Введение в Мёбиусову геометрию

курс лекций, весна 2010

1 лекция

1.1 Модели гиперболической плоскости

- А. Псевдосферическая модель
- В. Модель единичного диска
- С. Модель верхней полуплоскости

1.2 Мёбиусовы преобразования

Инверсии и изометрии. Теорема об инверсии верхнего полупространства как изометрии гиперболического пространства.

Двойное отношение. Теорема об инвариантности двойного отношения при Мёбиусовых преобразованиях. Теорема о мёбиусовости преобразований, сохраняющих двойное отношение.

2 лекция

2.1 Мебиусовы структуры и мебиусовы пространства

Допустимые четверки точек. Тройка двойного отношения. Метрики эквивалентные по Мебиусу. Расширенное метрическое пространство. Правила вычислений с бесконечно удаленной точкой. Мебиусова структура. Топология расширенного метрического пространства. Мебиусово простанство.

Мебиусовы отображения. Непрерывность мебиусова отображения. Эквивалентные мебиусовы пространства. Гомотетичность метрик мебиусовой структуры с одной и той же бесконечно удаленной точкой. Следствие: гомотетичность мебиусова отображения между метриками с бесконечно удаленными точками. Пример мебиусова пространства: $\widehat{\mathbb{R}}^n$.

2.2 Введение в гиперболические по Громову пространства и CAT(-1) пространства

Произведение Громова. Эквирадиальные точки. Определение гиперболического по Громову пространства: случай геодезического пространства. Гиперболические по Громову группы. CAT(-1)-пространства.

3 лекция

3.1 δ -неравенство

Монотонность произведение Громова. δ -неравенство. δ -неравенство и гиперболичность. Тетраэдрическая лемма. δ -неравенство для базисной точки.

3.2 Граница на бесконечности гиперболического пространства

Последовательности в гиперболическом пространстве, сходящиеся к бесконечности. Определение границы по Громову гиперболического пространства. Произведение Громова на границе на бесконечности. δ -неравенство для точек на границе.

3.3 Граница на бесконечности CAT(-1)-пространств

Гранично непрерывные гиперболические пространства. Теорема о граничной непрерывности CAT(-1)-пространств. Асимптотический угол $\theta_o(\xi,\xi')$ между точками границы на бесконечности относительной внутренней точки пространства. Сравнение с локальным углом. Случай $\theta_o(\xi,\xi')=\pi$. Как следствие

$$e^{-(\xi|\xi')_o} < 1$$
,

в случае равенства точка o лежит на геодезической $\xi\xi'.$

Формула

$$e^{-(\xi|\xi')_o} = \sin\left(\frac{1}{2}\theta_o(\xi,\xi')\right),$$

где $\theta_o(\xi, \xi')$ – асимптотический угол между $\xi, \xi' \in \partial_\infty X$. Непрерывность асимптотического угла.

Предложение 3.1. Для САТ(-1) пространства X, функция $d_o(\xi, \eta) = e^{-(\xi|\eta)_o}$ является метрикой на $\partial_{\infty} X$.

Доказательство. Доказательство сводится в силу формулы для асимптотического угла к неравенству треугольника для асимптотического угла. \Box

Предложение 3.2. *Метрики Бурдона с различными базисными точ- ками являются эквивалентными по Мебиусу.*

Доказательство. Для базисных точек $o, o \in X$ имеем

$$(x|y)_{o'} = |oo'| + (x|y)_o - (x|o')_o - (y|o')_o.$$

Поскольку X является гранично непрерывным, это соотношение распространяется на точки из $\partial_{\infty} X$:

$$(\xi|\eta)_{o'} = |oo'| + (\xi|\eta)_o - (\xi|o')_o - (\eta|o')_o$$

для любых точек ξ , $\eta \in \partial_{\infty} X$. Для $d_o(\xi, \eta) = e^{-(\xi|\eta)_o}$, $d_{o'}(\xi, \eta) = e^{-(\xi|\eta)_{o'}}$ это дает

$$d_{o'}(\xi,\eta) = \lambda \frac{d_o(\xi,\eta)}{d_o(o',\xi)d_o(o',\eta)},$$

т.е. функция $d_{o'}$ является инверсией функции d_o относительно точки o' радиуса $\lambda = |oo'|$. Отсюда легко следует, что функции d_o , $d_{o'}$ являются эквивалентными по Мебиусу.

3.4 Пространства Птолемея

Неравенство треугольника для тройки двойного отношения. Определение пространства Птолемея. Инверсия метрики относительно точки. Характеризация пространств Птолемея как мебиусовых пространств, выдерживающих инверсию относительно любой точки.

3.5 Окружности в пространстве Птолемея

Определение окружности. Переформулировка в терминах границы $\partial \Delta \subset \Sigma$. Окружности, проходящие через бесконечно удаленную точку. Гомеоморфизм окружности на $\partial \Delta$.

