in a topological group contains a sym-
metric neighborhood of 1.
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26x:H. For any neighborhood U of 1 in a topological group, 1 has a
neighborhood V such that V V ⊂ U .

26x:15. Let G be a topological group, U a neighborhood of 1G, and n a
positive integer. Then 1G has a symmetric neighborhood V such that V n ⊂
U .

26x:16. Let V be a symmetric neighborhood of 1G in a topological group G.
Then

⋃
∞

n=1 V n is an open-closed subgroup.

26x:17. Let G be a group, Σ be a collection of subsets of G. Prove that G
carries a unique topology Ω such that Σ is a neighborhood base for Ω at 1G

and (G, Ω) is a topological group, iff Σ satisfies the following five conditions:

(a) each U ∈ Σ contains 1G,
(b) for every x ∈ U ∈ Σ, there exists V ∈ Σ such that xV ⊂ U ,
(c) for each U ∈ Σ, there exists V ∈ Σ such that V −1 ⊂ U ,
(d) for each U ∈ Σ, there exists V ∈ Σ such that V V ⊂ U ,
(e) for any x ∈ G and U ∈ Σ, there exists V ∈ Σ such that V ⊂ x−1Ux.

26x:I. Riddle. In what sense 26x:H is similar to the triangle inequality?

26x:J. Let C be a compact subset of G. Prove that for every neighbor-
hood U of 1G the unity 1G has a neighborhood V such that V ⊂ xUx−1

for every x ∈ C.

§26x◦5 Separation Axioms

26x:K. A topological group G is Hausdorff, iff G satisfies the first sepa-
ration axiom, iff the unity 1G (or, more precisely, the singleton {1G}) is
closed.

26x:L. A topological group G is Hausdorff iff the unity 1G is the inter-
section of its neighborhoods.

26x:M. If the unity of a topological group G is closed, then G is regular
(as a topological space).

Use the following fact.

26x:M.1. Let G be a topological group, U ⊂ G a neighborhood of 1G. Then
1G has a neighborhood V with closure contained in U : ClV ⊂ U .

26x:N Corollary. For topological groups, the first three separation axioms
are equivalent.

26x:18. Prove that a finite group carries as many topological group struc-
tures as there are normal subgroups. Namely, each finite topological group
G contains a normal subgroup N such that the sets gN with g ∈ G form a
base for the topology of G.
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§26x◦6 Countability Axioms

26x:O. If Γ is a neighborhood base at 1G in a topological group G and
S ⊂ G is a dense set, then Σ = {aU | a ∈ S, U ∈ Γ} is a base for the
topology of G. (Cf. 26x:F and 15.J.)

26x:P. A first countable separable topological group is second countable.

26x:19*. (Cf. 15x:D) A first countable Hausdorff topological group G is
metrizable. Furthermore, G can be equipped with a right (left) invariant
metric.



§27x Constructions

§27x◦1 Subgroups

27x:A. Let H be a subgroup of a topological group G. Then the topo-
logical and group structures induced from G make H a topological group.

27x:1. Let H be an Abelian subgroup of an Abelian group G. Prove that,
given a structure of topological group in H and a neighborhood base at 1, G
carries a structure of topological group with the same neighborhood base at
1.

27x:2. Prove that a subgroup of a topological group is open iff it contains
an interior point.

27x:3. Prove that every open subgroup of a topological group is also closed.

27x:4. Prove that every closed subgroup of finite index is also open.

27x:5. Find an example of a subgroup of a topological group that
(a) is closed, but not open;
(b) is neither closed, nor open.

27x:6. Prove that a subgroup H of a topological group is a discrete subspace
iff H contains an isolated point.

27x:7. Prove that a subgroup H of a topological group G is closed, iff there
exists an open set U ⊂ G such that U ∩ H = U ∩ ClH 6= ∅, i.e., iff H ⊂ G
is locally closed at one of its points.

27x:8. Prove that if H is a non-closed subgroup of a topological group G,
then Cl H r H is dense in Cl H .

27x:9. The closure of a subgroup of a topological group is a subgroup.

27x:10. Is it true that the interior of a subgroup of a topological group is a
subgroup?

