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1 Introduction

In this expository paper, we review some recent results in the regularity
theory for the Navier-Stokes equations. We consider the classical Cauchy
problem for these equations:

∂tv(x, t) + div v(x, t)⊗ v(x, t)−∆ v(x, t) = −∇ p(x, t),
div v(x, t) = 0

(1.1)
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for x ∈ R3 and t ≥ 0, together with the initial condition

v(x, 0) = a(x), x ∈ R3. (1.2)

We assume for the moment that a is a smooth divergence-free vector field
in R3 which decays “sufficiently fast” as x → ∞. (We will return later to
the important case when the initial velocity field a belongs to more general
classes of functions.) In the classical paper [19], Leray proved the following
results:

(i) There exists a T? > 0 such that the Cauchy problem (1.1), (1.2) has a
unique smooth solution with “reasonable properties at ∞”.

(ii) Problem (1.1), (1.2) has at least one global weak solution satisfying
a natural energy inequality. Moreover, the weak solutions coincide with the
smooth solution in R3×]0, T?[.

(iii) If ]0, T?[ is the maximal interval of the existence of the smooth solu-
tion, then, for each p > 3, there exists εp > 0 such that

( ∫

R3

|u(x, t)|p dx
) 1

p ≥ εp

(T? − t)
1
2
(1− 3

p
)

as t ↑ T?.
(iv) For a given weak solution, there exists a closed set S ∈]0, +∞[ of

measure zero such that the solution is smooth in R3 × (]0,∞[\S). (In fact,

Leray’s proof gives us S with H 1
2 (S) = 0, although it is not mentioned

explicitly.)
The modern definition of the weak solutions (often called Leray-Hopf

weak solutions due to important contributions of E. Hopf in the case of

bounded domains) is as follows. We denote by
·
C∞

0 the space of all infinitely

differentiable solenoidal vector fields with compact support in R3;
◦
J and

◦
J1

2

are the closures of the set
·
C∞

0 in the spaces L2 and W 1
2 , respectively. (We

use the standard notation for the Lebesgue and Sobolev spaces.)
In what follows we will use the notation QT = R3×]0, T [.
A Leray-Hopf weak solution of the Cauchy problem (1.1) and (1.2) in QT

is a vector field v : Q̄T → IR3 such that

v ∈ L∞(0, T ;
◦
J) ∩ L2(0, T ;

◦
J

1
2); (1.3)

the function t → ∫
R3

v(x, t) · w(x) dx can be continuously extended

to [0, T ] for any w ∈ L2;
(1.4)
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∫

QT

(−v · ∂tw − v ⊗ v : ∇w +∇v : ∇w) dxdt = 0, ∀w ∈ ·
C
∞
0 (QT ); (1.5)

1

2

∫

R3

|v(x, t0)|2 dx+

∫

R3×]0,t0[

|∇v|2 dxdt ≤ 1

2

∫

R3

|a(x)|2 dx, ∀t0 ∈ [0, T ]; (1.6)

‖v(·, t)− a(·)‖2 → 0 as t → 0. (1.7)

The definition is meaningful also for T = +∞ if we replace the closed
interval [0, T ] by [0,∞[ throughout the definition.

Leray’s result (ii) above can now be stated as follows. (See [19], [12], [14],
and [16].)

Theorem 1.1 Assume that
a ∈ ◦

J. (1.8)

Then there exists at least one Leray-Hopf weak solution to the Cauchy problem
(1.1) and (1.2) in R3×]0,∞[.

At the time of this writing, both uniqueness and regularity of Leray-Hopf
weak solutions remain open problems.

Important extensions of Leray’s results were later obtained by many work-
ers. In particular, the works of Prodi [30], Serrin [42], and Ladyzhenskaya
[15] lead to the following generalizations of (ii).

Theorem 1.2 Suppose that condition (1.8) holds. Let v and v1 be two weak
Leray-Hopf solutions to the Cauchy problem (1.1) and (1.2). Assume that,
for some T > 0 the velocity field v satisfies the so-called Ladyzhenskaya-
Prodi-Serrin condition, i.e.,

v ∈ Ls,l(QT ) (1.9)

with
3

s
+

2

l
= 1, s ∈]3, +∞]. (1.10)

Then, v = v1 in QT and, moreover, v is a smooth function in R3 × (0, T ].

The uniqueness was proved by Prodi in [30] and Serrin in [42] and the smooth-
ness was established by Ladyzhenskaya in [15]. Further extension of Theorem
1.2 can be found in paper of Giga [10]. A local version of this theorem was
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proved by Serrin [41] for 3
s

+ 2
l
< 1 and Struwe [45] for 3

s
+ 2

l
= 1. We recall

that the norm in the mixed Lebesgue space Ls,l(QT ) is given as follows:

‖f‖s,l,QT
=





( T∫
0

‖f(·, t)‖l
s dt

) 1
l
, l ∈ [1, +∞[

ess sup
t∈]0,T [

‖f(·, t)‖s , l = +∞.

If s = l, we abbreviate ‖f‖s,QT
= ‖f‖s,s,QT

.
We note that, by standard imbeddings, functions of the Leray-Hopf class

satisfy
v ∈ Ls,l(QT ) (1.11)

with
3

s
+

2

l
=

3

2
, s ∈ [2, 6]. (1.12)

Hence there is a substantial gap between what we have according to the
existence theorem and what we need for uniqueness.

An important step towards understanding regularity properties of the
weak Leray-Hopf solutions was a “localization in x” of Leray’s results (iv).
This program was started by Scheffer [31]–[34] and developed further by
Caffarelli-Kohn-Nirenberg [2]. Recently, Lin [20] outlined significant simpli-
fications in the proof of these results (see also [17] for more detail proofs).

In this paper, we address the problem of regularity for the weak Leray-
Hopf solutions v satisfying the additional condition

v ∈ L3,∞(QT ). (1.13)

We prove that Leray’s result (iii) has the following analogue for p = 3. If
]0, T?[ is the maximal interval of the existence of the smooth solution to
problem (1.1), (1.2) and T? < +∞, then

lim sup
t↑T?

∫

R3

|v(x, t)|3 dx = +∞.

In other words, the spatial L3-norm of v must blow-up if the solution develops
a singularity. We can also view this result as an extension of Theorem 1.2 to
the case

s = 3, l = +∞.

More precisely, we have
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Theorem 1.3 Assume that v is a weak Leray-Hopf solution to the Cauchy
problem (1.1) and (1.2) in QT and satisfies the additional condition (1.13).
Then,

v ∈ L5(QT ) (1.14)

and hence it is smooth and unique in QT .

The uniqueness of v under condition (1.13) has already been known, see
[22, 23, 26, 43]. Some partial results on smoothness of such solutions can be
found in [1, 29].

In fact, we prove the following local result.

