
Part 2

Algebraic Topology



This part of the book can be considered an introduction to algebraic
topology. The latter is a part of topology which relates topological and
algebraic problems. The relationship is used in both directions, but the
reduction of topological problems to algebra is more useful at first stages
because algebra is usually easier.

The relation is established according to the following scheme. One
invents a construction that assigns to each topological space X under
consideration an algebraic object A(X). The latter may be a group,
a ring, a space with a quadratic form, an algebra, etc. Another con-
struction assigns to a continuous mapping f : X → Y a homomorphism
A(f) : A(X) → A(Y ). The constructions satisfy natural conditions
(in particular, they form a functor), which make it possible to relate
topological phenomena with their algebraic images obtained via the con-
structions.

There is an immense number of useful constructions of this kind. In
this part we deal mostly with one of them which, historucally, was the
first one: the fundamental group of a topological space. It was invented
by Henri Poincaré in the end of the XIXth century.



CHAPTER 6

Fundamental Group

§29 Homotopy

§29◦1 Continuous Deformations of Maps

29.A. Is it possible to deform continuously:
(a) the identity map id : R2 → R2 to the constant map R2 → R2 : x 7→

0,
(b) the identity map id : S1 → S1 to the symmetry S1 → S1 : x 7→ −x

(here x is considered a complex number because the circle S1 is
{x ∈ C : |x| = 1}),

(c) the identity map id : S1 → S1 to the constant map S1 → S1 : x 7→ 1,
(d) the identity map id : S1 → S1 to the two-fold wrapping S1 → S1 :

x 7→ x2,
(e) the inclusion S1 → R

2 to a constant map,
(f) the inclusion S1 → R2 r 0 to a constant map?

29.B. Riddle. When you (tried to) solve the previous problem, what
did you mean by “deform continuously”?

The present section is devoted to the notion of homotopy formalizing
the naive idea of continuous deformation of a map.

§29◦2 Homotopy as Map and Family of Maps

Let f and g be two continuous maps of a topological space X to a
topological space Y , and H : X × I → Y a continuous map such that
H(x, 0) = f(x) and H(x, 1) = g(x) for any x ∈ X. Then f and g are
homotopic, and H is a homotopy between f and g.

For x ∈ X, t ∈ I denote H(x, t) by ht(x). This change of notation
results in a change of the point of view of H . Indeed, for a fixed t the
formula x 7→ ht(x) determines a map ht : X → Y , and H becomes a
family of maps ht enumerated by t ∈ I.

29.C. Each ht is continuous.

29.D. Does continuity of all ht imply continuity of H?

The conditions H(x, 0) = f(x) and H(x, 1) = g(x) in the above
definition of a homotopy can be reformulated as follows: h0 = f and
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§29. HOMOTOPY 197

h1 = g. Thus a homotopy between f and g can be regarded as a family
of continuous maps that connects f and g. Continuity of a homotopy
allows us to say that it is a continuous family of continuous maps (see
§29◦10).

§29◦3 Homotopy as Relation

29.E. Homotopy of maps is an equivalence relation.

29.E.1. If f : X → Y is a continuous map, then H : X × I → Y : (x, t) 7→
f(x) is a homotopy between f and f .

29.E.2. If H is a homotopy between f and g, then H ′ defined by H ′(x, t) =
H(x, 1 − t) is a homotopy between g and f .

29.E.3. If H is a homotopy between f and f ′ and H ′ is a homotopy between
f ′ and f ′′, then H ′′ defined by

H ′′(x, t) =

{
H(x, 2t) if t ∈

[
0, 1

2

]
,

H ′(x, 2t− 1) if t ∈
[

1
2 , 1

]

is a homotopy between f and f ′′.

Homotopy, being an equivalence relation by 29.E, splits the set C(X, Y )
of all continuous mappings from a space X to a space Y into equivalence
classes. The latter are homotopy classes. The set of homotopy classes of
all continuous maps X → Y is denoted by π(X, Y ). Map homotopic to
a constant map are said to be null-homotopic .

29.1. Prove that for any X , the set π(X, I) has a single element.

29.2. Prove that two constant mappings Z → X are homotopic iff their
images lie in one path-connected component of X .

29.3. Prove that the number of elements of π(I, Y ) is equal to the number
of path connected components of Y .

§29◦4 Rectilinear Homotopy

29.F. Any two continuous maps of the same space to Rn are homotopic.

29.G. Solve the preceding problem by proving that for continuous maps
f, g : X → Rn formula H(x, t) = (1 − t)f(x) + tg(x) determines a
homotopy between f and g.

The homotopy defined in 29.G is a rectilinear homotopy.

29.H. Any two continuous maps of an arbitrary space to a convex sub-
space of Rn are homotopic.
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§29◦5 Maps to Star-Shaped Sets

A set A ⊂ Rn is star-shaped if there exists a point b ∈ A such that for any
x ∈ A the whole segment [a, x] connecting x to a is contained in A. The point
a is the center of the star. (Certainly, the center of the star is not uniquely
determined.)

29.4. Prove that any two continuous maps of a space to a star-shaped sub-
space of Rn are homotopic.

§29◦6 Maps of Star-Shaped Sets

29.5. Prove that any continuous map of a star-shaped set C ⊂ Rn to any
space is null-homotopic.

29.6. Under what conditions (formulated in terms of known topological prop-
erties of a space X) any two continuous maps of any star-shaped set to X
are homotopic?

§29◦7 Easy Homotopies

29.7. Prove that each non-surjective map of any topological space to Sn is
null-homotopic.

29.8. Prove that any two maps of a one-point space to Rn r 0 with n > 1
are homotopic.

29.9. Find two nonhomotopic maps from a one-point space to R r 0.

29.10. For various m, n, and k, calculate the number of homotopy classes of
maps {1, 2, . . . ,m} → Rn r {x1, x2, . . . , xk}, where {1, 2, . . . ,m} is equipped
with discrete topology.

29.11. Let f and g be two maps from a topological space X to C r 0. Prove
that if |f(x) − g(x)| < |f(x)| for any x ∈ X , then f and g are homotopic.

29.12. Prove that for any polynomials p and q over C of the same degree in
one variable there exists r > 0 such that for any R > r formulas z 7→ p(z)
and z 7→ q(z) determine maps of the circle {z ∈ C : |z| = R} to C r 0 and
these maps are homotopic.

29.13. Let f , g be maps of an arbitrary topological space X to Sn. Prove
that if |f(a) − g(a)| < 2 for each a ∈ X , then f is homotopic to g.

29.14. Let f : Sn → Sn be a continuous map. Prove that if it is fixed-point-
free, i.e., f(x) 6= x for every x ∈ Sn, then f is homotopic to the symmetry
x 7→ −x.

§29◦8 Two Natural Properties of Homotopies

29.I. Let f, f ′ : X → Y , g : Y → B, h : A → X be continuous maps
and F : X × I → Y a homotopy between f and f ′. Prove that then
g ◦ F ◦ (h× idI) is a homotopy between g ◦ f ◦ h and g ◦ f ′ ◦ h.
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29.J. Riddle. Under conditions of 29.I, define a natural mapping

π(X, Y ) → π(A,B).

How does it depend on g and h? Write down all nice properties of this
construction.

29.K. Prove that two maps f0, f1 : X → Y ×Z are homotopic iff prY ◦f0

is homotopic to prY ◦ f1 and prZ ◦f0 is homotopic to prZ ◦ f1.

§29◦9 Stationary Homotopy

Let A be a subset of X. A homotopy H : X × I → Y is fixed or
stationary on A, or, briefly, an A-homotopy if H(x, t) = H(x, 0) for all
x ∈ A, t ∈ I. Two maps connected by an A-homotopy are A-homotopic.

Certainly, any two A-homotopic maps coincide on A. If we want to
emphasize that a homotopy is not assumed to be fixed, then we say that
it is free. If we want to emphasize the opposite (that the homotopy is
fixed), then we say that it is relative.1

29.L. Prove that, like free homotopy, A-homotopy is an equivalence
relation.

The classes into which A-homotopy splits the set of continuous maps
X → Y that agree on A with a map f : A → Y are A-homotopy classes

of continuous extensions of f to X.

29.M. For what A is a rectilinear homotopy fixed on A?

§29◦10 Homotopies and Paths

Recall that a path in a space X is a continuous mapping from the
segment I to X. (See Section §13.)

29.N. Riddle. In what sense is any path a homotopy?

29.O. Riddle. In what sense does any homotopy consist of paths?

29.P. Riddle. In what sense is any homotopy a path?

Recall that the compact-open topology in C(X,Y ) is the topology gener-
ated by the sets {ϕ ∈ C(X,Y ) | ϕ(A) ⊂ B} for compact A ⊂ X and open
B ⊂ Y .

29.15. Prove that any homotopy ht : X → Y determines (see §29◦2) a path
in C(X,Y ) with compact-open topology.

29.16. Prove that if X is locally compact and regular, then any path in
C(X,Y ) with compact-open topology determines a homotopy.

1Warning: there is a similar, but different kind of homotopy, which is also called
relative.
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§29◦11 Homotopy of Paths

29.Q. Prove that two paths in a space X are freely homotopic iff their
images belong to the same path-connected component of X.

This shows that the notion of free homotopy in the case of paths is
not interesting. On the other hand, there is a sort of relative homotopy
playing a very important role. This is (0∪ 1)-homotopy. This causes the
following commonly accepted deviation from the terminology introduced
above: homotopy of paths always means not a free homotopy, but a
homotopy fixed on the endpoints of I (i.e., on 0 ∪ 1).

Notation: a homotopy class of a path s is denoted by [s].



§30 Homotopy Properties of Path Multiplication

§30◦1 Multiplication of Homotopy Classes of Paths

Recall (see Section §13) that two paths u and v in a space X can be
multiplied, provided the initial point v(0) of v is the final point u(1) of
u. The product uv is defined by

uv(t) =

{
u(2t) if t ∈

[
0, 1

2

]
,

v(2t− 1) if t ∈
[

1
2
, 1

]
.

30.A. If a path u is homotopic to u′, a path v is homotopic to v′, and
there exists the product uv, then u′v′ exists and is homotopic to uv.

Define the product of homotopy classes of paths u and v as the ho-
motopy class of uv. So, [u][v] is defined as [uv], provided uv is defined.
This is a definition requiring a proof.

30.B. The product of homotopy classes of paths is well defined.2

§30◦2 Associativity

30.C. Is multiplication of paths associative?

Certainly, this question might be formulated in more detail as follows.

30.D. Let u, v, and w be paths in a certain space such that products
uv and vw are defined (i.e., u(1) = v(0) and v(1) = w(0)). Is it true that
(uv)w = u(vw)?

30.1. Prove that for paths in a metric space (uv)w = u(vw) implies that u,
v, and w are constant maps.

30.2. Riddle. Find nonconstant paths u, v, and w in an indiscrete space
such that (uv)w = u(vw).

30.E. Multiplication of homotopy classes of paths is associative.

30.E.1. Reformulate Theorem 30.E in terms of paths and their homotopies.

30.E.2. Find a map ϕ : I → I such that if u, v, and w are paths with
u(1) = v(0) and v(1) = w(0), then ((uv)w) ◦ ϕ = u(vw).

30.E.3. Any path in I starting at 0 and ending at 1 is homotopic to id :
I → I.

30.E.4. Let u, v and w be paths in a space such that products uv and vw
are defined (thus, u(1) = v(0) and v(1) = w(0)). Then (uv)w is homotopic
to u(vw).

2Of course, when the initial point of paths in the first class is the final point of
paths in the second class.

201



§30. HOMOTOPY PROPERTIES OF PATH MULTIPLICATION 202

If you want to understand the essence of 30.E, then observe that the
paths (uv)w and u(vw) have the same trajectories and differ only by the
time spent in different fragments of the path. Therefore, in order to find
a homotopy between them, we must find a continuous way to change one
schedule to the other. The lemmas above suggest a formal way of such
a change, but the same effect can be achieved in many other ways.

30.3. Present explicit formulas for the homotopyH between the paths (uv)w
and u(vw).

§30◦3 Unit

Let a be a point of a space X. Denote by ea the path I → X : t 7→ a.

30.F. Is ea a unit for multiplication of paths?

The same question in more detailed form:

30.G. For a path u with u(0) = a is eau = u? For a path v with v(1) = a
is vea = v?

30.4. Prove that if eau = u and the space satisfies the first separation axiom,
then u = ea.

30.H. The homotopy class of ea is a unit for multiplication of homotopy
classes of paths.

§30◦4 Inverse

Recall that for a path u there is the inverse path u−1 : t 7→ u(1 − t)
(see Section §13).

30.I. Is the inverse path inverse with respect to multiplication of paths?

In other words:

30.J. For a path u beginning in a and finishing in b, is it true that
uu−1 = ea and u−1u = eb?

30.5. Prove that for a path u with u(0) = a equality uu−1 = ea implies
u = ea.

30.K. For any path u, the homotopy class of the path u−1 is inverse to
the homotopy class of u.

30.K.1. Find a map ϕ : I → I such that uu−1 = u ◦ ϕ for any path u.

30.K.2. Any path in I that starts and finishes at 0 is homotopic to the
constant path e0 : I → I.
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We see that from the algebraic point of view multiplication of paths
is terrible, but it determines multiplication of homotopy classes of paths,
which has nice algebraic properties. The only unfortunate property is
that the multiplication of homotopy classes of paths is defined not for
any two classes.

30.L. Riddle. How to select a subset of the set of homotopy classes of
paths to obtain a group?



§31 Fundamental Group

§31◦1 Definition of Fundamental Group

Let X be a topological space, x0 its point. A path in X which starts
and ends at x0 is a loop in X at x0. Denote by Ω1(X, x0) the set of loops
in X at x0. Denote by π1(X, x0) the set of homotopy classes of loops in
X at x0.

Both Ω1(X, x0) and π1(X, x0) are equipped with a multiplication.

31.A. For any topological space X and a point x0 ∈ X the set π1(X, x0)
of homotopy classes of loops at x0 with multiplication defined above in
Section §30 is a group.

π1(X, x0) is the fundamental group of the space X with base point
x0. It was introduced by Poincaré, and this is why it is also called the
Poincaré group. The letter π in this notation is also due to Poincaré.

§31◦2 Why Index 1?

The index 1 in the notation π1(X, x0) appeared later than the let-
ter π. It is related to one more name of the fundamental group: the
first (or one-dimensional) homotopy group. There is an infinite series of
groups πr(X, x0) with r = 1, 2, 3, . . . the fundamental group being one of
them. The higher-dimensional homotopy groups were defined by Witold
Hurewicz in 1935, thirty years after the fundamental group was defined.
Roughly speaking, the general definition of πr(X, x0) is obtained from
the definition of π1(X, x0) by replacing I with the cube Ir.

31.B. Riddle. How to generalize problems of this section in such a way
that in each of them I would be replaced by Ir?

There is even a “zero-dimensional homotopy group” π0(X, x0), but it
is not a group, as a rule. It is the set of path-connected components of
X. Although there is no natural multiplication in π0(X, x0), unless X is
equipped with some special additional structures, there is a natural unit
in π0(X, x0). This is the component containing x0.

§31◦3 Circular loops

Let X be a topological space, x0 its point. A continuous map l : S1 →
X such that3 l(1) = x0 is a (circular) loop at x0. Assign to each circular
loop l the composition of l with the exponential map I → S1 : t 7→ e2πit.
This is a usual loop at the same point.

31.C. Prove that any loop can be obtained in this way from a circular
loop.

3Recall that S1 is regarded as a subset of the plane R2, and the latter is identified
in a canonical way with C. Hence, 1 ∈ S1 = {z ∈ C : |z| = 1}.
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Two circular loops l1 and l2 are homotopic if they are 1-homotopic.
A homotopy of a circular loop not fixed at x0 is a free homotopy.

31.D. Prove that two circular loops are homotopic iff the corresponding
ordinary loops are homotopic.

31.1. What kind of homotopy of loops corresponds to free homotopy of
circular loops?

31.2. Describe the operation with circular loops corresponding to the mul-
tiplication of paths.

31.3. Let U and V be the circular loops with common base point U(1) =
V (1) corresponding to the loops u and v. Prove that the circular loop

z 7→

{
U(z2) if Im(z) ≥ 0,

V (z2) if Im(z) ≤ 0

corresponds to the product of u and v.

31.4. Outline a construction of fundamental group using circular loops.

§31◦4 The Very First Calculations

31.E. Prove that π1(R
n, 0) is a trivial group (i.e., consists of one ele-

ment).

31.F. Generalize 31.E to the situations suggested by 29.H and 29.4.

31.5. Calculate the fundamental group of an indiscrete space.

31.6. Calculate the fundamental group of the quotient space of disk D2

obtained by identification of each x ∈ D2 with −x.

31.7. Prove that if a two-point space X is path-connected, then X is simply
connected.

31.G. Prove that π1(S
n, (1, 0, . . . , 0)) with n ≥ 2 is a trivial group.

Whether you have solved 31.G or not, we recommend you to consider
problems 31.G.1, 31.G.2, 31.G.4, 31.G.5, and 31.G.6 designed to give an
approach to 31.G, warn about a natural mistake and prepare an important
tool for further calculations of fundamental groups.

31.G.1. Prove that any loop s : I → Sn that does not fill the entire Sn

(i.e., s(I) 6= Sn) is null-homotopic, provided n ≥ 2. (Cf. Problem 29.7.)

Warning: for any n there exists a loop filling Sn. See 9x:O.

31.G.2. Can a loop filling S2 be null-homotopic?

31.G.3 Corollary of Lebesgue Lemma 16.W. Let s : I → X be a path,
and Γ be an open cover of a topological space X. There exists a sequence
of points a1, . . . , aN ∈ I with 0 = a1 < a2 < · · · < aN−1 < aN = 1 such
that s([ai, ai+1]) is contained in an element of Γ for each i.
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31.G.4. Prove that if n ≥ 2, then for any path s : I → Sn there exists a
subdivision of I into a finite number of subintervals such that the restriction
of s to each of the subintervals is homotopic to a map with nowhere-dense
image via a homotopy fixed on the endpoints of the subinterval.

31.G.5. Prove that if n ≥ 2, then any loop in Sn is homotopic to a non-
surjective loop.

31.G.6. 1) Deduce 31.G from 31.G.1 and 31.G.5. 2) Find all points of the
proof of 31.G obtained in this way, where the condition n ≥ 2 is used.

§31◦5 Fundamental Group of Product

31.H. The fundamental group of the product of topological spaces is
canonically isomorphic to the product of the fundamental groups of the
factors:

π1(X × Y, (x0, y0)) = π1(X, x0) × π1(Y, y0)

31.8. Consider a loop u : I → X at x0, a loop v : I → Y at y0, and the loop
w = u×v : I → X×Y . We introduce the loops u′ : I → X×Y : t 7→ (u(t), y0)
and v′ : I → X × Y : t 7→ (x0, v(t). Prove that u′v′ ∼ w ∼ v′u′.

31.9. Prove that π1(R
n r 0, (1, 0, . . . , 0)) is trivial if n ≥ 3.

§31◦6 Simply-Connectedness

A nonempty topological spaceX is simply connected (or one-connected)
if X is path-connected and every loop in X is null-homotopic.

31.I. For a path-connected topological space X, the following statements
are equivalent:
(a) X is simply connected,
(b) each continuous map f : S1 → X is (freely) null-homotopic,
(c) each continuous map f : S1 → X extends to a continuous map

D2 → X,
(d) any two paths s1, s2 : I → X connecting the same points x0 and x1

are homotopic.

Theorem 31.I is closely related to Theorem 31.J below. Notice that
since Theorem 31.J concerns not all loops, but an individual loop, it is
applicable in a broader range of situations.

31.J. Let X be a topological space and s : S1 → X be a circular loop.
Then the following statements are equivalent:
(a) s is null-homotopic,
(b) s is freely null-homotopic,
(c) s extends to a continuous map D2 → X,
(d) the paths s+, s− : I → X defined by formula s±(t) = s(e±πit) are

homotopic.
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31.J.1. Riddle. To prove that 4 statements are equivalent, we must prove
at least 4 implications. What implications would you choose for the easiest
proof of Theorem 31.J?

31.J.2. Does homotopy of circular loops imply that these circular loops are
free homotopic?

31.J.3. A homotopy between a map of the circle and a constant map pos-
sesses a quotient map whose source space is homoeomorphic to disk D2.

31.J.4. Represent the problem of constructing of a homotopy between
paths s+ and s− as a problem of extension of a certain continuous map of
the boundary of a square to a continuous of the whole square.

31.J.5. When we solve the extension problem obtained as a result of Prob-
lem 31.J.4, does it help to know that the circular loop S1 → X : t 7→
s(e2πit) extends to a continuous map of a disk?

31.10. Which of the following spaces are simply connected:

(a) a discrete
space;

(b) an indiscrete
space;

(c) Rn;

(d) a convex set; (e) a star-shaped set; (f) Sn;
(g) Rn r 0?

31.11. Prove that if a topological space X is the union of two open simply
connected sets U and V with path-connected intersection U ∩ V , then X is
simply connected.

31.12. Show that the assumption in 31.11 that U and V are open is neces-
sary.

31.13*. Let X be a topological space, U and V its open sets. Prove that
if U ∪ V and U ∩ V are simply connected, then so are U and V .

§31x◦7 Fundamental Group of a Topological Group

Let G be a topological group. Given loops u, v : I → G starting at
the unity 1 ∈ G, let us define a loop u ⊙ v : I → G by the formula
u⊙ v(t) = u(t) · v(t), where · denotes the group operation in G.

31x:A. Prove that the set Ω(G, 1) of all loops in G starting at 1 equipped
with the operation ⊙ is a group.

31x:B. Prove that the operation ⊙ on Ω(G, 1) determines a group op-
eration on π1(G, 1), which coincides with the standard group operation
(determined by multiplication of paths).

31x:B.1. For loops u, v → G starting at 1, find (ue1) ⊙ (e1v).

31x:C. The fundamental group of a topological group is Abelian.

31x:D. Formulate and prove analogs of Problems 31x:A and 31x:B for
higher homotopy groups and π0(G, 1).
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§31x◦8 High Homotopy Groups

Let X be a topological space and x0 its point. A continuous map
Ir → X mapping the boundary ∂Ir of Ir to x0 is a spheroid of dimension

r of X at x0, or just an r-spheroid . Two r-spheroids are homotopic if
they are ∂Ir-homotopic. For two r-spheroids u and v of X at x0, r ≥ 1,
define the product uv by the formula

uv(t1, t2, . . . , tr) =

{
u(2t1, t2, . . . , tr) if t1 ∈

[
0, 1

2

]
,

v(2t1 − 1, t2, . . . , tr) if t1 ∈
[

1
2
, 1

]
.

The set of homotopy classes of r-spheroids of a space X at x0 is the
rth (or r-dimensional) homotopy group πr(X, x0) of X at x0. Thus,

πr(X, x0) = π(Ir, ∂Ir; X, x0).

Multiplication of spheroids induces multiplication in πr(X, x0), which
makes πr(X, x0) a group.

31x:E. Find πr(R
n, 0).

31x:F. For any X and x0 the group πr(X, x0) with r ≥ 2 is Abelian.

Similar to §31◦3, higher-dimensional homotopy groups can be con-
structed not out of homotopy classes of maps (Ir, ∂Ir) → (X, x0), but
as

π(Sr, (1, 0, . . . , 0); X, x0).

Another, also quite a popular way, is to define πr(X, x0) as

π(Dr, ∂Dr; X, x0).

31x:G. Construct natural bijections

π(Ir, ∂Ir; X, x0) → π(Dr, ∂Dr; X, x0) → π(Sr, (1, 0, . . . , 0); X, x0)

31x:H. Riddle. For any X, x0 and r ≥ 2 present group πr(X, x0) as the
fundamental group of some space.

31x:I. Prove the following generalization of 31.H:

πr(X × Y, (x0, y0)) = πr(X, x0) × πr(Y, y0).



§32 The Role of Base Point

§32◦1 Overview of the Role of Base Point

Sometimes the choice of the base point does not matter, sometimes
it is obviously crucial, sometimes this is a delicate question. In this
section, we have to clarify all subtleties related to the base point. We
start with preliminary formulations describing the subject in its entirety,
but without some necessary details.

The role of the base point may be roughly described as follows:

• As the base point changes within the same path-connected compo-
nent, the fundamental group remains in the same class of isomorphic
groups.

• However, if the group is non-Abelian, it is impossible to find a nat-
ural isomorphism between the fundamental groups at different base
points even in the same path-connected component.

• Fundamental groups of a space at base points belonging to different
path-connected components have nothing to do to each other.

In this section these will be demonstrated. The proof involves useful
constructions, whose importance extends far outside of the frameworks
of our initial question on the role of base point.

§32◦2 Definition of Translation Maps

Let x0 and x1 be two points of a topological space X, and let s be
a path connecting x0 with x1. Denote by σ the homotopy class [s] of s.
Define a map Ts : π1(X, x0) → π1(X, x1) by the formula Ts(α) = σ−1ασ.

32.1. Prove that for any loop a : I → X representing α ∈ π1(X,x0) and any
path s : I → X with s(0) = x0 there exists a free homotopy H : I × I → X
between a and a loop representing Ts(α) such that H(0, t) = H(1, t) = s(t)
for t ∈ I.

32.2. Let a, b : I → X be loops homotopic via a homotopy H : I × I → X
such that H(0, t) = H(1, t) (i.e., H is a free homotopy of loops: at each
moment t ∈ I, it keeps the endpoints of the path coinciding). Set s(t) =
H(0, t) (hence, s is the path run through by the initial point of the loop
under the homotopy). Prove that the homotopy class of b is the image of the
homotopy class of a under Ts : π1(X, s(0)) → π1(X, s(1)).

§32◦3 Properties of Ts

32.A. Ts is a (group) homomorphism. 4

4Recall that this means that Ts(αβ) = Ts(α)Ts(β).
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32.B. If u is a path connecting x0 to x1 and v is a path connecting x1

with x2, then Tuv = Tv ◦ Tu. In other words, the diagram

π1(X, x0)
Tu−−−→ π1(X, x1)

ցTuv

yTv

π1(X, x2)

is commutative.

32.C. If paths u and v are homotopic, then Tu = Tv.

32.D. Tea
= id : π1(X, a) → π1(X, a)

32.E. Ts−1 = T−1
s .

32.F. Ts is an isomorphism for any path s.

32.G. For any points x0 and x1 lying in the same path-connected com-
ponent of X groups π1(X, x0) and π1(X, x1) are isomorphic.

In spite of the result of Theorem 32.G, we cannot write π1(X) even
if the topological space X is path-connected. The reason is that al-
though the groups π1(X, x0) and π1(X, x1) are isomorphic, there may be
no canonical isomorphism between them (see 32.J below).

32.H. The space X is simply connected iff X is path-connected and the
group π1(X, x0) is trivial for a certain point x0 ∈ X.

§32◦4 Role of Path

32.I. If a loop s represents an element σ of the fundamental group
π1(X, x0), then Ts is the inner automorphism of π1(X, x0) defined by
α 7→ σ−1ασ.

32.J. Let x0 and x1 be points of a topological space X belonging to the
same path-connected component. The isomorphisms Ts : π1(X, x0) →
π1(X, x1) do not depend on s iff π1(X, x0) is an Abelian group.

Theorem 32.J implies that if the fundamental group of a topological
space X is Abelian, we may simply write π1(X).

§32x◦5 In Topological Group

In a topological group G there is another way to relate π1(G, x0)
with π1(G, x1): there are homeomorphisms Lg : G → G : x 7→ xg and
Rg : G → G : x 7→ gx, so that there are the induced isomorphisms
(Lx−1

0
x1

)∗ : π1(G, x0) → π1(G, x1) and (Rx1x−1

0
)∗ : π1(G, x0) → π1(G, x1).