27x:B. A connected topological group is generated by any neighborhood
of 1.

27x:C. Let H be a subgroup of a group G. Define a relation: a ∼ b if
ab−1 ∈ H . Prove that this is an equivalence relation, and the right cosets
of H in G are the equivalence classes.

27x:11. What is the counterpart of 27x:C for left cosets?

Let G be a topological group, H ⊂ G a subgroup. The set of left
(respectively, right) cosets of H in G is denoted by G/H (respectively,

H\G). The sets G/H and H\G carry the quotient topology. Equipped
with these topologies, they are called spaces of cosets.

27x:D. For any topological group G and its subgroup H , the natural
projections G→ G/H and G→ H\G are open (i.e., the image of every
open set is open).

27x:E. The space of left (or right) cosets of a closed subgroup in a
topological group is regular.
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27x:F. The group G is compact (respectively, connected) if so are H
and G/H.

27x:12. If H is a connected subgroup of a group G, then the preimage of
any connected component of G/H is a connected component of G.

27x:13. Let us regard the group SO(n−1) as a subgroup of SO(n). If n ≥ 2,
then the space SO(n)/SO(n − 1) is homeomorphic to Sn−1.

27x:14. The groups SO(n), U(n), SU(n), and Sp(n) are 1) compact and 2)
connected for any n ≥ 1. 3) How many connected components do the groups
O(n) and O(p, q) have? (Here, O(p, q) is the group of linear transformations
in Rp+q preserving the quadratic form x2

1 + · · · + x2
p − y2

1 − · · · − y2
q .)

§27x◦2 Normal Subgroups

27x:G. Prove that the closure of a normal subgroup of a topological
group is a normal subgroup.

27x:H. The connected component of 1 in a topological group is a closed
normal subgroup.

27x:15. The path-connected component of 1 in a topological group is a nor-
mal subgroup.

27x:I. The quotient group of a topological group is a topological group
(provided that it is equipped with the quotient topology).

27x:J. The natural projection of a topological group onto its quotient
group is open.

27x:K. If a topological group G is first (respectively, second) countable,
then so is any quotient group of G.

27x:L. Let H be a normal subgroup of a topological group G. Then the
quotient group G/H is regular iff H is closed.

27x:M. Prove that a normal subgroup H of a topological group G is
open iff the quotient group G/H is discrete.

The center of a groupG is the set C(G) = {x ∈ G | xg = gx for each g ∈
G}.

27x:16. Each discrete normal subgroup H of a connected group G is con-
tained in the center of G.

§27x◦3 Homomorphisms

For topological groups, by a homomorphism one means a group ho-
momorphism which is continuous .

27x:N. Let G and H be two topological groups. A group homomorphism
f : G→ H is continuous iff f is continuous at 1G.
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Besides similar modifications, which can be summarized by the follow-
ing principle: everything is assumed to respect the topological structures ,
the terminology of group theory passes over without changes. In partic-
ular, an isomorphism in group theory is an invertible homomorphism. Its
inverse is a homomorphism (and hence an isomorphism) automatically.
In the theory of topological groups, this must be included in the defini-
tion: an isomorphism of topological groups is an invertible homomorphism
whose inverse is also a homomorphism. In other words, an isomorphism
of topological groups is a map that is both a group isomorphism and a
homeomorphism. Cf. Section §10.

27x:17. Prove that the mapping [0, 1) → S1 : x 7→ e2πix is a topological
group homomorphism.

27x:O. An epimorphism f : G → H is an open map iff the injective
factor f/S(f) : G/Ker f → H of f is an isomorphism.

27x:P. An epimorphism of a compact topological group onto a topolog-
ical group with closed unity is open.

27x:Q. Prove that the quotient group R/Z of the additive group R by
the subgroup Z is isomorphic to the multiplicative group S1 = {z ∈ C :
|z| = 1} of complex numbers with absolute value 1.

§27x◦4 Local Isomorphisms

Let G and H be two topological groups. A local isomorphism from
G to H is a homeomorphism f of a neighborhood U of 1G in G onto a
neighborhood V of 1H in H such that
• f(xy) = f(x)f(y) for any x, y ∈ U such that xy ∈ U ,
• f−1(zt) = f−1(z)f−1(t) for any z, t ∈ V such that zt ∈ V .