Теорема 3.3. Пусть Z есть птолемеевская окружность c тремя попарно различными точками z_1 , z_2 , z_3 . Тогда отображение $\varphi: Z \to \partial \Delta$, заданное формулой $\varphi(t) = \operatorname{crt}(t, z_1, z_2, z_3)$, является гомеоморфизмом, причем $\varphi(z_1) = (0:1:1)$, $\varphi(z_2) = (1:0:1)$, $\varphi(z_3) = (1:1:0)$.

Доказательство. Это отображение непрерывно и переводит точки $z_1,$ $z_2,$ z_3 в точки (0:1:1), (1:0:1), (1:1:0) соответственно, $\varphi(z_i)=e_i,$ и никакие другие. Точки $z_1,$ $z_2,$ z_3 разбивают окружность Z на три открытых интервала $Z\setminus\{z_1,z_2,z_3\}=I_1\cup I_2\cup I_3,$ где $z_k\notin\partial I_k.$ Аналогично $\partial\Delta\setminus\{e_1,e_2,e_3\}=J_1\cup J_2\cup J_3,$ где $e_k\notin\partial J_k.$ Заметим, что J_i состоит из всех таких точек $(a_1:a_2:a_3)\in\partial\Delta,$ что $a_i\geq\max\{a_j,a_k\}.$ По непрерывности имеем $\varphi(I_k)\subset J_k,$ поскольку $\varphi(z_k)=e_k$ для k=1,2,3. Поэтому для $t\in I_k$ выполняется равенство

$$|tz_k| \cdot |z_i z_j| = |tz_i| \cdot |z_k z_j| + |tz_j| \cdot |z_k z_j|.$$

Покажем, что отображение φ инъективно. Допустим, что $\varphi(s) = \varphi(t)$ для некоторых $s,\ t\in Z$. Это влечет, что $|tz_i|=\lambda |sz_i|$ для некоторого $\lambda>0$ и всех i=1,2,3. Поскольку разные интервалы I_k отображаются в разные интервалы J_k , точки $s,\ t$ лежат в одном и том же интевале, считаем для определенности, что $s,\ t\in I_1$. Тогда (меняя местами s и t если необходимо)

$$|tz_2| \cdot |sz_3| = |tz_3| \cdot |sz_2| + |st| \cdot |z_2z_3|.$$

Это влечет s=t. Таким образом, φ непрерывно и инъективно отображает окружность Z в окружность $\partial \Delta$. Поэтому φ является гомеоморфизмом.

Каноническая параметризация окружности. Существование и единственность мебиусова гомеоморфизми двух окружностей с заданным образом тройки точек. Примеры: расширенная прямая \widehat{R} со стандартной евклидовой метрикой; единичная окружность $S^1 \subset \mathbb{R}^2$ с индуцированной (хордовой) метрикой. Эти пространства эквивалентны по Мебиусу, и эквивалентность задается стереографической проекцией. Теорема Птолемея о четырех точках на окружности. \mathbb{R}^n есть пространство Птолемея: пусть $x, y, z, w \in \mathbb{R}^n$ попарно различные точки. Через y, z, w проходит окружность. Применяя подходящее преобразование Мебиуса, считаем, что z — середина отрезка yw. Для этой конфигурации неравенство Птолемея эквивалентно неравенству $|xz| \leq \frac{1}{2}(|xy| + |xw|)$, которое означает выпуклость функции расстояния до точки x.

4 лекция

4.1 Граница на бесконечности CAT(-1) пространств как простанство Птолемея

Пусть X – CAT(-1)-пространство. Фиксируем точку $o \in X$. Мы будем пользоваться обозначением $|\xi\xi'|=e^{-(\xi|\xi')_o}$ для метрики Бурдона на границе на бесконечности $\partial_{\infty}X$.

Лемма 4.1. Для любой четверки $\xi_1, \dots, \xi_4 \in \partial_{\infty} X$ имеем

$$\sin \frac{1}{2} \theta_o(\xi_1, \xi_2) \sin \frac{1}{2} \theta_o(\xi_3, \xi_4) \le \frac{|\xi_1 \xi_2| \cdot |\xi_3 \xi_4|}{|\xi_1 \xi_3| \cdot |\xi_2 \xi_4|}.$$

Равенство достигается тогда и только тогда, когда $o \in \xi_1 \xi_3 \cap \xi_2 \xi_4$.

Доказательство. Имеем

$$\sin\frac{1}{2}\theta_o(\xi_1,\xi_2)\sin\frac{1}{2}\theta_o(\xi_3,\xi_4) = |\xi_1\xi_2| \cdot |\xi_3\xi_4| \le \frac{|\xi_1\xi_2| \cdot |\xi_3\xi_4|}{|\xi_1\xi_3| \cdot |\xi_2\xi_4|}.$$

Равенство имеет место тогда и только тогда, когда $|\xi_1\xi_3|=1=|\xi_2\xi_4|$, что в свою очередь эквивалентно условию $o \in \xi_1\xi_3 \cap \xi_2\xi_4$.