32x:A. Let G be a topological group, s I → G be a path. Prove that

Ts = (Ls(0)−1s(1))∗ = (Rs(1)s(0)−1) : π1(G, s(0)) → π1(G, s(1)).
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32x:B. Deduce from 32x:A that the fundamental group of a topological
group is Abelian (cf. 31x:C).

32x:1. Prove that the following spaces have Abelian fundamental groups:
(a) the space of nondegenerate real n×n matrices GL(n,R) = {A | detA 6=

0};
(b) the space of orthogonal real n×nmatrices O(n,R) = {A | A·(tA) = E};
(c) the space of special unitary complex n × n matrices SU(n) = {A |

A · (tĀ) = 1, detA = 1}.

§32x◦6 In High Homotopy Groups

32x:C. Riddle. Guess how Ts is generalized to πr(X, x0) with any r.

Here is another form of the same question. We put it because its
statement contains a greater piece of an answer.

32x:D. Riddle. Given a path s : I → X with s(0) = x0 and a spheroid
f : Ir → X at x0, how to cook up a spheroid at x1 = s(1) out of these?

32x:E. Let s : I → X be a path, f : Ir → X a spheroid with f(Fr Ir) =
s(0). Prove that there exists a homotopy H : Ir × I → X of f such that
H(Fr Ir × t) = s(t) for any t ∈ I. Furthermore, the spheroid obtained by
such a homotopy is unique up to homotopy and determines an element
of πr(X, s(1)), which is uniquely determined by the homotopy class of s
and the element of πr(X, s(0)) represented by f .

Certainly, a solution of 32x:E gives an answer to 32x:D and 32x:C.
The map πr(X, s(0)) → πr(X, s(1)) defined by 32x:E is denoted by Ts.
By 32.2, this Ts generalizes Ts defined in the beginning of the section for
the case r = 1.

32x:F. Prove that the properties of Ts formulated in Problems 32.A –
32.F hold true in all dimensions.

32x:G. Riddle. What are the counterparts of 32x:A and 32x:B for
higher homotopy groups?



Proofs and Comments

29.A (a), (b), (e): yes; (c), (d), (f): no. See 29.B.

29.B See §29◦2.

29.C The mapping ht is continuous as the restriction of the homo-
topy H to the fiber X × t ⊂ X × I.

29.D Certainly, no, it does not.

29.E See 29.E.1, 29.E.2, and 29.E.3.

29.E.1 The mapping H is continuous as the composition of the
projection p : X × I → X and the mapping f , and, furthermore,
H(x, 0) = f(x) = H(x, 1). Consequently, H is a homotopy.

29.E.2 The mapping H ′ is continuous as the composition of the
homeomorphism X×I → X×I : (x, t) 7→ (x, 1−t) and the homotopyH ,
and, furthermore, H ′(x, 0) = H(x, 1) = g(x) and H ′(x, 1) = H(x, 0) =
f(x). Therefore, H ′ is a homotopy.

29.E.3 Indeed, H ′′(x, 0) = f(x) and H ′′(x, 1) = H ′(x, 1) = f ′′(x).
H ′′ is continuous since the restriction of the mapping H ′′ to each of the
sets X ×

[
0, 1

2

]
and X ×

[
1
2
, 1

]
is continuous and these sets constitute a

fundamental cover of X × I.
Below we do not prove that the homotopies are continuous because this
always follows from explicit formulas.

29.F Each of them is homotopic to the constant map mapping the
entire space to the origin, for example, if H(x, t) = (1− t)f(x), then H :
X × I → Rn is a homotopy between f and the constant mapping x 7→ 0.
(There is a more convenient homotopy between arbitrary mappings to
Rn, see 29.G.)

29.G Indeed, H(x, 0) = f(x) and H(x, 1) = g(x). The mapping H
is obviously continuous. For example, this follows from the inequality
∣∣H(x, t)−H(x′, t′)

∣∣ ≤ |f(x)−f(x′)|+|g(x)−g(x′)|+
(
|f(x)|+|g(x)|

)
|t−t′|.

29.H Let K be a convex subset of Rn, f, g : X → K two con-
tinuous mappings, and H the rectilinear homotopy between f and g.
Then H(x, t) ∈ K for all (x, t) ∈ X × I, and we obtain a homotopy
H : X × I → K.

29.I The mapping H = g ◦F ◦ (h× idI) : A× I → B is continuous,
H(a, 0) = g(F (h(a), 0)) = g(f(h(a))), and H(a, 1) = g(F (h(a), 1)) =
g(f ′(h(a))). Consequently, H is a homotopy.

29.J Take the mapping f : X → Y to the composition g ◦ f ◦ h :
A → B. Assertion 29.I shows that this correspondence preserves the
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homotopy relation, and, hence, it can be transferred to homotopy classes
of mappings. Thus, a mapping π(X, Y ) → π(A,B) is defined.

29.K Any mapping f : X → Y × Z is uniquely determined by its
components prX ◦f and prY ◦f . If H is a homotopy between f and
g, then prY ◦H is a homotopy between prY ◦f and prY ◦g, and prZ ◦H is
a homotopy between prZ ◦f and prZ ◦g.

If HY is a homotopy between prY ◦f and prY ◦g and HZ is a homo-
topy between prZ ◦f and prZ ◦g, then the formulaH(x, t) = (HY (x, t), HZ(x, t))
determines a homotopy between f and g.

29.L The proof does not differ from that of assertion 29.E.

29.M For the sets A such that f |A = g|A (i.e., for the sets contained
in the coincidence set of f and g).

29.N A path is a homotopy of a mapping of a point, cf. 29.8.

29.O For each point x ∈ X, the mapping ux : I → X : t 7→ h(x, t)
is a path.

29.P IfH is a homotopy, then for each t ∈ I the formula ht = H(x, t)
determines a continuous mapping X → Y . Thus, we obtain a mapping
H : I → C(X, Y ) of the segment to the set of all continuous mappings
X → Y . After that, see 29.15 and 29.16.

29.15 This follows from 24x:V.

29.16 This follows from 24x:W.

29.Q This follows from the solution of Problem 29.3.

30.A 1) We start with a visual description of the required homotopy.
Let ut : I → X be a homotopy joining u and u′, and vt : I → X a
homotopy joining v and v′. Then the paths utvt with t ∈ [0, 1] form a
homotopy between uv and u′v′.
2) Now we present a more formal argument. Since the product uv is
defined, we have u(1) = v(0). Since u ∼ u′, we have u(1) = u′(1), we
similarly have v(0) = v′(0). Therefore, the product u′v′ is defined. The
homotopy between uv and u′v′ is the mapping

H : I × I → X : (s, t) 7→

{
H ′(2s, t) if s ∈

[
0, 1

2

]
,

H ′′(2s− 1, t) if s ∈
[

1
2
, 1

]
.

(H is continuous because the sets
[
0, 1

2

]
× I and

[
1
2
, 1

]
× I constitute a

fundamental cover of the square I × I, and the restriction of H to each
of these sets is continuous.)

30.B This is a straight-forward reformulation of 30.A.

30.C No; see 30.D, cf. 30.1.
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30.D No, this is almost always wrong (see 30.1 and 30.2). Here is
the simplest example. Let u(s) = 0 and w(s) = 1 for all s ∈ [0, 1] and

v(s) = s. Then (uv)w(s) = 0 only for s ∈
[
0, 1

4

]
, and u(vw)(s) = 0 for

s ∈
[
0, 1

2

]
.

30.E.1 Reformulation: for any three paths u, v, and w such that
the products uv and vw are defined, the paths (uv)w and u(vw) are
homotopic.

30.E.2 Let

ϕ(s) =






s
2

if s ∈
[
0, 1

2

]
,

s− 1
4

if s ∈
[

1
2
, 3

4

]
,

2s− 1 if s ∈
[

3
4
, 1

]
.

Verify that ϕ is the required function, i.e., ((uv)w)(ϕ(s)) = u(vw)(s).

30.E.3 Consider the rectilinear homotopy, which is in addition fixed
on {0, 1}.

30.E.4 This follows from 29.I, 30.E.2, and 30.E.3.

30.F See 30.G.

30.G Generally speaking, no; see 30.4.

30.H Let

ϕ(s) =

{
0 if s ∈

[
0, 1

2

]
,

2s− 1 if s ∈
[

1
2
, 1

]
.

Verify that eau = u ◦ ϕ. Since ϕ ∼ idI , we have u ◦ ϕ ∼ u, whence

[ea][u] = [eau] = [u ◦ ϕ] = [u].

30.I See 30.J.

30.J Certainly not.

30.K.1 Consider the mapping

ϕ(s) =

{
2s if s ∈

[
0, 1

2

]
,

2 − 2s if s ∈
[

1
2
, 1

]
,

30.K.2 Consider the rectilinear homotopy.

30.L Groups are the sets of classes of paths u with u(0) = u(1) = x0,
where x0 is a certain marked point of X, as well as their subgroups.

31.A This immediately follows from assertions 30.B, 30.E, 30.H,
and 30.K.



PROOFS AND COMMENTS 215

31.B See §31x◦8.

31.C If u : I → X is a loop, then there exists a quotient mapping
ũ : I/{0, 1} → X. It remains to observe that I/{0, 1} ∼= S1.

31.D If H : S1×I → X is a homotopy of circular loops, then
the formula H ′(s, t) = H(e2πis, t) determines a homotopy H ′ between
ordinary loops.

Homotopies of circular loops are quotient maps of homotopies of
ordinary loops by the partition of the square induced by the relation
(0, t) ∼ (1, t).

31.E This is true because there is a rectilinear homotopy between
any loop in Rn at the origin and a constant loop.

31.F Here is a possible generalization: for each convex (and even
star-shaped) set V ⊂ Rn and any point x0 ∈ V , the fundamental group
π1(V, x0) is trivial.

31.G.1 Let p ∈ Sn r u(I). Consider the stereographic projection
τ : Sn r p → Rn. The loop v = τ ◦ u is null-homotopic, let h be the
corresponding homotopy. Then H = τ−1 ◦ h is a homotopy joining the
loop u and a constant loop on the sphere.

31.G.2 Such loops certainly exist. Indeed, if a loop u fills the entire
sphere, then so does the loop uu−1, which, however, is null-homotopic.

31.G.4 Let x be an arbitrary point of the sphere. We cover the sphere
by two open sets U = Sn r x and V = Sn r {−x}. By Lemma 31.G.3,
there is a sequence of points a1, . . . , aN ∈ I, where 0 = a1 < a2 < . . . <
aN−1 < aN = 1, such that for each i the image u([ai, ai+1]) is entirely
contained in U or in V . Since each of these sets is homeomorphi to
Rn, where any two paths with the same starting and ending points are
homotopic, it follows that each of the restrictions u|[ai,ai+1] is homotopic
to a path the image of which is, e.g., an “arc of a great circle” of Sn.
Thus, the path u is homotopic to a path the image of which does not fill
the sphere, and even is nowhere dense.

31.G.5 This immediately follows from Lemma 31.G.4.

31.G.6 1) This is immediate. 2) The assumption n ≥ 2 was used
only in Lemma 31.G.4.

31.H Take a loop u : I → X × Y at the point (x0, y0) to the
pair of loops in X and Y that are the components of u: u1 = prX ◦u
and u2 = prY ◦u. By assertion 29.I, the loops u and v are homotopic
iff u1 ∼ v1 and u2 ∼ v2. Consequently, taking the class of the loop u
to the pair ([u1], [u2]), we obtain a bijection between the fundamental
group π1(X × Y, (x0, y0)) of the product of the spaces and the product
π1(X, x0)×π1(Y, y0) of the fundamental groups of the factors. It remains



PROOFS AND COMMENTS 216

to verify that the bijection constructed is a homomorphism, which is also
obvious because prX ◦(uv) = (prX ◦u)(prX ◦v).

31.I (a) =⇒ (b): The space X is simply connected ⇒ each loop inX
is null-homotopic ⇒ each circular loop in X is relatively null-homotopic
⇒ each circular loop in X is freely null-homotopic.
(b) =⇒ (c): By assumption, for an arbitrary mapping f : S1 → X there
is a homotopy h : S1 × I → X such that h(p, 0) = f(p) and h(p, 1) = x0.
Consequently, there is a continuous mapping h′ : S1 × I/(S1 × 1) → X

such that h = h′ ◦ pr. It remains to observe that S1 × I/(S1 × 1) ∼= D2.

(c) =⇒ (d): Put g(t, 0) = u1(t), g(t, 1) = u2(t), g(0, t) = x0, and
g(1, t) = x1 for t ∈ I. Thus, we mapped the boundary of the square
I × I to X. Since the square is homeomorphi to a disk and its boundary
is homeomorphi to a circle, it follows that the mapping extends from the
boundary to the entire square. The extension obtained is a homotopy
between u1 and u2.
(d) =⇒ (a): This is obvious.

31.J.1 It is reasonable to consider the following implications: (a) =⇒
(b) =⇒ (c) =⇒ (d) =⇒ (a).

31.J.2 It certainly does. Furthermore, since the loop s is null-
homotopic, it follows that the circular loop f is also null-homotopic,
and the homotopy is even fixed at the point 1 ∈ S1. Thus, (a) =⇒ (b).

31.J.3 The assertion suggests the main idea of the proof of the im-
plication (b) =⇒ (c). A null-homotopy of a certain circular loop f is a
mapping H : S1 × I → X constant on the upper base of the cylinder.
Consequently, there is a quotient mapping S1 × I/S1 × 1 → X. It re-
mains to observe that the quotient space of the cylinder by the upper
base is homeomorphi to a disk.

31.J.4 By the definition of a homotopy H : I × I → X between two
paths, the restriction of H to the contour of the square is given. Conse-
quently, the problem of constructing a homotopy between two paths is
the problem of extending a map from the contour of the square to the
entire square.

31.J.5 All that remains to observe for the proof of the implication
(c) =⇒ (d), is the following fact: if F : D2 → X is an extension of

the circular loop f , then the formula H(t, τ) = F
(
cosπt, (2τ − 1) sin πt

)

determines a homotopy between s+ and s−.

31.J In order to prove the theorem, it remains to prove the impli-
cation (d) =⇒ (a). Let us state this assertion without using the notion
of circular loop. Let s : I → X be a loop. Put s+(t) = s(2t) and
s−(t) = s(1 − 2t). Thus, we must prove that if the paths s+ and s− are
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homotopic, then the loop s is null-homotopic. Try to prove this on your
own.

31x:A The associativity of ⊙ follows from that of the multiplication
in G; the unity in the set Ω(G, 1) of all loops is the constant loop at the
unity of the group; the element inverse to the loop u is the path v, where

v(s) =
(
u(s)

)−1
.

31x:B.1 Verify that (ue1) ⊙ (e1v) = uv.

31x:B We prove that if u ∼ u1, then u ⊙ v ∼ u1 ⊙ v. For this
purpose it suffices to check that if h is a homotopy between u and u1,
then the formula H(s, t) = h(s, t)v(s) determines a homotopy between
u ⊙ v and u1 ⊙ v. Further, since ue1 ∼ u and e1v ∼ v, we have uv =
(ue1) ⊙ (e1v) ∼ u ⊙ v, therefore, the paths uv and u ⊙ v lie in one
homotopy class. Consequently, the operation ⊙ induces the standard
group operation in the set of homotopy classes of paths.

31x:C It is sufficient to prove that uv ∼ vu, which fact follows from
the following chain:

uv = (ue1) ⊙ (e1v) ∼ u⊙ v ∼ (e1u) ⊙ (ve1) = vu.

31x:E This group is also trivial. The proof is similar to that of
assertion 31.E.

32.A Indeed, if α = [u] and β = [v], then

Ts(αβ) = σ−1αβσ = σ−1ασσ−1βσ = Ts(α)Ts(β).

32.B Indeed,

Tuv(α) = [uv]−1α[uv] = [v]−1[u]−1α[u][v] = Tv

(
Tu(α)

)
.

32.C By the definition of translation along a path, the homomor-
phism Ts depends only on the homotopy class of s.

32.D This is so because Tea
([u]) = [eauea] = [u].

32.E Since s−1s ∼ ex1
, 32.B–32.D imply that

Ts−1 ◦ Ts = Ts−1s = Tex1
= idπ1(X,x1) .

Similarly, we have Ts ◦ Ts−1 = idπ1(X,x0), whence Ts−1 = T−1
s .

32.F By 32.E, the homomorphism Ts has an inverse and, conse-
quently, is an isomorphism.

32.G If x0 and x1 lie in one path-connected component, then they
are joined by a path s. By 32.F, Ts : π1(X, x0) → π1(X, x1) is an
isomorphism.
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32.H This immediately follows from Theorem 32.G.

32.I This directly follows from the definition of Ts.

32.J Assume that the translation isomorphism does not
depend on the path. In particular, the isomorphism of translation along
any loop at x0 is trivial. Consider an arbitrary element β ∈ π1(X, x0) and
a loop s in the homotopy class β. By assumption, β−1αβ = Ts(α) = α
for each α ∈ π1(X, x0). Therefore, αβ = βα for any elements α, β ∈
π1(X, x0), which precisely means that the group π1(X, x0) is Abelian.

Consider two paths s1 and s2 joining x0 and x1. Since Ts1s−1

2
=

T−1
s2

◦Ts1
, it follows that Ts1

= Ts2
iff Ts1s−1

2
= idπ1(X,x0). Let β ∈ π1(X, x0)

be the class of the loop s1s
−1
2 . If the group π1(X, x0) is Abelian, then

Ts1s−1

2
(α) = β−1αβ = α, whence Ts1s−1

2
= id, and so Ts1

= Ts2
.

32x:A Let u be a loop at s(0). The formula H(τ, t) = u(τ)s(0)−1s(1)
determines a free homotopy between u and the loop Ls(0)−1s(1)(u) such

that H(0, t) = H(1, t) = s(t). Therefore, by 32.2, the loops Ls(0)−1s(1)(u)

and s−1us are homotopic, whence Ts =
(
Ls(0)−1s(1)

)
∗
. The equality for

Rs(0)−1s(1) is proved in a similar way.

32x:B By 32x:A, we have Ts = (Le)∗ = idπ1(X,x0) for each loop s at

x0. Therefore, if β is the class of the loop s, then Ts(α) = β−1αβ = α,
whence αβ = βα.



CHAPTER 7

Covering Spaces and Calculation of Fundamental

Groups

§33 Covering Spaces

§33◦1 Definition of Covering

Let X, B topological spaces, p : X → B a continuous map. Assume
that p is surjective and each point of B possesses a neighborhood U such
that the preimage p−1(U) of U is a disjoint union of open sets Vα and p
maps each Vα homeomorphically onto U . Then p : X → B is a covering

(of B), the space B is the base of this covering, X is the covering space

for B and the total space of the covering. Neighborhoods like U are said
to be trivially covered . The map p is a covering map or covering projection.

33.A. Let B be a topological space and F be a discrete space. Prove
that the projection prB : B × F → B is a covering.

33.1. If U ′ ⊂ U ⊂ B and the neighborhood U is trivially covered, then the
neighborhood U ′ is also trivially covered.

The following statement shows that in a certain sense any covering
locally is organized as the covering of 33.A.

33.B. A continuous surjective map p : X → B is a covering iff for each
point a of B the preimage p−1(a) is discrete and there exist a neighbor-
hood U of a and a homeomorphism h : p−1(U) → U × p−1(a) such that
p|p−1(U) = prU ◦h. Here, as usual, prU : U × p−1(a) → U .

However, the coverings of 33.A are not interesting. They are said to
be trivial . Here is the first really interesting example.

33.C. Prove that R → S1 : x 7→ e2πix is a covering.

To distinguish the most interesting examples, a covering with a con-
nected total space is called a covering in a narrow sense. Of course, the
covering of 33.C is a covering in a narrow sense.

§33◦2 More Examples

33.D. R2 → S1 × R : (x, y) 7→ (e2πix, y) is a covering.

219
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33.E. Prove that if p : X → B and p′ : X ′ → B′ are coverings, then so
is p× p′ : X ×X ′ → B × B′.

If p : X → B and p′ : X ′ → B′ are two coverings, then p × p′ :
X × X ′ → B × B′ is the product of the coverings p and p′. The first
example of the product of coverings is presented in 33.D.

33.F. C → C r 0 : z 7→ ez is a covering.

33.2. Riddle. In what sense the coverings of 33.D and 33.F are the same?
Define an appropriate equivalence relation for coverings.

33.G. R2 → S1 × S1 : (x, y) 7→ (e2πix, e2πiy) is a covering.

33.H. For any positive integer n, the map S1 → S1 : z 7→ zn is a
covering.

33.3. Prove that for each positive integer n the map Cr0 → Cr0 : z 7→ zn

is a covering.

33.I. For any positive integers p and q, the map S1 × S1 → S1 × S1 :
(z, w) 7→ (zp, wq) is a covering.

33.J. The natural projection Sn → RP n is a covering.

33.K. Is (0, 3) → S1 : x 7→ e2πix a covering? (Cf. 33.14.)

33.L. Is the projection R2 → R : (x, y) 7→ x a covering? Indeed, why
is not an open interval (a, b) ⊂ R a trivially covered neighborhood: its
preimage (a, b) × R is the union of open intervals (a, b)× {y}, which are
homeomorphically projected onto (a, b) by the projection (x, y) 7→ x?

33.4. Find coverings of the Möbius strip by a cylinder.

33.5. Find nontrivial coverings of Möbius strip by itself.

33.6. Find a covering of the Klein bottle by a torus. Cf. Problem 21.14.

33.7. Find coverings of the Klein bottle by the plane R2 and the cylinder
S1 × R, and a nontrivial covering of the Klein bottle by itself.

33.8. Describe explicitly the partition of R2 into preimages of points under
this covering.

33.9. Find a covering of a sphere with any number of crosscaps by a sphere
with handles.

§33◦3 Local Homeomorphisms versus Coverings

33.10. Any covering is an open map.1

A map f : X → Y is locally homeomorphic if each point of X has a
neighborhood U such that the image f(U) is open in Y and the submap
ab(f) : U → f(U) is a homeomorphism.

1We remind that a map is open if the image of any open set is open.
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33.11. Any covering is a locally homeomorphic map.

33.12. Find a locally homeomorphic map which is not a covering.

33.13. Prove that the restriction of a locally homeomorphic map to an open
set is locally homeomorphic.

33.14. For which subsets of R is the restriction of the map of Problem 33.C
a covering?

33.15. Find a nontrivial covering X → B with X homeomorphic to B and
prove that it satisfies the definition of a covering.

§33◦4 Number of Sheets

Let p : X → B be a covering. The cardinality (i.e., the number of
points) of the preimage p−1(a) of a point a ∈ B is the multiplicity of the
covering at a or the number of sheets of the covering over a.

33.M. If the base of a covering is connected, then the multiplicity of the
covering at a point does not depend on the point.

In the case of covering with connected base, the multiplicity is called
the number of sheets of the covering. If the number of sheets is n, then the
covering is n-sheeted , and we talk about an n-fold covering. Of course,
unless the covering is trivial, it is impossible to distinguish the sheets of
it, but this does not prevent us from speaking about the number of sheets.
On the other hand, we adopt the following agreement. By definition, the
preimage p−1(U) of any trivially covered neighborhood U ⊂ B splits into
open subsets: p−1(U) = ∪Vα, such that the restriction p|Vα

: Vα → U is
a homeomorphism. Each of the subsets Vα is a sheet over U .

33.16. What are the numbers of sheets for the coverings from Section §33◦2?

33.17. What numbers can you realize as the number of sheets of a covering
of the Möbius strip by the cylinder S1 × I?

33.18. What numbers can you realize as the number of sheets of a covering
of the Möbius strip by itself?

33.19. What numbers can you realize as the number of sheets of a covering
of the Klein bottle by a torus?

33.20. What numbers can you realize as the number of sheets of a covering
of the Klein bottle by itself?

In problems 33.17–33.19 we did not assume that you would rigorously
justify your answers. This will be done below, see problems 39.3–39.6.

33.21. Construct a d-fold covering of a sphere with p handles by a sphere
with 1 + d(p− 1) handles.

33.22. Let p : X → Y and q : Y → Z be coverings. Prove that if q has
finitely many sheets, then q ◦ p : x→ Y is a covering.

33.23*. Is the hypothesis of finiteness of the number of sheets in Prob-
lem 33.22 necessary?
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33.24. Let p : X → B be a covering with compact base B. 1) Prove that if
X is compact, then the covering is finite-sheeted.2) If B is Hausdorff and the
covering is finite-sheeted, then X is compact.

33.25. Let X be a topological space presentable as the union of two open
connected sets U and V . Prove that if the intersection U ∩V is disconnected,
then X has a connected infinite-sheeted covering.

§33◦5 Universal Coverings

A covering p : X → B is universal if X is simply connected. The
appearance of the word universal in this context is explained below in
Section §39.

33.N. Which coverings of the problems stated above in this section are
universal?



§34 Theorems on Path Lifting

§34◦1 Lifting

Let p : X → B and f : A→ B be arbitrary maps. A map g : A→ X
such that p ◦ g = f is said to cover f or be a lifting of f . Various topo-
logical problems can be phrased in terms of finding a continuous lifting
of some continuous map. Problems of this sort are called lifting problems.
They may involve additional requirements. For example, the desired
lifting must coincide with a lifting already given on some subspace.

34.A. The identity map S1 → S1 does not admit a continuous lifting
with respect to the covering R → S1 : x 7→ e2πix. (In other words, there

exists no continuous map g : S1 → R such that e2πig(x) = x for x ∈ S1.)

§34◦2 Path Lifting

34.B Path Lifting Theorem. Let p : X → B be a covering, x0 ∈ X,
b0 ∈ B be points such that p(x0) = b0. Then for any path s : I → B
starting at b0 there exists a unique path s̃ : I → X starting at x0 and
being a lifting of s. (In other words, there exists a unique path s̃ : I → X
with s̃(0) = x0 and p ◦ s̃ = s.)

We can also prove a more general assertion than Theorem 34.B: see Prob-
lems 34.1–34.3.

34.1. Let p : X → B be a trivial covering. Then for any continuous map f

of any space A to B there exists a continuous lifting f̃ : A→ X .

34.2. Let p : X → B be a trivial covering and x0 ∈ X , b0 ∈ B be points such
that p(x0) = b0. Then for any continuous map f of a space A to B mapping

a point a0 to b0, a continuous lifting f̃ : A→ X with f̃(a0) = x0 is unique.

34.3. Let p : X → B be a covering, A a connected and locally connected
space. If f, g : A→ X are two continuous maps coinciding at some point and
p ◦ f = p ◦ g, then f = g.

34.4. If we replace x0, b0, and a0 in Problem 34.2 by pairs of points, then the

lifting problem may happen to have no solution f̃ with f̃(a0) = x0. Formulate
a condition necessary and sufficient for existence of such a solution.

34.5. What goes wrong with the Path Lifting Theorem 34.B for the local
homeomorphism of Problem 33.K?

34.6. Consider the covering C → C r 0 : z 7→ ez. Find liftings of the paths
u(t) = 2 − t and v(t) = (1 + t)e2πit and their products uv and vu.

§34◦3 Homotopy Lifting

34.C Path Homotopy Lifting Theorem. Let p : X → B be a cov-
ering, x0 ∈ X, b0 ∈ B be points such that p(x0) = b0. Let u, v : I → B be
paths starting at b0 and ũ, ṽ : I → X be the lifting paths for u, v starting
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at x0. If the paths u and v are homotopic, then the covering paths ũ and
ṽ are homotopic.

34.D Corollary. Under the assumptions of Theorem 34.C, the covering
paths ũ and ṽ have the same final point (i.e., ũ(1) = ṽ(1)).

Notice that the paths in 34.C and 34.D are assumed to share the
initial point x0. In the statement of 34.D, we emphasize that then they
also share the final point.