Theorem 1.4 Consider two functions v and p defined in the space-time
cylinder Q = B×] − 1, 0[, where B(r) ⊂ R3 stands for the ball of radius
r with the center at the origin and B = B(1). Assume that v and p satisfy
the Navier-Stokes equations in Q in the sense of distributions and have the
following differentiability properties:

v ∈ L2,∞(Q) ∩ L2(−1, 0; W 1
2 (B)), p ∈ L 3

2
(Q). (1.15)

Let, in addition,
‖v‖3,∞,Q < +∞. (1.16)

Then the function v is Hölder continuous in the closure of the set

Q(1/2) = B(1/2)×]− (1/2)2, 0[.

The main interest of the above results comes from the fact that they
seem out to be of reach of “standard methods”. By those methods, we mean
various conditions on (local) “smallness” of various norms of v which are
invariant with respect to the natural scaling

u(x, t) → λu(λx, λ2t), p(x, t) → λ2p(λx, λ2t)

of the equations.
We note that finiteness of a norm ||f ||s,l with s, l < ∞ implies “local

smallness” of f in this norm. This is not the case for L3,∞-norm (which is
still invariant under the scaling). This possible “concentration effect” was
the main obstacle to proving regularity. To rule out concentration, we use a
new method based on the reduction of the regularity problem to a backward
uniqueness problem, which is than solved by finding suitable Carleman-type
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inequalities. The backward uniqueness results are new and seem to be of
independent interest, see Section 5 and Section 6.

Our methods can be probably easily adopted to other parabolic problems
with critical non-linearities. In fact, one could speculate that the general
idea of the approach might be applicable to an even larger class of inter-
esting equations with critical non-linearities, such as non-linear Schrödinger
equations or non-linear wave equations. However, the local regularity issues
arising in these cases would be slightly harder than in the parabolic case.

The plan of the paper is as follows. In Section 2, we discuss known
results about regularity of so-called suitable weak solutions. In the third
section, we reduce the regularity problem to the backward uniqueness for
the heat operator with variable lower order terms. This proves Theorem 1.4
and therefore Theorem 1.3. In Section 4, we discuss known facts from the
theory of the unique continuation of solutions to parabolic equations through
spatial boundaries. In the next section, we prove the backward uniqueness
result used in Section 3. The sixth section is devoted to the derivation of two
Carleman-type inequalities, which play the crucial role in our proof of the
backward uniqueness theorem. Finally, just for completeness, we present the
known theorem on the short time solvability of the Cauchy problem with the

initial data from L3∩
◦
J in the class C([0, T?]; L3)∩L5(QT?) in the Appendix.

2 Suitable Weak Solutions

In this section, we are going to discuss smoothness of the so-called suitable
weak solutions to the Navier-Stokes equations. The definition of suitable
weak solutions was introduced in [2], see also [31]-[34], [20], and [17]. Our
version is due to [17].

Definition 2.1 Let ω be a open set in R3. We say that a pair u and q is a
suitable weak solution to the Navier-Stokes equations on the set ω×]− T1, T [
if it satisfies the conditions:

u ∈ L2,∞(ω×]− T1, T [) ∩ L2(−T1, T ; W 1
2 (ω)); (2.1)

q ∈ L 3
2
(ω×]− T1, T [); (2.2)

u and q satisfy the Navier-Stokes equations
in the sense in distributions;

(2.3)
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u and q satisfy the local energy inequality

∫
ω

ϕ(x, t)|u(x, t)|2 dx + 2
∫

ω×]−T1,t[

ϕ|∇u|2 dxdt′

≤ ∫
ω×]−T1,t[

(|u|2(∆ϕ + ∂tϕ) + u · ∇ϕ(|u|2 + 2q)) dxdt′





(2.4)

for a.a. t ∈] − T1, T [ and for all nonnegative functions ϕ ∈ C∞
0 (R3+1),

vanishing in the neighborhood of the parabolic boundary ∂′Q ≡ ω × {t =
−T1} ∪ ∂ω × [−T1, T ].

The main result of the theory of suitable weak solutions, which we are
going to use, is as follows.

Lemma 2.2 There exist absolute positive constants ε0 and c0k, k = 1, 2, ...,
with the following property. Assume that the pair U and P is suitable weak
solution to the Navier-Stokes equations in Q and satisfies the condition

∫

Q

(
|U |3 + |P | 32

)
dz < ε0. (2.5)

Then, for any natural number k, ∇k−1U is Hölder continuous in Q(1
2
) and

the following bound is valid:

max
z∈Q( 1

2
)
|∇k−1U(z)| < c0k. (2.6)

To formulate Lemma 2.2, we exploit the notation:

z = (x, t), z0 = (x0, t0); B(x0, R) = {|x− x0| < R};
Q(z0, R) = B(x0, R)×]t0 −R2, t0[;

B(r) = B(0, r), Q(r) = Q(0, r), B = B(1), Q = Q(1).

Remark 2.3 For k = 1, Lemma 2.2 was proved essentially in [2], see Corol-
lary 1. For alternative approach, we refer the reader to [17], see Lemma 3.1.
Cases k > 1 were treated in [28], see Proposition 2.1, with the help of the
case k = 1 and regularity results for linear Stokes type systems.

In fact, for the case k = 1, Lemma 2.2 is a consequence of scaling and the
following statement.
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Proposition 2.4 Given numbers θ ∈]0, 1/2[ and M > 3, there exist two
positive constants ε1(θ, M) and c1(M) such that, for any suitable weak solu-
tion v and p to the Navier-Stokes equations in Q, satisfying the additional
conditions

|(v),1| < M, Y1(v, p) < ε1, (2.7)

the following estimate is valid:

Yθ(v, p) ≤ c1θ
2
3 Y1(v, p). (2.8)

Here and in what follows, we use the notation:

Y (z0, R; v, p) = Y 1(z0, R; v) + Y 2(z0, R; p),

Y 1(z0, R; v) =
( 1

|Q(R)|
∫

Q(z0,R)

|v − (v)z0,R|3 dz
) 1

3
,

Y 2(z0, R; p) = R
( 1

|Q(R)|
∫

Q(z0,R)

|p− [p]z0,R| 32 dz
) 2

3
,

(v)z0,R =
1

|Q(R)|
∫

Q(z0,R)

v dz, [p]x0,R =
1

|B(R)|
∫

B(x0,R)

p dx,

Y 1
θ (v) = Y 1(0, θ; v), Y 2

θ (p) = Y 2(0, θ; p),

Yθ(v, p) = Y (0, θ; v, p), (v),θ = (v)0,θ, [p],θ = [p]0,θ.

