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We consider the open problem of regularity for L3 o -solutions to the Navier—Stokes
equations. We show that the problem can be reduced to a backward uniqueness
problem for the heat operator with lower order terms.

1. Introduction

In this paper, we deal with the classical Cauchy problem for the Navier—Stokes
equations:

Gev(z,t) +divo(z,t) @ v(z,t) — Av(z,t) = =Vp(x, 1),
dive(z,t) =0 (1.1)

for z € R3 ¢ > —Tp and
v(x,—Tp) = a(x), =€cR> (1.2)

The problem (1.1), (1.2) has at least one weak solution v in the so-called
Leray—Hopf class (cf. [1, 2]).
Tt is known (cf. [3]-[10]) that, under the additional condition

3 2
UELs,l(_TOaT;RS)a g+7<1a 5>3a l>2a

the weak Leray—Hopf solution is unique on the interval | — Tg, T[. Moreover,
this solution is smooth if s > 3. It is an open problem whether weak solutions
1
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remain smooth if s = 3 and { = oo (cf. [11]-[13] for results related to this
problem).

In this paper, we connect the above problem to a backward uniqueness
problem for the heat equation. This problem is of independent interest from
the point of view of control theory.

We outline the main idea. Assume that (0,0) € R3x]—Tp, +oc[ is a singular
point of a solution v satisfying

ess sup / lv(z,t)|Pde < +oo. (1.3)
—To<t<+00 o

For A > 0 we consider the functions
va(x, ) = Av(Ax, A%t) (1.4)

defined in R3x] — Ty /A, +oo[. The crucial point is that both (1.1) and (1.3)
(with Ty replaced by Ty/A) are invariant under scaling (1.4). By the compact-
ness properties of a weak solution, it is possible to pass to the limit as A — 040
along a suitable subsequence A; — 04 0.

The result of this procedure is a solution u = limwy; to the Navier—Stokes
equations which is nontrivial (unless (0,0) is a regular point of v), is defined on
R?3 x R, and vanishes for ¢ > 0. Moreover, u is regular in space-time domains
of the form

{RS\ B(Oa R)}X] -1, —|—OO[,
where R = R(T}1). We consider the equation for the vorticity w = V A u
0w + w pup — U pwip — Aw = 0. (1.5)
We regard (1.5) as a linear heat equation for w with lower-order terms
0w — Aw = Apw , + Buw, (1.6)
where A = (Ax) and B = (B;;) are given functions.

Conjecture. ) Assume that A and B have reasonable reqularity proper-
ties and suitable decay at oco. Assume that w is a bounded solution to (1.6)
in {R3\ B(0, R)}x] — Ti,+oo[ which vanishes for t > 0. Then w = 0 in
{R*\ B(0, R)}x] = T, +o0l.

The main point here is that we do not make any assumptions about w on

dB(0, R). In fact, we can consider w|aB(0 Ry asa “control,” and try to drive w

to zero by prescribing w|6B Our conjecture says that exact controllability

(0,1)
is never possible in this case. Even the case A = 0 and B = 0 seems to be
interesting, and we have not found it in the literature. One of the results of

1) Added in proof: The conjecture has been confirmed by Luis Escauriaza and the
authors under the assumption that 4 and B are bounded. In particular, Conjecture
H in Sec. 2 is true.
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this paper is a proof of the conjecture for A = 0 and B = 0. We believe that
the general case might be approachable by existing methods in the theory of
unique continuation. By our results here, such a proof would give a solution
to the regularity problem for the Navier—Stokes equations under the condition

(1.3).

2. The Notation and Main Results

We denote by M3 the space of all real 3 x 3 matrices. Adopting summation
over repeated Latin indices, running from 1 to 3, we use the following notation:
w-v =, Jul=Vu-u, u=(w) ER? wv=(v)€R?
AZB:tI’A*B:AijBZ’j, |A|:\/AZA,
A* :(Aji), tI'A:A“', A:(Aij)EMS, B:(Bij)EMS,
u@v=(uvj) € M3, Au= (Aju;) €R? wwveR? AeM?.