34.E Corollary of 34.D. Let p : X → B be a covering and s : I → B
be a loop. If there exists a lifting s̃ : I → X of s with s̃(0) 6= s̃(1)
(i.e., there exists a covering path which is not a loop), then s is not
null-homotopic.

34.F. Prove that if a path-connected space B has a nontrivial path-
connected covering space, then the fundamental group of B is nontrivial.

34.7. Prove that any covering p : X → B with simply connected B and path
connected X is a homeomorphism.

34.8. What corollaries can you deduce from 34.F and the examples of cov-
erings presented above in Section §33?

34.9. Riddle. Is it really important in the hypothesis of Theorem 34.C that
u and v are paths? To what class of maps can you generalize this theorem?



§35 Calculation of Fundamental Groups Using

Universal Coverings

§35◦1 Fundamental Group of Circle

For an integer n, denote by sn the loop in S1 defined by the formula
sn(t) = e2πint. The initial point of this loop is 1. Denote the homotopy
class of s1 by α. Thus, α ∈ π1(S

1, 1).

35.A. The loop sn represents αn ∈ π1(S
1, 1).

35.B. Find the paths in R starting at 0 ∈ R and covering the loops sn

with respect to the universal covering R → S1.

35.C. The homomorphism Z → π1(S
1, 1) : n 7→ αn is an isomorphism.

35.C.1. The formula n 7→ αn determines a homomorphism Z → π1(S
1, 1).

35.C.2. Prove that a loop s : I → S1 starting at 1 is homotopic to sn if
the path s̃ : I → R covering s and starting at 0 ∈ R ends at n ∈ R (i.e.,
s̃(1) = n).

35.C.3. Prove that if the loop sn is null-homotopic, then n = 0.

35.1. Find the image of the homotopy class of the loop t 7→ e2πit
2

under the
isomorphism of Theorem 35.C.

Denote by deg the isomorphism inverse to the isomorphism of Theorem
35.C.

35.2. For any loop s : I → S1 starting at 1 ∈ S1, the integer deg([s]) is the
final point of the path starting at 0 ∈ R and covering s.

35.D Corollary of Theorem 35.C. The fundamental group of (S1)n is a
free Abelian group of rank n (i.e., isomorphic to Z

n).

35.E. On torus S1×S1 find two loops whose homotopy classes generate
the fundamental group of the torus.

35.F Corollary of Theorem 35.C. The fundamental group of punctured
plane R2 r 0 is an infinite cyclic group.

35.3. Solve Problems 35.D – 35.F without reference to Theorems 35.C
and 31.H, but using explicit constructions of the corresponding universal
coverings.

§35◦2 Fundamental Group of Projective Space

The fundamental group of the projective line is an infinite cyclic
group. It is calculated in the previous subsection since the projective line
is a circle. The zero-dimensional projective space is a point, hence its

225



§35. CALCULATION OF FUNDAMENTAL GROUPS 226

fundamental group is trivial. Now we calculate the fundamental groups
of projective spaces of all other dimensions.

Let n ≥ 2, and let and l : I → RP n be a loop covered by a path

l̃ : I → Sn which connects two antipodal points of Sn, say the poles
P+ = (1, 0, . . . , 0) and P− = (−1, 0, . . . , 0). Denote by λ the homotopy
class of l. It is an element of π1(RP

n, (1 : 0 : · · · : 0)).

35.G. For any n ≥ 2 group π1(RP
n, (1 : 0 : · · · : 0)) is a cyclic group of

order 2. It consists of two elements: λ and 1.

35.G.1 Lemma. Any loop in RPn at (1 : 0 : · · · : 0) is homotopic either
to l or constant. This depends on whether the covering path of the loop
connects the poles P+ and P−, or is a loop.

35.4. Where did we use the assumption n ≥ 2 in the proofs of Theorem 35.G
and Lemma 35.G.1 ?

§35◦3 Fundamental Group of Bouquet of Circles

Consider a family of topological spaces {Xα}. In each of the spaces,
let a point xα be marked. Take the disjoint sum

⊔
αXα and identify all

marked points. The resulting quotient space
∨

αXα is the bouquet of
{Xα}. Hence a bouquet of q circles is a space which is a union of q copies
of circle. The copies meet at a single common point, and this is the only
common point for any two of them. The common point is the center of
the bouquet.

Denote the bouquet of q circles by Bq and its center by c. Let u1, . . . ,
uq be loops in Bq starting at c and parameterizing the q copies of circle
comprising Bq. Denote by αi the homotopy class of ui.

35.H. π1(Bq, c) is a free group freely generated by α1, . . . , αq.

§35◦4 Algebraic Digression: Free Groups

Recall that a group G is a free group freely generated by its elements
a1, . . . , aq if:
• each element x ∈ G is a product of powers (with positive or negative

integer exponents) of a1, . . . , aq, i.e.,

x = ae1

i1
ae2

i2
. . . aen

in

and
• this expression is unique up to the following trivial ambiguity: we

can insert or delete factors aia
−1
i and a−1

i ai or replace am
i by ar

ia
s
i

with r + s = m.

35.I. A free group is determined up to isomorphism by the number of its
free generators.
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The number of free generators is the rank of the free group. For a
standard representative of the isomorphism class of free groups of rank
q, we can take the group of words in an alphabet of q letters a1, . . . , aq

and their inverses a−1
1 , . . . , a−1

q . Two words represent the same element
of the group iff they can be obtained from each other by a sequence
of insertions or deletions of fragments aia

−1
i and a−1

i ai. This group is
denoted by F(a1, . . . , aq), or just Fq, when the notation for the generators
is not to be emphasized.

35.J. Each element of F(a1, . . . , aq) has a unique shortest representative.
This is a word without fragments that could have been deleted.

The number l(x) of letters in the shortest representative of x ∈
F(a1, . . . , aq) is the length of x. Certainly, this number is not well de-
fined unless the generators are fixed.

35.5. Show that an automorphism of Fq can map x ∈ Fq to an element with
different length. For what value of q does such an example not exist? Is it
possible to change the length in this way arbitrarily?

35.K. A group G is a free group freely generated by its elements a1,
. . . , aq iff every map of the set {a1, . . . , aq} to any group X extends to a
unique homomorphism G→ X.

Theorem 35.K is sometimes taken as a definition of a free group. (Def-
initions of this sort emphasize relations among different groups, rather
than the internal structure of a single group. Of course, relations among
groups can tell everything about “internal affairs” of each group.)

Now we can reformulate Theorem 35.H as follows:

35.L. The homomorphism

F(a1, . . . , aq) → π1(Bq, c)

taking ai to αi for i = 1, . . . , q is an isomorphism.

First, for the sake of simplicity we restrict ourselves to the case where
q = 2. This will allow us to avoid superfluous complications in notation
and pictures. This is the simplest case, which really represents the general
situation. The case q = 1 is too special.

To take advantages of this, let us change the notation. Put B = B2,
u = u1, v = u2, α = α1, and β = α2.

Now Theorem 35.L looks as follows:

The homomorphism F(a, b) → π(B, c) taking a to α and b to β is an
isomorphism.

This theorem can be proved like Theorems 35.C and 35.G, provided
the universal covering of B is known.
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§35◦5 Universal Covering for Bouquet of Circles

Denote by U and V the points antipodal to c on the circles of B. Cut
B at these points, removing U and V and putting instead each of them
two new points. Whatever this operation is, its result is a cross K, which
is the union of four closed segments with a common endpoint c. There
appears a natural map P : K → B that takes the center c of the cross to
the center c of B and homeomorphically maps the rays of the cross onto
half-circles of B. Since the circles of B are parameterized by loops u and
v, the halves of each of the circles are ordered: the corresponding loop
passes first one of the halves and then the other one. Denote by U+ the
point of P−1(U) belonging to the ray mapped by P onto the second half
of the circle, and by U− the other point of P−1(U). We similarly denote
points of P−1(V ) by V + and V −.

The restriction of P to K r {U+, U−, V +, V −} maps this set home-
omorphically onto B r {U, V }. Therefore P provides a covering of
Br {U, V }. However, it fails to be a covering at U and V : none of these
points has a trivially covered neighborhood. Furthermore, the preimage
of each of these points consists of 2 points (the endpoints of the cross),
where P is not even a local homeomorphism. To eliminate this defect,
we can attach a copy of K at each of the 4 endpoints of K and extend
P in a natural way to the result. But then 12 new endpoints appear at
which the map is not a local homeomorphism. Well, we repeat the trick
and recover the property of being a local homeomorphism at each of the
12 new endpoints. Then we do this at each of the 36 new points, etc.
But if we repeat this infinitely many times, all bad points become nice
ones.2

35.M. Formalize the construction of a covering for B described above.

Consider F(a, b) as a discrete topological space. Take K × F(a, b). It
can be thought of as a collection of copies ofK enumerated by elements of
F(a, b). Topologically this is a disjoint sum of the copies because F(a, b)
is equipped with discrete topology. In K × F(a, b), we identify points

2This sounds like a story about a battle with Hydra, but the happy ending demon-
strates that modern mathematicians have a magic power of the sort that the heros of
myths and tales could not even dream of. Indeed, we meet a Hydra K with 4 heads,
chop off all the heads, but, according to the old tradition of the genre, 3 new heads
appear in place of each of the original heads. We chop them off, and the story repeats.
We do not even try to prevent this multiplication of heads. We just chop them off.
But contrary to the real heros of tales, we act outside of Time and hence have no
time limitations. Thus after infinite repetitions of the exercise with an exponentially
growing number of heads we succeed! No heads left!

This is a typical success story about an infinite construction in mathematics.
Sometimes, as in our case, such a construction can be replaced by a finite one, but
dealing with infinite objects. However, there are important constructions in which an
infinite fragment is unavoidable.
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(U−, g) with (U+, ga) and (V −, g) with (V +, gb) for each g ∈ F(a, b).
Denote the resulting quotient space by X.

35.N. The composition of the projection K×F(a, b) → K and P : K →
B determines a continuous quotient map p : X → B.

35.O. p : X → B is a covering.

35.P. X is path-connected. For any g ∈ F(a, b), there exists a path
connecting (c, 1) with (c, g) and covering the loop obtained from g by
replacing a with u and b with v.

35.Q. X is simply connected.

§35◦6 Fundamental Groups of Finite Topological Spaces

35.6. Prove that if a three-point spaceX is path-connected, then X is simply
connected (cf. 31.7).

35.7. Consider a topological space X = {a, b, c, d} with topology determined
by the base {{a}, {c}, {a, b, c}, {c, d, a}}. Prove that X is path-connected, but
not simply connected.

35.8. Calculate π1(X).

35.9. Let X be a finite topological space with nontrivial fundamental group.
Let n0 be the least possible cardinality of X . 1) Find n0. 2) What nontrivial
groups arise as fundamental groups of n0-point spaces?

35.10. 1) Find a finite topological space with non-Abelian fundamental
group. 2) What is the least possible cardinality of such a space?

35.11*. Let a topological space X be the union of two open path-connected
sets U and V . Prove that if U ∩ V has at least three connected components,
then the fundamental group of X is non-Abelian and, moreover, admits an
epimorphism onto a free group of rank 2.

35.12*. Find a finite topological space with fundamental group isomorphic
to Z2.



Proofs and Comments

33.A Let us show that the set B itself is trivially covered. Indeed,
(
prB

)−1
(B) = X =

⋃
y∈F (B×y), and since the topology in F is discrete,

it follows that each of the sets B × y is open in the total space of the
covering, and the restriction of prB to each of them is a homeomorphism.

33.B We construct a homeomorphism h : p−1(U) → U ×
p−1(a) for an arbitrary trivially covered neighborhood U ⊂ B of a. By the
definition of a trivially covered neighborhood, we have p−1(U) =

⋃
Uα.

Let x ∈ p−1(U), consider an open sets Uα containing x and take x to the
pair (p(x), c), where {c} = p−1(a)∩Uα. It is clear that the correspondence
x 7→ (p(x), c) determines a homeomorphism h : p−1(U) → U × p−1(a).

By assertion 33.1, U is a trivially covered neighborhood, hence,
p : X → B is a covering.

33.C For each point z ∈ S1, the set Uz = S1 r {−z} is a trivially
covered neighborhood of z. Indeed, let z = e2πix. Then the preimage of
Uz is the union

⋃
k∈Z

(x + k − 1
2
, x + k + 1

2
), and the restriction of the

covering to each of the above intervals is a homeomorphism.

33.D The product (S1 r {−z})×R is a trivially covered neighbor-
hood of a point (z, y) ∈ S1 × R; cf. 33.E.

33.E Verify that the product of trivially covered neighborhoods of
points b ∈ B and b′ ∈ B′ is a trivially covered neighborhood of the point
(b, b′) ∈ B ×B′.

33.F Consider the diagram

R
2 h

−−−→ C

q

y
yp

S1 × R
g

−−−→ C r 0,

where g(z, x) = zex, h(x, y) = y + 2πix, and q(x, y) = (e2πix, y). The
equality g(q(x, y)) = e2πix · ey = ey+2πix = p(h(x, y)) implies that the
diagram is commutative. Clearly, g and h are homeomorphisms. Since q
is a covering by 33.D, p is also a covering.

33.G By 33.E, this assertion follows from 33.C. Certainly, it is not
difficult to prove it directly. The product (S1

rz)×(S1
rz′) is a trivially

covered neighborhood of the point (z, z′) ∈ S1 × S1.

33.H Let z ∈ S1. The preimage −z under the projection consists
of n points, which partition the covering space into n arcs, and the re-
striction of the projection to each of them determines a homeomorphism
of this arc onto the neighborhood S1 r {−z} of z.
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33.I By 33.E, this assertion follows from 33.H.

33.J The preimage of a point y ∈ RP n is a pair {x,−x} ⊂ Sn of
antipodal points. The plane passing through the center of the sphere
and orthogonal to the vector x splits the sphere into two open hemi-
spheres, each of which is homeomorphially projected to a neighborhood
(homeomorphi to Rn) of the point y ∈ RP n.

33.K No, it is not, because the point 1 ∈ S1 has no trivially covered
neighborhood.

33.L The open intervals mentioned in the statement are not open
subsets of the plane. Furthermore, since the preimage of any interval is
a connected set, it cannot be split into disjoint open subsets at all.

33.M Prove that the definition of a covering implies that the set
of the points in the base with preimage of prescribed cardinality is open
and use the fact that the base of the covering is connected.

33.N Those coverings where the covering space is R1, R2, Rn r 0
with n ≥ 3, and Sn with n ≥ 2, i.e., a simply connected space.

34.A Assume that there exists a lifting g of the identity map S1 →
S1; this is a continuous injection S1 → R. We show that there are no
such injections. Let g(S1) = [a, b]. The Intermediate Value Theorem
implies that each point x ∈ (a, b) is the image of at least two points of
the circle. Consequently, g is not an injection.

34.B Cover the base by trivially covered neighborhoods and parti-
tion the segment [0, 1] by points 0 = a0 < a1 < . . . < an = 1, such that
the image s([ai, ai+1]) is entirely contained in one of the trivially covered
neighborhoods; s([ai, ai+1]) ⊂ Ui, i = 0, 1, . . . , n−1. Since the restriction
of the covering to p−1(U0) is a trivial covering and f([a0, a1]) ⊂ U0, there
exists a lifting of the mapping s|[a0,a1] such that s̃(a0) = x0, let x1 = s̃(a1).
Similarly, there exists a unique lifting s̃|[a1,a2] such that s̃(a1) = x1; let
x2 = s̃(a2), and so on. Thus, there exists a lifting s̃ : I → X. Its
uniqueness is obvious. If you do not agree, use induction.

34.C Let h : I × I → B be a homotopy between the paths u and
v, thus, h(τ, 0) = u(τ), h(τ, 1) = v(τ), h(0, t) = b0, and h(1, t) = b1 ∈

B. We show that there exists a mapping h̃ : I × I → X covering h
and such that h(0, 0) = x0. The proof of the existence of the covering
homotopy is similar to that of the Path Lifting Theorem. We subdivide
the square I × I into smaller squares such that the h-image of each
of them is contained in a certain trivially covered neighborhood in B.
The restriction hk,l of the homotopy h to each of the “little” squares

Ik,l is covered by the corresponding mapping h̃k,l. In order to obtain a
homotopy covering h, we must only ensure that these mappings coincide
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on the intersections of these squares. By 34.3, it suffices to require that
these mappings coincide at least at one point. Let us make the first step:

let h(I0,0) ⊂ Ub0 and let h̃0,0 : I0,0 → X be a covering mapping such that

h̃0,0(a0, c0) = x0. Now we put b1 = h(a1, c0) and x1 = h̃(a1, c0). There

is a mapping h̃1,0 : I1,0 → X covering h|I1,0
such that h̃1,0(a1, c0) = x1.

Proceeding in this way, we obtain a mapping h̃ defined on the entire

square. It remains to verify that h̃ is a homotopy of paths. Consider the

covering path ũ : t 7→ h̃(0, t). Since p ◦ ũ is a constant path, the path ũ

must also be constant, whence h̃(0, t) = x0. Similarly, h̃(1, t) = x1 is a

marked point of the covering space. Therefore, h̃ is a homotopy of paths.
In conclusion, we observe that the uniqueness of this homotopy follows,
once more, from Lemma 34.3.

34.D Formally speaking, this is indeed a corollary, but actually we
already proved this when proving Theorem 34.C.

34.E A constant path is covered by a constant path. By 34.D, each
null-homotopic loop is covered by a loop.

35.A Consider the paths s̃n : I → R : t 7→ nt, s̃n−1 : I → R :
t 7→ (n − 1)t, and s̃1 : I → R : t 7→ n − 1 + t covering the paths sn,
sn−1, and s1, respectively. Since the product s̃n−1s̃1 is defined and has
the same starting and ending points as the path s̃n, we have s̃n ∼ s̃n−1s̃1,
whence sn ∼ sn−1s1. Therefore, [sn] = [sn−1]α. Reasoning by induction,
we obtain the required equality [sn] = αn.

35.B See the proof of assertion 35.A: this is the path defined by the
formula s̃n(t) = nt.

35.C By 35.C.1, the map in question is indeed a well-defined ho-
momorphism. By 35.C.2, it is an epimorphism, and by 35.C.3 it is a
monomorphism. Therefore, it is an isomorphism.

35.C.1 If n 7→ αn and k 7→ αk, then n+ k 7→ αn+k = αn · αk.

35.C.2 Since R is simply connected, the paths s̃ and s̃n are homo-
topic, therefore, the paths s and sn are also homotopic, whence [s] =
[sn] = αn.

35.C.3 If n 6= 0, then the path s̃n ends at the point n, hence, it is
not a loop. Consequently, the loop sn is not null-homotopic.

35.D This follows from the above computation of the fundamental
group of the circle and assertion 31.H:

π1(S
1 × . . .× S1

︸ ︷︷ ︸
n factors

, (1, 1, . . . , 1)) ∼= π1(S
1, 1) × . . .× π1(S

1, 1)︸ ︷︷ ︸
n factors

∼= Z
n.
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35.E Let S1 × S1 = {(z, w) : |z| = 1, |w| = 1} ⊂ C × C. The
generators of π1(S

1 × S1, (1, 1)) are the loops s1 : t 7→ (e2πit, 1) and
s2 : t 7→ (1, e2πit).

35.F Since R
2
r0 ∼= S1×R, we have π1(R

2
r0, (1, 0)) ∼= π1(S

1, 1)×
π1(R, 1) ∼= Z.

35.G.1 Let u be a loop in RP n, and let ũ be the covering u the path
in Sn. For n ≥ 2, the sphere Sn is simply connected, and if ũ is a loop,
then ũ and hence also u are null-homotopic. Now if ũ is not a loop, then,

once more since Sn is simply connected, we have ũ ∼ l̃, whence u ∼ l.

35.G By 35.G.1, the fundamental group consists of two elements,
therefore, it is a cyclic group of order two.

35.H See §35◦5.

35.M See the paragraph following the present assertion.

35.N This obviously follows from the definition of the mapping P .

35.O This obviously follows from the definition of p.

35.P Use induction.

35.Q Use the fact that the image of any loop, as a compact set,
intersects only a finite number of the segments constituting the covering
space X, and use induction on the number of such segments.



CHAPTER 8

Fundamental Group and Mappings

§36 Induced Homomorphisms

and Their First Applications

§36◦1 Homomorphisms Induced by a Continuous Map

Let f : X → Y be a continuous map of a topological space X to
a topological space Y . Let x0 ∈ X and y0 ∈ Y be points such that
f(x0) = y0. The latter property of f is expressed by saying that f maps
pair (X, x0) to pair (Y, y0) and writing f : (X, x0) → (Y, y0).

Consider the map f# : Ω(X, x0) → Ω(Y, y0) : s 7→ f ◦ s. This map
assigns to a loop its composition with f .

36.A. f# maps homotopic loops to homotopic loops.

Therefore, f# induces a map f∗ : π1(X, x0) → π1(Y, y0).

36.B. f∗ : π(X, x0) → π1(Y, y0) is a homomorphism for any continuous
map f : (X, x0) → (Y, y0).

f∗ : π(X, x0) → π1(Y, y0) is the homomorphism induced by f .

36.C. Let f : (X, x0) → (Y, y0) and g : (Y, y0) → (Z, z0) be (continuous)
maps. Then

(g ◦ f)∗ = g∗ ◦ f∗ : π1(X, x0) → π1(Z, z0).

36.D. Let f, g : (X, x0) → (Y, y0) be continuous maps homotopic via a
homotopy fixed at x0. Then f∗ = g∗.

36.E. Riddle. How can we generalize Theorem 36.D to the case of
freely homotopic f and g?

36.F. Let f : X → Y be a continuous map, x0 and x1 points of X
connected by a path s : I → X. Denote f(x0) by y0 and f(x1) by y1.
Then the diagram

π1(X, x0)
f∗

−−−→ π1(Y, y0)

Ts

y
yTf◦s

π1(X, x1)
f∗

−−−→ π1(Y, y1)

is commutative, i.e., Tf◦s ◦ f∗ = f∗ ◦ Ts.

234
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36.1. Prove that the map C r 0 → C r 0 : z 7→ z3 is not homotopic to the
identity map C r 0 → C r 0 : z 7→ z.

36.2. Let X be a subset of Rn. Prove that if a continuous map f : X → Y
extends to a continuous map R

n → Y , then f∗ : π1(X,x0) → π1(Y, f(x0)) is
a trivial homomorphism (i.e., maps everything to unit) for any x0 ∈ X .

36.3. Prove that if a Hausdorff space X contains an open set homeomorphic
to S1 × S1 r (1, 1), then X has infinite noncyclic fundamental group.

36.3.1. Prove that a spaceX satisfying the conditions of 36.3 can be
continuously mapped to a space with infinite noncyclic fundamental
group in such a way that the map would induce an epimorphism of
π1(X) onto this infinite group.

36.4. Prove that the fundamental group of the space GL(n,C) of complex
n× n-matrices with nonzero determinant is infinite.

§36◦2 Fundamental Theorem of Algebra

Our goal here is to prove the following theorem, which at first glance
has no relation to fundamental group.

36.G Fundamental Theorem of Algebra. Every polynomial of positive
degree in one variable with complex coefficients has a complex root.

In more detail:

Let p(z) = zn + a1z
n−1 + · · · + an be a polynomial of degree n > 0 in

z with complex coefficients. Then there exists a complex number w such
that p(w) = 0.

Although it is formulated in an algebraic way and called “The Funda-
mental Theorem of Algebra,” it has no simple algebraic proof. Its proofs
usually involve topological arguments or use complex analysis. This is
so because the field C of complex numbers as well as the field R of reals
is extremely difficult to describe in purely algebraic terms: all custom-
ary constructive descriptions involve a sort of completion construction,
cf. Section §17.

36.G.1 Reduction to Problem on a Map. Deduce Theorem 36.G from
the following statement:

For any complex polynomial p(z) of a positive degree, the zero belongs
to the image of the map C → C : z 7→ p(z). In other words, the formula
z 7→ p(z) does not determine a map C → C r 0.

36.G.2 Estimate of Remainder. Let p(z) = zn + a1z
n−1 + · · ·+ an be a

complex polynomial, q(z) = zn, and r(z) = p(z) − q(z). Then there exists
a positive real R such that |r(z)| < |q(z)| = Rn for any z with |z| = R

36.G.3 Lemma on Lady with Doggy. (Cf. 29.11.) A lady q(z) and her
dog p(z) walk on the punctured plane C r 0 periodically (i.e., say, with
z ∈ S1). Prove that if the lady does not let the dog to run further than by
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|q(z)| from her, then the doggy’s loop S1 → C r 0 : z 7→ p(z) is homotopic
to the lady’s loop S1 → C r 0 : z 7→ q(z).

36.G.4 Lemma for Dummies. (Cf. 29.12.) If f : X → Y is a continuous
map and s : S1 → X is a null-homotopic loop, then f ◦ s : S1 → Y is also
null-homotopic.

§36x◦3 Generalization of Intermediate Value Theorem

36x:A. Riddle. How to generalize Intermediate Value Theorem 12.A
to the case of maps f : Dn → Rn?

36x:B. Find out whether Intermediate Value Theorem 12.A is equivalent
to the following statement:
Let f : D1 → R1 be a continuous map. If 0 6∈ f(S0) and the submap
f |S0 : S0 → R1 r0 of f induces a nonconstant map π0(S

0) → π0(R
1 r0),

then there exists a point x ∈ D1 such that f(x) = 0.

36x:C. Riddle. Suggest a generalization of Intermediate Value Theo-
rem to maps Dn → Rn which would generalize its reformulation 36x:B.
To do it, you must give a definition of the induced homomorphism for
homotopy groups.

36x:D. Let f : Dn → Rn be a continuous map. If f(Sn−1) does not
contain 0 ∈ Rn and the submap f |Sn−1 : Sn−1 → Rn r 0 of f induces a
nonconstant map

πn−1(S
n−1) → πn−1(R

n
r 0),

then there exists a point x ∈ D1 such that f(x) = 0.

Usability of Theorem 36x:D is impeded by a condition which is diffi-
cult to check if n > 0. For n = 1, this is still possible in the frameworks
of the theory developed above.

36x:1. Let f : D2 → R
2 be a continuous map. If f(S1) does not contain

a ∈ R2 and the circular loop f |S1 : S1 → R2 r a determines a nontrivial
element of π1(R

2 r a), then there exists x ∈ D2 such that f(x) = a.

36x:2. Let f : D2 → R2 be a continuous map that leaves fixed each point of
the boundary circle S1. Then f(D2) ⊃ D2.

36x:3. Let f : R
2 → R

2 be a continuous map and there exists a real number
m such that |f(x) − x| ≤ m for any x ∈ R2. Prove that f is a surjection.

36x:4. Let u, v : I → I×I be two paths such that u(0) = (0, 0), u(1) = (1, 1)
and v(0) = (0, 1), v(1) = (1, 0). Prove that u(I) ∩ v(I) 6= ∅.

36x:4.1. Let u, v be as in 36x:4. Prove that 0 ∈ R2 is a value of
the map w : I2 → R

2 : (x, y) 7→ u(x) − v(y).

36x:5. Prove that there exist connected disjoint sets F,G ⊂ I2 such that
(0, 0), (1, 1) ∈ F and (0, 1), (1, 0) ∈ G.

36x:6. Can we require in addition that the sets F and G satisfying the
assumptions of Problem 36x:5 be closed?
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36x:7. Let C be a smooth simple closed curve on the plane with two inflection
points. Prove that there is a line intersecting C in four points a, b, c, and d
with segments [a, b], [b, c] and [c, d] of the same length.

§36x◦4 Winding Number

As we know (see 35.F), the fundamental group of the punctured plane
R2 r 0 is isomorphic to Z. There are two isomorphisms, which differ by
multiplication by −1. We choose that taking the homotopy class of
the loop t 7→ (cos 2πt, sin 2πt) to 1 ∈ Z. In terms of circular loops, the
isomorphism means that to any loop f : S1 → R

2
r0 we assign an integer.