Proof of Proposition 2.4 Assume that the statement of the proposition
is false. This means that a number θ ∈]0, 1/2[ and a sequence of suitable
weak solutions vk and pk (in Q) exist such that:

Y1(v
k, pk) = ε1k → 0 (2.9)

as k → +∞,
Yθ(v

k, pk) > c1ε1kθ
3
2 . (2.10)

The constant c1 will be chosen later in order to get a contradiction. We
introduce new functions

uk = (vk − (vk),1)/ε1k, qk = (pk − [pk],1)/ε1k.
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They satisfy the following relations

Y1(u
k, qk) = 1, (2.11)

Yθ(u
k, qk) > c1θ

2
3 , (2.12)

and the system

∂tu
k + 1

ε1k
div ((vk),1 + ε1ku

k)⊗ ((vk),1 + ε1ku
k)

−∆ uk = −∇ qk, div uk = 0

}
in Q (2.13)

in the sense of distributions.
Without loss of generality, we may assume that:





uk ⇀ u in L3(Q)
qk ⇀ q in L 3

2
(Q)

(vk),1 → b in R3

(2.14)

and
∂tu + div u⊗ b−∆ u = −∇ q

div u = 0

}
in Q (2.15)

in the sense of distributions. By (2.11) and (2.14) , we have

|b| < M, Y1(u, q) ≤ 1, [q(·, t)],1 = 0 for all t ∈]− 1, 0[. (2.16)

From the regularity theory for solutions to the Stokes system, see, for in-
stance, [38], and from (2.15), (2.16), it follows that the function u is Hölder
continuous in Q(3/4) and the following estimate is valid:

Y 1
θ (u) ≤ c̃1(M)θ

2
3 . (2.17)

On the other hand, choosing a cut-off function ϕ in an appropriate way
in the local energy inequality, we find

‖uk‖2,∞,Q(3/4) + ‖∇uk‖2,Q(3/4) ≤ c3(M). (2.18)

Using the known multiplicative inequality, we derive from (2.18) another
estimate

‖uk‖ 10
3

,Q(3/4) ≤ c4(M). (2.19)
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It remains to make use of system (2.13) and the inequalities in (2.16). As a
result, we have

‖∂tu
k‖

L 3
2
(−(3/4)2,0;(

◦
W 2

2(B(3/4)))′)
≤ c5(M). (2.20)

By well-known compactness arguments, we select a subsequence with the
property

uk → u in L3(Q(3/4)). (2.21)

Now, taking into account (2.21) and (2.17), we pass to the limit in (2.12)
and find

c1θ
2
3 ≤ c̃1θ

2
3 + lim sup

k→∞
Y 2

θ (qk). (2.22)

To take the limit of the last term in the right hand side of (2.22), we decom-
pose the pressure qk so that (see [35, 36, 37])

qk = qk
1 + qk

2 , (2.23)

where the function qk
1 is defined as a unique solution to the following bound-

ary value problem: find qk
1(·, t) ∈ L 3

2
(B) such that

∫

B

qk
1(x, t)∆ψ(x) dx = −ε1k

∫

B

uk(x, t)⊗ uk(x, t) : ∇2ψ(x) dx

for all smooth test functions ψ subjected to the boundary condition ψ|∂B = 0.
It is easy to see that

∆qk
2(·, t) = 0 in B (2.24)

and, by the coercive estimates for Laplace’s operator, we have the bound for
qk
1 : ∫

B

|qk
1(x, t)| 32 dx ≤ c6ε

3
2
1k

∫

B

|uk(x, t)|3 dx. (2.25)

Here, c6 is an absolute positive constant. Passing to the limit in (2.22), we
show with the help of (2.25)

c1θ
2
3 ≤ c̃1θ

2
3 + lim sup

k→∞
Y 2

θ (qk
2). (2.26)
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By Poincare’s inequality, (2.26) can be reduced to the form

c1θ
2
3 ≤ c̃1θ

2
3 + c7θ

2 lim sup
k→∞

( 1

|Q(θ)|
∫

Q(θ)

|∇ qk
2 |

3
2 dz

) 2
3
. (2.27)

Since the function qk
2(·, t) is harmonic in B, we have the estimate

sup
x∈B(3/4)

|∇ qk
2(x, t)| 32 ≤ c8

∫

B

|qk
2(x, t)| 32 dx

and therefore
1

|Q(θ)|
∫

Q(θ)

|∇ qk
2 |

3
2 dz ≤ c9

θ2

∫

Q

|qk
2 |

3
2 dz

≤ c′9
( 1

θ2
+

1

θ2

∫

Q

|qk
1 |

3
2 dz

)
.

The latter inequality together with (2.25) allows us to take the limit in (2.27).
As a result, we have

c1θ
2
3 ≤ c̃1θ

2
3 + c7(c

′
9)

2
3 θ

2
3 . (2.28)

If, from the very beginning, c1 is chosen so that

c1 = 2(c̃1 + c7(c
′
9)

2
3 ),

we arrive at the contradiction. Proposition 2.4 is proved. 2

Proposition 2.4 admits the following iterations.

Proposition 2.5 Given numbers M > 3 and β ∈ [0, 2/3[, we choose θ ∈
]0, 1/2[ so that

c1(M)θ
2−3β

6 < 1. (2.29)

Let ε1(θ, M) = min{ε1(θ, M), θ5M/2}. If

|(v),1| < M, Y1(v, p) < ε1, (2.30)

then, for any k = 1, 2, ...,

θk−1|(v),θk−1| < M, Yθk−1(v, p) < ε1 ≤ ε1,

Yθk(v, p) ≤ θ
2+3β

6 Yθk−1(v, p).
(2.31)
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Proof We use induction on k. For k = 1, this is nothing but Proposition
2.4.

Assume now that statements (2.31) are valid for s = 1, 2, ..., k ≥ 2. Our
goal is prove that they are valid for s = k+1 as well. Obviously, by induction,

Yθk(v, p) < ε1 ≤ ε1,

and
|(vk),1| = θk|(v),θk | ≤ θk|(v),θk − (v),θk−1|+ θk|(v),θk−1|

≤ 1

θ5
Yθk−1(v, p) +

1

2
θk−1|(v),θk−1| < 1

θ5
ε1 + M/2 ≤ M.

Now, we make natural scaling:

vk(y, s) = θkv(θky, θ2ks), pk(y, s) = θ2kp(θky, θ2ks)

for (y, s) ∈ Q. We observe that vk and pk form suitable weak solution in Q.
Since

Y1(v
k, pk) = θkYθk(v, p) < ε1 ≤ ε1

and
|(vk),1| = θk|(v),θk | < M,

we conclude

Yθ(v
k, pk) ≤ c1θ

2
3 Y1(v

k, pk) < θ
2+3β

6 Y1(v
k, pk),

which is equivalent to the third relation in (2.31). Proposition 2.5 is proved.
2

A direct consequence of Proposition 2.5 and the scaling

vR(y, s) = Rv(x0 + Ry, t0 + R2s), pR(y, s) = R2p(x0 + Ry, t0 + R2s)

is the following statement.