Let w be a domain in some finite-dimensional space. We denote by L, (w; R
and W2 (w; R!) the Lebesgue and Sobolev spaces respectively of functions from
w into R, The norm of the space Ly, (w;R!) is denoted by || - |[mw. If m =2,
then we use the abbreviation || - |lo = || - ||2,0-

Let T and T} be two parameters such that 77 < 7', and let & be a domain
in R®. We denote by Qr, 7 = Q2x]T1, T the space-time cylinder. Space-time
points are denoted by z = (z,1), z9 = (20, t0), etc. Let Ly, n(Qr, 7;R") be the
space of measurable R'-valued functions with the norm

T
([urcoiaa) ™ nep 4l
T,

11l .n.Qr, .

esssup||f(-,t)||m.q, n = 4o00.
te]T,T[

In the special case @ =R3 and T} = —T; and T = 400, we abbreviate
Lm (QaRS) == Lma W21 (QaRS) = Hla Lm,n (QTl,T;RS) == Lm,na
Lin (1, T; Wy (% R?)) = L (H').

For integrable in Q7 scalar-valued, vector-valued, and tensor-valued func-
tions we use the following differential operators

Ov Ov
vV, =

Ea s 6_l’i’

divv=wv,;, divr=(n;;), Au=div Vu,

Opv = Vp=(pi), Vu=(u;),

which are understood in the sense of distributions. Here z;, ¢ = 1,2, 3, are the
Cartesian coordinates of a point # € R3 and ¢ €]0, 77 is the time variable.
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We recall to the reader the definition of the weak Leray—Hopf solution to
the following Cauchy problem (cf. [2, 1]):

Gev(z,t) +divo(z,t) @ v(z,t) — Av(z,t) = =Vp(x, 1),

2.1
dive(z,t) =0 (2.1)

for x € R3 and ¢t > —T}, and
v(x,—Tp) = a(x), =€cR> (2.2)

Here, Tp is a given positive parameter and a is a given divergence-free function
from W (R3;R3).
Definition 2.1. A divergence-free function
v € Ly oo N Lo(HY)

is called the weak Leray-Hopf solution to the Cauchy problem (2.1) and (2.2)
if the following conditions holds:

for each w € Lo the function ¢ +— /v(x,t) ~w(x)de s

P (2.3)
continuous at any point ¢ € [—Tp, +o0[;
/ {=v-w—v®v:Vw+Vo:Vuwldz =0
Q-_Ty,+oo (2'4)

for any divergence-free function w € CSO(Q_TDﬁOO;}RS);
for any t € [-Tp, 400 [ the following energy inequality is valid:

¢

2.5
/|v(x,t)|2dx—|—2 //|Vv|2dxdt/</|a|2dx; (2:5)
RS RS2

—To R3

l|lv(t) —a(-)|lz, ast— 0. (2.6)

One can show (cf., for example, [14]) that if, for a given weak solution, we
introduce (normalized) pressure

plx,t) = i/ ﬁ div div (v(y,t) ® v(y,t)) dy, (2.7)

then the pair v, p satisfies the Navier—Stokes equations in the sense of distribu-
tions.
We assume that

v E Lgyoo. (28)
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This allows us to improve properties (2.3) and (2.5). Namely, instead of (2.3),
we have

for each w € L35 the function ¢ /v(x,t) ~w(x)de s
o (2.9)

continuous at any point ¢ € [—Tp, +o0l.