Roughly speaking, it is the number of times the loop goes around 0 (with
account of direction).

Now we change the viewpoint in this consideration, and fix the loop,
but vary the point. Let f : S1 → R2 be a circular loop and let x ∈
R

2
r f(S1). Then f determines an element in π1(R

2
r x) = Z (here we

choose basically the same identification of π1(R
2 r x) with Z that takes

1 to the homotopy class of t 7→ x + (cos 2πt, sin 2πt)). This number is
denoted by ind(f, x) and called the winding number or index of x with
respect to f .

It is also convenient to characterize the number ind(u, x) as follows.
Along with the circular loop u : S1 → R2 r x, consider the mapping

ϕu,x : S1 → S1 : z 7→ u(z)−x
|u(z)−x|

. The homomorphism
(
ϕu,x

)
∗

: π1(S
1) →

π1(S
1) takes the generator α of the fundamental group of the circle to

the element kα, where k = ind(u, x).

36x:E. The formula x 7→ ind(u, x) defines a locally constant function on
R2 r u(S1).

36x:8. Let f : S1 → R
2 be a loop and x, y ∈ R

2
r f(S1). Prove that if

ind(f, x) 6= ind(f, y), then any path connecting x and y in R2 meets f(S1).

36x:9. Prove that if u(S1) is contained in a disk, while a point x is not, then
ind(u, x) = 0.

36x:10. Find the set of values of function ind : R2 r u(S1) → Z for the
following loops u:
a) u(z) = z; b) u(z) = z̄; c) u(z) = z2; d) u(z) = z+z−1+z2−z−2

(here z ∈ S1 ⊂ C).

36x:11. Choose several loops u : S1 → R2 such that u(S1) is a bouquet of
two circles (a “lemniscate”). Find the winding number with respect to these
loops for various points.

36x:12. Find a loop f : S1 → R2 such that there exist points x, y ∈
R

2
r f(S1) with ind(f, x) = ind(f, y), but belonging to different connected

components of R2 r f(S1).

36x:13. Prove that any ray R radiating from x meets f(S1) at least at
| ind(f, x)| points (i.e., the number of points in f−1(R) is not less than
| ind(f, x)|).
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36x:F. If u : S1 → R2 is a restriction of a continuous map F : D2 → R2

and ind(u, x) 6= 0, then x ∈ F (D2).

36x:G. If u and v are two circular loops in R
2 with common base point

(i. e., u(1) = v(1)) and uv is their product, then ind(uv, x) = ind(u, x)+
ind(v, x) for each x ∈ R2 r uv(S1).

36x:H. Let u and v be circular loops in R2, and x ∈ R2r(u(S1)∪v(S1)).
If there exists a (free) homotopy ut, t ∈ I connecting u and v such that
x ∈ R2 r ut(S

1) for each t ∈ I, then ind(u, x) = ind(v, x).

36x:I. Let u : S1 → C be a circular loop and a ∈ C2 r u(S1). Then

ind(u, a) =
1

2πi

∫

S1

|u(z) − a|

u(z) − a
dz.

36x:J. Let p(z) be a polynomial with complex coefficients, R > 0, and
let z0 ∈ C. Consider the circular loop u : S1 → C : z 7→ p(Rz). If z0 ∈
Cru(S1), then the polynomial p(z)−z0 has (counting the multiplicities)
precisely ind(u, z0) roots in the open disk B2

R = {z : |z| < R}.

36x:K. Riddle. By what can we replace the circular loop u, the domain
BR, and the polynomial p(z) so that the assertion remain valid?

§36x◦5 Borsuk–Ulam Theorem

36x:L One-Dimensional Borsuk–Ulam. For each continuous map
f : S1 → R

1 there exists x ∈ S1 such that f(x) = f(−x).

36x:M Two-Dimensional Borsuk–Ulam. For each continuous map
f : S2 → R2 there exists x ∈ S2 such that f(x) = f(−x).

36x:M.1 Lemma. If there exists a continuous map f : S2 → R
2 such

that f(x) 6= f(−x) for each x ∈ S2, then there exists a continuous map
ϕ : RP 2 → RP 1 inducing a nonzero homomorphism π1(RP

2) → π1(RP
1).

36x:14. Prove that at each instant of time, there is a pair of antipodal
points on the earth’s surface where the pressures and also the temperatures
are equal.

Theorems 36x:L and 36x:M are special cases of the following general
theorem. We do not assume the reader to be ready to prove Theo-
rem 36x:N in the full generality, but is there another easy special case?

36x:N Borsuk–Ulam Theorem. For each continuous map f : Sn →
Rn there exists x ∈ Sn such that f(x) = f(−x).



§37 Retractions and Fixed Points

§37◦1 Retractions and Retracts

A continuous map of a topological space onto a subspace is a retraction

if the restriction of the map to the subspace is the identity mapping. In
other words, if X is a topological space and A ⊂ X, then ρ : X → A is
a retraction if ρ is continuous and ρ|A = idA.

37.A. Let ρ be a continuous map of a space X onto its subspace A.
Then the following statements are equivalent:
(a) ρ is a retraction,
(b) ρ(a) = a for any a ∈ A,
(c) ρ ◦ in = idA,
(d) ρ : X → A is an extension of the identity mapping A→ A.

A subspace A of a space X is a retract of X if there exists a retraction
X → A.

37.B. Any one-point subset is a retract.

Two-point set may be a non-retract.

37.C. Any subset of R consisting of two points is not a retract of R.

37.1. If A is a retract of X and B is a retract of A, then B is a retract of X .

37.2. If A is a retract of X and B is a retract of Y , then A×B is a retract
of X × Y .

37.3. A closed interval [a, b] is a retract of R.

37.4. An open interval (a, b) is not a retract of R.

37.5. What topological properties of ambient space are inherited by a re-
tract?

37.6. Prove that a retract of a Hausdorff space is closed.

37.7. Prove that the union of Y -axis and the set {(x, y) ∈ R2 | x > 0, y =
sin 1

x
} is not a retract of R2 and, moreover, is not a retract of any of its

neighborhoods.

37.D. S0 is not a retract of D1.

The role of the notion of retract is clarified by the following theorem.

37.E. A subset A of a topological space X is a retract of X iff for each
space Y each continuous map A→ Y extends to a continuous map X →
Y .

§37◦2 Fundamental Group and Retractions

37.F. If ρ : X → A is a retraction, i : A → X is the inclusion, and
x0 ∈ A, then ρ∗ : π1(X, x0) → π1(A, x0) is an epimorphism and i∗ :
π1(A, x0) → π1(X, x0) is a monomorphism.

239
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37.G. Riddle. Which of the two statements of Theorem 37.F (about
ρ∗ or i∗) is easier to use for proving that a set A ⊂ X is not a retract of
X?

37.H Borsuk Theorem in Dimension 2. S1 is not a retract of D2.

37.8. Is the projective line a retract of the projective plane?

The following problem is more difficult than 37.H in the sense that its
solution is not a straightforward consequence of Theorem 37.F, but rather
demands to reexamine the arguments used in proof of 37.F.

37.9. Prove that the boundary circle of Möbius band is not a retract of
Möbius band.

37.10. Prove that the boundary circle of a handle is not a retract of the
handle.

The Borsuk Theorem in its whole generality cannot be deduced like
Theorem 37.H from Theorem 37.F. However, it can be proven using a
generalization of 37.F to higher homotopy groups. Although we do not
assume that you can successfully prove it now relying only on the tools
provided above, we formulate it here.

37.I Borsuk Theorem. The (n − 1)-sphere Sn−1 is not a retract of the
n-disk Dn.

At first glance this theorem seems to be useless. Why could it be
interesting to know that a map with a very special property of being
a retraction does not exist in this situation? However, in mathematics
nonexistence theorems are often closely related to theorems that may
seem to be more attractive. For instance, the Borsuk Theorem implies the
Brouwer Theorem discussed below. But prior to this we must introduce
an important notion related to the Brouwer Theorem.

§37◦3 Fixed-Point Property.

Let f : X → X be a continuous map. A point a ∈ X is a fixed

point of f if f(a) = a. A space X has the fixed-point property if every
continuous map X → X has a fixed point. The fixed point property
implies solvability of a wide class of equations.

37.11. Prove that the fixed point property is a topological property.

37.12. A closed interval [a, b] has the fixed point property.

37.13. Prove that if a topological space has the fixed point property, then
so does each of its retracts.

37.14. Let X and Y be two topological spaces, x0 ∈ X and y0 ∈ Y . Prove
that X and Y have the fixed point property iff so does their bouquet X∨Y =
X ⊔ Y/[x0 ∼ y0].
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37.15. Prove that any finite tree (i.e., a connected space obtained from a
finite collection of closed intervals by some identifying of their endpoints such
that deleting of an internal point of each of the segments makes the space
disconnected, see §42x◦4) has the fixed-point property. Is this statement true
for infinite trees?

37.16. Prove that Rn with n > 0 does not have the fixed point property.

37.17. Prove that Sn does not have the fixed point property.

37.18. Prove that RPn with odd n does not have the fixed point property.

37.19*. Prove that CPn with odd n does not have the fixed point property.

Information. RP n and CP n with any even n have the fixed point
property.

37.J Brouwer Theorem. Dn has the fixed point property.

37.J.1. Deduce from Borsuk Theorem in dimension n (i.e., from the state-
ment that Sn−1 is not a retract of Dn) Brouwer Theorem in dimension n
(i.e., the statement that any continuous map Dn → Dn has a fixed point).

37.K. Derive the Borsuk Theorem from the Brouwer Theorem.

The existence of fixed points can follow not only from topological
arguments.

37.20. Prove that if f : Rn → Rn is a periodic affine transformation (i.e.,
f ◦ · · · ◦ f︸ ︷︷ ︸
p times

= idRn for a certain p), then f has a fixed point.



§38 Homotopy Equivalences

§38◦1 Homotopy Equivalence as Map

Let X and Y be two topological spaces, f : X → Y and g : Y → X
continuous maps. Consider the compositions f ◦ g : Y → Y and g ◦ f :
X → X. They would be equal to the corresponding identity maps if f
and g were mutually inverse homeomorphisms. If f ◦ g and g ◦f are only
homotopic to the identity maps, then f and g are said to be homotopy

inverse to each other. If a continuous map f possesses a homotopy inverse
map, then f is a homotopy invertible map or a homotopy equivalence.

38.A. Prove the following properties of homotopy equivalences:
(a) any homeomorphism is a homotopy equivalence,
(b) a map homotopy inverse to a homotopy equivalence is a homotopy

equivalence,
(c) the composition of two homotopy equivalences is a homotopy equiv-

alence.

38.1. Find a homotopy equivalence that is not a homeomorphism.

§38◦2 Homotopy Equivalence as Relation

Two topological spaces X and Y are homotopy equivalent if there
exists a homotopy equivalence X → Y .

38.B. Homotopy equivalence of topological spaces is an equivalence re-
lation.

The classes of homotopy equivalent spaces are homotopy types. Thus
homotopy equivalent spaces are said to be of the same homotopy type.

38.2. Prove that homotopy equivalent spaces have the same number of path-
connected components.

38.3. Prove that homotopy equivalent spaces have the same number of con-
nected components.

38.4. Find an infinite series of topological spaces that belong to the same
homotopy type, but are pairwise not homeomorphic.

§38◦3 Deformation Retraction

A retraction ρ : X → A is a deformation retraction if its composition
in ◦ ρ with the inclusion in : A→ X is homotopic to the identity idX . If
in ◦ ρ is A-homotopic to idX , then ρ is a strong deformation retraction. If
X admits a (strong) deformation retraction onto A, then A is a (strong)
deformation retract of X.

38.C. Each deformation retraction is a homotopy equivalence.

242
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38.D. If A is a deformation retract of X, then A and X are homotopy
equivalent.

38.E. Any two deformation retracts of one and the same space are ho-
motopy equivalent.

38.F. If A is a deformation retract of X and B is a deformation retract
of Y , then A× B is a deformation retract of X × Y .

§38◦4 Examples

38.G. Circle S1 is a deformation retract of R2 r 0.

38.5. Prove that the Möbius strip is homotopy equivalent to a circle.

38.6. Classify letters of Latin alphabet up to homotopy equivalence.

38.H. Prove that a plane with s punctures is homotopy equivalent to a
union of s circles intersecting in a single point.

38.I. Prove that the union of a diagonal of a square and the contour of
the same square is homotopy equivalent to a union of two circles inter-
secting in a single point.

38.7. Prove that a handle is homotopy equivalent to a bouquet of two circles.
(E.g., construct a deformation retraction of the handle to a union of two circles
intersecting in a single point.)

This can be proved in various ways. For example, we can produce circles
lying in the handle H whose union is a strong deformation retract of H.
For this purpose, we present the handle as a result of factorizing the annulus
A = {z | 1

2
≤ |z| ≤ 1} by the following relation: eiϕ ∼ −e−iϕ for ϕ ∈

[
−π

4
, π

4

]
,

and eiϕ ∼ e−iϕ for ϕ ∈
[
π
4
, 3π

4

]
. The image of the standard unit circle under

the factorization by the above equivalence relation is the required bouquet
of two circles lying in of the handle. The formula H(z, t) = (1 − t)z + t z|z|

determines a homotopy between the identical mapping of A and the mapping
z 7→ z

|z| of A onto the outer rim of A, and H(z, t) = z for all z ∈ S1 and

t ∈ I. The quotient mapping of H is the required homotopy.

38.8. Prove that a handle is homotopy equivalent to a union of three arcs
with common endpoints (i.e., letter θ).

38.9. Prove that the space obtained from S2 by identification of a two (dis-
tinct) points is homotopy equivalent to the union of a two-sphere and a circle
intersecting in a single point.

38.10. Prove that the space {(p, q) ∈ C : z2 +pz+ q has two distinct roots}
of quadratic complex polynomials with distinct roots is homotopy equivalent
to the circle.

38.11. Prove that the space GL(n,R) of invertible n × n real matrices is
homotopy equivalent to the subspace O(n) consisting of orthogonal matrices.
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38.12. Riddle. Is there any relation between a solution of the preceding
problem and the Gram–Schmidt orthogonalization? Can the Gram–Schmidt
orthogonalization algorithm be considered a deformation retraction?

38.13. Construct the following deformation retractions: (a) R3 r R1 → S1;
(b) Rn r Rm → Sn−m−1; (c) S3 r S1 → S1; (d) Sn r Sm → Sn−m−1 (e)
RPn r RPm → RPn−m−1.

§38◦5 Deformation Retraction versus Homotopy Equivalence

38.J. Spaces of Problem 38.I cannot be embedded one to another. On
the other hand, they can be embedded as deformation retracts in the
plane with two punctures.

Deformation retractions comprise a special type of homotopy equiv-
alences. For example, they are easier to visualize. However, as follows
from 38.J, it may happen that two spaces are homotopy equivalent, but
none of them can be embedded in the other one, and so none of them
is homeomorphic to a deformation retract of the other one. Therefore,
deformation retractions seem to be insufficient for establishing homotopy
equivalences.

However, this is not the case:

38.14*. Prove that any two homotopy equivalent spaces can be embedded
as deformation retracts in the same topological space.

§38◦6 Contractible Spaces

A topological space X is contractible if the identity map id : X → X
is null-homotopic.

38.15. Show that R and I are contractible.

38.16. Prove that any contractible space is path-connected.

38.17. Prove that the following three statements about a topological space
X are equivalent:
(a) X is contractible,
(b) X is homotopy equivalent to a point,
(c) there exists a deformation retraction of X onto a point,
(d) any point a of X is a deformation retract of X ,
(e) any continuous map of any topological space Y to X is null-homotopic,
(f) any continuous map of X to any topological space Y is null-homotopic.

38.18. Is it true that if X is a contractible space, then for any topological
space Y
(a) any two continuous maps X → Y are homotopic?
(b) any two continuous maps Y → X are homotopic?

38.19. Find out if the spaces on the following list are contractible:
(a) Rn,
(b) a convex subset of Rn,
(c) a star-shaped subset of Rn,
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(d) {(x, y) ∈ R2 : x2 − y2 ≤ 1},
(e) a finite tree (i.e., a connected space obtained from a finite collection of

closed intervals by some identifying of their endpoints such that delet-
ing of an internal point of each of the segments makes the space discon-
nected, see §42x◦4.)

38.20. Prove that X × Y is contractible iff both X and Y are contractible.

§38◦7 Fundamental Group and Homotopy Equivalences

38.K. Let f : X → Y and g : Y → X be homotopy inverse maps, and
let x0 ∈ X and y0 ∈ Y be two points such that f(x0) = y0 and g(y0) = x0

and, moreover, the homotopies relating f ◦ g to idY and g ◦ f to idX are
fixed at y0 and x0, respectively. Then f∗ and g∗ are inverse to each other
isomorphisms between groups π1(X, x0) and π1(Y, y0).

38.L Corollary. If ρ : X → A is a strong deformation retraction, x0 ∈ A,
then ρ∗ : π1(X, x0) → π1(A, x0) and in∗ : π1(A, x0) → π1(X, x0) are
mutually inverse isomorphisms.

38.21. Calculate the fundamental group of the following spaces:

(a) R3 r R1, (b) RN r Rn, (c) R3 r S1, (d) RN r Sn,
(e) S3 r S1, (f) SN r Sk, (g) RP 3rRP 1, (h) handle,
(i) Möbius band, (j) sphere with s holes,
(k) Klein bottle with a point re-

moved,
(l) Möbius band with s holes.

38.22. Prove that the boundary circle of the Möbius band standardly em-
bedded in R3 (see 21.18) could not be the boundary of a disk embedded in
R3 in such a way that its interior does not intersect the band.

38.23. 1) Calculate the fundamental group of the space Q of all complex
polynomials ax2 + bx + c with distinct roots. 2) Calculate the fundamental
group of the subspace Q1 of Q consisting of polynomials with a = 1 (unital
polynomials).

38.24. Riddle. Can you solve 38.23 along the lines of deriving the custom-
ary formula for the roots of a quadratic trinomial?

38.M. Suppose that the assumptions of Theorem 38.K are weakened as
follows: g(y0) 6= x0 and/or the homotopies relating f ◦ g to idY and g ◦ f
to idX are not fixed at y0 and x0, respectively. How would f∗ and g∗ be
related? Would π1(X, x0) and π1(Y, y0) be isomorphic?



§39 Covering Spaces via Fundamental Groups

§39◦1 Homomorphisms Induced by Covering Projections

39.A. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). Then
p∗ : π1(X, x0) → π1(B, b0) is a monomorphism. Cf. 34.C.

The image of the monomorphism p∗ : π1(X, x0) → π1(B, b0) induced
by the covering projection p : X → B is the group of the covering p with

base point x0.

39.B. Riddle. Is the group of covering determined by the covering?

39.C Group of Covering versus Lifting of Loops. Describe loops
in the base space of a covering, whose homotopy classes belong to the
group of the covering, in terms provided by Path Lifting Theorem 34.B.

39.D. Let p : X → B be a covering, let x0, x1 ∈ X belong to the same
path-component of X, and b0 = p(x0) = p(x1). Then p∗(π1(X, x0)) and
p∗(π1(X, x1)) are conjugate subgroups of π1(B, b0) (i.e., there exists an
α ∈ π1(B, b0) such that p∗(π1(X, x1)) = α−1p∗(π1(X, x0))α).

39.E. Let p : X → B be a covering, x0 ∈ X, b0 = p(x0). For each
α ∈ π1(B, b0), there exists an x1 ∈ p−1(b0) such that p∗(π1(X, x1)) =
α−1p∗(π1(X, x0))α.

39.F. Let p : X → B be a covering in a narrow sense, G ⊂ π1(B, b0) the
group of this covering with a base point x0. A subgroup H ⊂ π1(B, b0)
is a group of the same covering iff H is conjugate to G.

§39◦2 Number of Sheets

39.G Number of Sheets and Index of Subgroup. Let p : X → B
be a covering in a narrow sense with finite number of sheets. Then the
number of sheets is equal to the index of the group of this covering.

39.H Sheets and Right Cosets. Let p : X → B be a covering in a
narrow sense, b0 ∈ B, and x0 ∈ p−1(b0). Construct a natural bijection of
p−1(b0) and the set p∗(π1(X, x0))\π1(B, b0) of right cosets of the group
of the covering in the fundamental group of the base space.

39.1 Number of Sheets in Universal Covering. The number of sheets
of a universal covering equals the order of the fundamental group of the base
space.

39.2 Nontrivial Covering Means Nontrivial π1. Any topological space
that has a nontrivial path-connected covering space has a nontrivial funda-
mental group.

39.3. What numbers can appear as the number of sheets of a covering of the
Möbius strip by the cylinder S1 × I?

246
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39.4. What numbers can appear as the number of sheets of a covering of the
Möbius strip by itself?

39.5. What numbers can appear as the number of sheets of a covering of the
Klein bottle by torus?

39.6. What numbers can appear as the number of sheets of a covering of the
Klein bottle by itself?

39.7. What numbers can appear as the numbers of sheets for a covering of
the Klein bottle by plane R2?

39.8. What numbers can appear as the numbers of sheets for a covering of
the Klein bottle by S1 × R?

§39◦3 Hierarchy of Coverings

Let p : X → B and q : Y → B be two coverings, x0 ∈ X, y0 ∈ Y , and
p(x0) = q(y0) = b0. The covering q with base point y0 is subordinate to p
with base point x0 if there exists a map ϕ : X → Y such that q ◦ ϕ = p
and ϕ(x0) = y0. In this case, the map ϕ is a subordination.

39.I. A subordination is a covering map.

39.J. If a subordination exists, then it is unique. Cf. 34.B.

Two coverings p : X → B and q : Y → B are equivalent if there exists
a homeomorphism h : X → Y such that p = q ◦ h. In this case, h and
h−1 are equivalences.

39.K. If two coverings are mutually subordinate, then the corresponding
subordinations are equivalences.

39.L. The equivalence of coverings is, indeed, an equivalence relation in
the set of coverings with a given base space.

39.M. Subordination determines a nonstrict partial order in the set of
equivalence classes of coverings with a given base.

39.9. What equivalence class of coverings is minimal (i.e., subordinate to all
other classes)?

39.N. Let p : X → B and q : Y → B be coverings, x0 ∈ X, y0 ∈ Y
and p(x0) = q(y0) = b0. If q with base point y0 is subordinate to p with
base point x0, then the group of covering p is contained in the group of
covering q, i.e., p∗(π1(X, x0)) ⊂ q∗(π1(Y, y0)).

§39x◦4 Existence of Subordinations

A topological space X is locally path-connected if for each point a ∈ X
and each neighborhood U of a the point a has a path-connected neigh-
borhood V ⊂ U .



§39. COVERING SPACES VIA FUNDAMENTAL GROUPS 248

39x:1. Find a path connected, but not locally path connected topological
space.

39x:A. Let B be a locally path-connected space, p : X → B and q : Y →
B be coverings in a narrow sense, x0 ∈ X, y0 ∈ Y and p(x0) = q(y0) = b0.
If p∗(π1(X, x0)) ⊂ q∗(π1(Y, y0)), then q is subordinate to p.

39x:A.1. Under the conditions of 39x:A, if two paths u, v : I → X have the
same initial point x0 and a common final point, then the paths that cover
p ◦ u and p ◦ v and have the same initial point y0 also have the same final
point.

39x:A.2. Under the conditions of 39x:A, the mapX → Y defined by 39x:A.1
(guess, what this map is!) is continuous.

39x:2. Construct an example proving that the hypothesis of local path con-
nectedness in 39x:A.2 and 39x:A is necessary.

39x:B. Two coverings p : X → B and q : Y → B with a common locally
path-connected base are equivalent iff for some x0 ∈ X and y0 ∈ Y
with p(x0) = q(y0) = b0 the groups p∗(π1(X, x0)) and q∗(π1(Y, y0)) are
conjugate in π1(B, b0).

39x:3. Construct an example proving that the assumption of local path con-
nectedness of the base in 39x:B is necessary.

§39x◦5 Micro Simply Connected Spaces

A topological space X is micro simply connected if each point a ∈ X
has a neighborhood U such that the inclusion homomorphism π1(U, a) →
π1(X, a) is trivial.

39x:4. Any simply connected space is micro simply connected.

39x:5. Find a micro simply connected, but not simply connected space.

A topological space is locally contractible at point a if each neighborhood
U of a contains a neighborhood V of a such that the inclusion V → U
is null-homotopic. A topological space is locally contractible if it is locally
contractible at each of its points.

39x:6. Any finite topological space is locally contractible.

39x:7. Any locally contractible space is micro simply connected.

39x:8. Find a space which is not micro simply connected.

In the literature, the micro simply connectedness is also called weak local

simply connectedness, while a strong local simply connectedness is the follow-
ing property: any neighborhood U of any point x contains a neighborhood V
such that any loop at x in V is null-homotopic in U .

39x:9. Find a micro simply connected space which is not strong locally simply
connected.
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§39x◦6 Existence of Coverings

39x:C. A space having a universal covering space is micro simply con-
nected.

39x:D Existence of Covering With a Given Group. If a topological space
B is path connected, locally path connected, and micro simply connected,
then for any b0 ∈ B and any subgroup π of π1(B, b0) there exists a
covering p : X → B and a point x0 ∈ X such that p(x0) = b0 and
p∗(π1(X, x0)) = π.

39x:D.1. Suppose that in the assumptions of Theorem 39x:D there exists
a covering p : X → B satisfying all requirements of this theorem. For each
x ∈ X, describe all paths in B that are p-images of paths connecting x0 to
x in X.

39x:D.2. Does the solution of Problem 39x:D.1 determine an equivalence
relation in the set of all paths in B starting at b0, so that we obtain a
one-to-one correspondence between the set X and the set of equivalence
classes?

39x:D.3. Describe a topology in the set of equivalence classes from 39x:D.2
such that the natural bijection between X and this set be a homeomor-
phism.

39x:D.4. Prove that the reconstruction of X and p : X → B provided
by problems 39x:D.1–39x:D.4 under the assumptions of Theorem 39x:D
determine a covering whose existence is claimed by Theorem 39x:D.

Essentially, assertions 39x:D.1–39x:D.3 imply the uniqueness of the
covering with a given group. More precisely, the following assertion holds
true.

39x:E Uniqueness of the Covering With a Given Group. Assume that
B is path-connected, locally path-connected, and micro simply connected.
Let p : X → B and q : Y → B be two coverings, and let p∗(π1(X, x0)) =
q∗(π1(Y, y0)). Then the coverings p and q are equivalent, i.e., there exists
a homeomorphism f : X → Y such that f(x0) = y0 and p ◦ f = q.

39x:F Classification of Coverings Over a Good Space. There is a one-to-
one correspondence between classes of equivalent coverings (in a narrow
sense) over a path-connected, locally path-connected, and micro simply
connected space B with base point b0, on the one hand, and conjugacy
classes of subgroups of π1(B, b0), on the other hand. This correspondence
identifies the hierarchy of coverings (ordered by subordination) with the
hierarchy of subgroups (ordered by inclusion).

Under the correspondence of Theorem 39x:F, the trivial subgroup
corresponds to a covering with simply connected covering space. Since
this covering subordinates any other covering with the same base space,
it is said to be universal .
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39x:10. Describe all coverings of the following spaces up to equivalence and
subordination:
(a) circle S1;
(b) punctured plane R2 r 0;
(c) Möbius strip;
(d) four point digital circle (the space formed by 4 points, a, b, c, d; with the

base of open sets formed by {a}, {c}, {a, b, c} and {c, d, a})
(e) torus S1 × S1;

§39x◦7 Action of Fundamental Group on Fiber

39x:G Action of π1 on Fiber. Let p : X → B be a covering, b0 ∈ B.
Construct a natural right action of π1(B, b0) on p−1(b0).