Теорема Foertsch-Schroeder

Теорема 4.2. Граница на бесконечности $\partial_{\infty}X$ CAT(-1)-пространства X c естественной мебиусовой структурой является пространством Птолемея. Более того, для попарно различных точек ξ_1, \ldots, ξ_4 равенство

$$|\xi_1\xi_3| \cdot |\xi_2\xi_4| = |\xi_1\xi_2| \cdot |\xi_3\xi_4| + |\xi_2\xi_3| \cdot |\xi_1\xi_4|$$

достигается тогда и только тогда, когда выпуклая оболочка четверки изометрична такому идеальному четырехугольнику, что геодезические $\xi_1\xi_3$ и $\xi_2\xi_4$ пересекаются.

Доказательство. В силу непрерывности асимптотического угла существует такая точка $x \in \xi_2 \xi_4$, что $\theta_x(\xi_1, \xi_2) = \theta_x(\xi_3, \xi_4) =: \beta$. Пользуясь леммой 4.1, получаем

$$\sin^2 \frac{\beta}{2} \le \frac{|\xi_1 \xi_2| \cdot |\xi_3 \xi_4|}{|\xi_1 \xi_3| \cdot |\xi_2 \xi_4|}.$$

Для $\gamma = \theta_x(\xi_2, \xi_3), \ \delta = \theta_x(\xi_1, \xi_4)$ аналогично получаем

$$\sin^2 \frac{\gamma}{2} \sin^2 \frac{\delta}{2} \le \frac{|\xi_2 \xi_3| \cdot |\xi_1 \xi_4|}{|\xi_1 \xi_3| \cdot |\xi_2 \xi_4|}.$$

Поскольку точка x лежит на прямой $\xi_2\xi_4$, имеем $\beta+\gamma\geq\pi$ и $\beta+\delta\geq\pi$. Поэтому $\gamma\geq\pi-\beta$ и $\sin\frac{1}{2}\gamma\geq\cos\frac{1}{2}\beta$. Аналогично $\sin\frac{1}{2}\delta\geq\cos\frac{1}{2}\beta$. Тогда

$$\cos^2 \frac{1}{2}\beta \le \frac{|\xi_2 \xi_3| \cdot |\xi_1 \xi_4|}{|\xi_1 \xi_3| \cdot |\xi_2 \xi_4|}.$$

Поскольку $\sin^2\frac{1}{2}\beta+\cos^2\frac{1}{2}\beta=1$, мы получаем неравенство Птолемея

$$|\xi_1\xi_3| \cdot |\xi_2\xi_4| \le |\xi_2\xi_3| \cdot |\xi_1\xi_4| + |\xi_2\xi_3| \cdot |\xi_1\xi_4|.$$

В случае равенства мы имеем равенство во всех оценках. При этом асимптотические углы в точке x совпадают с соответствующими локальными углами. Это влечет, что треугольники $x\xi_i\xi_{i+1}$ изометричны треугольникам в H^2 . Более того, поскольку углы в точке x в сумме дают 2π , мы получаем утверждение теоремы об идеальном четырехугольнике.

5 лекция

Пространства Птолемея.

5.1 Теорема Schoenberg, 1952

Теорема 5.1. Пусть X есть вещественное нормированное пространство, являющееся пространством Птолемея. Тогда его норма происходит от скалярного произведения, $||x|| = \sqrt{(x,x)}$, т.е. квадрат нормы является положительно определенной квадратичной формой.

Для доказательства нам понадобится следующая лемма.

Лемма 5.2. Вещественное нормированное пространство X является пространством c внутренним произведением, если для любых $a, b \in X$, $\|a\| = 1 = \|b\|$ выполняется

$$||a - b||^2 + ||a + b||^2 \ge 4. \tag{1}$$

Доказательство. Достаточно считать, что $\dim X = 2$. Единичный шар в X является выпуклым центрально-симметричным телом с граничной окружностью γ , заданной уравнением $\|a\| = 1$. Задача сводится к тому, чтобы показать, что γ является эллипсом.

Введем вспомогательную евклидову метрику на X. Для точек a, $b \in \gamma, b \neq \pm a$, рассмотрим параллелограмм с вершинами a, b, -a, -b. Нарисуем два диаметра кривой γ (т.е. отрезки, соединяющие точки кривой и проходящие через ее центр), параллельные сторонам параллелограмма a-b и a+b. Пусть α, β — их евклидовы полудлины соотвественно. Пусть (x,y) — координаты точки a в косоугольной системе координат, образованной построенными диаметрами. Тогда

$$||a - b|| = 2|x|/\alpha, \quad ||a + b|| = 2|y|/\beta,$$

что позволяет переписать неравенство (1) как

$$\frac{x^2}{\alpha^2} + \frac{y^2}{\beta^2} \ge 1.$$

Следовательно, условие 1 можно переформулировать так: пусть AA', BB' — два различных диаметра кривой γ и MM', NN' — диаметры, параллельные AB и AB' соотвественно. Тогда ни одна из точек A, B, A', B' не лежит внутри эллипса, имеющего диаметры MM', NN' сопряженными диаметрами.