The inequality (2.5) takes the form
t

/|v(x,t)|2dx—|—2 //|Vv|2dxdt':/ la|*da (2.10)
R? —To R? R?
for any t € [—Tp, +oo[. To see that, we note that
vE Ly (2.11)
and
div(vewv) € La N Lg (2.12)

and, by the coercive L, ;-estimates for solutions to the Cauchy problem for
the linearized Navier-Stokes equations (cf. [15, 16, 4, 5] and [17] in the case
s=1),

|0c0], V0], VPl € La(Q@-Torsm) N L 2(Q-Tots,7) (2.13)

for any positive numbers § and 7" such that —Ty + 6 < T. Then (2.10) easily
follows from (2.6), (2.11), and (2.13). We also note that (2.3) and (2.10) imply

v € C([=Tp, T); Ls). (2.14)

Another important consequence of the assumption (2.8) is the time-continu-
ity of v from the right with values in L3, 1.e.,

llv(-,t) —v(-,to)||lL, = 0 ast—tgand £ > tp. (2.15)
In turn, according to (2.7), (2.8), and (2.15), we see that
peLs., (2.16)
and
||p(~,t)—p(~,t0)||L% —0 ast—iandt > tg. (2.17)

Given positive numbers 77 and Ry, we let
Q(T1, Ry) = {R*\ B(0, Ry)}x] — T4, +o0l.

Definition 2.2. Assume that A = (4;) and B = (B;;) are measurable

and bounded functions on @(Tl,Rl). We say that the pair (A, B) belongs
to the class C(T1, Ry) if the following condition holds. Whenever a function
w : Q(T1, R1) — R3 satisfies the conditions
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(i) w and Vw are bounded and continuous,

lim |w(z,?)] =0 uniformly in ¢,
|| —=+oo
(ii) Ow — Aw = Apw  + Bw in @(Tl, R1) in the sense of distributions,
(iii) if w(z,t) =0, . € R3\ B(0, Ry), and ¢ > 0,

we have w(z,?) =0 in @(Tl, Ry).
Conjecture H. Assume that for k=0,1,... the functions VFA and VFB
are Hélder continuous and bounded in Q(Ty, Ry),

lim sup sup |VEA(z,t)| 4+ |[V*B(x,1)| = 0, (2.18)
R—=+00 peR3\B(0,R) -Ti<t<4oo

and

lim sup |V Az, )] + [V*B(z, )] = 0. (2.19)
t=0 ;eR3\B(0,R;)

Then (A,B) S C(Tl,Rl) .

Conjecture G (restricted conjecture H). Assume that for a solenoidal vector-
valued function w the functions A = —w and B = Vw satisfy the assumptions

of Conjecture H. Then (A, B) € C(T1, R1).
The main result of this paper is contained in the following assertion.

Theorem 2.3. Suppose that Conjecture G 1is true. Then any Leray—Hopf
solution to the Cauchy problem (2.1), (2.2) belonging to L3 o is smooth.

We believe that Conjecture H is true although we have a proof of it only
for the case A =0 and B =0 (cf. Sec. 4 for details).

3. Blow-Up

Assume that the statement of Theorem 2.3 is false. Without loss of generality,
we can assume that a singular point appears at the time ¢ = 0 and is located
at the origin.

Under our assumptions on v and p, the pair (v, p) is a suitable weak solution
(for the definition we refer the reader to [18]), i.e., it satisfies the local energy
inequality. In our case, it satisfies even the local energy identity. Since z = 0
is a singular point of our weak solution, the theory of partial regularity for
suitable weak solutions to the Navier—Stokes equations says (cf. [14]) that
there exists a sequence of positive numbers Ry such that Ry — 0 as & — +oo
and

1
A(Rg) = sup —
~R2gt<0 1k

/ lo(z,t)[2de > e, (3.1)

B(0,Rk)
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for all k£ € N. Here, £, is an absolute positive constant and B(x, R) stands for
the three-dimensional ball of radius R with the center at the point .
We extend functions v and p to the whole space R3+! in the following way:

i t > -1

i t > -1
): p($a )a = 0 IERS
0, t<—T0,

Let
v (2,t) = RyO(Ryw, Rit),  p™ (2,1) = Rip(Rex, Rit)

for x € R® and t € R. It is obvious that for any ¢t € R
/|ka(x,t)|3dx = / |5 (2, )P da (3.2)
RS RS

and

/|ka(x,t)|3/2dx:/|]’5(x,t)|3/2dx. (3.3)
]RS ]RS

Hence, without loss of generality, we can assume that
v Sy in Lo(R; Ls) as k — +oo, (3.4)
where divu = 0 in B3 x R and
P iy in Leo(R; L3s) as k — +oo. (3.5)