39x:H. When the action in 39x:G is transitive?

§39x◦8 Automorphisms of Covering

A homeomorphism ϕ : X → X is an automorphism of a covering
p : X → B if p ◦ ϕ = p.

39x:I. Automorphisms of a covering form a group.

Denote the group of automorphisms of a covering p : X → B by
Aut(p).

39x:J. An automorphism ϕ : X → X of covering p : X → B is recovered
from the image ϕ(x0) of any x0 ∈ X. Cf. 39.J.

39x:K. Any two-fold covering has a nontrivial automorphism.

39x:11. Find a three-fold covering without nontrivial automorphisms.

Let G be a group and H its subgroup. Recall that the normalizer

Nr(H) of H is the subset of G consisting of g ∈ G such that g−1Hg = H .
This is a subgroup of G, which contains H as a normal subgroup. So,
Nr(H)/H is a group.

39x:L. Let p : X → B be a covering, x0 ∈ X and b0 = p(x0). Construct a
map π1(B, b0) → p−1(b0) inducing a bijection of the set p∗(π1(X, x0))\π1(B, b0)
of right cosets onto p−1(b0).

39x:M. Show that the bijection p∗(π1(X, x0))\π1(B, b0) → p−1(b0) from 39x:L
maps the set of images of a point x0 under all automorphisms of a cov-
ering p : X → B to the group Nr(p∗(π1(X, x0)))/p∗(π1(X, x0)).

39x:N. For any covering p : X → B in a narrow sense, there is a natural
injective map Aut(p) to the group Nr(p∗(π1(X, x0)))/p∗(π1(X, x0)). This

map is an antihomomorphism.1

1Recall that a map ϕ : G→ H from a group G to a group H is an antihomomor-

phism if ϕ(ab) = ϕ(b)ϕ(a) for any a, b ∈ G.
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39x:O. Under assumptions of Theorem 39x:N, if the base space B is lo-
cally path connected, then the antihomomorphism Aut(p) → Nr(p∗(π1(X, x0)))/p∗(π1(X, x0))

is bijective.

§39x◦9 Regular Coverings

39x:P Regularity of Covering. Let p : X → B be a covering in a narrow
sense, b0 ∈ B, x0 ∈ p−1(b0). The following conditions are equivalent:

(a) p∗
(
π1(X, x0)

)
is a normal subgroup of π1(B, b0);

(b) p∗
(
π1(X, x)

)
is a normal subgroup of π1(B, p(x)) for each x ∈ X;

(c) all groups p∗π1(X, x) for x ∈ p−1(b) are the same;
(d) for any loop s : I → B either every path in X covering s is a loop

(independent on the its initial point) or none of them is a loop;
(e) the automorphism group acts transitively on p−1(b0).

A covering satisfying to (any of) the equivalent conditions of Theorem
39x:P is said to be regular .

39x:12. The coverings R → S1 : x 7→ e2πix and S1 → S1 : z 7→ zn for integer
n > 0 are regular.

39x:Q. The automorphism group of a regular covering p : X → B is
naturally anti-isomorphic to the quotient group π1(B, b0)/p∗π1(X, x0) of

the group π1(B, b0) by the group of the covering for any x0 ∈ p−1(b0).

39x:R Classification of Regular Coverings Over a Good Base. There is
a one-to-one correspondence between classes of equivalent coverings (in
a narrow sense) over a path connected, locally path connected, and micro
simply connected space B with a base point b0, on one hand, and anti-
epimorphisms π1(B, b0) → G, on the other hand.

Algebraic properties of the automorphism group of a regular covering
are often referred to as if they were properties of the covering itself. For
instance, a cyclic covering is a regular covering with cyclic automorphism
group, an Abelian covering is a regular covering with Abelian automor-
phism group, etc.

39x:13. Any two-fold covering is regular.

39x:14. Which coverings considered in Problems of Section §33 are regular?
Is out there any nonregular covering?

39x:15. Find a three-fold nonregular covering of a bouquet of two circles.

39x:16. Let p : X → B be a regular covering, Y ⊂ X , C ⊂ B, and let
q : Y → C be a submap of p. Prove that if q is a covering, then this covering
is regular.
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§39x◦10 Lifting and Covering Maps

39x:S. Riddle. Let p : X → B and f : Y → B be continuous maps. Let
x0 ∈ X and y0 ∈ Y be points such that p(x0) = f(y0). Formulate in terms
of homomorphisms p∗ : π1(X, x0) → π1(B, p(x0)) and f∗ : π1(Y, y0) →

π1(B, f(y0)) a necessary condition for existence of a lifting f̃ : Y → X

of f such that f̃(y0) = x0. Find an example where this condition is not
sufficient. What additional assumptions can make it sufficient?

39x:T Theorem on Lifting a Map. Let p : X → B be a covering in a
narrow sense and f : Y → B be a continuous map. Let x0 ∈ X and
y0 ∈ Y be points such that p(x0) = f(y0). If Y is a locally path-connected
space and f∗π(Y, y0) ⊂ p∗π(X, x0), then there exists a unique continuous

map f̃ : Y → X such that p ◦ f̃ = f and f̃(y0) = x0.

39x:U. Let p : X → B and q : Y → C be coverings in a narrow sense
and f : B → C be a continuous map. Let x0 ∈ X and y0 ∈ Y be points
such that fp(x0) = q(y0). If there exists a continuous map F : X → Y
such that fp = qF and F (x0) = y0, then f∗p∗π1(X, x0) ⊂ q∗π1(Y, y0).

39x:V Theorem on Covering of a Map. Let p : X → B and q : Y → C
be coverings in a narrow sense and f : B → C be a continuous map.
Let x0 ∈ X and y0 ∈ Y be points such that fp(x0) = q(y0). If Y is
locally path connected and f∗p∗π1(X, x0) ⊂ q∗π1(Y, y0), then there exists
a unique continuous map F : X → Y such that fp = qF and F (x0) = y0.

§39x◦11 Induced Coverings

39x:W. Let p : X → B be a covering and f : A→ B a continuous map.
Denote by W a subspace of A × X consisting of points (a, x) such that
f(a) = p(x). Let q : W → A be a restriction of A × X → A. Then
q : W → A is a covering with the same number of sheets as p.

A covering q : W → A obtained as in Theorem 39x:W is said to be
induced from p : X → B by f : A→ B.

39x:17. Represent coverings from problems 33.D and 33.F as induced from
R → S1 : x 7→ e2πix.

39x:18. Which of the coverings considered above can be induced from the
covering of Problem 35.7?

§39x◦12 High-Dimensional Homotopy Groups of Covering Space

39x:X. Let p : X → B be a covering. Then for any continuous map
s : In → B and a lifting u : In−1 → X of the restriction s|In−1 there
exists a unique lifting of s extending u.
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39x:Y. For any covering p : X → B and points x0 ∈ X, b0 ∈ B such
that p(x0) = b0 the homotopy groups πr(X, x0) and πr(B, b0) with r > 1
are canonically isomorphic.

39x:Z. Prove that homotopy groups of dimensions greater than 1 of
circle, torus, Klein bottle and Möbius strip are trivial.



Proofs and Comments

36.A This follows from 29.I.

36.B Let [u], [v] ∈ π1(X, x0). Since f ◦ (uv) = (f ◦ u)(f ◦ v), we
have f#(uv) = f#(u)f#(v) and

f∗([u][v]) = f∗
(
[uv]

)
=

[
f#(uv)

]
=

[
f#(u)f#(v)] =

=
[
f#(u)

][
f#(v)

]
= f∗([u])f∗([v]).

36.C Let [u] ∈ π1(X, x0). Since (g ◦f)#(u) = g ◦f ◦u = g#(f#(u)),
consequently,

(g ◦ f)∗([u]) =
[
(g ◦ f)#(u)

]
=

[
g#(f#(u))

]
= g∗ ([f#(u)]) = g∗(f∗(u)),

thus, (g ◦ f)∗ = g∗ ◦ f∗.

36.D Let H : X × I → Y be a homotopy between f and g, and
let H(x0, t) = y0 for all t ∈ I; u is a certain loop in X. Consider
a mapping h = H ◦ (u × idI), thus, h : (τ, t) 7→ H(u(τ), t). Then
h(τ, 0) = H(u(τ), 0) = f(u(τ)) and h(τ, 1) = H(u(τ), 1) = g(u(τ)), so
that h is a homotopy between the loops f ◦ u and g ◦ u. Furthermore,
h(0, t) = H(u(0), t) = H(x0, t) = y0, and we similarly have h(1, t) = y0,
therefore, h is a homotopy between the loops f#(u) and g#(v), whence

f∗ ([u]) = [f# (u)] = [g# (u)] = g∗ ([u]) .

36.E Let H be a homotopy between the mappings f and g and
the loop s is defined by the formula s(t) = H(x0, t). By assertion 32.2,
g∗ = Ts ◦ f∗.

36.F This obviously follows from the equality

f#(s−1us) = (f ◦ s)−1f#(u)(f ◦ s).

36.G.1 This is the assertion of Theorem 36.G.

36.G.2 For example, it is sufficient to take R such that

R > max{1, |a1| + |a2| + . . .+ |an|}.

36.G.3 Use the rectilinear homotopy h(z, t) = tp(z) + (1− t)q(z). It
remains to verify that h(z, t) 6= 0 for all z and t. Indeed, since |p(z) −
q(z)| < q(z) by assumption, we have

|h(z, t)| ≥ |q(z)| − t|p(z) − q(z)| ≥ |q(z)| − |p(z) − q(z)| > 0.

36.G.4 Indeed, this is a quite obvious lemma; see 36.A.

36.G Take a number R satisfying the assumptions of assertion 36.G.2
and consider the loop u : u(t) = Re2πit. The loop u, certainly, is null-
homotopic in C. Now we assume that p(z) 6= 0 for all z with |z| ≤ R.
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Then the loop p ◦ u is null-homotopic in C r 0, by 36.G.3, and the loop
q◦u is null-homotopic in Cr0. However, (q◦u)(t) = Rne2πint, therefore,
this loop is not null-homotopic. A contradiction.

36x:A See 36x:D.

36x:B Yes, it is.

36x:C See 36x:D.

36x:D Let i : Sn−1 → Dn be the inclusion. Assume that f(x) 6= 0
for all x ∈ Dn. We preserve the designation f for the submapping Dn →
Rn r 0 and consider the inclusion homomorphisms i∗ : πn−1(S

n−1) →
πn−1(D

n) and f∗ : πn−1(D
n) → πn−1(R

n r 0). Since all homotopy groups
ofDn are trivial, the composition (f◦i)∗ = f∗◦i∗ is a zero homomorphism.
However, the composition f ◦ i is the mapping f0, which, by assumption,
induces a nonzero homomorphism πn−1(S

n−1) → πn−1(R
n r 0).

36x:E Consider a circular neighborhood U of x disjoint with the
image u(S1) of the circular loop under consideration and let y ∈ U . Join
x and y by a rectilinear path s : t 7→ ty + (1 − t)x. Then

h(z, t) = ϕu,s(t)(z) =
u(z) − s(t)

|u(z) − s(t)|

determines a homotopy between the mappings ϕu,x and ϕu,y, whence
(
ϕu,x

)
∗

=
(
ϕu,y

)
∗
, whence it follows that ind(u, y) = ind(u, x) for any

point y ∈ U . Consequently, the function ind : x 7→ ind(u, x) is constant
on U .

36x:13 We can assume that x is the origin and the ray R is the
positive half of the x axis. It is more convenient to consider the loop

u : I → S1, u(t) = f(e2πit)
|f(e2πit)|

. Assume that the set f−1(R) is finite and

consists of n points. Consequently, u−1(1) = {t0, t1, . . . , tn}, and we have
t0 = 0 and tn = 1. The loop u is homotopic to the product of loops ui,
i = 1, 2, . . . , n, each of which has the following property: ui(t) = 1 only
for t = 0, 1. Prove that [ui] is equal either to zero, or to a generator
of π1(S

1). Therefore, if the integer ki is the image of [ui] under the
isomorphism π1(S

1) → Z and k = ind(f, x) is the image of [u] under this
isomorphism, then

|k| = |k1 + k2 + . . . kn| ≤ |k1| + |k2| + . . .+ |kn| ≤ n

because each of the numbers ki is 0 or ±1.

36x:F If x /∈ F (D2), then the circular loop u is null-homotopic in
R2 r x because u = F ◦ i, where i is the standard embedding S1 → D2,
and i is null-homotopic in D2.
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36x:G This is true because we have [uv] = [u][v] and π1(R
2rx) → Z

is a homomorphism.

36x:H The formula

h(z, t) = ϕut,x(z) =
ut(z) − x

|ut(z) − x|

determines a homotopy between the mappings ϕu,x and ϕv,x, whence
ind(u, x) = ind(v, x); cf. 36x:E.

36x:L We define a mapping ϕ : S1 → R : x 7→ f(x) − f(−x). Then

ϕ(−x) = f(−x) − f(x) = −(f(x) − f(−x)) = −ϕ(x),

thus ϕ is an odd mapping. Consequently, if, for example, ϕ(1) 6= 0, then
the image ϕ(S1) contains values with distinct signs. Since the circle is
connected, there is a point x ∈ S1 such that f(x) − f(−x) = ϕ(x) = 0.

36x:M.1 Assume that f(x) 6= f(−x) for all x ∈ S2. In this case,

the formula g(x) = f(x)−f(−x)
|f(x)−f(−x)|

determines a mapping g : S2 → S1.

Since g(−x) = −g(x), it follows that g takes antipodal points of S2

to antipodal points of S1. The quotient mapping of g is a continuous
mapping ϕ : RP 2 → RP 1. We show that the induced homomorphism
ϕ∗ : π1(RP

2) → π1(RP
1) is nontrivial. The generator λ of the group

π1(RP
2) is the class of the loop l covered by the path l̃ joining two

opposite points of S2. The path g ◦ l̃ also joins two opposite points

lying on the circle, consequently, the loop ϕ ◦ l covered by g ◦ l̃ is not
null-homotopic. Thus, ϕ∗(λ) is a nontrivial element of π1(RP

1).

36x:M To prove the Borsuk–Ulam Theorem, it only remains to ob-
serve that there are no nontrivial homomorphisms π1(RP

2) → π1(RP
1)

because the first of these groups is isomorphic to Z2, while the second
one is isomorphic to Z.

37.A Prove this assertion on your own.

37.B Since any mapping to a singleton is continuous, the mapping
ρ : X → {x0} a retraction.

37.C The line is connected. Therefore, its retract (being its con-
tinuous image) is connected, too. However, a pair of points in the line is
not connected.

37.D See the proof of assertion 37.C.

37.E Let ρ : X → A be a retraction. and let f : A→ Y be a
continuous mapping. Then the composition F = f ◦ ρ : X → Y extends
f .
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Consider the identical mapping id : A → A. Its continuous exten-
sion to X is the required retraction ρ : X → A.

37.F Since ρ∗ ◦ i∗ = (ρ ◦ i)∗ = (id A)∗ = id π1(A,x0), it follows that
the homomorphism ρ∗ is an epimorphism, and the homomorphism i∗ is
a monomorphism.

37.G About i∗; for example, see the proof of the following assertion.

37.H Since the group π1(D
2) is trivial, while π1(S

1) is not, it fol-
lows that i∗ : π1(S

1, 1) → π1(D
2, 1) cannot be a monomorphism. Conse-

quently, by assertion 37.F, the disk D2 cannot be retracted to its bound-
ary S1.

37.I The proof word by word repeats that of Theorem 37.H, only
instead of fundamental groups we must use (n−1)-dimensional homotopy
groups. The reason for this is that the group πn−1(D

n) is trivial, while
πn−1(S

n−1) ∼= Z (i.e., this group is nontrivial).

37.J Assume that a mapping f : Dn → Dn has no fixed points.
For each x ∈ Dn, consider the ray starting at f(x) ∈ Dn and passing
through x, and denote by ρ(x) the point of its intersection with the
boundary sphere Sn−1. It is clear that ρ(x) = x for x ∈ Sn−1. Prove that
the mapping ρ is continuous. Therefore, ρ : Dn → Sn−1 is a retraction.
However, this contradicts the Borsuk Theorem.

38.A Prove this assertion on your own.

38.B This immediately follows from assertion 38.A.

38.C Since ρ is a retraction, it follows that one of the conditions
in the definition of homotopically inverse mappings is automatically ful-
filled: ρ ◦ in = idA. The second requirement: in ◦ρ is homotopic to idX ,
is fulfilled by assumption.

38.D This immediately follows from assertion 38.C.

38.E This follows from 38.D and 38.B.

38.F Let ρ1 : X → A and ρ2 : Y → B be deformation retractions.
Prove that ρ1 × ρ2 is a deformation retraction.

38.G Let the mapping ρ : R2 r 0 → S1 be defined by the formula
ρ(x) = x

|x|
. The formula h(x, t) = (1 − t)x+ t x

|x|
determines a rectilinear

homotopy between the identical mapping of R2 r 0 and the composition
ρ ◦ i, where i is the standard inclusion S1 → R

2
r 0.

38.H The topological type of R2 r {x1, x2, . . . , xs} does not depend
on the position of the points x1, x2, . . . , xs in the plane. We put them on
the unit circle: for example, let them be roots of unity of degree s. Con-
sider s simple closed curves on the plane each of which encloses exactly
one of the points and passes through the origin, and which have no other
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common points except the origin. Instead of curves, maybe it is simpler
to take, e.g., rhombi with centers at our points. It remains to prove that
the union of the curves (or rhombi) is a deformation retract of the plane
with s punctures. Clearly, it makes little sense to write down explicit
formulas, although this is possible. Consider an individual rhombus R
and its center c. The central projection maps R r c to the boundary of
R, and there is a rectilinear homotopy between the projection and the
identical map of Rrc. It remains to show that the part of the plane lying
outside the union of the rhombi also admits a deformation retraction to
the union of their boundaries. What can we do in order to make the
argument look more like a proof? First consider the polygon P whose
vertices are the vertices of the rhombi opposite to the origin. We easily
see that P is a strong deformation retract of the plane (as well as the
disk is). It remains to show that the union of the rhombi is a deformation
retract of P , which is obvious, is not it?

38.I We subdivide the square into four parts by two midlines and
consider the set K formed by the contour, the midlines, and the two
quarters of the square containing one of the diagonals. Show that each of
the following sets is a deformation retract of K: the union of the contour
and the mentioned diagonal of the square; the union of the contours of
the “empty” quarters of this square.

38.J 1) None of these spaces can be embedded in another. Prove
this on your own, using the following lemma. Let Jn be the union of n
segments with a common endpoint. Then Jn cannot be embedded in Jk

for any n > k ≥ 2. 2) The second question is answered in the affirmative;
see the proof of assertion 38.I.

38.14 We need the notion of the cylinder Zf of a continuous map-
ping f : X → Y . By definition, Zf is obtained by attaching the ordinary
cylinder X × I to Y via the mapping X × 0 → Y , (x, 0) 7→ f(x). Hence,
Zf is a result of factorization of the disjoint union (X × I) ⊔ Y , under
which the point (x, 0) ∈ X × 0 is identified with the point f(x) ∈ Y .
We identify X and X × 1 ⊂ Zf , and it is also natural to assume that
the space Y lies in the mapping cylinder. There is an obvious strong
deformation retraction pY : Zf → Y , which leaves Y fixed and takes
the point (x, t) ∈ X × (0, 1) to f(x). It remains to prove that if f is a
homotopy equivalence, then X is also a deformation retract of Zf . Let
g : Y → X be a homotopy equivalence inverse to f . Thus, there exists a
homotopy H : X× I → X such that H(x, 0) = g(f(x)) and H(x, 1) = x.
We define the retraction ρ : Zf → X as a quotient map of the mapping
(X × I) ⊔ Y → X : (x, t) 7→ h(x, t), y 7→ g(y). It remains to prove that
the mapping ρ is a deformation retraction, i.e., to verify that inX ◦ρ is
homotopic to idZf

. This follows from the following chain, where the ∼
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sign denotes a homotopy between compositions of homotopic mappings:

inX ◦ρ = ρ = ρ ◦ idZf
∼ ρ ◦ pY = g ◦ pY = idZf

◦(g ◦ pY ) ∼

∼ pY ◦ (g ◦ pY ) = (pY ◦ g) ◦ pY = (f ◦ g) ◦ pY ∼ idY ◦pY = pY ∼ idZf
.

38.K Since the composition g ◦ f is x0-null-homotopic, we have
g∗ ◦ f∗ = (g ◦ f)∗ = idπ1(X,x0). Similarly, f∗ ◦ g∗ = idπ1(Y,y0). Thus, f∗ and
g∗ are mutually inverse homomorphisms.

38.L Indeed, this immediately follows from Theorem 38.K.

38.M Let x1 = g(x0). For any homotopy h between idX and g ◦ f ,
the formula s(t) = h(x0, t) determines a path at x0. By the answer to
Riddle 36.E, the composition g∗ ◦ f∗ = Ts is an isomorphism. Similarly,
the composition f∗ ◦ g∗ is an isomorphism. Therefore, f∗ and g∗ are
isomorphisms.

39.A If u is a loop in X such that the loop p ◦ u in B is null-
homotopic, then by the Path Homotopy Lifting Theorem 34.C the loop
u is also null-homotopic. Thus, if p∗([u]) = [p ◦ u] = 0, then [u] = 0,
which precisely means that p∗ is a monomorphism.

39.B No, it is not. If p(x0) = p(x1) = b0, x0 6= x1, and the
group π1(B, b0) is non-Abelian, then the subgroups p∗(π1(X, x0)) and
p∗(π1(X, x1)) can easily be distinct (see 39.D).

39.C The group p∗(π1(X, x0)) of the covering consists of the homo-
topy classes of those loops at b0 whose covering path starting at x0 is a
loop.

39.D Let s be a path in X joining x0 and x1. Denote by α the class
of the loop p ◦ s and consider the inner automorphism ϕ : π1(B, b0) →
π1(B, b0) : β 7→ α−1βα. We prove that the following diagram is commu-
tative:

π1(X, x0)
Ts−−−→ π1(X, x1)

p∗

y
yp∗

π1(B, b0)
ϕ

−−−→ π1(B, b0).

Indeed, since Ts([u]) = [s−1us], we have

p∗
(
Ts([u])

)
= [p ◦ (s−1us)] = [(p ◦ s−1)(p ◦ u)(p ◦ s)] = α−1p∗

(
[u]

)
α.

Since the diagram is commutative and Ts is an isomorphism, it follows
that

p∗(π1(X, x1)) = ϕ(p∗(π1(X, x0))) = α−1p∗(π1(X, x0))α,

thus, the groups p∗(π1(X, x0)) and p∗(π1(X, x1)) are conjugate.
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39.E Let s be a loop in X representing the class α ∈ π1(B, b0).
Let the path s̃ cover s and start at x0. If we put x1 = s̃(1), then,
as it follows from the proof of assertion 39.D, we have p∗(π1(X, x1)) =
α−1p∗(π1(X, x0))α.

39.F This follows from 39.D and 39.E.

39.G See 39.H.

39.H For brevity, put H = p∗(π1(X, x0)). Consider an arbitrary
point x1 ∈ p−1(b0); let s be the path starting at x0 and ending at x1,
and α = [p ◦ s]. Take x1 to the right coset Hα ⊂ π1(B, b0). Let us
verify that this definition is correct. Let s1 be another path from x0 to
x1, α1 = [p ◦ s1]. The path ss−1

1 is a loop, so that αα−1
1 ∈ H , whence

Hα = Hα1. Now we prove that the described correspondence is a sur-
jection. Let Hα be a coset. Consider a loop u representing the class α,
let ũ be the path covering u and starting at x0, and x1 = ũ(1) ∈ p−1(b0).
By construction, x1 is taken to the coset Hα, therefore, the above cor-
respondence is surjective. Finally, let us prove that it is injective. Let
x1, x2 ∈ p−1(b0), and let s1 and s2 be two paths joining x0 with x1 and
x2, respectively; let αi = [p ◦ si], i = 1, 2. Assume that Hα1 = Hα2 and

show that then x1 = x2. Consider a loop u = (p ◦ s1)(p ◦ s
−1
2 ) and the

path ũ covering u, which is a loop because α1α
−1
2 ∈ H . It remains to ob-

serve that the paths s′1 and s′2, where s′1(t) = u
(

t
2

)
and s′2(t) = u

(
1− t

2

)
,

start at x0 and cover the paths p ◦ s1 and p ◦ s2, respectively. Therefore,
s1 = s′1 and s2 = s′2, thus,

x1 = s1(1) = s′1(1) = ũ
(

1
2

)
= s′2(1) = s2(1) = x2.

39.I Consider an arbitrary point y ∈ Y , let b = q(y), and let Ub be
a neighborhood of b that is trivially covered for both p and q. Further,
let V be the sheet over Ub containing y, and let {Wα} be the collection
of sheets over Ub the union of which is ϕ−1(V ). Clearly, the mapping
ϕ|Wα

= (q|V )−1 ◦ p|Wα
is a homeomorphism.

39.J Let p and q be two coverings. Consider an arbitrary point
x ∈ X and a path s joining the marked point x0 with x. Let u = p ◦ s.
By assertion 34.B, there exists a unique path ũ : I → Y covering u and
starting at y0. Therefore, ũ = ϕ ◦ s, consequently, the point ϕ(x) =
ϕ(s(1)) = ũ(1) is uniquely determined.

39.K Let ϕ : X → Y and ψ : Y → X be subordinations, and
let ϕ(x0) = y0 and ψ(y0) = x0. Clearly, the composition ψ ◦ ϕ is a
subordination of the covering p : X → B to itself. Consequently, by the
uniqueness of a subordination (see 39.J), we have ψ ◦ϕ = idX . Similarly,
ϕ ◦ ψ = idY , which precisely means that the subordinations ϕ and ψ are
mutually inverse equivalences.
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39.L This relation is obviously symmetric, reflexive, and transitive.

39.M It is clear that if two coverings p and p′ are equivalent and
q is subordinate to p, then q is also subordinate to p′, therefore, the
subordination relation is transferred from coverings to their equivalence
classes. This relation is obviously reflexive and transitive, and it is proved
in 39.K that two coverings subordinate to each other are equivalent,
therefore this relationb is antisymmetric.

39.N Since p∗ = (q ◦ ϕ)∗ = q∗ ◦ ϕ∗, we have

p∗(π1(X, x0)) = q∗(ϕ∗(π1(X, x0))) ⊂ q∗(π1(Y, y0)).

39x:A.1 Denote by ũ, ṽ : I → Y the paths starting at y0 and covering
the paths p ◦ u and p ◦ v, respectively. Consider the path uv−1, which
is a loop at x0 by assumption, the loop (p ◦ u)(p ◦ v)−1 = p ◦ (uv−1),
and its class α ∈ p∗(π1(X, x0)) ⊂ q∗(π1(Y, y0)). Thus, α ∈ q∗(π1(Y, y0)),
therefore, the path starting at y0 and covering the loop (p ◦u)(p ◦ v)−1 is
also a loop. Consequently, the paths covering p ◦u and p ◦ v and starting
at y0 end at one and the same point. It remains to observe that they are
the paths ũ and ṽ.

39x:A.2 We define the mapping ϕ : X → Y as follows. Let x ∈ X,
u – a path joining x0 and x. Then ϕ(x) = y, where y is the endpoint of
the path ũ : I → Y covering the path p ◦ u. By assertion 39x:A.1, the
mapping ϕ is well defined. We prove that ϕ : X → Y is continuous. Let
x1 ∈ X, b1 = p(x1) and y1 = ϕ(x1); by construction, we have q(y1) = b1.
Consider an arbitrary neighborhood V of y1. We can assume that V is
a sheet over a trivially covered path-connected neighborhood U of b1.
Let W be the sheet over U containing x1, thus, the neighborhood W is
also path-connected. Consider an arbitrary point x ∈ W . Let a path
v : I →W join x1 and x. It is clear that the image of the path ṽ starting
at y1 and covering the path p ◦ v is contained in the neighborhood V ,
whence ϕ(x) ∈ V . Thus, ϕ(W ) ⊂ V , consequently, ϕ is continuous at x.