Proposition 2.6 . Let M , β, θ, and ε1 be as in Proposition 2.5. Let a pair
v and p be an arbitrary suitable weak solution to the Navier-Stokes equations
in the parabolic cylinder Q(z0, R), satisfying the additional conditions

R|(v)z0,R| < M, RY (z0, R; v, p) < ε1. (2.32)

Then, for any k = 1, 2, ..., we have

Y (z0, θ
kR; v, p) ≤ θ

2+3β
6

kY (z0, R; v, p). (2.33)
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Proof of Lemma 2.2 We start with the case k = 1. We let

A =

∫

Q

(
|U |3 + |P | 32

)
dz.

Then, let M = 2002, β = 1/3, and θ is chosen according to (2.29) and fix.
First, we observe that

Q(z0, 1/4) ⊂ Q if z0 ∈ Q(3/4)

and
1

4
Y (z0, 1/4; U, P ) ≤ c10(A

1
3 + A

2
3 ),

1

4
|(U)z0, 1

4
| ≤ c10A

1
3

for an absolute positive constant c10. Let us choose ε0 so that

c10(ε
1
3
0 + ε

2
3
0 ) < ε1, c10ε

1
3
0 < 2002.

Then, by (2.5), we have

1

4
Y (z0, 1/4; U, P ) < ε1,

1

4
|(U)z0, 1

4
| < M,

and thus, by Proposition 2.6,

Y (z0, θ
k/4; U, P ) ≤ θ

k
2 Y (z0, 1/4; U, P ) ≤ θ

k
2 ε1

for all z0 ∈ Q(3/4) and for all k = 1, 2, .... Hölder continuity of v on the set
Q(2/3) follows from Campanato’s condition. Moreover, the quantity

sup
z∈Q(2/3)

|v(z)|

is bounded by an absolute constant.
The case k > 1 is treated with the help of the regularity theory for the

Stokes equations and bootstrap arguments, for details, see [28], Proposition
2.1. Lemma 2.2 is proved. 2
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3 Proof of the main results

We start with the proof of Theorem 1.3, assuming that the statement of
Theorem 1.4 is valid.

Our approach is based on the reduction of the regularity problem to some
problems from the theory of unique continuation and backward uniqueness
for the heat operator. We follow the paper [40].

Proof of Theorem 1.3 The first observation is a consequence of (1.13)
and can be formulated as follows

t 7→
∫

R3

v(x, t) · w(x) dx is continuous in [0, T ] for all w ∈ L 3
2
. (3.1)

This means that ‖v(·, t)‖3 is bounded for each t ∈ [0, T ].
Using known Ladyzhenskaya’s arguments, involving the coercive esti-

mates (see [11, 24, 44]) and the uniqueness theorem for Stokes problem
(see [14]), we can introduce the so-called associated pressure p and, since
|div v ⊗ v| ∈ L 4

3
(QT ), we find

v ∈ L4(QT ), ∂tv, ∇2v, ∇p ∈ L 4
3
(Qδ1,T ) (3.2)

for any δ1 > 0, where Qδ1,T = R3×]δ1, T [. The pair v and p satisfies the
Navier-Stokes equations a.e. in QT . Moreover, by the pressure equation

∆p = −div div v ⊗ v, (3.3)

we have
p ∈ L 3

2
,∞(QT ). (3.4)

The pair v and p is clearly a suitable weak solution in any bounded
cylinders of QT . Moreover, by (3.2), the local energy inequality holds as the
identity. So, we can apply Theorem 1.4 and state that:

for any z0 ∈ R3×]0, T ], there exists a neighborhood Oz0 of z0

such that v is Hölder continuous in R3×]0, T ] ∩ Oz0 .
(3.5)

Indeed, for any z0 ∈ R3×]0, T ] and for any R > 0 such that Q(z0, R) ⊂ QT ,
making obvious scaling ṽ(x, t) = Rv(x0+Rx, t0+R2t) and p̃(x, t) = R2p(x0+
Rx, t0 +R2t), we see that the pair ṽ and p̃ satisfies all conditions of Theorem
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1.4. This means that ṽ is Hölder continuous in Q(1/2) and therefore v is
Hölder continuous in Q(z0, R/2). So, (3.5) is a consequence of Theorem 1.4.

Now, we are going to explain that, in turn, (3.5) implies Theorem 1.3.
To this end, we note

lim
|z0|→+∞

∫

Q(z0,R)

(|v|3 + |p| 32 ) dz = 0, Q(z0, R) ⊂ QT .

Therefore, using scaling arguments, Lemma 2.2 and statement (3.5), we ob-
serve that

max
z∈R3×[δ,T ]

|v(z)| < C1(δ) < +∞ (3.6)

for all δ > 0. Setting w = |v| 32 , we find from (1.13) and (3.6)

w ∈ L2,∞(QT ) ∩ L2(δ, T ; W 1
2 (R3))

and then, by the multiplicative inequality

‖w(·, t)‖ 10
3
≤ C2‖w(·, t)‖

2
5
2 ‖∇w(·, t)‖

3
5
2 , (3.7)

we deduce
w ∈ L 10

3
(Qδ,T ) ⇐⇒ v ∈ L5(Qδ,T )

for any δ > 0. On the other hand, since a ∈ L3 ∩
◦
J ( this is the necessary

condition following from (3.1)), we apply Theorem 7.4 and conclude that

v ∈ L5(Qδ0)

for some δ0 > 0. So, we have shown that Theorem 1.3 follows from (3.5).
Theorem 1.3 is proved. 2

Proof of Theorem 1.4 First, we note that v and p, satisfying condi-
tions (1.15) and (1.16), form a suitable weak solution to the Navier-Stokes
equations in Q. This can be verified with the help of usual mollification
and the fact v ∈ L4(Q). The latter is just a consequence of the known
multiplicative inequality.