To get more information about the boundedness of various norms for func-
tions v and pf*  we fix a cut-off function ¢ € C§°(R3t!) and introduce a
function ¢ as follows:

o(y, 7) = Rpe™ (Rpy, Rit), yeR3 rcR.
Let Ry be so small that

1t
spto < { () 17>~ b= spt ™ < {(e0) | > =T

+ oo + oo
2//@Rk|vv|2d»2://{|U|2(A¢Rk+3t¢3k)

—To RS —To k3
+ v -Vl (o> + 2p) }dz. (3.6)

Then
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Making the change of variables, we obtain the identity

g//¢wwmwdz://ﬂMﬁWAw+@@

3 R R>
+ v V(o2 4 2pf)Yde. (3.7)
JFrom (3.2), (3.3), and (3.7) it follows that for any domain @ € R3*!
/|V1}Bk|2 dz < e1(Q) < +o0. (3.8)
Q

We emphasize that the constant in (3.8) is independent of Rj. By standard
arguments, including multiplicative inequalities and L ;-coercive estimates for
solutions to the nonstationary Stokes equations, we obtain the bound

/ ([ |* 4 00" |5 4+ [V25 5 4 [Vpf ) de < (@), (3.9)
Q
which, together with (3.4) and (3.5), implies
v — u in L3(Q;RP) (3.10)

for @ @ R3+1. By (3.4), (3.5), and (3.9), we find
o —w in C([a, b]; Lo(Q;R?)) (3.11)

for any —oco < @ < b < 400 and € R3,
Combining all information about limit functions « and ¢ (cf. (3.2)-(3.11)),
we conclude that

/<|u|4+|w|2+|atu|%+|v2u|%+|w|%>dz<c3<cz> (3.12)
Q
for any @ € R3*+! and
u € C([a,b]; L2(; R?) (3.13)
for any —oco < @ < b < 400 and € R,

functions u and ¢ satisfy the Navier-Stokes equations a.e. in R, (3.14)

2//¢|Vu|2dz - //{|u|2(Ag0 +Op) - u-Vp(lu? + 20)}dz (3.15)
R R® R R?
for all functions ¢ € C5°(R3*1).
By (2.11)-(2.14), the pair (u, ¢) is a suitable weak solution to the Navier—
Stokes equation in B3+,
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Our next observation on limit functions comes from (2.15) and (2.17) for
to = 0. For any positive numbers R and ¢ (2.15) implies

[ wtword= [ e B P — 0
B(0,R) B(0,RxR)
as Ry — 0. This means that
u(,t) =0, t>0. (3.16)
In the same way, we deduce from (2.17) that
q(,t) =0, t>0. (3.17)
Finally, according to (3.1),

1
sup - / |v(x,t)|*de = sup / |ka(x,t)|2dx>5*
~Rz<e<o T

—1Kt<0
B(0,Rk) B(0,1)
for all £ € N and, by (3.11), we obtain
sup / |u(z, )2 de > . (3.18)
—1Kt<0
B(0,1)

PrOOF OF THEOREM 2.3. First, we show that there exits positive numbers
Ry and T such that for any k& = 0,1, ... the function V*u is Holder continuous
and bounded on the set

Q(2T1, R1/2) = R3\ B(0, Ry /2)x] — 2T}, +ocl.
To this end, we fix an arbitrary number 7} > 2 and note that