Рассмотрим теперь эллипс e с центром в нуле, вписанный в γ и имеющий максимальную площадь среди всех таких эллипсов. Утверждается, что тогда e и γ имеют общими различные пары A, A' и B, B' противоположных точек. Допустим, что это не так, и кривые γ , e имеют общими только одну пару A, A' противоположных точек. Применяя при необходимости аффинное преобразование, считаем без потери общности, что e есть окружность $x^2 + y^2 = 1$, A = (1,0), A' = (-1,0). Рассмотрим

однопараметрическое семейство эллипсов $x^2/a^2+y^2/b^2=1$, проходящих через четыре фиксированные точки $(\pm 1/\sqrt{2},\pm 1/\sqrt{2})$. Окружность e имеет наименьшую площадь среди них. Если полуось a<1 и достаточно близка к 1, то соответствующий эллипс лежит строго внутри γ , что противоречит свойству максимальности площади кривой e.

Покажем, что на самом деле $\gamma = e$. Пусть MM', NN' – диаметры, параллельные AB и AB' соотвественно. Тогда эллипс e должен проходить черех их концы M, M', N, N', поскольку иначе эллипс e_1 с сопряженными диаметрами MM', NN' содержит эллипс e внутри себя и e_1 будет содержать внутри также точки A, A', B, B', что противоречит свойству кривой γ . Применяя эти рассуждения к парам точек A, A', M, M', находим новые пары точек, общие для γ и e, что ведет к совпадению $\gamma = e$.

Доказательство теоремы 5.1. Применяя неравенство Птолемея к четырем попарно различным точкам $a, b, -a, -b \in X$, получаем

$$4||a|| \cdot ||b|| \le ||a - b||^2 + ||a + b||^2.$$

Утверждение теперь следует из леммы 5.2.

5.2 Теорема Foertsch-Lytchak-Schroeder, 2007

Теорема 5.3. Любое собственное, геодезическое пространство Птолемея X единственно геодезическое.

Доказательство. Для точек $p^+, p^- \in X$ положим

$$C = C(p^+, p^-) = \{x \in X : |p^+p^-| = |p^-x| + |xp^+|\}.$$

Из выпуклости функций расстояния d^+ , d^- до точек p^+ , p^- следует, что множество C выпукло и, более того, эти функции d^\pm являются аффинными на C.

Положим $L=|p^+p^-|$ и рассмотрим две геодезические $\gamma_1,\,\gamma_2:[0,L]\to C$ идущие из точки p^- в точку p^+ . Пусть $x_s=\gamma_1(s),\,y_s=\gamma_2(s)$ и m_s середина между точками $x_s,\,y_s$. В силу аффинности функций d^\pm имеем $|p^-x_s|=|p^-y_s|=|p^-m_s|=s,\,|x_sp^+|=|y_sp^+|=|m_sp^+|=L-s$. Теперь для 0< s< t< L неравенство треугольника дает

$$|x_t y_t| \le |x_t m_s| + |m_s y_t|,$$

а неравенство Птолемея, примененное к четверке (p^-, x_s, m_t, y_s) , дает

$$|p^-m_t||x_sy_s| \leq |p^-x_s||m_ty_s| + |p^-y_s||m_tx_s|$$

и, следовательно,

$$|m_t y_s| + |m_t x_s| \ge \frac{t}{s} |x_s y_s| = |x_s y_s| + (t - s) \frac{|x_s y_s|}{s}.$$

С другой стороны, неравенство Птолемея, примененное к четверкам точек (x_s, x_t, m_t, m_s) и (y_s, y_t, m_t, m_s) , дает

$$|x_s m_t| |x_t m_s| + |y_s m_t| |y_t m_s| \le \frac{1}{2} |x_s y_s| |x_t y_t| + 2(t-s) |m_s m_t|.$$

Фиксируем произвольную точку 0 < s < L, положим $l := |x_s y_s|$ и рассмотрим последовательность $s_n \to s$ с $s_n > s$. По компактности, некоторая подпоследовательность m_{s_n} середин между точками x_{s_n}, y_{s_n} сходится к середине $m = m_s$ между точками x_s, y_s . Положим $\varepsilon_n = s_n - s$, $a_n^+ = |x_s m_{s_n}|, b_n^+ = |y_s m_{s_n}|, a_n^- = |m x_{s_n}|, b_n^- = |m y_{s_n}|, l_n = |x_{s_n} y_{s_n}|, \varphi_n = |m_{s_n} m|$ и Q = l/s. В этих обозначениях полученные выше неравенства принимают вид

$$a_n^- + b_n^- \ge l_n, \ a_n^+ + b_n^+ \ge l + \varepsilon_n Q, \ b_n^+ b_n^- + a_n^+ a_n^- \le \frac{1}{2} l_n l + 2\varepsilon_n \varphi_n.$$

В силу неравенства треугольника имеем $|l-l_n| \leq 2\varepsilon_n, \ |a_n^{\pm} - \frac{1}{2}l| \leq 2\varepsilon_n, \ |b_n^{\pm} - \frac{1}{2}l| \leq 2\varepsilon_n$. Поэтому для некоторых постоянных $A^{\pm}, \ B^{\pm}, \ C \in [-2,2]$ имеем $a_n^{\pm} = \frac{1}{2}l + A^{\pm}\varepsilon_n + o(\varepsilon_n), \ b_n^{\pm} = \frac{1}{2}l + B^{\pm}\varepsilon_n + o(\varepsilon_n), \ l_n = l + C\varepsilon_n + o(\varepsilon_n).$ Предыдущие неравенства ведут к оценкам $A^- + B^- \geq C, \ A^+ + B^+ \geq Q, \ (B^+ + B^-) + (A^+ + A^-) \leq C.$ Отсюда Q = 0 и, следовательно, $\gamma_1(s) = \gamma_2(s)$. Поэтому $\gamma_1 = \gamma_2$.