Second, we are going to prove two facts:

t → ∫
B(3/4)

v(x, t) · w(x) dx is continuous in [−(3/4)2, 0]

for any w ∈ L 3
2
(B(3/4))

(3.8)
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and therefore
sup

−(3/4)2≤t≤0

‖v(·, t)‖3,B(3/4) ≤ ‖v‖3,∞,Q. (3.9)

We can justify (3.8) as follows. Using the local energy inequality, we can
find the bound for ‖∇ v‖2,Q(5/6) via ‖v‖3,∞,Q and ‖p‖ 3

2
,Q only. Then, by the

known multiplicative inequality, we estimate the norm ‖v‖4,Q(5/6). Hence,
|div v ⊗ v| ∈ L 4

3
(Q(5/6)). Now, using a suitable cut-off function, the Ls,l-

coercive estimates for solutions to the non-stationary Stokes system, known
duality arguments, we find the following bound

∫

Q(3/4)

(
|v|4 + |∂tv| 43 + |∇2v| 43 + |∇ p| 43

)
dz ≤ c01, (3.10)

with a constant c01 depending on the norms ‖v‖3,∞,Q and ‖p‖ 3
2
,Q only. In

particular, it follows from (3.10) that v ∈ C([−(3/4)2, 0]; L 4
3
(B(3/4))) which,

in turn, implies (3.8).
As in the proof of Proposition 2.4, we can present the pressure p in the

form
p = p1 + p2,

where the function p1(·, t) is a unique solution to the following boundary
value problem: find p1(·, t) ∈ L 3

2
(B) such that

∫

B

p1(x, t)∆ ψ(x) dx = −
∫

B

v(x, t)⊗ v(x, t) : ∇2ψ(x) dx

for all smooth functions ψ satisfying the boundary condition ψ|∂B = 0. Then,
∆ p2(·, t) = 0 in B. The same arguments, as in Section 2, lead to the estimates

‖p1‖ 3
2
,∞,Q ≤ c1‖v‖2

3,∞,Q (3.11)

and

‖p2‖∞, 3
2
,B(3/4)×]−1,0[ =

( 0∫
−1

sup
x∈B(3/4)

|p2(x, t)| 32 dt
) 2

3

≤ c1(‖p‖ 3
2
,Q + ‖v‖2

3,∞,Q),

(3.12)

where c1 is an absolute positive constant.
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Assume that the statement of Theorem 1.4 is false. Let z0 ∈ Q(1/2) be
a singular point, see the definition of regular points in the proof of Theorem
1.3. Then, as it was shown in [39], there exists a sequence of positive numbers
Rk such that Rk → 0 as k → +∞ and

A(Rk) ≡ sup
t0−R2

k≤t≤t0

1

Rk

∫

B(x0,Rk)

|v(x, t)|2dx > ε? (3.13)

for all k ∈ N. Here, ε? is an absolute positive constant.
We extend functions v and p to the whole space R3+1 by zero. Extended

functions will be denoted by ṽ and p̃, respectively. Now, we let

vRk(x, t) = Rkṽ(x0 + Rkx, t0 + R2
kt), pRk(x, t) = R2

kp̃(x0 + Rkx, t0 + R2
kt),

pRk
1 (x, t) = R2

kp̃1(x0 + Rkx, t0 + R2
kt), pRk

2 (x, t) = R2
kp̃2(x0 + Rkx, t0 + R2

kt),

where p̃1 and p̃2 are extensions of p1 and p2, respectively.
Obviously, for any t ∈ R,

∫

R3

|vRk(x, t)|3dx =

∫

R3

|ṽ(x, t0 + R2
kt)|3dx, (3.14)

∫

R3

|pRk
1 (x, t)| 32 dx =

∫

R3

|p̃1(x, t0 + R2
kt)|

3
2 dx (3.15)

and, for any Ω b R3,

∫

R

sup
x∈Ω

|pRk
2 (x, t)| 32 dt = Rk

∫

R

sup
x∈Ω

|p̃2(x0 + Rkx, s)| 32 ds. (3.16)

Hence, without loss of generality, one may assume that

vRk
?
⇀u in L∞(R; L3) as k → +∞, (3.17)

where divu = 0 in R3 × R and

pRk
1

?
⇀q in L∞(R; L 3

2
) as k → +∞, (3.18)

pRk
2 → 0 in L 3

2
(R; L∞(Ω)) as k → +∞ (3.19)
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for any Ω b R3. For justification of (3.18) and (3.19), we take into account
identities (3.15), (3.16) and bounds (3.11), (3.12).

To extract more information about boundedness of various norms of func-
tions vRk and pRk , let us fix a cut-off function φ ∈ C∞

0 (R3+1) and introduce
the function φRk in the following way

φ(y, τ) = Rkφ
Rk(x0 + Rky, t0 + R2

kτ), y ∈ R3 τ ∈ R.

We choose Rk so small to ensure

suppφ ⊂ {(y, τ) ‖ t0 + R2
kτ ∈]− (3/4)2, (3/4)2[, x0 + Rky ∈ B(3/4)}

=⇒ suppφRk ⊂ B(3/4)×]− (3/4)2, (3/4)2[.

Then, since the pair v and p is a suitable weak solution, we have

2
0∫
−1

∫
B

φRk |∇ v|2 dz ≤
0∫
−1

∫
B

{
|v|2(∆φRk + ∂tφ

Rk) + v · ∇φRk(|v|2 + 2p)
}

dz

and after changing variables we arrived at the inequality

2

∫

R

∫

R3

φ|∇ vRk |2 dz ≤
∫

R

∫

R3

{
|vRk |2(∆φ + ∂tφ) + vRk · ∇φ(|vRk |2 + 2pRk)

}
dz.

Now, our goal is to estimate ‖pRk‖ 3
2
,Ω×]a,b[ for all Ω b R3 and for all −∞ <

a < b < +∞. We find

‖pRk‖ 3
2
,Ω×]a,b[ ≤ ‖pRk

1 ‖ 3
2
,Ω×]a,b[ + ‖pRk

2 ‖ 3
2
,Ω×]a,b[

≤ c2(a, b, Ω)
[
‖pRk

1 ‖ 3
2
,∞,R3×R +

( b∫

a

∫

Ω

sup
y∈Ω

|pRk
2 (y, t)| 32 dxdt

) 2
3
]

≤ c′2(a, b, Ω)
[
‖pRk

1 ‖ 3
2
,∞,R3×R +

(
Rk

∫

R

sup
y∈Ω

|p̃2(x0 + Rky, s)| 32 ds
) 2

3
]

≤ c′′2(a, b, Ω)(‖p‖ 3
2
,Q + ‖v‖2

3,∞,Q).

So, from the last two inequalities, we deduce the bound
∫

Q

(
|pRk | 32 + |∇vRk |2

)
dz ≤ c3(Q) < +∞ (3.20)
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for any domain Q b R3+1 with a constant c3 in (3.20) independent of Rk.
Then, we apply known arguments, including multiplicative inequalities, the
Ls,l-coercive estimates for solutions to the non-stationary Stokes equations,
and duality. As a result, we find

∫

Q

(|vRk |4 + |∂tv
Rk | 43 + |∇2vRk | 43 + |∇pRk | 43 ) dz ≤ c4(Q). (3.21)

The latter together with (3.17) implies

vRk −→ u in L3(Q) (3.22)

for Q b R3+1. Let us show that, in addition,

vRk −→ u in C([a, b]; L2(Ω)) (3.23)

for any −∞ < a < b < +∞ and for any Ω b R3. Indeed, by (3.21),

vRk −→ u in C([a, b]; L 4
3
(Ω))

and then (3.23) can be easily derived from the interpolation inequality

‖vRk(·, t + ∆t)− vRk(·, t)‖2,Ω

≤ ‖vRk(·, t + ∆t)− vRk(·, t)‖
2
5
4
3
,Ω
‖vRk(·, t + ∆t)− vRk(·, t)‖

3
5
3,Ω

and from (3.17).
Now, we combine all information about limit functions u and q, coming

from (3.14)–(3.23), and conclude that:

∫

Q

(|u|4 + |∇u|2 + |∂tu| 43 + |∇2u| 43 + |∇q| 43 ) dz ≤ c3(Q) (3.24)

for any Q b R3+1;
u ∈ C([a, b]; L2(Ω)) (3.25)

for any −∞ < a < b < +∞ and for any Ω b R3;

functions u and q satisfy the Navier-Stokes equations a.e. in R3+1; (3.26)
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2
∫
R

∫
R3

φ|∇u|2 dz =
∫
R

∫
R3

{
|u|2(∆φ + ∂tφ) + u · ∇φ(|u|2 + 2q)

}
dz (3.27)

for all functions φ ∈ C∞
0 (R3+1). It is easy to show that, according to (3.24)–

(3.27), the pair u and q is a suitable weak solution to the Navier-Stokes
equations in Ω × [a, b] for any bounded domain Ω b R3 and for any −∞ <
a < b < +∞. Moreover, according to (3.13),

sup
t0−R2

k≤t≤t0

1

Rk

∫

B(x0,Rk)

|v(x, t)|2dx = sup
−1≤t≤0

∫

B(0,1)

|vRk(x, t)|2dx > ε?

for all k ∈ N and, by (3.23), we find

sup
−1≤t≤0

∫

B(0,1)

|u(x, t)|2dx ≥ ε?. (3.28)

Let us proceed the proof of Theorem 1.4. We are going to show that there
exist some positive numbers R2 and T2 such that, for any k = 0, 1, ..., the
function ∇ku is Hölder continuous and bounded on the set

(R3 \B(R2/2))×]− 2T2, 0].

To this end, let us fix an arbitrary number T2 > 2 and note that

0∫

−4T2

∫

R3

(|u|3 + |q| 32 )dz < +∞.

Therefore,

0∫

−4T2

∫

R3\B(0,R)

(|u|3 + |q| 32 )dz → 0 as R → +∞.

This means that there exists a number R2(ε0, T2) > 4 such that

0∫

−4T2

∫

R3\B(0,R2/4)

(|u|3 + |q| 32 )dz < ε0. (3.29)

20



Now, assume that z1 = (x1, t1) ∈ (R3 \B(R2/2))×]− 2T2, 0]. Then,

Q(z1, 1) ≡ B(x1, 1)×]t1 − 1, t1[⊂ (R3 \B(0, R2/4))×]− 4T2, 0].

So, by (3.29),
t1∫

t1−1

∫

B(x1,1)

(|u|3 + |q| 32 )dz < ε0 (3.30)

for any z1 ∈ (R3 \ B(R2/2))×]− 2T2, 0], where T2 > 2 and R2 > 4. Then, it
follows from (3.30) and from Lemma 2.2 that, for any k = 0, 1, ...,

max
z∈Q(z1,1/2)

|∇ku(z)| ≤ c0k < +∞ (3.31)

and ∇ku is Hölder continuous on (R3 \B(R2/2))×]− 2T2, 0].
Now, let us introduce the vorticity ω of u, i.e., ω = ∇ ∧ u. The function

ω meets the equation

∂tω + ukω,k − ωku,k −∆ω = 0 in (R3 \B(R2))×]− T2, 0].

Recalling (3.31), we see that, in the set (R3 \B(R2))×]− T2, 0], the function
ω satisfies the following relations:

|∂tω −∆ω| ≤ M(|ω|+ |∇ω|) (3.32)

for some constant M > 0 and

|ω| ≤ c00 + c01 < +∞. (3.33)

Let us show that

ω(x, 0) = 0, x ∈ R3 \B(R2). (3.34)

To this end, we take into account the fact that u ∈ C([−T2, 0]; L2) and find

( ∫

B(x?,1)

|u(x, 0)|2 dx
) 1

2 ≤

≤
( ∫

B(x?,1)

|vRk(x, 0)− u(x, 0)|2 dx
) 1

2
+

( ∫

B(x?,1)

|vRk(x, 0)|2 dx
) 1

2
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≤ ‖vRk − u‖C([−T2,0];L2) + |B| 16
( ∫

B(x?,1)

|vRk(x, 0)|3 dx
) 1

3

≤ ‖vRk − u‖C([−T2,0];L2) + |B| 16
( ∫

B(x0+Rkx?,Rk)

|v(y, t0)|3 dy
) 1

3
.

Since ‖v(·, t)‖3,B(3/4) is bounded for any t ∈ [−(3/4)2, 0], see (3.9), we show
that, by (3.23), ∫

B(x?,1)

|u(x, 0)|2 dx = 0

for all x? ∈ R3. So, (3.34) is proved.
Relations (3.32)–(3.34) allow us to apply the backward uniqueness theo-

rem of Section 5, see Theorem 5.1, and conclude that

ω(z) = 0 z ∈ (R3 \B(R2))×]− T2, 0]. (3.35)

If we show that
ω(·, t) = 0 in R3 (3.36)

for a.a. t ∈]−T2, 0[, then we are done. Indeed, by (3.36), the function u(·, t)
is harmonic and has the finite L3-norm. It turn, this fact leads to the identity
u(·, t) = 0 for a.a. t ∈]− T2, 0[. This contradicts with (3.28).

So, our goal is to show that (3.35) implies (3.36).
To simplify our notation, we let T = T2/2, R = 2R2. We know that

functions u and q meet the equations:

∂tu + div u⊗ u = −∇ q,
div u = 0, ∆ u = 0, ∇∧ u = 0

(3.37)

in the set (R3 \ B(R/2))×] − 2T, 0]. From (3.37), we deduce the following
bound

max
z∈Q0

(
|∇ku(z)|+ |∇k∂tu(z)|+ |∇kq(z)|

)
≤ c1

0k < +∞ (3.38)

for all k = 0, 1, .... Here, Q0 = (R3 \B(R))×]− T, 0].
Next, we fix a smooth cut-off function ϕ ∈ C∞

0 (R3) subjected to the
conditions: ϕ(x) = 1 if x ∈ B(2R), ϕ(x) = 0 if x /∈ B(3R). Then, we let
w = ϕu, r = ϕq. New functions w and r satisfy the system

∂tw + div w ⊗ w −∆ w +∇ r = g
div w = u · ∇ϕ

(3.39)
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in Q? = B(4R)×]− T, 0[ and

w|∂B(4R)×[−T,0] = 0, (3.40)

where

g = (ϕ2 − ϕ) div u⊗ u + uu · ∇ϕ2 + q∇ϕ− 2∇u∇ϕ− u∆ ϕ.