+oo 0
[ Jauevaprie= [ a4 laps < 4o

—4T; R® _4T, R

Therefore,
+ oo

(Jul® + |q|%)dz —0 as R — 4oo.
—4T, R3\B(0,R)
This means that for given € > 0 there exists a number Ry (s,77) > 4 such that
+oo
(luf + 1q3)d= < e. (3.19)
—4T1 R\ B(0,R1/24)
Now, assume that z = (z0,%0) € Q(271, R1/2). Then
Q(Zo, 1) = B(l‘o, 1)X]t0 — 1,t0[C {RS\B(O, R1/4)}X] — 4T1, —|—OO[
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By (3.19), one can claim that for any ¢

]D / (Iuf* + Igl3)dz < e (3.20)
)

to—1 B(zo,1

for zg € @(QTl, R1/2), where T} > 2 and Ry(e,T1) > 4. Tt follows from (3.20),
the Caffarelli-Kohn—Nirenberg theorem, and the regularity theory for solutions
to the Stokes equations (we refer to [18] and [11, Proposition 2.1] for details)
that for each k = 0,1,... there exists a number ¢*) independent of z such
that
sup | VFu(z)] < ) < +o0.
2€Q(20,1/2)

The Holder continuity of VFu on @(QTl, R1/2) is also a consequence of the
regularity theory for the Stokes equations and bootstrap arguments.

It remains to show that the functions A = —u and B = Vu satisfy the
conditions (2.18) and (2.19). To see this, we introduce the sequence of functions

vt (2, t) = u(e + me,t), plt(z,t) = q(z + me,t)
for z € B(0,2), e € B(0,1), and =277 < t < 4oc. Obviously, for each fixed

m € N and for each fixed e € B(0,1) the pair (v*,pl?) is a suitable weak
solution to the Navier-Stokes equations in B(0,2)x] — 277, +oo[. Moreover,

m—4oo
to—1B(0,1

to
Lim / / (|v2”|3 + |p2n|%)dl‘dt =0.
)

By the above arguments, one can claim that

V507 | o (@01 /2)) < O

for some o €]0, 1[. Here, zy = (0,%p), C'*(Q) is the space of functions that are

continuous on the compact set ) with respect to the usual parabolic distance.
It is important to note that the constants ¢, k = 0,1, ..., are independent of
m, e, and tyg. Thus, we see that for K =0,1,...

sup sup sup VRO (2, 8)] = 0
e€B(0,1) B(0,1/2) —Ti1<t<+00

as m — 4oo. This implies (2.18). Now, (2.19) follows from (2.18) and the
Holder continuity of V*u on Q(27%, Ry1/2).
Now, let w be the vorticity of u, 1.e.,

w=VAu.
The function w satisfies the equation

Ow + upw fp —wrpup —Au=0, in R3x] — T, 0.
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By the conjecture G,
w(z) =0 if z € Q(T1, Ry). (3.21)

On the other hand, there exists an open subset @ C] — T3,0[ such that
|O] = T and, for each t € @, the function u is analytic in spatial variables.
But then w is also an analytic function in the same variables. Therefore, (3.21)
implies that

W) =0, teO. (3.22)

This means that for each ¢ € O the function u(-,t) is harmonic and has the
finite L3(R3;R3)-norm. It turn, this fact leads to the identity

u(-,t) =0, teO.

Hence u = 0 a.e. in R3x] — Ty, 00[. This contradicts (3.18). Theorem 2.3 is
proved.

4. A Backward Uniqueness Theorem
for the Heat Equation

In this section, we introduce additional notation:

RY ={x e R" || x = (x1,22,...,2,) = (2;), xn > 0},
Qr = R x]0,TT7,

where T is a positive fixed number.

Theorem 4.1. Let u : Q7 — R be a bounded smooth function satisfying
the heat equation Oyu = Au in Qp. Assume that there exists a nonempty open
set 2 C RYy such that

lim /|u(x,t)|da::0.
t—=T-0
Q

Then u=0 in Q7.