Two topological groups G and H are locally isomorphic if there exists
a local isomorphism from G to H .

27x:R. Isomorphic topological groups are locally isomorphic.

27x:S. The additive group R and the multiplicative group S1 ⊂ C are
locally isomorphic, but not isomorphic.

27x:18. Prove that local isomorphism of topological groups is an equivalence
relation.

27x:19. Find neighborhoods of unities in R and S1 and a homeomorphism
between them that satisfies the first condition in the definition of local iso-
morphism, but does not satisfy the second one.

27x:20. Prove that if a homeomorphism between neighborhoods of unities
in two topological groups satisfies only the first condition in the definition
of local isomorphism, then it has a submapping that is a local isomorphism
between these topological groups.
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§27x◦5 Direct Products

Let G and H be two topological groups. In group theory, the product
G×H is given a group structure.1 In topology, it is given a topological
structure (see Section §19).

27x:T. These two structures are compatible: the group operations in
G×H are continuous with respect to the product topology.

Thus, G×H is a topological group. It is called the direct product of
the topological groups G and H . There are canonical homomorphisms
related to this: the inclusions iG : G → G × H : x 7→ (x, 1) and iH :
H → G×H : x 7→ (1, x), which are monomorphisms, and the projections
prG : G×H → G : (x, y) 7→ x and prH : G×H → H : (x, y) 7→ y, which
are epimorphisms.

27x:21. Prove that the topological groups (G × H)/iH(H) and G are iso-

morphic.

27x:22. The product operation is both commutative and associative: G×H
is (canonically) isomorphic to H × G, while G × (H × K) is canonically
isomorphic to (G × H) × K.

A topological group G decomposes into a direct product of two sub-

groups A and B if the map A × B → G : (x, y) 7→ xy is a topological
group isomorphism. If this is the case, the groups G and A × B are
usually identified via this isomorphism.

Recall that a similar definition exists in ordinary group theory. The
only difference is that there an isomorphism is just an algebraic isomor-
phism. Furthermore, in that theory, G decomposes into a direct product
of its subgroups A and B iff A and B generate G, A and B are normal
subgroups, and A ∩ B = {1}. Therefore, if these conditions are fulfilled
in the case of topological groups, then A × B → G : (x, y) 7→ xy is a
group isomorphism.

27x:23. Prove that in this situation the map A × B → G : (x, y) 7→ xy is
continuous. Find an example where the inverse group isomorphism is not
continuous.

27x:U. Prove that if a compact Hausdorff group G decomposes alge-
braically into a direct product of two closed subgroups, then H also
decomposes into a direct product of these subgroups as a topological
group.

27x:24. Prove that the multiplicative group R r 0 of nonzero reals is iso-
morphic (as a topological group) to the direct product of the multiplicative
groups S0 = {1,−1} and R>0 = {x ∈ R | x > 0}.

1Recall that the multiplication in G × H is defined by the formula (x, u)(y, v) =
(xy, uv).
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27x:25. Prove that the multiplicative group C r 0 of nonzero complex num-
bers is isomorphic (as a topological group) to the direct product of the mul-
tiplicative groups S1 = {z ∈ C : |z| = 1} and R>0.

27x:26. Prove that the multiplicative group H r 0 of nonzero quaternions is
isomorphic (as a topological group) to the direct product of the multiplicative
groups S3 = {z ∈ H : |z| = 1} and R>0.

27x:27. Prove that the subgroup S0 = {1,−1} of S3 = {z ∈ H : |z| = 1} is
not a direct factor.

27x:28. Find a topological group homeomorphic to RP 3 (the three-dimensional
real projective space).

Let a group G contain a normal subgroup A and a subgroup B such
that AB = G and A ∩ B = {1G}. If B is also normal, then G is the
direct product A× B. Otherwise, G is a semidirect product of A and B.

27x:V. Let a topological group G be a semidirect product of its sub-
groups A and B. If for any neighborhoods of unity, U ⊂ A and V ⊂ B,
their product UV contains a neighborhood of 1G, then G is homeomor-
phic to A×B.