6 лекция

6.1 Пространства Адамара являются птолемеевскими

Теорема 6.1. Любое пространство Адамара X является пространством Птолемея.

Доказательство. Пусть x, y, z, w — произвольные точки в X. Рассмотрим треугольники сравнения $\overline{x}\,\overline{y}\,\overline{z} \subset \mathbb{R}^2$ для xyz и $\overline{x}\,\overline{y}\,\overline{w} \subset \mathbb{R}^2$ для xyw, причем точки \overline{z} и \overline{w} лежат по разные стороны от прямой отрезка $\overline{x}\,\overline{y}$. Возможны два случая.

- (1) Отрезок $\overline{z}\,\overline{w}$ пересекает отрезок $\overline{x}\,\overline{y}$. Пусть $\overline{u}=\overline{x}\,\overline{y}\cap\overline{z}\,\overline{w}$ есть точка пересечения. Тогда на отрезке $xy\subset X$ найдется единственная точка u, соответствующая точке \overline{u} . Имеем $|zw|\leq |zu|+|uw|\leq |\overline{z}\,\overline{u}|+|\overline{u}\,\overline{w}|=|\overline{z}\,\overline{w}|$. Поэтому $|xy||zw|\leq |\overline{x}\,\overline{y}||\overline{z}\,\overline{w}|$. Поскольку в \mathbb{R}^2 выполняется неравенство Птолемея для четверки точек $\overline{x},\,\overline{z},\,\overline{y},\,\overline{w}$ и сумма произведений расстояний в этом неравенстве совпадает с тем же выражением для расстояний в X, мы получаем $|xy||zw|\leq |xz||wy|+|xw||zy|$.
- (2) Отрезки $\overline{x}\,\overline{y}$ и $\overline{z}\,\overline{w}$ не пересекаются. Согласно построению, прямая $\langle \overline{x}\,\overline{y} \rangle$ пересекает отрезок $\overline{z}\,\overline{w}$. Не ограничивая общности, считаем, что точка \overline{x} ближайшая на $\overline{x}\,\overline{y}$ к точке пересечения. Тогда сумма углов $\angle_{\overline{x}}(\overline{z},\overline{y}) + \angle_{\overline{x}}(\overline{w},\overline{y}) > \pi$. Поэтому точки \overline{z} и \overline{w} можно сдвигать в направлении точки \overline{y} так, что расстояния $|\overline{x}\,\overline{z}|$, $|\overline{x}\,\overline{w}|$ сохраняются, а указанная

сумма углов уменьшается до π . При этом расстояния $|\overline{y}\overline{z}|$, $|\overline{y}\overline{w}|$, не возрастают, расстояние $|\overline{z}\overline{w}|$ не убывает, и дефицит в неравенстве Птолемея не возрастает. В конечном положении мы получаем случай (1), что доказывает теорему в случае (2).

6.2 Teopema Hitzelberger-Lytchak, 2005

Пусть X – метрическое геодезическое простанство. Функция $f: X \to \mathbb{R}$ называется $a\phi\phi$ инной, если вдоль любой геодезической γ в X, параметризованной длиной дуги, выполняется $f \circ \gamma(t) = at + b$ для некоторых постоянных a, b и всех $t \in \mathbb{R}$.

Теорема 6.2. Если аффинные функции на метрическом геодезическом пространстве X разделяют точки, то X изометрично выпуклому подмножеству нормированного векторного пространства со строго выпуклой нормой.

Отображение взятия значения. Пусть A есть векторное пространство всех аффинных функций на X, и пусть A^* есть его (алгебраически) двойственное пространство, т.е. пространство всех линейных функций на A. Отображение взятия значения $E:X\to A^*$ определяется как E(x)(f)=f(x) для точки $x\in X$ и аффинной функции $f\in A$. Это отображение инъективно, поскольку аффинные функции разделяют точки пространства X. Кроме того, оно переводит каждую (параметризованную) геодезическую в X в линейно параметризованный линейный интервал в A^* . Действительно, пусть $\gamma:[0,1]\to X$ – геодезический отрезок между $x=\gamma(0)$ и $y=\gamma(1)$. Для $t\in[0,1]$ и $f\in A$ имеем $f\circ\gamma(t)=(1-t)f(x)+tf(y)$. Поэтому $E\circ\gamma(t)=(1-t)E(x)+tE(y)$.

Образ C=E(X) является выпуклым подмножеством в A^* . Не ограничивая общности, считаем, что он содержит 0. Обозначим через B линейную оболочку множества C. Отождествляя пространство X с его образом, переносим метрику пространства X на C и обозначим ее через d. Мы покажем, что на пространстве B существует такая норма $\|\cdot\|$, что индуцированная ею метрика на множестве C совпадает с d.