39x:B This follows from 39.E, 39x:A, and 39.K.

39x:C Let X → B be a universal covering, U a trivially covered
neighborhood of a point a ∈ B, and V one of the “sheets” over U . Then
the inclusion i : U → B is the composition p ◦ j ◦ (p|V )−1, where j is
the inclusion V → X. Since the group π1(X) is trivial, the inclusion
homomorphism i∗ : π1(U, a) → π1(B, a) is also trivial.

39x:D.1 Let two paths u1 and u2 join b0 and b. The paths covering
them and starting at x0 end at one and the same point x iff the class of
the loop u1u

−1
2 lies in the subgroup π.

39x:D.2 Yes, it does. Consider the set of all paths in B starting at b0,
endow it with the following equivalence relation: u1 ∼ u2 if [u1u

−1
2 ] ∈ π,
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and let X̃ be the quotient set by this relation. A natural bijection between

X and X̃ is constructed as follows. For each point x ∈ X, we consider
a path u joining the marked point x0 with of a point x. The class of

the path p ◦ u in X̃ is the image of x. The described correspondence is

obviously a bijection f : X → X̃. The mapping g : X̃ → X inverse to

f has the following structure. Let u : I → B represent a class y ∈ X̃.
Consider the path v : I → X covering u and starting at x0. Then
g(y) = v(1).

39x:D.3 We define a base for the topology in X̃. For each pair

(U, x), where U is an open set in B and x ∈ X̃, the set Ux consists of the
classes of all possible paths uv, where u is a path in the class x, and v
is a path in U starting at u(1). It is not difficult to prove that for each
point y ∈ Ux we have the identity Uy = Ux, whence it follows that the

collection of the sets of the form Ux is a base for the topology in X̃. In
order to prove that f and g are homeomorphisms, it is sufficient to verify
that each of them maps each set in a certain base for the topology to an
open set. Consider the base consisting of trivially covered neighborhoods
U ⊂ B, each of which, firstly, is path-connected, and, secondly, each loop
in which is null-homotopic in B.

39x:D.4 The space X̃ is defined in 39x:D.2. The projection p : X̃ →

B is defined as follows: p(y) = u(1), where u is a path in the class y ∈ X̃.
The mapping p is continuous without any assumptions on the properties
of B. Prove that if a set U in B is open and path-connected and each loop
in U is null-homotopic in B, then U is a trivially covered neighborhood.

39x:F Consider the subgroups π ⊂ π0 ⊂ π1(B, b0) and let p : Ỹ → B

and q : Ỹ → B be the coverings constructed by π and π0, respectively.
The construction of the covering implies that there exists a mapping

f : X̃ → Ỹ . Show that f is the required subordination.

39x:G We say that the group G acts from the right on a set F if
each element α ∈ G determines a mapping ϕα : F → F so that: 1)
ϕαβ = ϕα ◦ ϕβ ; 2) if e is the unity of the group G, then ϕe = idF . Put
F = p−1(b0). For each α ∈ π1(B, b0), we define a mapping ϕα : F → F
as follows. Let x ∈ F . Consider a loop u at b0, such that [u] = α. Let
the path ũ cover u and start at x. Put ϕα(x) = ũ(1).
The Path Homotopy Lifting Theorem implies that the mapping ϕα de-
pends only on the homotopy class of u, therefore, the definition is correct.
If [u] = e, i.e., the loop u is null-homotopic, then the path ũ is also a
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loop, whence ũ(1) = x, thus, ϕe = idF . Verify that the first property in
the definition of an action of a group on a set is also fulfilled.

39x:H See 39x:P.

39x:I The group operation in the set of all automorphisms is their
composition.

39x:J This follows from 39.J.

39x:K Show that the mapping transposing the two points in the
preimage of each point in the base, is a homeomorphism.

39x:L This is assertion 39.H.

39x:12 Indeed, any subgroup of an Abelian group is normal. We
can also verify directly that for each loop s : I → B either each path in
X covering s is a loop (independently of the starting point), or none of
these paths is a loop.

39x:Q This follows from 39x:N and 39x:P.



CHAPTER 9

Cellular Techniques

§40 Cellular Spaces

§40◦1 Definition of Cellular Spaces

In this section, we study a class of topological spaces that play a very
important role in algebraic topology. Their role in the context of this
book is more restricted: this is the class of spaces for which we learn how
to calculate the fundamental group. 1

A zero-dimensional cellular space is just a discrete space. Points of
a 0-dimensional cellular space are also called (zero-dimensional) cells, or
0-cells.

A one-dimensional cellular space is a space that can be obtained as
follows. Take any 0-dimensional cellular space X0. Take a family of
maps ϕα : S0 → X0. Attach to X0 via ϕα the sum of a family of copies
of D1 (indexed by the same indices α as the maps ϕα):

X0 ∪⊔ϕα

(⊔

α

D1

)
.

The images of the interior parts of copies of D1 are called (open) 1-

dimensional cells, 1-cells, one-cells, or edges. The subsets obtained from
D1 are closed 1-cells. The cells ofX0 (i.e., points ofX0) are also called ver-

tices. Open 1-cells and 0-cells constitute a partition of a one-dimensional
cellular space. This partition is included in the notion of cellular space,
i.e., a one-dimensional cellular space is a topological space equipped with
a partition that can be obtained in this way. 2

1This class of spaces was introduced by J. H. C. Whitehead. He called these
spaces CW -complexes , and they are known under this name. However, it is not a
good name for plenty of reasons. With very rare exceptions (one of which is CW -
complex, the other is simplicial complex), the word complex is used nowadays for
various algebraic notions, but not for spaces. We have decided to use the term cellular
space instead of CW -complex, following D. B. Fuchs and V. A. Rokhlin, Beginner’s
Course in Topology: Geometric Chapters. Berlin; New York: Springer-Verlag, 1984.
[?].

2One-dimensional cellular spaces are also associated with the word graph. How-
ever, rather often this word is used for objects of other classes. For example, one can
call in this way one-dimensional cellular spaces in which attaching maps of different

264
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A two-dimensional cellular space is a space that can be obtained as
follows. Take any cellular space X1 of dimension 0 or 1. Take a family
of continuous3 maps ϕα : S1 → X1. Attach the sum of a family of copies
of D2 to X1 via ϕα:

X1 ∪⊔ϕα

(⊔

α

D2

)
.

The images of the interior parts of copies ofD2 are (open) 2-dimensional

cells, 2-cells, two-cells, or faces. The cells of X1 are also regarded as cells
of the 2-dimensional cellular space. Open cells of both kinds constitute
a partition of a 2-dimensional cellular space. This partition is included
in the notion of cellular space, i.e., a two-dimensional cellular space is a
topological space equipped with a partition that can be obtained in the
way described above. The set obtained out of a copy of the whole D2 is
a closed 2-cell .

A cellular space of dimension n is defined in a similar way: This is a
space equipped with a partition. It is obtained from a cellular space Xn−1

of dimension less than n by attaching a family of copies of the n-disk Dn

via by a family of continuous maps of their boundary spheres:

Xn−1 ∪⊔ϕα

(⊔

α

Dn

)
.

The images of the interiors of the attached n-dosks are (open) n-dimensional

cells or simply n-cells. The images of the entire n-disks are closed n-cells.
Cells ofXn−1 are also regarded as cells of the n-dimensional cellular space.
The mappings ϕα are the attaching mappings, and the restrictions of the
factorization map to the n-disks Dn are the characteristic mappings.

A cellular space is obtained as a union of increasing sequence of cellular
spaces X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ . . . obtained in this way from each other.

one-cells are not allowed to coincide, or the boundary of a one-cell is prohibited to
consist of a single vertex. When one-dimensional cellular spaces are to be considered
anyway, despite of this terminological disregard, they are called multigraphs or pseu-
dographs . Furthermore, sometimes one includes into the notion of graph an additional
structure. Say, a choice of orientation on each edge. Certainly, all these variations
contradict a general tendency in mathematical terminology to call in a simpler way
decent objects of a more general nature, passing to more complicated terms along
with adding structures and imposing restrictions. However, in this specific situation
there is no hope to implement that tendency. Any attempt to fix a meaning for the
word graph apparently only contributes to this chaos, and we just keep this word away
from important formulations, using it as a short informal synonym for more formal
term of one-dimensional cellular space. (Other overused common words, like curve
and surface, also deserve this sort of caution.)

3In the above definition of a 1-dimensional cellular space, the attaching maps ϕα
also were continuous, although their continuity was not required since any map of S0

to any space is continuous.
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The sequence may be finite or infinite. In the latter case, the topological
structure is introduced by saying that the cover of the union by Xn’s is
fundamental, i.e., a set U ⊂

⋃∞
n=0Xn is open iff its intersection U ∩Xn

with each Xn is open in Xn.

The partition of a cellular space into its open cells is a cellular de-

composition. The union of all cells of dimension less than or equal to n
of a cellular space X is the n-dimensional skeleton of X. This term may
be misleading since the n-dimensional skeleton may contain no n-cells,
and so it may coincide with the (n− 1)-dimensional skeleton. Thus, the
n-dimensional skeleton may have dimension less than n. For this reason,
it is better to speak about the nth skeleton or n-skeleton.

40.1. In a cellular space, skeletons are closed.

A cellular space is finite if it contains a finite number of cells. A
cellular space is countable if it contains a countable number of cells. A
cellular space is locally finite if each of its points has a neighborhood
intersecting finitely many cells.

Let X be a cellular space. A subspace A ⊂ X is a cellular subspace of
X if A is a union of open cells and together with each cell e contains the
closed cell ē. This definition admits various equivalent reformulations.
For instance, A ⊂ X is a cellular subspace of X iff A is both a union of
closed cells and a union of open cells. Another option: together with each
point x ∈ A the subspace A contains the closed cell e ∈ x. Certainly,
A is equipped with a partition into the open cells of X contained in A.
Obviously, the k-skeleton of a cellular space X is a cellular subspace of
X.

40.2. Prove that the union and intersection of any collection of cellular
subspaces are cellular subspaces.

40.A. Prove that a cellular subspace of a cellular space is a cellular
space. (Probably, your proof will involve assertion 40x:G.)

40.A.1. Let X be a topological space, and let X1 ⊂ X2 ⊂ . . . be an
increasing sequence of subsets constituting a fundamental cover of X. Let
A ⊂ X be a subspace, put Ai = A∩Xi. Let one of the following conditions
be fulfilled:
1) Xi are open in X;
2) Ai are open in X;
3) Ai are closed in X.
Then {Ai} is a fundamental cover of A.

§40◦2 First Examples

40.B. A cellular space consisting of two cells, one of which is a 0-cell
and the other one is an n-cell, is homeomorphic to Sn.
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40.C. Represent Dn with n > 0 as a cellular space made of three cells.

40.D. A cellular space consisting of a single 0-cell and q one-cells is a
bouquet of q circles.

40.E. Represent torus S1 × S1 as a cellular space with one 0-cell, two
1-cells, and one 2-cell.

40.F. How to obtain a presentation of torus S1 × S1 as a cellular space
with 4 cells from a presentation of S1 as a cellular space with 2 cells?

40.3. Prove that if X and Y are finite cellular spaces, then X × Y has a
natural structure of a finite cellular space.

40.4*. Does the statement of 40.3 remain true if we skip the finiteness
condition in it? If yes, prove this; if no, find an example where the product
is not a cellular space.

40.G. Represent sphere Sn as a cellular space such that spheres S0 ⊂
S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 are its skeletons.

40.H. Represent RP n as a cellular space with n+ 1 cells. Describe the
attaching maps of the cells.

40.5. Represent CPn as a cellular space with n + 1 cells. Describe the
attaching maps of its cells.

40.6. Represent the following topological spaces as cellular ones

(a) handle; (b) Möbius strip; (c) S1 × I,
(d) sphere with p

handles;
(e) sphere with p

crosscaps.

40.7. What is the minimal number of cells in a cellular space homeomorphic
to

(a) Möbius strip; (b) sphere with p
handles;

(c) sphere with p
crosscaps?

40.8. Find a cellular space where the closure of a cell is not equal to a union
of other cells. What is the minimal number of cells in a space containing a
cell of this sort?

40.9. Consider the disjoint sum of a countable collection of copies of closed
interval I and identify the copies of 0 in all of them. Represent the result
(which is the bouquet of the countable family of intervals) as a countable
cellular space. Prove that this space is not first countable.

40.I. Represent R1 as a cellular space.

40.10. Prove that for any two cellular spaces homeomorphic to R1 there
exists a homeomorphism between them homeomorphically mapping each cell
of one of them onto a cell of the other one.

40.J. Represent Rn as a cellular space.

Denote by R∞ the union of the sequence of Euclidean spaces R0 ⊂
R1 ⊂ · · · ⊂ Rn ⊂ canonically included to each other: Rn = {x ∈ Rn+1 :
xn+1 = 0}. Equip R∞ with the topological structure for which the spaces
Rn constitute a fundamental cover.
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40.K. Represent R∞ as a cellular space.

40.11. Show that R∞ is not metrizable.

§40◦3 Further Two-Dimensional Examples

Let us consider a class of 2-dimensional cellular spaces that admit a
simple combinatorial description. Each space in this class is a quotient
space of a finite family of convex polygons by identification of sides via
affine homeomorphisms. The identification of vertices is determined by
the identification of the sides. The quotient space has a natural decom-
position into 0-cells, which are the images of vertices, 1-cells, which are
the images of sides, and faces, the images of the interior parts of the
polygons.

To describe such a space, we need, first, to show, what sides are
identified. Usually this is indicated by writing the same letters at the
sides to be identified. There are only two affine homeomorphisms between
two closed intervals. To specify one of them, it suffices to show the
orientations of the intervals that are identified by the homeomorphism.
Usually this is done by drawing arrows on the sides. Here is a description
of this sort for the standard presentation of torus S1×S1 as the quotient
space of square:

We can replace a picture by a combinatorial description. To do this,
put letters on all sides of polygon, go around the polygons counterclock-
wise and write down the letters that stay at the sides of polygon along the
contour. The letters corresponding to the sides whose orientation is op-
posite to the counterclockwise direction are put with exponent −1. This
yields a collection of words, which contains sufficient information about
the family of polygons and the partition. For instance, the presentation
of the torus shown above is encoded by the word ab−1a−1b.

40.12. Prove that:
(a) the word a−1a describes a cellular space homeomorphic to S2,
(b) the word aa describes a cellular space homeomorphic to RP 2,
(c) the word aba−1b−1c describes a handle,
(d) the word abcb−1 describes cylinder S1 × I,
(e) each of the words aab and abac describe Möbius strip,
(f) the word abab describes a cellular space homeomorphic to RP 2,
(g) each of the words aabb and ab−1ab describe Klein bottle,
(h) the word

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g .
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describes sphere with g handles,
(i) the word a1a1a2a2 . . . agag describes sphere with g crosscaps.

§40◦4 Embedding to Euclidean Space

40.L. Any countable 0-dimensional cellular space can be embedded into
R.

40.M. Any countable locally finite 1-dimensional cellular space can be
embedded into R3.

40.13. Find a 1-dimensional cellular space which you cannot embed into R2.
(We do not ask you to prove rigorously that no embedding is possible.)

40.N. Any finite dimensional countable locally finite cellular space can
be embedded into Euclidean space of sufficiently high dimension.

40.N.1. Let X and Y be topological spaces such that X can be embedded
into R

p and Y can be embedded into R
q, and both embeddings are proper

mappings (see §18x◦3; in particular, their images are closed in R
p and

Rq, respectively). Let A be a closed subset of Y . Assume that A has a
neighborhood U in Y such that there exists a homeomorphism h : ClU →
A × I mapping A to A × 0. Let ϕ : A → X be a proper continuous map.
Then the initial embedding X → R

p extends to an embedding X ∪ϕ Y →

Rp+q+1.

40.N.2. Let X be a locally finite countable k-dimensional cellular space
and A be the (k − 1)-skeleton of X. Prove that if A can be embedded to

R
p, then X can be embedded into R

p+k+1.

40.O. Any countable locally finite cellular space can be embedded into
R∞.

40.P. Any finite cellular space is metrizable.

40.Q. Any finite cellular space is normal.

40.R. Any countable cellular space can be embedded into R∞.

40.S. Any cellular space is normal.

40.T. Any locally finite cellular space is metrizable.

§40x◦5 Simplicial Spaces

Recall that in §23x◦3 we introduced a class of topological spaces:
simplicial spaces. Each simplicial space is equipped with a partition into
subsets, called open simplices, which are indeed homeomorphic to open
simplices of Euclidean space.

40x:A. Any simplicial space is cellular, and its partition into open sim-
plices is the corresponding partition into open cells.
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§40x◦6 Topological Properties of Cellular Spaces

The present section contains assertions of mixed character. For exam-
ple, we study conditions ensuring that a cellular space is compact (40x:K)
or separable (40x:O). We also prove that a cellular space X is connected,
iff X is path-connected (40x:S), iff the 1-skeleton of X is path-connected
(40x:V). On the other hand, we study the cellular topological structure
as such. For example, any cellular space is Hausdorff (40x:B). Further,
is not obvious at all from the definition of a cellular space that a closed
cell is the closure of the corresponding open cell (or that closed cells are
closed at all). In this connection, the present section includes assertions
of technical character. (We do not formulate them as lemmas to individ-
ual theorems because often they are lemmas for several assertions.) For
example: closed cells constitute a fundamental cover of a cellular space
(40x:D).

We notice that, say, in the textbook [FR], a cellular space is defined
as a Hausdorff topological space equipped by a cellular partition with two
properties: (C ) each closed cell intersects only a finite number of (open)
cells; (W ) closed cells constitute a fundamental cover of the space. The
results of assertions 40x:B, 40x:C, and 40x:F imply that cellular spaces
in the sense of the above definition are cellular spaces in the sense of
Rokhlin–Fuchs’ textbook (i.e., in the standard sense), the possibility of
inductive construction for which is proved in [RF]. Thus, both definitions
of a cellular space are equivalent.

An advice to the reader: first try to prove the above assertions for
finite cellular spaces.

40x:B. Each cellular space is a Hausdorff topological space.

40x:C. In a cellular space, the closure of any cell e is the closed cell e.

40x:D. Closed cells constitute a fundamental cover of a cellular space.

40x:E. Each cover of a cellular space by cellular subspaces is fundamen-
tal.

40x:F. In a cellular space, any closed cell intersects only a finite number
of open cells.

40x:G. If A is cellular subspace of a cellular space X, then A is closed
in X.

40x:H. The space obtained as a result of pasting two cellular subspaces
together along their common subspace, is cellular.

40x:I. If a subset A of a cellular space X intersects each open cell along
a finite set, then A is closed. Furthermore, the induced topology on A is
discrete.
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40x:J. Prove that any compact subset of a cellular space intersects a
finite number of cells.

40x:K Corollary. A cellular space is compact iff it is finite.

40x:L. Any cell of a cellular space is contained in a finite cellular sub-
space of this space.

40x:M. Any compact subset of a cellular space is contained in a finite
cellular subspace.

40x:N. A subset of a cellular space is compact iff it is closed and inter-
sects only a finite number of open cells.

40x:O. A cellular space is separable iff it is countable.

40x:P. Any path-connected component of a cellular space is a cellular
subspace.

40x:Q. A cellular space is locally path-connected.

40x:R. Any path-connected component of a cellular space is both open
and closed. It is a connected component.

40x:S. A cellular space is connected iff it is path connected.

40x:T. A locally finite cellular space is countable iff it has countable
0-skeleton.

40x:U. Any connected locally finite cellular space is countable.

40x:V. A cellular space is connected iff its 1-skeleton is connected.



§41 Cellular Constructions

§41◦1 Euler Characteristic

Let X be a finite cellular space. Let ci(X) denote the number of its
cells of dimension i. The Euler characteristic of X is the alternating sum
of ci(X):

χ(X) = c0(X) − c1(X) + c2(X) − · · · + (−1)ici(X) + . . .

41.A. Prove that Euler characteristic is additive in the following sense:
for any cellular space X and its finite cellular subspaces A and B we have

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩B).

41.B. Prove that Euler characteristic is multiplicative in the following
sense: for any finite cellular spaces X and Y the Euler characteristic of
their product X × Y is χ(X)χ(Y ).

§41◦2 Collapse and Generalized Collapse

Let X be a cellular space, e and f its open cells of dimensions n and
n− 1, respectively. Suppose:
• the attaching map ϕe : Sn−1 → Xn−1 of e determines a homeomor-

phism of the open upper hemisphere Sn−1
+ onto f ,

• f does not meet images of attaching maps of cells, distinct from e,
• the cell e is disjoint from the image of attaching map of any cell.

41.C. X r (e ∪ f) is a cellular subspace of X.

41.D. X r (e ∪ f) is a deformation retract of X.

We say that Xr(e∪f) is obtained from X by an elementary collapse,
and we write X ց X r (e ∪ f).

If a cellular subspace A of a cellular space X is obtained from X by
a sequence of elementary collapses, then we say that X is collapsed onto
A and also write X ց A.

41.E. Collapsing does not change the Euler characteristic: if X is a
finite cellular space and X ց A, then χ(A) = χ(X).

As above, let X be a cellular space, let e and f be its open cells of
dimensions n and n − 1, respectively, and let the attaching map ϕe :
Sn → Xn−1 of e determine a homeomorphism Sn−1

+ on f . Unlike the
preceding situation, here we assume neither that f is disjoint from the
images of attaching maps of cells different from e, nor that e is disjoint
from the images of attaching maps of whatever cells. Let χe : Dn → X
be a characteristic map of e. Furthermore, let ψ : Dn → Sn−1rϕ−1

e (f) =

Sn−1 r Sn−1
+ be a deformation retraction.

272
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41.F. Under these conditions, the quotient space X/[χe(x) ∼ ϕe(ψ(x))]

of X is a cellular space where the cells are the images under the natural
projections of all cells of X except e and f .

Cellular space X/[χe(x) ∼ ϕe(ψ(x))] is said to be obtained by cancel-

lation of cells e and f .

41.G. The projection X → X/[χe(x) ∼ ϕe(ψ(x))] is a homotopy equiv-

alence.

41.G.1. Find a cellular subspace Y of a cellular space X such that the
projection Y → Y/[χe(x) ∼ ϕe(ψ(x))] would be a homotopy equivalence

by Theorem 41.D.

41.G.2. Extend the mapping Y → Y r (e ∪ f) to a mapping X → X ′,
which is a homotopy equivalence by 41x:6.

§41x◦3 Homotopy Equivalences of Cellular Spaces

41x:1. Let X = A ∪ϕ D
n be the space obtained by attaching an n-disk to

a topological space A via a continuous mapping ϕ : Sn−1 → A. Prove that
the complement Xrx of any point x ∈ XrA admits a (strong) deformation
retraction to A.

41x:2. Let X be an n-dimensional cellular space, and let K be a set in-
tersecting each of the open n-cells of X at a single point. Prove that the
(n− 1)-skeleton Xn−1 of X is a deformation retract of X rK.

41x:3. Prove that the complement RPn r point is homotopy equivalent to
RPn−1; the complement CPn r point is homotopy equivalent to CPn−1.

41x:4. Prove that the punctured solid torus D2 × S1 r point, where point
is an arbitrary interior point, is homotopy equivalent to a torus with a disk
attached along the meridian S1 × 1.

41x:5. Let A be cellular space of dimension n, let ϕ : Sn → A and ψ : Sn →
A be continuous maps. Prove that if ϕ and ψ are homotopic, then the spaces
Xϕ = A ∪ϕ D

n+1 and Xψ = A ∪ψ D
n+1 are homotopy equivalent.

Below we need a more general fact.

41x:6. Let f : X → Y be a homotopy equivalence, ϕ : Sn−1 → X and
ϕ′ : Sn−1 → Y continuous mappings. Prove that if f ◦ ϕ ∼ ϕ′, then
X ∪ϕ D

n ≃ Y ∪ϕ′ Dn.

41x:7. Let X be a space obtained from a circle by attaching of two copies
of disk by maps S1 → S1 : z 7→ z2 and S1 → S1 : z 7→ z3, respectively. Find
a cellular space homotopy equivalent to X with smallest possible number of
cells.

41x:8. Riddle. Generalize the result of Problem 41x:7.
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41x:9. Prove that if we attach a disk to the torus S1×S1 along the parallel
S1 × 1, then the space K obtained is homotopy equivalent to the bouquet
S2 ∨ S1.

41x:10. Prove that the torus S1 × S1 with two disks attached along the
meridian {1} × S1 and parallel S1 × 1, respectively, is homotopy equivalent
to S2.

41x:11. Consider three circles in R3: S1 = {x2 + y2 = 1, z = 0}, S2 =
{x2 + y2 = 1, z = 1}, and S3 = {z2 + (y − 1)2 = 1, x = 0}. Since
R3 ∼= S3 r point, we can assume that S1, S2, and S3 lie in S3. Prove
that the space X = S3 r (S1 ∪ S2) is not homotopy equivalent to the space
Y = S3 r (S1 ∪ S3).

41x:A. Let X be a cellular space, A ⊂ X a cellular subspace. Then the
union (X × 0) ∪ (A× I) is a retract of the cylinder X × I.

41x:B. Let X be a cellular space, A ⊂ X a cellular subspace. Assume
that we are given a mapping F : X → Y and a homotopy h : A× I → Y
of the restriction f = F |A. Then the homotopy h extends to a homotopy
H : X × I → Y of F .

41x:C. LetX be a cellular space, A ⊂ X a contractible cellular subspace.
Then the projection pr : X → X/A is a homotopy equivalence.

Problem 41x:C implies the following assertions.

41x:D. If a cellular space X contains a closed 1-cell e homeomorphic to
I, then X is homotopy equivalent to the cellular space X/e obtained by
contraction of e.

41x:E. Any connected cellular space is homotopy equivalent to a cellular
space with one-point 0-skeleton.

41x:F. A simply connected finite 2-dimensional cellular space is homo-
topy equivalent to a cellular space with one-point 1-skeleton.

41x:12. Solve Problem 41x:9 with the help of Theorem 41x:C.

41x:13. Prove that the quotient space

CP 2/[(z0 : z1 : z2) ∼ (z0 : z1 : z2)]

of the complex projective plane CP 2 is homotopy equivalent to S4.

Information. We have CP 2/[z ∼ τ(z)] ∼= S4.

41x:G. Let X be a cellular space, and let A be a cellular subspace of X
such that the inclusion in : A → X is a homotopy equivalence. Then A
is a deformation retract of X.



§42 One-Dimensional Cellular Spaces

§42◦1 Homotopy Classification

42.A. Any connected finite 1-dimensional cellular space is homotopy
equivalent to a bouquet of circles.

42.A.1 Lemma. Let X be a 1-dimensional cellular space, e a 1-cell of X
attached by an injective map S0 → X0 (i.e., e has two distinct endpoints).
Prove that the projection X → X/e is a homotopy equivalence. Describe
the homotopy inverse map explicitly.

42.B. A finite connected cellular space X of dimension one is homotopy
equivalent to the bouquet of 1−χ(X) circles, and its fundamental group
is a free group of rank 1 − χ(X).

42.C Corollary. The Euler characteristic of a finite connected one-dimensional
cellular space is invariant under homotopy equivalence. It is not greater
than one. It equals one iff the space is homotopy equivalent to point.

42.D Corollary. The Euler characteristic of a finite one-dimensional
cellular space is not greater than the number of its connected components.
It is equal to this number iff each of its connected components is homotopy
equivalent to a point.