§27x◦6 Groups of Homeomorphisms

For any topological space X, the auto-homeomorphisms of X form a
group under composition as the group operation. We denote this group
by TopX. To make this group topological, we slightly enlarge the topo-
logical structure induced on TopX by the compact-open topology of
C(X,X).

27x:W. The collection of the sets W (C,U) and (W (C,U))−1 taken over
all compact C ⊂ X and open U ⊂ X is a subbase for the topological
structure on TopX.

In what follows, we equip TopX with this topological structure.

27x:X. If X is Hausdorff and locally compact, then TopX is a topolog-
ical group.

27x:X.1. If X is Hausdorff and locally compact, then the map Top X ×
Top X → Top X : (g, h) 7→ g ◦ h is continuous.



§28x Actions of Topological Groups

§28x◦1 Action of a Group on a Set

A left action of a groupG on a setX is a mapG×X → X : (g, x) 7→ gx
such that 1x = x for any x ∈ X and (gh)x = g(hx) for any x ∈ X and
g, h ∈ G. A set X equipped with such an action is a left G-set. Right
G-sets are defined in a similar way.

28x:A. If X is a left G-set, then G×X → X : (x, g) 7→ g−1x is a right
action of G on X.

28x:B. If X is a left G-set, then for any g ∈ G the map X → X : x 7→ gx
is a bijection.

A left action of G on X is effective (or faithful) if for each g ∈ Gr 1
the map G→ G : x 7→ gx is not equal to idG. Let X1 and X2 be two left
G-sets. A map f : X1 → X2 is G-equivariant if f(gx) = gf(x) for any
x ∈ X and g ∈ G.

We say that X is a homogeneous left G-set, or, what is the same, that
G acts on X transitively if for any x, y ∈ X there exists g ∈ G such that
y = gx.

The same terminology applies to right actions with obvious modifi-
cations.

28x:C. The natural actions of G on G/H and H\G transform G/H and

H\G into homogeneous left and, respectively, right G-sets.

Let X be a homogeneous left G-set. Consider a point x ∈ X and the
set Gx = {g ∈ G | gx = x}. We easily see that Gx is a subgroup of G. It
is called the isotropy subgroup of x.

28x:D. Each homogeneous left (respectively, right) G-set X is isomor-
phic to G/H (respectively, H\G), where H is the isotropy group of a
certain point in X.

28x:D.1. All isotropy subgroups Gx, x ∈ G, are pairwise conjugate.

Recall that the normalizer Nr(H) of a subgroup H of a group G
consists of all elements g ∈ G such that gHg−1 = H . This is the largest
subgroup of G containing H as a normal subgroup.

28x:E. The group of all automorphisms of a homogeneous G-set X is
isomorphic to N(H)/H, where H is the isotropy group of a certain point
in X.

28x:E.1. If two points x, y ∈ X have the same isotropy group, then there
exists an automorphism of X that sends x to y.
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§28x◦2 Continuous Action

We speak about a left G-space X if X is a topological space, G is a
topological group acting on X, and the action G×X → X is continuous
(as a mapping). All terminology (and definitions) concerning G-sets
extends to G-spaces literally.

Note that if G is a discrete group, then any action of G by homeo-
morphisms is continuous and thus provides a G-space.

28x:F. Let X be a left G-space. Then the natural map φ : G → TopX
induced by this action is a group homomorphism.

28x:G. If in the assumptions of Problem 28x:F the G-space X is Haus-
dorff and locally compact, then the induced homomorphism φ : G →
TopX is continuous.

28x:1. In each of the following situations, check if we have a continuous
action and a continuous homomorphism G → TopX :
(a) G is a topological group, X = G, and G acts on X by left (or right)

translations, or by conjugation;
(b) G is a topological group, H ⊂ G is a subgroup, X = G/H, and G acts

on X via g(aH) = (ga)H ;
(c) G = GL(n, K) (where K = R, C, or H)), and G acts on Kn via matrix

multiplication;
(d) G = GL(n, K) (where K = R, C, or H), and G acts on KPn−1 via

matrix multiplication;
(e) G = O(n, R), and G acts on Sn−1 via matrix multiplication;
(f) the (additive) group R acts on the torus S1×· · ·×S1 via (t, (w1, . . . , wr)) 7→

(e2πia1tw1, . . . , e
2πiartwr); this action is an irrational flow if a1, . . . , ar are

linearly independent over Q.