6.2.1 Сведение к случаю конечной размерности

Любой элемент v пространства B может быть представлен в виде $v=\lambda(x-x')$ для некоторых $\lambda\geq 0$ и $x,\,x'\in C$. Поэтому искомая норма, если существует, то является единственной, $\|v\|=\lambda d(x,x')$. Мы докажем, что так определенная величина не зависит от представление вектора v, и что эта величина является нормой.

Пусть $v = \lambda_1(x_1 - x_1')$ – другое представление вектора v. Рассмотрим линейную выпуклую оболочку C' пяти точек $x, x', x_1, x_1', 0$. Предполагая, что утверждение доказано для конечномерных C', мы получаем,

что $\lambda d(x,x') = \lambda_1 d(x_1,x_1')$, т.е. функция $\|\cdot\|$ корректно определена. Тот факт, что $\|\cdot\|$ является нормой, доказывается аналогично.

6.2.2 Сведение к случаю открытых множеств

Теперь мы можем считать, что $B=\mathbb{R}^n$. Если утверждение верно для множества O внутренних точек множества C, то по непрерывности оно верно для замыкания \overline{O} . Но замыкание \overline{O} содержит множество C. Поэтому наше утверждение достаточно доказать для случая, когда C – открытое выпуклое подмножество пространства \mathbb{R}^n .

6.2.3 Сведение к случаю финслеровой метрики

Мы определяем для каждой точки $x \in C$ и для каждого вектора $v \in \mathbb{R}^n$ величину

$$|v|_x = \frac{1}{\varepsilon}d(x, x + \varepsilon v),$$

где $\varepsilon > 0$ достаточно мало. Поскольку кривая $\gamma(t) = x + tv$ имеет постоянную скорость на интервале, содержащемся в C, мы заключаем, что величина $|v|_x$ не зависит от выбора ε и на самом деле она является скоростью кривой γ . Более того, мы немедленно получаем, что $|\lambda v|_x = |\lambda||v|_x$ для всех $\lambda \in \mathbb{R}$. И поскольку d является метрикой, мы имеем $|v|_x \geq 0$ с равенством тогда и только тогда, когда v = 0.

Функция $|v|_x$ непрерывна по обеим переменным $x \in C$ и $v \in \mathbb{R}^n$. Действительно, фиксируем достаточно малое число $\varepsilon > 0$ и рассмотрим сходящиеся последовательности $x_i \to x \in C, \ v_i \to v \in \mathbb{R}^n$. Тогда $x_i + \varepsilon v_i \to x + \varepsilon v$, а значит $|v_i|_{x_i} \to |v|_x$ по непрерывности метрики d. Покажем, что $|v|_x$ является нормой для каждой точки $x \in C$. По неравенству треугольника имеем

$$d(x,x+\varepsilon(v+w)) \leq d(x,x+\varepsilon v) + d(x+\varepsilon v,x+\varepsilon v+\varepsilon w) = \varepsilon |v|_x + \varepsilon |w|_{x+\varepsilon v}.$$

Деля на ε и переходя к пределу при $\varepsilon \to 0$, получаем $|v+w|_x \le |v|_x + |w|_x$. Таким образом, $|\cdot|_x$ является непрерывной финслеровой структурой, которая определяет некоторую метрику \widetilde{d} на множестве C. Но $\widetilde{d}=d$, поскольку линейные интервалы в C имеют одинаковые длины в метриках d и \widetilde{d} .

6.2.4 Завершение доказательства теоремы 6.2

Остается доказать равенство $|\cdot|_x = |\cdot|_y$ для любых точек $x, y \in C$. Все линейные интервалы в O имеют постоянную скорость. Поэтому $|v|_x = |v|_{x+tv}$ для всех точек $x \in O$, всех векторов $v \in \mathbb{R}^n$ и всех таких $t \in \mathbb{R}$, что $x+tv \in O$. Пользуясь тем, что линейные интервалы являются геодезическими, мы получаем $d(x, x+tv) = |tv|_x$, или другими словами $d(x, y) = |x-y|_x$ для всех $x, y \in O$.

Для простоты считаем, что норма $|\cdot|_x$ является гладкой для любой точки $x\in O$.

Лемма 6.3. Для любой точки $x \in O$ и любых векторов $h, v \in \mathbb{R}^n$ имеем f'(0) = 0, где $f(t) = |h|_{x+tv}$.

Доказательство. Заменяя вектор h на его кратный, мы можем считать, что точка $y:=x+h\in O$. Лемма утверждает, что $|h|_{x+tv}=|h|_x+o(t)$ при $t\to 0$. Заметим, что $|h|_{x+tv}=d(x+tv,y+tv)$, поэтому речь идет о формуле для первой вариации.