42.E Homotopy Classification of Finite 1-Dimensional Cellular Spaces.
Finite connected one-dimensional cellular spaces are homotopy equiva-
lent, iff their fundamental groups are isomorphic, iff their Euler charac-
teristics are equal.

42.1. The fundamental group of a 2-sphere punctured at n points is a free
group of rank n− 1.

42.2. Prove that the Euler characteristic of a cellular space homeomorphic
to S2 is equal to 2.

42.3 The Euler Theorem. For any convex polyhedron in R3, the sum of
the number of its vertices and the number of its faces equals the number of
its edges plus two.

42.4. Prove the Euler Theorem without using fundamental groups.

42.5. Prove that the Euler characteristic of any cellular space homeomorphi
to the torus is equal to 0.

Information. The Euler characteristic is homotopy invariant, but
the usual proof of this fact involves the machinery of singular homology
theory, which lies far beyond the scope of our book.

§42◦2 Spanning Trees

A one-dimensional cellular space is a tree if it is connected, while
the complement of each of its (open) 1-cells is disconnected. A cellular
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subspace A of a cellular space X is a spanning tree of X if A is a tree and
is not contained in any other cellular subspace B ⊂ X which is a tree.

42.F. Any finite connected one-dimensional cellular space contains a
spanning tree.

42.G. Prove that a cellular subspace A of a cellular spaceX is a spanning
tree iff A is a tree and contains all vertices of X.

Theorem 42.G explains the term spanning tree.

42.H. Prove that a cellular subspace A of a cellular spaceX is a spanning
tree iff it is a tree and the quotient space X/A is a bouquet of circles.

42.I. Let X be a one-dimensional cellular space and A its cellular sub-
space. Prove that if A is a tree, then the projection X → X/A is a
homotopy equivalence.

Problems 42.F, 42.I, and 42.H provide one more proof of Theo-
rem 42.A.

§42x◦3 Dividing Cells

42x:A. In a one-dimensional connected cellular space each connected
component of the complement of an edge meets the closure of the edge.
The complement has at most two connected component.

A complete local characterization of a vertex in a one-dimensional
cellular space is its valency . This is the total number of points in the
preimages of the vertex under attaching maps of all one-cells of the space.
It is more traditional to define the degree of a vertex v as the number
of edges incident to v, counting with multiplicity 2 the edges that are
incident only to v.

42x:B. 1) Each connected component of the complement of a vertex in a
connected one-dimensional cellular space contains an edge with boundary
containing the vertex. 2) The complement of a vertex of valency m has
at most m connected components.

§42x◦4 Trees and Forests

A one-dimensional cellular space is a tree if it is connected, while
the complement of each of its (open) 1-cells is disconnected. A one-
dimensional cellular space is a forest if each of its connected components
is a tree.

42x:C. Any cellular subspace of a forest is a forest. In particular, any
connected cellular subspace of a tree is a tree.
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42x:D. In a tree the complement of an edge consists of two connected
components.

42x:E. In a tree, the complement of a vertex of valency m has consists
of m connected components.

42x:F. A finite tree has there exists a vertex of valency one.

42x:G. Any finite tree collapses to a point and has Euler characteristic
one.

42x:H. Prove that any point of a tree is its deformation retract.

42x:I. Any finite one-dimensional cellular space that can be collapsed
to a point is a tree.

42x:J. In any finite one-dimensional cellular space the sum of valencies
of all vertices is equal to the number of edges multiplied by two.

42x:K. A finite connected one-dimensional cellular space with Euler
characteristic one has a vertex of valency one.

42x:L. A finite connected one-dimensional cellular space with Euler
characteristic one collapses to a point.

§42x◦5 Simple Paths

Let X be a one-dimensional cellular space. A simple path of length

n in X is a finite sequence (v1, e1, v2, e2, . . . , en, vn+1), formed by vertices
vi and edges ei of X such that each term appears in it only once and
the boundary of every edge ei consists of the preceding and subsequent
vertices vi and vi+1. The vertex v1 is the initial vertex, and vn+1 is the
final one. The simple path connects these vertices. They are connected
by a path I → X, which is a topological embedding with image contained
in the union of all cells involved in the simple path. The union of these
cells is a cellular subspace of X. It is called a simple broken line.

42x:M. In a connected one-dimensional cellular space, any two vertices
are connected by a simple path.

42x:N Corollary. In a connected one-dimensional cellular space X, any
two points are connected by a path I → X which is a topological embed-
ding.

42x:1. Can a path-connected space contain two distinct points that cannot
be connected by a path which is a topological embedding?

42x:2. Can you find a Hausdorff space with this property?

42x:O. A connected one-dimensional cellular space X is a tree iff there
exists no topological embedding S1 → X.

42x:P. In a one-dimensional cellular space X there exists a non-null-
homotopic loop S1 → X iff there exists a topological embedding S1 → X.
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42x:Q. A one-dimensional cellular space is a tree iff any two distinct
vertices are connected in it by a unique simple path.

42x:3. Prove that any finite tree has fixed point property.

Cf. 37.12, 37.13, and 37.14.

42x:4. Is this true for any tree; for any finite connected one-dimensional
cellular space?



§43 Fundamental Group of a Cellular Space

§43◦1 One-Dimensional Cellular Spaces

43.A. The fundamental group of a connected finite one-dimensional cel-
lular space X is a free group of rank 1 − χ(X).

43.B. Let X be a finite connected one-dimensional cellular space, T a
spanning tree of X, and x0 ∈ T . For each 1-cell e ⊂ X r T , choose a
loop se that starts at x0, goes inside T to e, then goes once along e, and
then returns to x0 in T . Prove that π1(X, x0) is freely generated by the
homotopy classes of se.

§43◦2 Generators

43.C. Let A be a topological space, x0 ∈ A. Let ϕ : Sk−1 → A be a con-
tinuous map, X = A∪ϕ D

k. If k > 1, then the inclusion homomorphism
π1(A, x0) → π1(X, x0) is surjective. Cf. 43.G.4 and 43.G.5.

43.D. Let X be a cellular space, x0 its 0-cell and X1 the 1-skeleton of
X. Then the inclusion homomorphism

π1(X1, x0) → π1(X, x0)

is surjective.

43.E. Let X be a finite cellular space, T a spanning tree of X1, and
x0 ∈ T . For each cell e ⊂ X1 r T , choose a loop se that starts at x0,
goes inside T to e, then goes once along e, and finally returns to x0 in T .
Prove that π1(X, x0) is generated by the homotopy classes of se.

43.1. Deduce Theorem 31.G from Theorem 43.D.

43.2. Find π1(CP
n).

§43◦3 Relations

Let X be a cellular space, x0 its 0-cell. Denote by Xn the n-skeleton
of X. Recall that X2 is obtained from X1 by attaching copies of the disk
D2 via continuous maps ϕα : S1 → X1. The attaching maps are circular
loops in X1. For each α, choose a path sα : I → X1 connecting ϕα(1)
with x0. Denote by N the normal subgroup of π1(X, x0) generated (as a
normal subgroup4) by the elements

Tsα
[ϕα] ∈ π1(X1, x0).

43.F. N does not depend on the choice of the paths sα.

4Recall that a subgroup N is normal if N coincides with all conjugate subgroups
of N . The normal subgroup N generated by a set A is the minimal normal subgroup
containing A. As a subgroup, N is generated by elements of A and elements conjugate
to them. This means that each element of N is a product of elements conjugate to
elements of A.

279
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43.G. The normal subgroup N is the kernel of the inclusion homomor-
phism in∗ : π1(X1, x0) → π1(X, x0).

Theorem 43.G can be proved in various ways. For example, we can
derive it from the Seifert–van Kampen Theorem (see 43x:4). Here we
prove Theorem 43.G by constructing a “rightful” covering space. The
inclusion N ⊂ Ker in∗ is rather obvious (see 43.G.1). The proof of the
converse inclusion involves the existence of a covering p : Y → X, whose
submapping over the 1-skeleton of X is a covering p1 : Y1 → X1 with
group N , and the fact that Ker in∗ is contained in the group of each
covering overX1 that extends to a covering over the entireX. The scheme
of argument suggested in Lemmas 1–7 can also be modified. The thing
is that the inclusion X2 → X induces an isomorphism of fundamental
groups. It is not difficult to prove this, but the techniques involved,
though quite general and natural, nevertheless lie beyond the scope of our
book. Here we just want to emphasize that this result replaces Lemmas 4
and 5.

43.G.1 Lemma 1. N ⊂ Ker i∗, cf. 31.J (c).

43.G.2 Lemma 2. Let p1 : Y1 → X1 be a covering with covering group
N . Then for any α and a point y ∈ p−1

1 (ϕα(1)) there exists a lifting

ϕ̃α : S1 → Y1 of ϕα with ϕ̃α(1) = y.

43.G.3 Lemma 3. Let Y2 be a cellular space obtained by attaching copies
of disk to Y1 by all liftings of attaching maps ϕα. Then there exists a map
p2 : Y2 → X2 extending p1 which is a covering.

43.G.4 Lemma 4. Attaching maps of n-cells with n ≥ 3 are lift to any
covering space. Cf. 39x:X and 39x:Y.

43.G.5 Lemma 5. Covering p2 : Y2 → X2 extends to a covering of the
whole X.

43.G.6 Lemma 6. Any loop s : I → X1 realizing an element of Ker i∗
(i.e., null-homotopic in X) is covered by a loop of Y . The covering loop is
contained in Y1.

43.G.7 Lemma 7. N = Ker in∗.

43.H. The inclusion in2 : X2 → X induces an isomorphism between the
fundamental groups of a cellular space and its 2-skeleton.

43.3. Check that the covering over the cellular space X constructed in the
proof of Theorem 43.G is universal.

§43◦4 Writing Down Generators and Relations

Theorems 43.E and 43.G imply the following recipe for writing down
a presentation for the fundamental group of a finite dimensional cellular
space by generators and relations:
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Let X be a finite cellular space, x0 a 0-cell of X. Let T a spanning
tree of the 1-skeleton of X. For each 1-cell e 6⊂ T of X, choose a loop se

that starts at x0, goes inside T to e, goes once along e, and then returns
to x0 in T . Let g1, . . . , gm be the homotopy classes of these loops. Let
ϕ1, . . . , ϕn : S1 → X1 be the attaching maps of 2-cells of X. For each
ϕi choose a path si connecting ϕi(1) with x0 in the 1-skeleton of X.

Express the homotopy class of the loop s−1
i ϕisi as a product of powers of

generators gj . Let r1, . . . , rn are the words in letters g1, . . . , gm obtained
in this way. The fundamental group of X is generated by g1, . . . , gm,
which satisfy the defining relations r1 = 1, . . . , rn = 1.

43.I. Check that this rule gives correct answers in the cases of RP n

and S1 × S1 for the cellular presentations of these spaces provided in
Problems 40.H and 40.E.

In assertion 41x:F proved above we assumed that the cellular space is
2-dimensional. The reason for this was that at that moment we did not
know that the inclusion X2 → X induces an isomorphism of fundamental
groups.

43.J. Each finite simply connected cellular space is homotopy equivalent
to a cellular space with one-point 1-skeleton.

§43◦5 Fundamental Groups of Basic Surfaces

43.K. The fundamental group of a sphere with g handles admits presen-
tation

〈a1, b1, a2, b2, . . . ag, bg | a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 . . . agbga
−1
g b−1

g = 1〉.

43.L. The fundamental group of a sphere with g crosscaps admits the
following presentation

〈a1, a2, . . . ag | a2
1a

2
2 . . . a

2
g = 1〉.

43.M. Fundamental groups of spheres with different numbers of handles
are not isomorphic.

When we want to prove that two finitely presented groups are not iso-
morphic, one of the first natural moves is to abelianize the groups. (Recall
that to abelianize a group G means to quotient it out by the commuta-
tor subgroup. The commutator subgroup [G,G] is the normal subgroup
generated by the commutators a−1b−1ab for all a, b ∈ G. Abelianization
means adding relations that ab = ba for any a, b ∈ G.)

Abelian finitely generated groups are well known. Any finitely gener-
ated Abelian group is isomorphic to a product of a finite number of cyclic
groups. If the abelianized groups are not isomorphic, then the original
groups are not isomorphic as well.
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43.M.1. The abelianized fundamental group of a sphere with g handles is
a free Abelian group of rank 2g (i.e., is isomorphic to Z

2g).

43.N. Fundamental groups of spheres with different numbers of crosscaps
are not isomorphic.

43.N.1. The abelianized fundamental group of a sphere with g crosscaps is
isomorphic to Z

g−1 × Z2.

43.O. Spheres with different numbers of handles are not homotopy equiv-
alent.

43.P. Spheres with different numbers of crosscaps are not homotopy
equivalent.

43.Q. A sphere with handles is not homotopy equivalent to a sphere with
crosscaps.

If X is a path-connected space, then the abelianized fundamental
group ofX is the 1-dimensional (or first) homology group ofX and denoted
by H1(X). If X is not path-connected, then H1(X) is the direct sum
of the first homology groups of all path-connected components of X.
Thus 43.M.1 can be rephrased as follows: if Fg is a sphere with g handles,
then H1(Fg) = Z2g.

§43x◦6 Seifert–van Kampen Theorem

To calculate fundamental group, one often uses the Seifert–van Kam-
pen Theorem, instead of the cellular techniques presented above.

43x:A Seifert–van Kampen Theorem. Let X be a path-connected topolog-
ical space, A and B be its open path-connected subspaces covering X, and
let C = A ∩ B be also path-connected. Then π1(X) can be presented as
amalgamated product of π1(A) and π1(B) with identified subgroup π1(C).
In other words, if x0 ∈ C,

π1(A, x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

π1(B, x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

π1(C, x0) is generated by its elements γ1, . . . , γt, and inA : C → A and
inB : C → B are inclusions, then π1(X, x0) can be presented as

〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

inA∗(γ1) = inB∗(γ1), . . . , inA∗(γt) = inB∗(γt)〉.

Now we consider the situation where the space X and its subsets A
and B are cellular.
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43x:B. Assume that X is a connected finite cellular space, and A and
B are two cellular subspaces of X covering X. Denote A∩B by C. How
are the fundamental groups of X, A, B, and C related to each other?

43x:C Seifert–van Kampen Theorem. Let X be a connected finite cellular
space, A and B – connected cellular subspaces covering X, C = A ∩ B.
Assume that C is also connected. Let x0 ∈ C be a 0-cell,

π1(A, x0) = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

π1(B, x0) = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and let the group π1(C, x0) be generated by the elements γ1, . . . , γt. De-
note by ξi(α1, . . . , αp) and ηi(β1, . . . , βq) the images of the elements γi

(more precisely, their expression via the generators) under the inclusion
homomorphisms

π1(C, x0) → π1(A, x0) and, respectively, π1(C, x0) → π1(B, x0).

Then

π1(X, x0) = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ1 = η1, . . . , ξt = ηt〉.

43x:1. Let X , A, B, and C be as above. Assume that A and B are simply
connected and C consists of two connected components. Prove that π1(X) is
isomorphic to Z.

43x:2. Is Theorem 43x:C a special case of Theorem 43x:A?

43x:3. May the assumption of openness of A and B in 43x:A be omitted?

43x:4. Deduce Theorem 43.G from the Seifert–van Kampen Theorem 43x:A.

43x:5. Compute the fundamental group of the lens space, which is obtained
by pasting together two solid tori via the homeomorphism S1×S1 → S1×S1 :
(u, v) 7→ (ukvl, umvn), where kn− lm = 1.

43x:6. Determine the homotopy and the topological type of the lens space
for m = 0, 1.

43x:7. Find a presentation for the fundamental group of the complement
in R3 of a torus knot K of type (p, q), where p and q are relatively prime
positive integers. This knot lies on the revolution torus T , which is described
by parametric equations





x = (2 + cos 2πu) cos 2πv

y = (2 + cos 2πu) sin 2πv

z = sin 2πu,

and K is described on T by equation pu = qv.

43x:8. Let (X,x0) and (Y, y0) be two simply connected topological spaces
with marked points, and let Z = X ∨ Y be their bouquet.
(a) Prove that if X and Y are cellular spaces, then Z is simply connected.
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(b) Prove that if x0 and y0 have neighborhoods Ux0
⊂ X and Vy0 ⊂ Y that

admit strong deformation retractions to x0 and y0, respectively, then Z
is simply connected.

(c) Construct two simply connected topological spaces X and Y with a
non-simply connected bouquet.

§43x◦7 Group-Theoretic Digression:

Amalgamated Product of Groups

At first glance, description of the fundamental group ofX given above
in the statement of Seifert - van Kampen Theorem is far from being
invariant: it depends on the choice of generators and relations of other
groups involved. However, this is actually a detailed description of a
group - theoretic construction in terms of generators and relations. By
solving the next problem, you will get a more complete picture of the
subject.

43x:D. Let A and B be groups,

A = 〈α1, . . . , αp | ρ1 = · · · = ρr = 1〉,

B = 〈β1, . . . , βq | σ1 = · · · = σs = 1〉,

and C be a group generated by γ1, . . . γt. Let ξ : C → A and η : C → B
be arbitrary homomorphisms. Then

X = 〈α1, . . . , αp, β1, . . . , βq |

ρ1 = · · · = ρr = σ1 = · · · = σs = 1,

ξ(γ1) = η(γ1), . . . , ξ(γt) = η(γt)〉.

and homomorphisms φ : A → X : αi 7→ αi, i = 1, . . . , p and ψ : B →
X : βj 7→ βj, j = 1, . . . , q take part in commutative diagram

$C$

$A$

$B$

$X$ $X’$

∃$\psi$

$\phi$
$\xi$
$\eta$

$\xi’$

$\eta’$

$\zeta$C

A

B

X X ′

φ
ξ
η

ξ′

ζ

η′
ψ

and for each groupX ′ and homomorphisms ϕ′ : A→ X ′ and ψ′ : B → X ′

involved in commutative diagram

C X ′

A

B

ξ′

η′

φ

ψ

there exists a unique homomorphism ζ : X → X ′ such that diagram
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B

A

X ′C

ψ

φ

X
ξ
η

ξ′

η′

ζ

is commutative. The latter determines the group X up to isomorphism.

The group X described in 43x:D is a free product of A and B with

amalgamated subgroup C, it is denoted by A ∗C B. Notice that the name
is not quite precise, as it ignores the role of the homomorphisms φ and
ψ and the possibility that they may be not injective.

If the group C is trivial, then A ∗C B is denoted by A ∗B and called
the free product of A and B.

43x:9. Is a free group of rank n a free product of n copies of Z?

43x:10. Represent the fundamental group of Klein bottle as Z ∗Z Z. Does
this decomposition correspond to a decomposition of Klein bottle?

43x:11. Riddle. Define a free product as a set of equivalence classes of
words in which the letters are elements of the factors.

43x:12. Investigate algebraic properties of free multiplication of groups: is
it associative, commutative and, if it is, then in what sense? Do homomor-
phisms of the factors determine a homomorphism of the product?

43x:13*. Find decomposition of modular group

Mod = SL(2,Z)/
„

−1 0

0 −1

«

as free product Z2 ∗ Z3.

§43x◦8 Addendum to Seifert–van Kampen Theorem

Seifert-van Kampen Theorem appeared and used mainly as a tool for
calculation of fundamental groups. However, it helps not in any situa-
tion. For example, it does not work under assumptions of the following
theorem.

43x:E. Let X be a topological space, A and B open sets covering X and
C = A ∩ B. Assume that A and B are simply connected and C consists
of two connected components. Then π1(X) is isomorphic to Z.

Theorem 43x:E also holds true if we assume that C consists of two
path-connected components. The difference seems to be immaterial, but
the proof becomes incomparably more technical.

Seifert and van Kampen needed more universal tool for calculation
of fundamental group, and theorems published by them were much more
general than 43x:A. Theorem 43x:A is all that could penetrate from there
original papers to textbooks. Theorem 43x:1 is another special case of
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their results. The most general formulation is cumbersome, and we re-
strict ourselves to one more special case, which was distinguished by van
Kampen. Together with 43x:A, it allows one to calculate fundamental
groups in all situations that are available with the most general formula-
tions by van Kampen, although not that fast. We formulate the original
version of this theorem, but recommend, first, to restrict to a cellular
version, in which the results presented in the beginning of this section
allow one to obtain a complete answer about calculation of fundamental
groups, and only after that to consider the general situation.

First, let us describe the situation common for both formulations.
Let A be a topological space, B its closed subset and U a neighborhood
of B in A such that U r B is a union of two disjoint sets, M1 and M2,
open in A. Put Ni := B ∪Mi. Let C be a topological space that can be
represented as (Ar U) ∪ (N1 ⊔N2) and in which the sets (Ar U) ∪N1

and (ArU)∪N2 with the topology induced from A form a fundamental
cover. There are two copies of B in C, which come from N1 and N2.
The space A can be identified with the quotient space of C obtained by
identification of the two copies of B via the natural homeomorphism.
However, our description begins with A, since this is the space whose
fundamental group we want to calculate, while the space B is auxiliary
constructed out of A. See Figure 1.

B1

A

B

N1
N2

B2

C

M2M1

Figure 1.

In the cellular version of the statement formulated below, space A
is supposed to be cellular, and B its cellular subspace. Then C is also
equipped with a natural cellular structure such that the natural map
C → A is cellular.

43x:F. Let in the situation described above C is path-connected and x0 ∈
C r (B1 ∪ B2). Let π1(C, x0) is presented by generators α1, . . . , αn and
relations ψ1 = 1, . . . , ψm = 1. Assume that base points yi ∈ Bi are
mapped to the same point y under the mapping C → A, and σi is a
homotopy class of a path connecting x0 with yi in C. Let β1, . . . , βp be
generators of π1(B, y), and β1i, . . . , βpi the corresponding elements of

π1(Bi, yi). Denote by ϕli a word representing σiβliσ
−1
i in terms of α1,



§43. FUNDAMENTAL GROUP OF A CELLULAR SPACE 287

. . . , αn. Then π1(A, x0) has the following presentation:

〈α1, . . . , αn, γ | ψ1 = · · · = ψm = 1, γϕ11 = ϕ12γ, . . . , γϕp1 = ϕp2γ〉.

43x:14. Using 43x:F, calculate fundamental groups of torus and Klein bottle.

43x:15. Using 43x:F, calculate the fundamental groups of basic surfaces.

43x:16. Deduce Theorem 43x:1 from 43x:A and 43x:F.

43x:17. Riddle. Develop an algebraic theory of group-theoretic construc-
tion contained in Theorem 43x:F.



Proofs and Comments

40.A Let A be a cellular subspace of a cellular space X. For n =
0, 1, . . ., we see that A ∩Xn+1 is obtained from A ∩Xn by attaching the
(n + 1)-cells contained in A. Therefore, if A is contained in a certain
skeleton, then A certainly is a cellular space and the intersections An =
A ∩ Xn, n = 0, 1, . . ., are the skeletons of A. In the general case, we
must verify that the cover of A by the sets An is fundamental, which
follows from assertion 3 of Lemma 40.A.1 below, Problem 40.1, and
assertion 40x:G.

40.A.1 We prove only assertion 3 because it is needed for the proof
of the theorem. Assume that a subset F ⊂ A intersects each of the sets
Ai along a set closed in Ai. Since F ∩ Xi = F ∩ Ai is closed in Ai, it
follows that this set is closed in Xi. Therefore, F is closed in X since the
cover {Xi} is fundamental. Consequently, F is also closed in A, which
proves that the cover {Ai} is fundamental.

40.B This is true because attaching Dn to a point along the bound-
ary sphere we obtain the quotient space Dn/Sn−1 ∼= Sn.

40.C These (open) cells are: a point, the (n−1)-sphere Sn−1 without
this point, the n-ball Bn bounded by Sn−1: e0 = x ∈ Sn−1 ⊂ Dn,
en−1 = Sn r x, en = Bn.

40.D Indeed, factorizing the disjoint union of segments by the set
of all of their endpoints, we obtain a bouquet of circles.

40.E We present the product I × I as a cellular space consisting
of 9 cells: four 0-cells – the vertices of the square, four 1-cells – the
sides of the square, and a 2-cell – the interior of the square. After the
standard factorization under which the square becomes a torus, from the
four 0-cells we obtain one 0-cell, and from the four 1-cells we obtain two
1-cells.

40.F Each open cell of the product is a product of open cells of the
factors, see Problem 40.3.

40.G Let Sk = Sn ∩ Rk+1, where

R
k+1 = {(x1, x2, . . . , xk+1, 0, . . . , 0)} ⊂ R

n+1.

If we present Sn as the union of the constructed spheres of smaller di-
mensions: Sn =

⋃n
k=0 S

k, then for each k ∈ {1, . . . , n} the difference

Sk r Sk−1 consists of exactly two k-cells: open hemispheres.

40.H Consider the cellular partition of Sn described in the solution
of Problem 40.G. Then the factorization Sn → RP n identifies both cells
in each dimension into one. Each of the attaching maps is the projection
Dk → RP k mapping the boundary sphere Sk−1 onto RP k−1.

288
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40.I 0-cells are all integer points, and 1-cells are the open intervals
(k, k + 1), k ∈ Z.

40.J Since Rn = R× . . .×R (n factors), the cellular structure of Rn

can be determined by those of the factors (see 40.3). Thus, the 0-cells are
the points with integer coordinates. The 1-cells are open intervals with
endpoints (k1, . . . , ki, . . . , kn) and (k1, . . . , ki + 1, . . . , kn), i.e., segments
parallel to the coordinate axes. The 2-cells are squares parallel to the
coordinate 2-planes, etc.

40.K See the solution of Problem 40.J.

40.L This is obvious: each infinite countable 0-dimensional space is
homeomorphi to N ⊂ R.

40.M We map 0-cells to integer points Ak(k, 0, 0) on the x axis.
The embeddings of 1-cells will be piecewise linear and performed as fol-
lows. Take the nth 1-cell of X to the pair of points with coordinates
Cn(0, 2n − 1, 1) and Dn(0, 2n, 1), n ∈ N. If the endpoints of the 1-cell
are mapped to Ak and Al, then the image of the 1-cell is the three-link
polyline AkCnDnAl (possibly, closed). We easily see that the images of
distinct open cells are disjoint (because their outer third parts lie on two
skew lines). We have thus constructed an injection f : X → R3, which
is obviously continuous. The inverse mapping is continuous because it is
continuous on each of the constructed polylines, which in addition con-
stitute a closed locally-finite cover of f(X), which is fundamental by 9.U.

40.N Use induction on skeletons and 40.N.2. The argument is
simplified a great deal in the case where the cellular space is finite.

40.N.1 We assume that X ⊂ Rp ⊂ Rp+q+1, where Rp is the coordi-
nate space of the first p coordinate lines in Rp+q+1, and Y ⊂ Rq ⊂ Rp+q+1,
where Rq is the coordinate space of the last q coordinate lines in Rp+q+1.
Now we define a mapping f : X ⊔ Y → Rp+q+1. Put f(x) = x if x ∈ X,

and f(y) = (0, . . . , 0, 1, y) if y /∈ V = h−1
(
A×

[
0, 1

2

))
. Finally, if y ∈ U ,

h(y) = (a, t), and t ∈
[
0, 1

2

]
, then we put

f(y) =
(
(1 − 2t)ϕ(a), 2t, 2ty

)
.

We easily see that f is a proper mapping. The quotient mapping f̂ :

X ∪ϕ Y → Rp+q+1 is a proper injection, therefore, f̂ is an embedding
by 18x:O (cf. 18x:P).

40.N.2 By the definition of a cellular space, X is obtained by at-
taching a disjoint union of closed k-disks to the (k − 1)-skeleton of X.
Let Y be a countable union of k-balls, A the union of their boundary
spheres. (The assumptions of Lemma 40.N.1 is obviously fulfilled: let
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the neighborhood U be the complement of the union of concentric disks
with radius 1

2
.) Thus, Lemma 40.N.2 follows from 40.N.1.