If the action of G on X is not effective, then we can consider its kernel

GKer = {g ∈ G | gx = x for all x ∈ X}.
This kernel is a closed normal subgroup of G, and the topological group
G/GKer acts naturally and effectively on X.

28x:H. The formula gGKer(x) = gx determines an effective continuous
action of G/GKer on X.

A group G acts properly discontinuously on X if for any compact set
C ⊂ X the set {g ∈ G | (gC) ∩ C 6= ∅} is finite.

28x:I. If G acts properly discontinuously and effectively on a Hausdorff
locally compact space X, then φ(G) is a discrete subset of TopX. (Here,
as before, φ : G → TopX is the monomorphism induced by the G-
action.) In particular, G is a discrete group.

28x:2. List, up to similarity, all triangles T ⊂ R2 such that the reflections in
the sides of T generate a group acting on R2 properly discontinuously.
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§28x◦3 Orbit Spaces

Let X be a G-space. For x ∈ X, the set G(x) = {gx | g ∈ G} is the
orbit of x. In terms of orbits, the action of G on X is transitive iff it has
only one orbit. For A ⊂ X and E ⊂ G, we put E(A) = {ga | g ∈ E, a ∈
A}.

28x:J. Let G be a compact topological group acting on a Hausdorff space
X. Then for any x ∈ X the canonical map G/Gx → G(x) is a homeo-
morphism.

28x:3. Give an example where X is Hausdorff, but G/Gx
is not homeomor-

phic to G(x).

28x:K. If a compact topological group G acts on a compact Hausdorff
space X, then X/G is a compact Hausdorff space.

28x:4. Let G be a compact group, X a Hausdorff G-space, A ⊂ X . If A is
closed (respectively, compact), then so is G(A).

28x:5. Consider the canonical action of G = R r 0 on X = R (by multipli-
cation). Find all orbits and all isotropy subgroups of this action. Recognize
X/G as a topological space.

28x:6. Let G be the group generated by reflections in the sides of a rectangle
in R2. Recognize the quotient space R2/G as a topological space. Recognize
the group G.

28x:7. Let G be the group from Problem 28x:6, and let H ⊂ G be the
subgroup of index 2 constituted by the orientation-preserving elements in G.
Recognize the quotient space R2/H as a topological space. Recognize the
groups G and H .

28x:8. Consider the (diagonal) action of the torus G = (S1)n+1 on X =
CPn via (z0, z1, . . . , zn) 7→ (θ0z0, θ1z1, . . . , θnzn). Find all orbits and isotropy
subgroups. Recognize X/G as a topological space.

28x:9. Consider the canonical action (by permutations of coordinates) of the
symmetric group G = Sn on X = Rn and X = Cn, respectively. Recognize
X/G as a topological space.

28x:10. Let G = SO(3) act on the space X of symmetric 3× 3 real matrices
with trace 0 by conjugation x 7→ gxg−1. Recognize X/G as a topological
space. Find all orbits and isotropy groups.

§28x◦4 Homogeneous Spaces

A G-space is homogeneous it the action of G is transitive.

28x:L. Let G be a topological group, H ⊂ G a subgroup. Then G is a
homogeneous H-space under the translation action of H . The quotient
space G/H is a homogeneous G-space under the induced action of G.

28x:M. Let X be a Hausdorff homogeneous G-space. If X and G are
locally compact and G is second countable, then X is homeomorphic to
G/Gx for any x ∈ X.
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28x:N. Let X be a homogeneous G-space. Then the canonical map
G/Gx → X, x ∈ X, is a homeomorphism iff it is open.

28x:11. Show that O(n + 1)/O(n) = Sn and U(n)/U(n − 1) = S2n−1.

28x:12. Show that O(n + 1)/O(n) × O(1) = RPn and U(n)/U(n − 1) × U(1) =

CPn.

28x:13. Show that Sp(n)/Sp(n− 1) = S4n−1, where

Sp(n) = {A ∈ GL(H) | AA∗ = I}.
28x:14. Represent the torus S1 × S1 and the Klein bottle as homogeneous
spaces.