The function g satisfies the conditions:

g(x, t) = 0 if x ∈ B(2R) or x /∈ B(3R), (3.41)

sup
z∈Q0

(
|∇kg(z)|+ |∇k∂tg(z)|

)
≤ c2

0k < +∞ (3.42)

for all k = 0, 1, .... Obviously, (3.42) follows from (3.31), (3.38), and (3.41).
Unfortunately, the function w is not solenoidal. For this reason, we in-

troduce functions w̃ and r̃ as a solution to the Stokes system:

−∆ w̃ +∇ r̃ = 0, div w̃ = u · ∇ϕ

in Q? with the homogeneous boundary condition w̃|∂B(4R)×[−T,0] = 0. Ac-
cording to the regularity theory for stationary problems and by (3.38), we
can state

sup
z∈Q?

(|∇k∂tw̃(z)|+ |∇kw̃(z)|+ |∇kr̃(z)|) ≤ c3
0k < +∞ (3.43)

for all k = 0, 1, ....
Setting U = w− w̃ and P = r− r̃, we observe that, by (3.41) and (3.42),

U and P meet the Navier-Stokes system with linear lower order terms:

∂tU + div U ⊗ U −∆ U +∇P = −div(U ⊗ w̃

+w̃ ⊗ U) + G, div U = 0



 in Q?, (3.44)

U |∂B(4R)×[−T,0] = 0, (3.45)

where G = −div w̃⊗ w̃ + g−∂tw̃, and, taking into account (3.42) and (3.43),
we have

sup
z∈Q?

|∇kG(z)| ≤ c4
0k < +∞ (3.46)
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for all k = 0, 1, .... Standard regularity results and the differential properties
of u and q, described in (3.24), (3.25), and (3.26), lead to the following facts
about smoothness of functions U and P :

U ∈ L3,∞(Q?) ∩ C([−T, 0]; L2(B(4R))) ∩ L2(−T, 0; W 1
2 (B(4R))),

∂tU, ∇2U, ∇P ∈ L 4
3
(Q?).

Let t0 ∈]− T, 0[ be chosen so that

‖∇U(·, t0)‖2,B(4R) < +∞. (3.47)

Then, by the short time unique solvability results for the Navier-Stokes sys-
tem (see [14, 16]), we can find a number δ0 > 0 such that

∂tU, ∇2U, ∇P ∈ L2(B(4R)×]t0, t0 + δ0[).

In turn, the regularity theory for linear systems implies the bounds

sup
t0+ε<t<t0+δ0−ε

sup
x∈B(4R)

|∇kU(x, t)| ≤ c5
0k < +∞

for all k = 0, 1, ... and for some nonnegative number ε < δ0/4. They imme-
diately imply information about smoothness of the original function u:

sup
t0+ε<t<t0+δ0−ε

sup
x∈B(4R)

|∇ku(x, t)| ≤ c6
0k < +∞

for all k = 0, 1, .... Hence, we can state that |∂tω−∆ ω| ≤ M(|ω|+ |∇ω|) and
|ω| ≤ M1 in B(4R)×]t0+ε, t0+δ0−ε[ for some positive constants M and M1.
But we know that ω(z) = 0 if z ∈ (B(4R) \ B(R))×]t0 + ε, t0 + δ0 − ε[. By
the unique continuation theorem of Section 4, see Theorem 4.1, we conclude
that:

ω = 0 in B(4R)×]t0 + ε, t0 + δ0 − ε[.

Since (3.47) holds for a.a. t0 ∈] − T, 0[, we find ω(·, t) = 0 in R3 for a.a.
t ∈]−T, 0[. Repeating the same arguments in the interval ]−T2,−T2/2[, we
arrive at (3.36). Theorem 1.3 is proved. 2

We would like to note that the final part of the proof of Theorem 1.3 can
be carried out in different ways. For example, we could argue as follows. We
should expect that the function U(·, t) and therefore the function u(·, t) are
analytic one’s in the ball B(2R) for t0 + ε < t < t0 + δ0 − ε, see [25]. This
means that the vorticity ω is also an analytic function in space variables on
the same set. Since ω = 0 outside B(R), we may conclude that ω = 0 in
R3×]t0 + ε, t0 + δ0 − ε[ and so on.
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4 Unique Continuation Through Spatial

Boundaries

In this section, we are going to discuss known facts from the theory of unique
continuation for differential inequalities. We restrict ourselves to justification
only of those statements which are going to be used in what follows and which
can be easily reproved within our unified approach. We hope that this makes
our paper more self-contained and more convenient for reading. For advanced
theory in this direction, we refer the reader to the paper [4], see also the list
of quotations there.

We will work with the backward heat operator ∂t+∆ rather than the more
usual heat operator ∂t−∆ since this will save us writing some minus signs in
many formulae. In the space-time cylinder Q(R, T ) ≡ B(R)×]0, T [⊂ R3×R1,
we consider a vector-valued function u = (ui) = (u1, u2, ..., un), satisfying
three conditions:

u ∈ W 2,1
2 (Q(R, T );Rn); (4.1)

|∂tu + ∆u| ≤ c1(|u|+ |∇u|) a.e. in Q(R, T ) (4.2)

for some positive constant c1;

|u(x, t)| ≤ Ck(|x|+
√

t)k (4.3)

for all k = 0, 1, ..., for all (x, t) ∈ Q(R, T ), and for some positive constants
Ck. Here,

W 2,1
2 (Q(R, T );Rn) ≡ {|u|+ |∇u|+ |∇2u|+ |∂tu| ∈ L2(Q(R, T ))}.

Condition (4.3) means that the origin is zero of infinite order for the function
u.

Theorem 4.1 Assume that a function u satisfies conditions (4.1)–(4.3).
Then, u(x, 0) = 0 for all x ∈ B(R).

Remark 4.2 For more general results in this direction, we refer the reader
to the paper [4] of Escauriaza-Fernández.

Without loss of generality, we may assume that T ≤ 1. Theorem 4.1 is an
easy consequence of the following lemma.
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Lemma 4.3 Suppose that all conditions of Theorem 4.1 hold. Then, there
exist a constant γ = γ(c1) ∈]0, 3/16[ and absolute constants β1 and β2 such
that

|u(x, t)| ≤ c2(c1, n)A0(R, T )e−
|x|2
4t (4.4)

for all (x, t) ∈ Q(R, T ) satisfying the following restrictions:

0 < t ≤ γT, |x| ≤ β1R, β2t ≤ |x|2.
Here,

A0 ≡ max
(x,t)∈Q( 3

4
R, 3

4
T )
|u(x, t)|+

√
T |∇u(x, t)|.

Remark 4.4 According to the statement of Lemma 4.3, u(x, 0) = 0 if |x| ≤
β1R.

Remark 4.5 From the regularity theory for parabolic equations (see [18]), it
follows that

A0 ≤ c3(R, T )
( ∫

Q(R,T )

|u|2 dz
) 1

2
.