40.O This follows from 40.N.2 by the definition of the cellular topol-
ogy.

40.P This follows from 40.O and 40.N.

40.Q This follows from 40.P.

40.R Try to prove this assertion at least for 1-dimensional spaces.

40.S This can be proved by somewhat complicating the argument
used in the proof of 40x:B.

40.T See, [FR, p. 93].

40x:A We easily see that the closure of any open simplex is canon-
ically homeomorphi to the closed n-simplex. and, since any simplicial
space Σ is Hausdorff, Σ is homeomorphi to the quotient space obtained
from a disjoint union of several closed simplices by pasting them together
along entire faces via affine homeomorphisms. Since each simplex ∆ is a
cellular space and the faces of ∆ are cellular subspaces of ∆, it remains
to use Problem 40x:H.

40x:B Let X be a cellular space, x, y ∈ X. Let n be the smallest
number such that x, y ∈ Xn. We construct their disjoint neighborhoods
Un and Vn in Xn. Let, for example, x ∈ e, where e is an open n-cell.
Then let Un be a small ball centered at x, and let Vn be the complement
(in Xn) of the closure of Un. Now let a be the center of an (n + 1)-cell,
ϕ : Sn → Xn the attaching mapping. Consider the open cones over
ϕ−1(Un) and ϕ−1(Vn) with vertex a. Let Un+1 and Vn+1 be the unions
of the images of such cones over all (n + 1)-cells of X. Clearly, they are
disjoint neighborhoods of x and y in Xn+1. The sets U = ∪∞

k=nUk and
V = ∪∞

k=nVk are disjoint neighborhoods of x and y in X.

40x:C Let X be a cellular space, e ⊂ X a cell of X, ψ : Dn → X
the characteristic mapping of e, B = Bn ⊂ Dn the open unit ball.
Since the mapping ψ is continuous, we have e = ψ(Dn) = ψ(ClB) ⊂
Cl(ψ(B)) = Cl(e). On the other hand, ψ(Dn) is a compact set, which is
closed by 40x:B, whence e = ψ(Dn) ⊃ Cl(e).

40x:D LetX be a cellular space, Xn the n-skeleton ofX, n ∈ N. The
definition of the quotient topology easily implies that Xn−1 and closed
n-cells of X form a fundamental cover of Xn. Starting with n = 0 and
reasoning by induction, we prove that the cover of Xn by closed k-cells
with k ≤ n is fundamental. And since the cover of X by the skeletons Xn

is fundamental by the definition of the cellular topology, so is the cover
of X by closed cells (see 9.31).
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40x:E This follows from assertion 40x:D, the fact that, by the defi-
nition of a cellular subspace, each closed cell is contained in an element
of the cover, and assertion 9.31.

40x:F Let X be a cellular space, Xk the k-skeleton of X. First,
we prove that each compact set K ⊂ Xk intersects only a finite number
of open cells in Xk. We use induction on the dimension of the skeleton.
Since the topology on the 0-skeleton is discrete, each compact set can
contain only a finite number of 0-cells of X. Let us perform the step of
induction. Consider a compact set K ⊂ Xn. For each n-cell eα meeting
K, take an open ball Uα ⊂ eα such that K ∩Uα 6= ∅. Consider the cover
Γ = {eα, Xn r ∪Cl(Uα)}. It is clear that Γ is an open cover of K. Since
K is compact, Γ contains a finite subcovering. Therefore, K intersects
finitely many n-cells. The intersection of K with the (n − 1)-skeleton
is closed, therefore, it is compact. By the inductive hypothesis, this set
(i.e., K ∩Xn−1) intersects finitely many open cells. Therefore, the set K
also intersects finitely many open cells.
Now let ϕ : Sn−1 → Xn−1 be the attaching mapping for the n-cell,
F = ϕ(Sn−1) ⊂ Xn−1. Since F is compact, F can intersect only a finite
number of open cells. Thus we see that each closed cell intersects only a
finite number of open cells.

40x:G Let A be a cellular subspace of X. By 40x:D, it is sufficient
to verify that A∩e is closed for each cell e of X. Since a cellular subspace
is a union of open (as well as of closed) cells, i.e., A = ∪eα = ∪eα, it
follows from 40x:F that we have

A ∩ e =
(
∪eα

)
∩ e = (∪n

i=1eαi
) ∩ e ⊂ (∪n

i=1eαi
) ∩ e ⊂ A ∩ e

and, consequently, the inclusions in this chain are equalities. Conse-
quently, by 40x:C, the set A∩ e = ∪n

i=1 (eαi
∩ e) is closed as a union of a

finite number of closed sets.

40x:I Since, by 40x:F, each closed cell intersects only a finite number
of open cells, it follows that the intersection of any closed cell e with A
is finite and consequently (since cellular spaces are Hausdorff) closed,
both in X, and a fortiori in e. Since, by 40x:D, closed cells constitute a
fundamental cover, the set A itself is also closed. Similarly, each subset
of A is also closed in X and a fortiori in A. Thus, indeed, the induced
topology in A is discrete.

40x:J Let K ⊂ X be a compact subset. In each of the cells eα

meeting K, we take a point xα ∈ eα ∩K and consider the set A = {xα}.
By 40x:I, the set A is closed, and the topology on A is discrete. Since
A is compact as a closed subset of a compact set, therefore, A is finite.
Consequently, K intersects only a finite number of open cells.

40x:K Use 40x:J. A finite cellular space is compact as
a union of a finite number of compact sets – closed cells.
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40x:L We can use induction on the dimension of the cell because
the closure of any cell intersects finitely many cells of smaller dimension.
Notice that the closure itself is not necessarily a cellular subspace.

40x:M This follows from 40x:J, 40x:L, and 40.2.

40x:N Let K be a compact subset of a cellular space. Then
K is closed because each cellular space is Hausdorff. Assertion 40x:J
implies that K meets only a finite number of open cells.

If K intersects finitely many open cells, then by 40x:L K lies in a
finite cellular subspace Y , which is compact by 40x:K, and K is a closed
subset of Y .

40x:O Let X be a cellular space. We argue by contradiction.
Let X contain an uncountable set of n-cells en

α. Put Un
α = en

α. Each of
the sets Un

α is open in the n-skeleton Xn of X. Now we construct an
uncountable collection of disjoint open sets in X. Let a be the center
of a certain (n + 1)-cell, ϕ : Sn → Xn the attaching mapping of the
cell. We construct the cone over ϕ−1(Un

α ) with vertex at a and denote
by Un+1

α the union of such cones over all (n + 1)-cells of X. It is clear

that
{
Un+1

α

}
is an uncountable collection of sets open in Xn+1. Then the

sets Uα =
⋃∞

k=n U
k
α constitute an uncountable collection of disjoint sets

that are open in the entire X. Therefore, X is not second countable and,
therefore, nonseparable.

IfX has a countable set of cells, then, taking in each cell a countable
everywhere dense set and uniting them, we obtain a countable set dense
in the entire X (check this!). Thus, X is separable.

40x:P Indeed, any path-connected component Y of a cellular space
together with each point x ∈ Y entirely contains each closed cell contain-
ing x and, in particular, it contains the closure of the open cell containing
x.

40x:R Cf. the argument used in the solution of Problem 40x:O.

40x:R This is so because a cellular space is locally path-connected,
see 40x:Q.

40x:S This follows from 40x:R.

40x:T Obvious. We show by induction that the
number of cells in each dimension is countable. For this purpose, it
is sufficient to prove that each cell intersects finitely many closed cells.
It is more convenient to prove a stronger assertion: any closed cell e
intersects finitely many closed cells. It is clear that any neighborhood
meeting the closed cell also meets the cell itself. Consider the cover of e
by neighborhoods each of which intersects finitely many closed cells. It
remains to use the fact that e is compact.
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40x:U By Problem 40x:T, the 1-skeleton of X is connected. The
result of Problem 40x:T implies that it is sufficient to prove that the
0-skeleton of X is countable. Fix a 0-cell x0. Denote by A1 the union
of all closed 1-cells containing x0. Now we consider the set A2 – the
union of all closed 1-cells meeting A1. Since X is locally finite, each of
the sets A1 and A2 contains a finite number of cells. Proceeding in a
similar way, we obtain an increasing sequence of 1-dimensional cellular
subspaces A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . ., each of which is finite. Put
A =

⋃∞
k=1Ak. The set A contains countably many cells. The definition

of the cellular topology implies that A is both open and closed in X1.
Since X1 is connected, we have A = X1.

40x:V Assume the contrary: let the 1-skeleton X1 be discon-
nected. Then X1 is the union of two closed sets: X1 = X ′

1 ∪ X
′′
1 . Each

2-cell is attached to one of these sets, whence X2 = X ′
2 ∪X

′′
2 . A similar

argument shows that for each positive integer n the n-skeleton is a union
of its closed subsets. Put X ′ =

⋃∞
n=0X

′
n and X ′′ =

⋃∞
n=0X

′′
n . By the

definition of the cellular topology, X ′ and X ′′ are closed, consequently,
X is disconnected. This is obvious.

41.A This immediately follows from the obvious equality ci(A ∪
B) = ci(A) + ci(B) − ci(A ∩B).

41.B Here we use the following artificial trick. We introduce the
polynomial χA(t) = c0(A) + c1(A)t + . . . + ci(A)ti + . . .. This is the
Poincaré polynomial , and its most important property for us here is that

χ(X) = χX(−1). Since ck(X × Y ) =
∑k

i=0 ci(X)ck−i(Y ), we have

χX×Y (t) = χX(t) · χY (t),

whence χ(X × Y ) = χX×Y (−1) = χX(−1) · χY (−1) = χ(X) · χ(Y ).

41.C Set X ′ = X r (e ∪ f). It follows from the definition that the
union of all open cells in X ′ coincides with the union of all closed cells
in X ′, consequently, X ′ is a cellular subspace of X.

41.D The deformation retraction of Dn to the lower closed hemi-
sphere Sn−1

− determines a deformation retraction X → X r (e ∪ f).

41.E The assertion is obvious because each elementary combinato-
rial collapse decreases by one the number of cells in each of two neigh-
boring dimensions.

41.F Let p : X → X ′ be the factorization map. The space X ′ has
the same open cells as X except e and f . The attaching mapping for
each of them is the composition of the initial attaching map and p.

41.G.1 Put Y = Xn−1 ∪ϕe
Dn. Clearly, Y ′ ∼= Y r (e ∪ f), and so

we identify these spaces. Then the projection p′ : Y → Y ′ is a homotopy
equivalence by 41.D.
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41.G.2 Let {eα} be a collection of n-cells of X distinct from the cell
e, ϕα – the corresponding attaching mappings. Consider the mapping
p′ : Y → Y ′. Since

Xn = Y ∪(
F

α ϕα)

(⊔

α

Dn
α

)
,

we have

X ′
n = Y ′ ∪(

F

α p′◦ϕα)

(⊔

α

Dn
α

)
.

Since the mapping p′ is a homotopy equivalence by 41.G.1, the result
of 41x:6 implies that p′ extends to a homotopy equivalence pn : Xn → X ′

n.
Using induction on skeletons, we obtain the required assertion.

41x:A We use induction on the dimension. Clearly, we should con-
sider only those cells which do not lie in A. If there is a retraction

ρn−1 : (Xn−1 ∪A) × I → (Xn−1 × 0) ∪ (A× I),

and we construct a retraction

ρ̃n : (Xn ∪ A) × I → (Xn × 0) ∪ ((Xn−1 ∪A) × I),

then it is obvious how, using their “composition”, we can obtain a re-
traction

ρn : (Xn ∪A) × I → (Xn × 0) ∪ (A× I).

We need the standard retraction ρ : Dn × I → (Dn × 0)∪ (Sn−1 × I). (It
is most easy to define ρ geometrically. Place the cylinder in a standard
way in Rn+1 and consider a point p lying over the center of the upper
base. For z ∈ Dn × I, let ρ(z) be the point of intersection of the ray
starting at p and passing through z with the union of the base Dn × 0
and the lateral area Sn−1 × I of the cylinder.) The quotient mapping ρ
is a mapping e× I → (Xn × 0)∪ (Xn−1 × I). Extending it identically to
Xn−1 × I, we obtain a mapping

ρe : (e× I) ∪ (Xn−1 × I) → (Xn × 0) ∪ (Xn−1 × I).

Since the closed cells constitute a fundamental cover of a cellular space,
the retraction ρ̃n is thus defined.

41x:B The formulas H̃(x, 0) = F (x) for x ∈ X and H̃(x, t) = h(x, t)

for (x, t) ∈ A × I determine a mapping H̃ : (X × 0) ∪ (A × I) → Y .
By 41x:A, there is a retraction ρ : X × I → (X × 0) ∪ (A × I). The

composition H = H̃ ◦ ρ is the required homotopy.

41x:C Denote by h : A× I → A a homotopy between the identical
mapping of A and the constant mapping A → A : a 7→ x0. Consider

the homotopy h̃ = i ◦ h : A× I → X. By Theorem 41x:B, h̃ extends to
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a homotopy H : X × I → X of the identical mapping of the entire X.
Consider the mapping f : X → X, f(x) = H(x, 1). By the construction

of the homotopy h̃, we have f(A) = {x0}, consequently, the quotient
map of f is a continuous mapping g : X/A→ X. We prove that pr and
g are mutually inverse homotopy equivalences. To do this we must verify
that g ◦ pr ∼ idX and pr ◦g ∼ idX/A.
1) We observe that H(x, 1) = g(pr(x)) by the definition of g. Since
H(x, 0) = x for all x ∈ X, it follows that H is a homotopy between idX

and the composition g ◦ pr.
2) If we factorize each fiber X× t by A× t, then, since H(x, t) ∈ A for all

x ∈ A and t ∈ I, the homotopy H determines a homotopy H̃ : X/A →
X/A between idX/A and the composition p ◦ g.

41x:F Let X be the space. By 41x:E, we can assume that X has one
0-cell, and therefore the 1-skeleton X1 is a bouquet of circles. Consider
the characteristic mapping ψ : I → X1 of a certain 1-cell. Instead of
the loop ψ, it is more convenient to consider the circular loop S1 → X1,
which we denote by the same letter. Since X is simply connected, the
loop ψ extends to a mapping f : D2 → X. Now consider the disk
D3. To simplify the notation, we assume that f is defined on the lower
hemisphere S2

− ⊂ D3. Put Y = X ∪f D
3 ≃ X. The space Y is cellular

and is obtained by adding two cells to X: a 2- and a 3-cell. The new
2-cell e, i.e., the image of the upper hemisphere in D3, is a contractible
cellular space. Therefore, we have Y/e ≃ Y , and Y/e contains one 1-
cell less than the initial space X. Proceeding in this way, we obtain a
space with one-point 2-skeleton. Notice that our construction yielded a
3-dimensional cellular space. Actually, in our assumptions the space is
homotopy equivalent to: a point, a 2-sphere, or a bouquet of 2-spheres,
but the proof of this fact involves more sophisticated techniques (the
homology).

41x:13 Consider a cellular partition of CP 2 consisting of one 0-
cell, one 1-cell, two 2-cells, and one 4-cell. Furthermore, we can assume
that the 2-skeleton of the cellular space obtained is CP 1 ⊂ CP 2, while
the 1-skeleton is the real part RP 1 ⊂ CP 1. Let τ : CP 2 → CP 2 be
the involution of complex conjugation, by which we factorize. Clearly,
CP 1/[z ∼ τ(z)] ∼= D2. Consider the characteristic mapping ψ : D4 →

CP 1 of the 4-cell of the initial cellular partition. The quotient space
D4/[z ∼ τ(z)] is obviously homeomorphi to D4. Therefore, the quotient
map

D4/[z ∼ τ(z)] → CP 1/[z ∼ τ(z)]

is the characteristic mapping for the 4-cell of X. Thus, X is a cellular
space with 2-skeleton D2. Therefore, by 41x:C, we have X ≃ S4.
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41x:G Let the mapping f : X → A be homotopically inverse to
the inclusion inA. By assumption, the restriction of f to the subspace
A, i.e., the composition f ◦ in, is homotopic to the identical mapping
idA. By Theorem 41x:B, this homotopy extends to a homotopy H :
X × I → A of f . Put ρ(x) = H(x, 1); then ρ(x, 1) = x for all x ∈ A.
Consequently, ρ is a retraction. It remains to observe that, since ρ is
homotopic to f , it follows that in ◦ρ is homotopic to the composition
inA ◦f , which is homotopic to idX because f and in are homotopically
inverse by assumption.

42.A Prove this by induction, using Lemma 42.A.1.

42.A.1 Certainly, the fact that the projection is a homotopy equiv-
alence is a special case of assertions 41x:D and 41.G. However, here
we present an independent argument, which is more visual in the 1-
dimensional case. All homotopies will be fixed outside a neighborhood
of the 1-cell e of the initial cellular space X and outside a neighborhood
of the 0-cell x0, which is the image of e in the quotient space Y = X/e.
For this reason, we consider only the closures of such neighborhoods.
Furthermore, to simplify the notation, we assume that the spaces under
consideration coincide with these neighborhoods. In this case, X is the
1-cell e with the segments I1, I2, . . . , Ik (respectively, J1, J2, . . . , Jn) at-
tached to the left endpoint, (respectively, to the right endpoint). The
space Y is simply a bouquet of all these segments with a common point
x0. The mapping f : X → Y has the following structure: each of the seg-
ments Ii and Jj is mapped onto itself identically, and the cell e is mapped
to x0. The mapping g : Y → X takes x0 to the midpoint of e and maps
a half of each of the segments Is and Jt to the left and to the right half
of e, respectively. Finally, the remaining half of each of these segments is
mapped (with double stretching) onto the entire segment. We prove that
the described mappings are homotopically inverse. Here it is important
that the homotopies be fixed on the free endpoints of Is and Jt. The
composition f ◦ g : Y → Y has the following structure. The restriction
of f ◦ g to each of the segments in the bouquet is, strictly speaking, the
product of the identical path and the constant path, which is known to
be homotopic to the identical path. Furthermore, the homotopy is fixed
both on the free endpoints of the segments and on x0. The composition
g ◦ f maps the entire cell e to the midpoint of e, while the halves of
each of the segments Is and Jt adjacent to e are mapped a half of e, and
their remaining parts are doubly stretched and mapped onto the entire
corresponding segment. Certainly, the mapping under consideration is
homotopic to the identity.

42.B By 42.A.1, each connected 1-dimensional finite cellular space
X is homotopy equivalent to a space X ′, where the number of 0- and
1-cells is one less than in X, whence χ(X) = χ(X ′). Reasoning by
induction, we obtain as a result a space with a single 0-cell and with
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Euler characteristic equal to χ(X) (cf. 41.E). Let k be the number of
1-cells in this space. Then χ(X) = 1 − k, whence k = 1 − χ(X). It
remains to observe that k is precisely the rang of π1(X).

42.C This follows from 42.B because the fundamental group of a
space is invariant with respect to homotopy equivalences.

42.D This follows from 42.C.

42.E By 42.B, if two finite connected 1-dimensional cellular spaces
have isomorphic fundamental groups (or equal Euler characteristics),
then each of them is homotopy equivalent to a bouquet consisting of
one and the same number of circles, therefore, the spaces are homotopy
equivalent. If the spaces are homotopy equivalent, then, certainly, their
fundamental groups are isomorphic, and, by 42.C, their Euler character-
istics are also equal.

42x:A Let e be an open cell. If the image ϕe(S
0) of the attaching

mapping of e is one-point, then X r e is obviously connected. Assume
that ϕe(S

0) = {x0, x1}. Prove that each connected component of X r e
contains at least one of the points x0 and x1.

42x:B 1) Let X be a connected 1-dimensional cellular space, x ∈ X
a vertex. If a connected component of X r x contains no edges whose
closure contains x, then, since cellular spaces are locally connected, the
component is both open and closed in the entire X, contrary to the
connectedness of X. 2) This follows from the fact that a vertex of degree
m lies in the closure of at most m distinct edges.

43.A See 42.B.

43.B This follows from 42.I (or 41x:C) because of 35.L.

43.C It is sufficient to prove that each loop u : I → X is homotopic
to a loop v with v(I) ⊂ A. Let U ⊂ Dk be the open ball with radius 2

3
,

and let V be the complement in X of a closed disk with radius 1
3
. By

the Lebesgue Lemma 16.W, the segment I can be subdivided segments
I1, . . . , IN the image of each of which is entirely contained in one of
the sets U or V . Assume that u(Il) ⊂ U . Since in Dk any two paths
with the same starting and ending points are homotopic, it follows that
the restriction u|Il

is homotopic to a path that does not meet the center

a ∈ Dk. Therefore, the loop u is homotopic to a loop u′ whose image does
not contain a. It remains to observe that the space A is a deformation
retract of X r a, therefore, u′ is homotopic to a loop v with image lying
in A.

43.D Let s be a loop at x0. Since the set s(I) is compact, s(I)
is contained in a finite cellular subspace Y of X. It remains to apply
assertion 43.C and use induction on the number of cells in Y .
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43.E This follows from 43.D and 43.B.

43.F If we take another collection of paths s′α, then the elements
Tsα

[ϕα] and Ts′α[ϕα] will be conjugate in π1(X1, x0), and since the sub-
group N is normal, N contains the collection of elements {Tsα

[ϕα]} iff N
contains the collection {Ts′α[ϕα]}.

43.G We can assume that the 0-skeleton of X is the singleton {x0},
so that the 1-skeleton X1 is a bouquet of circles. Consider a covering
p1 : Y1 → X1 with group N . Its existence follows from the more general
Theorem 39x:D on the existence of a covering with given group. In the
case considered, the covering space is a 1-dimensional cellular space. Now
the proof of the theorem consists of several steps, each of which is the
proof of one of the following seven lemmas. It will also be convenient to
assume that ϕα(1) = x0, so that Tsα

[ϕα] = [ϕα].

43.G.1 Since, clearly, in∗([ϕα]) = 1 in π1(X, x0), we have in∗([ϕα]) =
1 in π1(X, x0), therefore, each of the elements [ϕα] ∈ Ker i∗. Since the
subgroup Ker i∗ is normal, it contains N , which is the smallest subgroup
generated by these elements.

43.G.2 This follows from 39x:P.

43.G.3 Let F = p−1
1 (x0) be the fiber over x0. The mapping p2 is a

quotient mapping

Y1 ⊔

(⊔

α

⊔

y∈Fα

D2
α,y

)
→ X1 ⊔

(⊔

α

D2
α

)
,

whose submapping Y1 → X1 is the mapping p1, and the mappings⊔
y∈Fα

D2
α → D2

α are identities on each of the disks D2
α. It is clear that for

each point x ∈ IntD2
α ⊂ X2 the entire interior of the disk is a trivially

covered neighborhood. Now assume that for point x ∈ X1 the set U1

is a trivially covered neighborhood of x with respect to the covering p1.
Put U = U1 ∪ (

⋃
α′ ψα′(Bα′)), where Bα′ is the open cone with vertex

at the center of D2
α′ and base ϕ−1

α′ (U). The set U is a trivially covered
neighborhood of x with respect to the mapping p2.

43.G.4 First, we prove this for n = 3. So, let p : X → B be an
arbitrary covering, ϕ : S2 → B an arbitrary mapping. Consider the
subset A = S1 × 0 ∪ 1 × I ∪ S1 × 1 of the cylinder S1 × I, and let
q : S1 × I → S1 × I/A be the factorization map. We easily see that
S1 × I/A ∼= S2. Therefore, we assume that q : S1 × I → S2. The
composition h = ϕ ◦ q : S1 × I → B is a homotopy between one and the
same constant loop in the base of the covering. By the Path Homotopy

Lifting Theorem 34.C, the homotopy h is covered by the mapping h̃,
which also is a homotopy between two constant paths, therefore, the
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quotient map of h̃ is the mapping ϕ̃ : S2 → X covering ϕ. For n > 3,
use 39x:Y.

43.G.5 The proof is similar to that of Lemma 3.

43.G.6 Since the loop in ◦s : I → X is null-homotopic, it is covered
by a loop, the image of which automatically lies in Y1.

43.G.7 Let s be a loop in X1 such that [s] ∈ Ker(i1)∗. Lemma 6
implies that s is covered by a loop s̃ : I → Y1, whence [s] = (p1)∗([s̃ ]) ∈
N . Therefore, Ker in∗ ⊂ N , whence N = Ker in∗ by Lemma 1.

43.I For example, RP 2 is obtained by attaching D2 to S1 via the
mapping ϕ : S1 → S1 : z 7→ z2. The class of the loop ϕ in π1(S

1) = Z

is the doubled generator, whence π1(RP
2) ∼= Z2, as it should have been

expected. The torus S1 ×S1 is obtained by attaching D2 to the bouquet
S1∨S1 via a mapping ϕ representing the commutator of the generators of
π1(S

1∨S1). Therefore, as it should have been expected, the fundamental
group of the torus is Z2.

43.K See 40.12 (h).

43.L See 40.12 (i).

43.M.1 Indeed, the single relation in the fundamental group of the
sphere with g handles means that the product of g commutators of the
generators ai and bi equals 1, and so it “vanishes” after the abelianization.

43.N.1 Taking the elements a1, . . . , ag−1, and bn = a1a2 . . . ag as
generators in the commuted group, we obtain an Abelian group with a
single relation b2n = 1.

43.O This follows from 43.M.1.

43.O This follows from 43.N.1.

43.Q This follows from 43.M.1 and 43.N.1.

43x:A We do not assume that you can prove this theorem on your
own. The proof can be found, for example, in [Massey].

43x:B Draw a commutative diagram comprising all inclusion homo-
morphisms induced by all inclusions occurring in this situation.

43x:C Since, as we will see in Section §43x◦7, the group presented
as above, actually, up to canonical isomorphism does not depend on the
choice of generators and relations in π1(A, x0) and π1(B, x0) and the
choice of generators in π1(C, x0), we can use the presentation which is
most convenient for us. We derive the theorem from Theorems 43.D
and 43.G. First of all, it is convenient to replace X, A, B, and C by
homotopy equivalent spaces with one-point 0-skeletons. We do this with
the help of the following construction. Let TC be a spanning tree in the
1-skeleton of C. We complete TC to a spanning tree TA ⊃ TC in A, and
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also complete TC to a spanning tree TB ⊃ TC . The union T = TA ∪ TB

is a spanning tree in X. It remains to replace each of the spaces under
consideration with its quotient space by a spanning tree. Thus, the 1-
skeleton of each of the spaces X, A, B, and C either coincides with the
0-cell x0, or is a bouquet of circles. Each of the circles of the bouquets
determines a generator of the fundamental group of the corresponding
space. The image of γi ∈ π1(C, x0) under the inclusion homomorphism
is one of the generators, let it be αi (βi) in π1(A, x0) (respectively, in
π1(B, x0)). Thus, ξi = αi and ηi = βi. The relations ξi = ηi, and, in
this case, αi = βi, i = 1, . . . , t arise because each of the circles lying in
C determines a generator of π1(X, x0). All the remaining relations, as it
follows from assertion 43.G, are determined by the attaching mappings
of the 2-cells of X, each of which lies in at least one of the sets A or B,
and hence is a relation between the generators of the fundamental groups
of these spaces.

43x:D Let F be a free group with generators α1, . . . , αp, β1, . . . , βq.
By definition, the group X is the quotient group of F by the normal hull
N of the elements

{ρ1, . . . , ρr, σ1, . . . , σs, ξ(γ1)η(γ1)
−1, . . . , ξ(γt)η(γt)

−1}.

Since the first diagram is commutative, it follows that the subgroup N lies
in the kernel of the homomorphism F → X ′ : αi 7→ ϕ′(αi), βi 7→ ψ′(αi),
consequently, there is a homomorphism ζ : X → X ′. Its uniqueness is
obvious. Prove the last assertion of the theorem on your own.

43x:E Construct a universal covering of X.