Для вектора $w \in \mathbb{R}^n$ и точки $z \in O$ обозначим через $b_w^z : \mathbb{R}^n \to \mathbb{R}$ функцию Буземана направления w в норме $|\cdot|_z$, т.е.

$$b_w^z(v) = \lim_{t \to \infty} (|v - tw|_z - |tw|_z).$$

Напомним свойства функций Буземана в нормированном пространстве, $b_h(v) = \lim_{t\to\infty} (\|v-th\| - \|th\|).$

- (1) $b_h(v) = \lim_{t \to +0} \frac{1}{t} (\|h tv\| \|h\|);$
- (2) $b_h(tv) = tb_h(v)$ for all $t \ge 0$;
- (3) $b_h(v+v') \le b_h(v) + b_h(v')$;
- (4) $b_h(v) = b_{-h}(-v)$.

В частности, функция Буземана является линейной тогда и только тогда, когда вектор h является гладкой точкой нормы $\|\cdot\|$,

$$\lim_{t \to +0} \frac{1}{t} (\|h - tv\| - \|h\|) = -\lim_{t \to +0} \frac{1}{t} (\|h + tv\| - \|h\|)$$

для всех векторов v. Но последнее свойство эквивалентно тому, что $b_h(-v) = -b_h(v)$.

Покажем сначала, что $b_h^x=b_h^y$. Для этого изучим первую производную функции g(t)=d(y,x+tv). Напомним, что $|h|_x=|h|_y$. Ввиду равенств $d(y,x+tv)=|y-x-tv|_y=|h-tv|_y$ и свойств функций Буземана имеем

$$d(y, x + tv) = |h|_{y} + tb_{h}^{y}(v) + o(t).$$
(2)

С другой стороны, мы можем оценить расстояние d(y,x+tv), работая в малой окрестности точки x. Считая, что $s\gg 1$, для $0< t\ll \frac{1}{s}$ мы имеем $d(y,x+tv)\leq d(y,x+tsh)+d(x+tsh,x+tv)$. Поскольку метрика на O задается непрерывной финслеровой структурой, мы имеем $d(x+tsh,x+tv)=t|sh-v|_x+o(t)$. Тогда $d(y,x+tv)\leq (1-ts)|h|_x+t|sh-v|_x+o(t)$. При достаточно больших s величина $|sh-v|_x$ близка к $s|h|_x+b_h^x(v)$. Устремляя s к бесконечности, мы заключаем, что

$$d(y, x + tv) \le |h|_x + tb_h^x(v) + o(t)$$
 для $t > 0$. (3)

Теперь рассмотрим $d(y, x + tv) + d(x + tv, x - tsh) \ge d(y, x - tsh) = (1+ts)|h|_x$ для фиксированного достаточно большого числа s и устремим $t \to +0$. Тогда как выше мы получаем

$$d(y, x + tv) \ge |h|_x - tb_{-h}^x(v) + o(t)$$
 для $t > 0.$ (4)

Согласно предположению, вектор h является гладким в точке x, поэтому $b_{-h}^x(v) = -b_h^x(v)$, и из уравнений (2), (3), (4) мы заключаем, что $b_h^y(v) = b_h^x(v)$. Поскольку это верно для любого вектора $v \in \mathbb{R}^n$, мы получаем $b_h^y = b_h^x$. Заметим, что $b_{-h}^y = b_{-h}^x$.

Для завершения доказательства оценим в том же духе величину d(x+tv,y+tv) сверху и снизу.

$$d(x+tv, y+tv) < a+b+c.$$

где $a=d(x+tv,x+tsh),\,b=d(x+tsh,y-tsh),\,c=d(y-tsh,y+tv).$ Имеем $a=t|sh-v|_x+o(t)=t(s|h|_x+b_h^x(v))+o(t),\,b=(1-2st)|h|_x$ и $c=t|sh+v|_y+o(t)=t(s|h|_y+b_{-h}^y(v))+o(t).$ Поэтому

$$d(x + tv, y + tv) \le |h| + b_h^x(v) + b_{-h}^y(v) + o(t),$$

где $|h| = |h|_x = |h|_y$. Далее,

$$d(x+tv, y+tv) \ge a'-b'-c',$$

где $a'=d(x-tsh,y+tsh),\ b'=d(x-tsh,x+tv),\ c'=d(y+tv,y+tsh).$ Имеем $a'=(1+2ts)|h|,\ b'=t|sh+v|_x+o(t)=ts|h|+tb_{-h}^x(v)+o(t)$ и $c'=t|sh-v|_y+o(t)=ts|h|+b_h^y(v)+o(t).$ Поэтому

$$d(x + tv, y + tv) \ge |h| - tb_{-h}^{x}(v) - tb_{h}^{y}(v) + o(t).$$

Пользуясь тем, что $b_{-h}^x(v) = -b_h^x(v) = -b_h^y(v) = b_{-h}^y(v)$, получаем d(x+tv,y+tv) = d(x,y) + o(t).

Из леммы 6.3 следует, что функция $f(t) = |h|_{x+tv}$ постоянна. Это означает, что финслерова структура одинакова во всех точках, $|\cdot|_x = |\cdot|_y$ для всех $x, y \in O$.