28x:15. Give a geometric interpretation of the following homogeneous spaces:
1) O(n)/O(1)n, 2) O(n)/O(k) × O(n − k), 3) O(n)/SO(k) × O(n − k), and

4) O(n)/O(k).

28x:16. Represent S2 × S2 as a homogeneous space.

28x:17. Recognize SO(n, 1)/SO(n) as a topological space.



Proofs and Comments

26x:A Use the fact that any auto-homeomorphism of a discrete
space is continuous.

26x:A Yes, it is. In order to prove this, use the fact that any
auto-homeomorphism of an indiscrete space is continuous.

26x:C Any translation is continuous, and the translations by a and
a−1 are mutually inverse.

26x:C Any conjugation is continuous, and the conjugations by g
and g−1 are mutually inverse.

26x:E The sets xU , Ux, and U−1 are the images of U under the
homeomorphisms  Lx and Rx of the left and right translations through x
and passage to the inverse element (i.e., reversing), respectively.

26x:F Let V ⊂ G be an open set, a ∈ V . If a neighborhood U ∈ Γ
is such that U ⊂ a−1V , then aU ⊂ V . By Theorem 3.A, Σ is a base for
topology of G.

26x:G If U is a neighborhood of 1, then U ∩ U−1 is a symmetric
neighborhood of 1.

26x:H By the continuity of multiplication, 1 has two neighborhoods
V1 and V2 such that V1V2 ⊂ U . Put V = V1 ∩ V2.

26x:J Let W be a symmetric neighborhood such that 1G ∈ W and
W 3 ⊂ U . Since C is compact, C is covered by finitely many sets of
the form W1 = x1W, . . . ,Wn = xnW with x1, . . . , xn ∈ C. Put V =⋂

(xiWx−1
i ). Clearly, V is a neighborhood of 1G. If x ∈ C, then x = xiwi

for suitable i, wi ∈W . Finally, we have

x−1V x = w−1
i x−1

i V xiwi ⊂ w−1
i Wwi ⊂W 3 ⊂ U.

26x:K If 1G is closed, then all singletons in G are closed. Therefore,
G satisfies T1 iff 1G is closed. Let us prove that in this case the group G
is also Hausdorff. Consider g 6= 1 and take a neighborhood U of 1G not
containing g. By 26x:15, 1G has a symmetric neighborhood V such that
V 2 ⊂ U . Verify that gV and V are disjoint, whence it follows that G is
Hausdorff.

26x:L Use 14.C In this case, each element of G is the
intersection of its neighborhoods. Hence, G satisfies the first separation
axiom, and it remains to apply 26x:K.

26x:M.1 It suffices to take a symmetric neighborhood V such that
V 2 ⊂ U . Indeed, then for any g /∈ U the neighborhoods gV and V are
disjoint, whence ClV ⊂ U .
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26x:O Let W be an open set, g ∈ W . Let V be a symmetric
neighborhood of 1G with V 2 ⊂ W . There 1G has a neighborhood U ∈ Γ
such that U ⊂ V . There exists a ∈ S such that a ∈ gU−1. Then g ∈ aU
and a ∈ gU−1 ⊂ gV −1 = gV . Therefore, aU ⊂ aV ⊂ gV 2 ⊂ W .

26x:P This immediately follows from 26x:O.

27x:9 Use the fact that (ClH)−1 = ClH−1 and ClH · ClH ⊂
Cl(H ·H) = ClH .

27x:B This follows from 26x:16.

27x:D If U is open, then UH (respectively, HU) is open, see 26x:11.

27x:E Let G be the group, H ⊂ G the subgroup. The space G/H
of left cosets satisfies the first separation axiom since gH is closed in
G for any g ∈ G. Observe that every open set in G/H has the form
{gH | g ∈ U}, where U is an open set in G. Hence, it is sufficient
to check that for every open neighborhood U of 1G in G the unity 1G

has a neighborhood V in G such that ClV H ⊂ UH . Pick a symmetric
neighborhood V with V 2 ⊂ U , see 26x:15. Let x ∈ G belong to Cl V H .
Then V x contains a point vh with v ∈ V and h ∈ H , so that there exists
v′ ∈ V such that v′x = vh, whence x ∈ V −1V H = V 2H ⊂ UH .