Proo¥. Using the regularity theory for the heat equation and the fact
that smooth solutions to the heat equation are analytic in spatial variables,
we see that one can extend u by zero to the set @@ = R’} x]0, 400, and the
extension, also denoted by wu, is smooth, satisfies the heat equation in @, and
vanishes for ¢ > T'. Also, replacing u(z,t) by u(z1,®2,...,Tn_1,Tn + Yn,t +9)
for small y, > 0 and s > 0, we can assume that all the derivatives of u are
well defined, bounded, and continuous in the closure @ of Q. Making these
simplifying assumptions, we now prove the theorem in several steps.
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STEP 1. REDUCTION TO THE CASE n = 1. The obvious idea here 1s to use
the Fourier transformation along #' = (21, #3,...,2,-1). For each t > 0 and
z, > 0 we define a distribution (-, z,,t) on R"~1 by the formula

@ en t),0() = [ de'u(@' z,,t) [ de/etEl =i gy,
y /

Here, ¢ € C5°(R"~1) and ¢ = (£1,&a,...,&n—1). Under suitable assumptions,
U+, &y, t) is a function and we have

a(€/’$n’t):etlgll2 / u(x/al’nat)e_ixlfldl‘/.
Rn—l

A simple calculation shows that for each fixed ¢ € C§°(IR"~1) the function

U (2n,t) = (U, zn, 1), ()
is bounded in R x]0,+oo, satisfies the heat equation in R4 x]0,4o0[, and
vanishes for { > T'. We now see that this is enough to prove the case n = 1.
In what follows, we use the notation @ = R4 x]0, +oco[ and denote by (z,?)
points of ().
STEP 2. REDUCTION TO THE CASE |u(z,t)| < Ce”**. This can be achieved
by the following change of variables:

u(z,t) = v(z + 2at,t)e°‘x+°‘2t, a>0.

The function v is defined in a domain different from @7, but we can obviously
achieve by a suitable shift that the domain of v contains a domain of the form
() in which the theorem is violated if v does not vanish identically. Moreover,
v has the required decay as x — 4o0.

STEP 3. PROOF IN THE CASE n = 1 AND |u(z,t)| < Ce™*". We extend u
to all R x R by requiring that the extension be an even function of z vanishing
for ¢ €] — 00, 0[U]T, 40o0[. The extended function has a discontinuity in ¢ at
t = 0, but it is smooth in t (for a fixed ) for ¢ €]0, +o0].

Let a(z) = u(x,0), and let

. Ju
g(t) = ngI}FOQa—x(x,t).
Clearly,
du 0%u
E(r,t) - @(x,t) =—=d(x)gt) +d()a(z), xz€R, tekR, (4.1)

where § denotes the Dirac distribution.
Denoting by g and @ the Fourier transformations of ¢ and a respectively,
we note that (4.1) implies

glie*) =a(g), €eRr. (4.2)
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We now look at the function g in more detail. We have
T

g(7) :/g(t)e_”tdt:/g(t)e_”tdt. (4.3)

Hence g is defined for each 7 € C and is holomorphic in C. Moreover, standard
calculations together with (4.2) and the decay property of a imply that

g(r) = (’)(|—71_|) as T — oo in K| (4.4)

where K = {r € CJ|Re 7 = 0 orIm7 = 0}, i.e., K is the union of the real and
imaginary axes. In fact, (4.4) along the real axis and along the negative part
of the imaginary axis follows from (4.3) and integration by parts, whereas (4.4)
along the positive part of imaginary axis follows from (4.2) and the fact that

a(&’):(’)(ﬁ) as £ > oo and &€ € R.

STEP 4. The last step in the proof is a simple lemma about holomorphic
functions.

Lemma 4.2. Let K C C be the union of the real and imaginary axes. Let
f:C — C be a holomorphic function satisfying the following two conditions:

If(z)| < Ael?l, zec,

for some positive constants a and A,
1
f(r) = (’)(ﬂ) as T — oo K.
T
Then f=0.

The proof of the lemma 1s left to the reader as an exercise. We note that
Lemma 4.2 follows from the Phragmén—Lindelof theorem for an angle (we refer
to [19, Theorem 7.5] for details). Theorem 4.1 is proved. O
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