7 лекция

7.1 Пространства Птолемея в случае римановых многообразий: теорема Buckley-Falk-Wraith

Теорема 7.1. Полное риманово многообразие M является пространством Птолемея тогда и только тогда, когда M является пространством Адамара, т.е. полным односвязным многообразием неположительной секционной кривизны.

Доказательство. Любое многообразие Адамара является пространством Адамара и, согласно теореме 6.1, оно является пространством Птолемея.

Обратно, полное риманово многообразие M является геодезическим пространством. Если оно к тому же пространство Птолемея, то в нем геодезическая между любыми двумя точками является единственно согласно теореме 5.3 (теорема Foertsch-Lytchak-Schroeder). Поэтому M стягиваемо и, в частности, односвязно. Остается показать, что секционные кривизны многообразия M неположительны.

Если это неверно, то найдется такая точка $p \in M$ и двумерное подпространство $V \subset T_pM$, что секционная кривизна многообразия M в точке p в направлении V положительна, K>0. Тогда поверхность $B \subset M$, $B=\exp_p V \cap B_r(p)$, имеет положительную гауссову кривизну в каждой своей точке в индуцированной из M метрике, если число r>0 выбрано достаточно малым. Для каких-либо двух линейно-независимых векторов $v_1, v_2 \in V$, $|v_1| = |v_2| < r$, положим $v_{-i} = -v_i, i = 1, 2$. Рассмотрим четверку точек $x_i = \exp_p v_i, i = -2, -1, 1, 2$. Тогда $|x_ix_j|_B \ge |x_ix_j|_M$ для всех i, j, и $|x_ix_{-i}|_B = |x_ix_{-i}|_M = |v_iv_{-i}|$ для всех i. Из положительности кривизны следует, что $|x_ix_j|_M \le |x_ix_j|_B < |v_iv_j|$ для всех $|i| \ne |j|$. Точки v_i лежат на евклидовой окружности в V, и для них выполняется равенство Птолемея $4|v_1||v_2| = |v_1-v_2|^2 + |v_1+v_2|^2$. Однако полученные неравенства влекут, что

$$\begin{split} |x_1x_2|_M|x_{-1}x_{-2}|_M + |x_1x_{-2}|_M|x_{-1}x_2|_M &< |v_1-v_2|^2 + |v_1+v_2|^2 \\ &= 4|v_1||v_2| \\ &= |x_1x_{-1}|_M|x_2x_{-2}|_M, \end{split}$$

т.е. для точек x_i неравенство Птолемея не выполняется, противоречие.

8 лекция

8.1 Мебиусова характеризация границы на бесконечности вещественного гиперболического пространства

Теорема Foertsch-Schroeder.

Теорема 8.1. Допустим, что в компактном пространстве Птолемея X через каждые три точки проходит окружность. Тогда пространство X эквивалентно по Мебиусу пространству \mathbb{R}^n , $n \geq 0$.

Доказательство. Рассмотрим на X метрику из мебиусовой структуры с бесконечно удаленной точкой $\omega \in X$. Из условия об окружностях следует, что через любые две точки в $X_{\omega} = X \setminus \{\omega\}$ проходит прямая. Поэтому пространство X является геодезическим. Пусть $b: X_{\omega} \to \mathbb{R}$ — функция Буземана, ассоциированная с лучом $l \subset X_{\omega}$, $b(x) = \lim_{t\to 0} (|xc(t)| - t)$,

где $c:[0,\infty)\to X_\omega$ – естественная параметризация луча l. Покажем, что b – аффинная функция на X_ω . Из условия птолемеевости следует, что функция расстояния до любой точки является выпуклой. Поэтому b – выпуклая функция как предел выпуклых функций, $b(m)\leq \frac{1}{2}(b(x)+b(y)),$ где m – середина между точками x и y.

Для любого числа $t \geq 0$ существует окружность $\sigma_t \subset X_\omega$, проходящая через точки x, y, c(t). При $t \to \infty$ окружности σ_t сходятся к прямой, проходящей через точки x, y. На дуге окружности σ_t между точками x, y, не содержащей точку c(t) рассмотрим середину $m_t, |xm_t| = |m_t y|$. При $t \to \infty$ точки m_t сходятся к точке m. Поскольку точки $x, m_t, y, c(t)$ лежат на окружности σ_t (в этом порядке), то имеем место равенство Птолемея

$$|xy||m_t c(t)| = |xm_t||yc(t)| + |m_t y||xc(t)|.$$

Поскольку $|xm_t| = |m_t y| \ge \frac{1}{2} |xy|$, мы имеем

$$|m_t c(t)| \ge \frac{1}{2} (|xc(t)| + |yc(t)|).$$

Это влечет $b(m) \ge \frac{1}{2}(b(x) + b(y))$. Таким образом, $b(m) = \frac{1}{2}(b(x) + b(y))$, и функция b является аффинной.

Функции Буземана разделяют точки на X_{ω} и являются аффинными. По теореме Hitzelberger-Lytchak пространство X_{ω} изометрично нормированному пространству. Применяя теорему Schoenberg, получаем, что пространство X_{ω} изометрично евклидову пространству \mathbb{R}^n . Тогда пространство X эквивалентно по Мебиусу пространству \mathbb{R}^n .