27x:F (Compactness) First, we check that if H is compact, then
the projection G → G/H is a closed map. Let F ⊂ G be a closed set,
x /∈ FH . Since FH is closed (see 26x:14), x has a neighborhood U dis-
joint with FH . Then UH is disjoint with FH . Hence, the projection is
closed. Now, consider a family of closed sets in G with finite intersection
property. Their images also form a family of closed sets in G/H with
finite intersection property. Since G/H is compact, the images have a
nonempty intersection. Therefore, there is g ∈ G such that the traces of
the closed sets in the family on gH have finite intersection property. Fi-
nally, since gH is compact, the closed sets in the family have a nonempty
intersection.
(Connectedness) Let G = U ∪ V , where U and V are disjoint open sub-
sets of G. Since all cosets gH , g ∈ G, are connected, each of them is
contained either in U or in V . Hence, G is decomposed into UH and
V H , which yields a decomposition of G/H in two disjoint open subsets.
Since G/H is connected, either UH or V H is empty. Therefore, either
U or V is empty.

27x:H Let C be the connected component of 1G in a topological
group G. Then C−1 is connected and contains 1G, whence C−1 ⊂ C.
For any g ∈ C, the set gC is connected and meets C, whence gC ⊂ C.
Therefore, C is a subgroup of G. C is closed since connected compo-
nents are closed. C is normal since gCg−1 is connected and contains 1G,
whatever g ∈ G is.
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27x:I Let G be a topological group, H a normal subgroup of G,
a, b ∈ G two elements. Let W be a neighborhood of the coset abH in
G/H. The preimage of W in G is an open set W consisting of cosets of
H and containing ab. In particular, W is a neighborhood of ab. Since the
multiplication in G is continuous, a and b have neighborhoods U and V ,
respectively, such that UV ⊂ W . Then (UH)(V H) = (UV )H ⊂ WH .
Therefore, multiplication of elements in the quotient group determines a
continuous mapping G/H ×G/H → G/H. Prove on your own that the
mapping G/H ×G/H : aH → a−1H is also continuous.

27x:J This is special case of 27x:D.

27x:K If {Ui} is a countable (neighborhood) base in G, then {UiH}
is a countable (neighborhood) base in G/H .

27x:L This is a special case of 27x:E.

27x:M In this case, all cosets of H are also open. Therefore,
each singleton in G/H is open. If 1G/H is open in G/H , then H
is open in G by the definition of the quotient topology.

27x:N Obvious. Let a ∈ G, and let b = f(a) ∈ H .
For any neighborhood U of b, the set b−1U is a neighborhood of 1H in H .
Therefore, 1G has a neighborhood V in G such that f(V ) ⊂ b−1U . Then
aV is a neighborhood of a, and we have f(aV ) = f(a)f(V ) = bf(V ) ⊂
bb−1U = U . Hence, f is continuous at each point a ∈ G, i.e., f is a
topological group homomorphism.

27x:O Each open subset of G/Ker f has the form U · Ker f ,

where U is an open subset of G. Since f/S(f)(U · Ker f) = f(U), the

map f/S(f) is open.

Since the projection G→ G/Ker f is open (see 27x:D), the map f

is open if so is f/S(f).

27x:P Combine 27x:O, 26x:K, and 16.Y.

27x:Q This follows from 27x:O since the exponential map R → S1 :
x 7→ e2πxi is open.

27x:S The groups are not isomorphic since only one of them is
compact. The exponential map x 7→ e2πxi determines a local isomorphism
from R to S1.

27x:V The map A×B → G : (a, b) 7→ ab is a continuous bijection.
To see that it is a homeomorphism, observe that it is open since for
any neighborhoods of unity, U ⊂ A and V ⊂ B, and any points a ∈ A
and b ∈ B, the product UaV b = abU ′V ′, where U ′ = b−1a−1Uab and
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V ′ = b−1V b, contains abW ′, where W ′ is a neighborhood of 1G contained
in U ′V ′.

27x:W This immediately follows from 3.8.

27x:X The map TopX → TopX : g 7→ g−1 is continuous because it
preserves the subbase for the topological structure on TopX. It remains
to apply 27x:X.1.

27x:X.1 It suffices to check that the preimage of every element of a
subbase is open. For W (C,U), this is a special case of 24x:S, where we
showed that for any gh ∈ W (C,U) there is an open U ′, h(C) ⊂ U ′ ⊂
g−1(U), such that ClU ′ is compact, h ∈W (C,U ′), g ∈W (ClU ′, U), and

gh ∈W (ClU ′, U) ◦W (C,U ′) ⊂W (C,U).

The case of (W (C,U))−1 reduces to the previous one because for any
gh ∈ (W (C,U))−1 we have h−1g−1 ∈ W (C,U), and so, applying the
above construction, we obtain an open U ′ such that g−1(C) ⊂ U ′ ⊂ h(U),
ClU ′ is compact, g−1 ∈W (C,U ′), h−1 ∈W (ClU ′, U), and

h−1g−1 ∈W (ClU ′, U) ◦W (C,U ′) ⊂W (C,U).

Finally, we have g ∈ (W (C,U ′))−1, h ∈ (W (ClU ′, U))−1, and

gh ∈ (W (C,U ′))−1 ◦ (W (ClU ′, U))−1 ⊂ (W (C,U))−1.

We observe that the above map is continuous even for the pure compact-
open topology on TopX.

28x:G It suffices to check that the preimage of every element of
a subbase is open. For W (C,U), this is a special case of 24x:V. Let
φ(g) ∈ (W (C,U))−1. Then φ(g−1) ∈ W (C,U), and therefore g−1 has
an open neighborhood V in G with φ(V ) ⊂ W (C,U). It follows that
V −1 is an open neighborhood of g in G and φ(V −1) ⊂ (W (C,U))−1.
(The assumptions about X are needed only to ensure that TopX is a
topological group.)

28x:I Let us check that 1G is an isolated point of G. Consider an
open set V with compact closure. Let U ⊂ V be an open subset with
compact closure ClU ⊂ V . Then, for each of finitely many gk ∈ G
with gk(U) ∩ V 6= ∅, let xk ∈ X be a point with gk(xk) 6= xk, and
let Uk be an open neighborhood of xk disjoint with gk(xk). Finally,
G ∩W (ClU, V ) ∩⋂W (xk, Uk) contains only 1G.

28x:J The space G/Gx is compact, the orbit G(x) ⊂ X is Hausdorff,
and the map G/Gx → G(x) is a continuous bijection. It remains to
apply 16.Y.

28x:K To prove that X/G is Hausdorff, consider two disjoint or-
bits, G(x) and G(y). Since G(y) is compact, there are disjoint open
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sets U ∋ x and V ⊃ G(y). Since G(x) is compact, there is a fi-
nite number of elements gk ∈ G such that

⋃
gkU covers G(x). Then

Cl(
⋃
gkU) =

⋃
Cl gkU =

⋃
gk ClU is disjoint with G(y), which shows

that X/G is Hausdorff. (Note that this part of the proof does not in-
volve the compactness of X.) Finally, X/G is compact as a quotient of
the compact space X.

28x:M It suffices to prove that the canonical map f : G/Gx → X
is open (see 28x:N).
Take a neighborhood V ⊂ G of 1G with compact closure and a neigh-
borhood U ⊂ G of 1G with ClU · ClU ⊂ V . Since G contains a dense
countable set, it follows that there is a sequence gn ∈ G such that {gnU}
is an open cover of G. It remains to prove that at least one of the sets
f(gnU) = gnf(U) = gnU(x) has nonempty interior.
Assume the contrary. Then, using the local compactness of X, its Haus-
dorff property, and the compactness of f(gn ClU), we construct by induc-
tion a sequence Wn ⊂ X of nested open sets with compact closure such
that Wn is disjoint with gkUx with k < n and gnUx∩Wn is closed in Wn.
Finally, we obtain nonempty

⋂
Wn disjoint with G(x), a contradiction.

28x:N The canonical map G/Gx → X is continuous and bijective.
Hence, it is a homeomorphism iff it is open (and iff it is closed).