Proof of Lemma 4.3 We let λ =
√

2t and % = 2|x|/λ. Suppose that
|x| ≤ 3

8
R and 8t ≤ |x|2. Then, as it is easy to verify, we have % ≥ 4 and

λy ∈ B(3R/4) if y ∈ B(%); λ2s ∈]0, 3/4[ if s ∈]0, 2[

under the condition 0 < γ ≤ 3/16. Thus the function v(y, s) = u(λy, λ2s) is
well defined on Q(%, 2) = B(%)×]0, 2[. This function satisfies the conditions:

|∂sv + ∆v| ≤ c1λ(|v|+ |∇ v|) (4.5)

in Q(%, 2);
|v(y, s)| ≤ C ′

k(|y|+
√

s)k (4.6)

for all k = 0, 1, ... and for all (y, s) ∈ Q(%, 2). Here, C ′
k = Ckλ

k.
Given ε > 0, we introduce two smooth cut-off functions with the proper-

ties:

0 ≤ ϕ(y, s) =

{
1, (y, s) ∈ Q(%− 1, 3/2)

0, (y, s) /∈ Q(%, 2)
≤ 1,

0 ≤ ϕε(s) =

{
1, s ∈]2ε, 2[
0, s ∈]0, ε[

≤ 1.
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We let w = ϕv and wε = ϕεw. Obviously, (4.5) implies the following inequal-
ity:

|∂swε + ∆wε| ≤ c1λ(|wε|+ |∇wε|)

+c4(|∇ϕ||∇ v|+ |∇ϕ||v|+ |∆ ϕ||v|+ |∂sϕ||v|) + c4|ϕ′ε||v|.
(4.7)

The crucial point is the application of the following Carleman-type inequality,
see Section 6 for details, Proposition 6.1, to the function wε

∫
Q(%,2)

h−2a(s)e−
|y|2
4s (|∇wε|+ |wε|)2 dyds

≤ c5

∫
Q(%,2)

h−2a(s)e−
|y|2
4s |∂swε + ∆ wε|2 dyds.

(4.8)

Here, c5 is an absolute positive constant, a is an arbitrary positive number,
and h(t) = te

1−t
3 . We let

A = max
(y,s)∈Q(%,2)\Q(%−1, 3

2
)
|v(y, s)|+ |∇ v(y, s)|

and choose γ sufficiently small in order to provide the condition

10c5c
2
1λ

2 ≤ 20c5c
2
1γ <

1

2
. (4.9)

Condition (4.9) makes it possible to hide the strongest term in the right hand
side of (4.8) into the left hand side of (4.8). So, we derive from (4.7)–(4.9)
the following relation

∫
Q(%,2)

h−2a(s)e−
|y|2
4s (|∇wε|+ |wε|)2 dyds

≤ c6A
2

∫
Q(%,2)

h−2a(s)e−
|y|2
4s χ(y, s) dyds

+c6
1
ε2

∫
Q(%,2ε)

h−2a(s)e−
|y|2
4s |v|2 dyds.

(4.10)

Here, χ is the characteristic function of the set Q(%, 2) \ Q(% − 1, 3/2). We
fix a and take into account (4.6). As a result of the passage to the limit as
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ε → 0, we find from (4.10)

D ≡ ∫
Q(%−1,3/2)

h−2a(s)e−
|y|2
4s (|∇ v|+ |v|)2 dyds

≤ c6A
2

∫
Q(%,2)

h−2a(s)e−
|y|2
4s χ(y, s) dyds

≤ c′6A
2
(
h−2a(3/2) + ρn−1

2∫
0

h−2a(s)e−
(%−1)2

4s ds
)
.

(4.11)

Since % ≥ 4, it follows from (4.11) that:

D ≤ c7A
2
(
h−2a(3/2) + ρn−1

2∫

0

h−2a(s)e−
%2

8s ds
)
. (4.12)

In (4.12), the constant c7 depends on n and c1 only.
Given positive number β, we can take a number a in the following way

a =
β%2

2 ln h(3/2)
. (4.13)

This is legal, since h(3/2) > 1. Hence, by (4.13), inequality (4.12) can be
reduced to the form

D ≤ c7A
2e−βρ2

(
1 + ρn−1e−β%2

2∫

0

h−2a(s)e2β%2− %2

8s ds
)
.

We fix β ∈]0, 1/64[, say, β = 1/100. Then, the latter relation implies the
estimate

D ≤ c′7(c1, n)A2e−β%2
(
1 +

2∫

0

h−2a(s)e−
%2

16s ds
)
. (4.14)

It is easy to check that β ≤ ln(3/2)
12

and therefore g′(s) ≥ 0 if s ∈]0, 2[, where

g(s) = h−2a(s)e−
%2

16s and a and % satisfy condition (4.13). So, we have

D ≤ c8(c1, n)A2e−β%2

, (4.15)
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where β is an absolute positive constant.
By the choice of % and λ, we have B(µx

λ
, 1) ⊂ B(%− 1) for any µ ∈]0, 1].

Then, setting Q̃ = B(µx
λ
, 1)×]1/2, 1[, we find

D ≥
∫

eQ

e−
|y|2
2 |v|2 dyds. (4.16)

Observing that |y|2 ≤ 2µ2 |x|2
λ2 + 2 if y ∈ B(µx

λ
, 1) and letting µ =

√
2β, we

derive from (4.15) and (4.16) the following bound
∫

eQ

|v|2 dyds ≤ c′8A
2e(−2β+µ2

2
)
|x|2

t = c′8A
2e−β

|x|2
t . (4.17)

On the other hand, the regularity theory for linear backward parabolic equa-
tions give us:

|v(µx/λ, 1/2)|2 ≤ c9(c1, n)

∫

eQ

|v|2 dyds. (4.18)

Combining (4.17) and (4.18), we show

|u(
√

2βx, t)|2 = |u(µx, t)|2 = |v(µx/λ, 1/2)|2 ≤ c′9A
2e−β

|x|2
t .

Changing variables x̃ =
√

2βx, we have

|u(x̃, t)| ≤
√

c′9Ae−
|ex|2
4t

for |x̃| ≤ β1R and |x̃|2 ≥ β2t with β1 = 3/8
√

2β and β2 = 16β. It remains to
note that λ ≤ √

2T and

A ≤ max
(x,t)∈Q( 3

4
R, 3

4
T )
|u(x, t)|+ λ|∇u(x, t)|.

Lemma 4.3 is proved. 2

5 Backward Uniqueness for Heat Operator in

Half Space

In this section, we deal with a backward uniqueness problem for the heat
operator. Our approach is due to [7], see also [5] and [6].
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Let Rn
+ = {x = (xi) ∈ Rn ‖ xn > 0} and Q+ = Rn

+×]0, 1[. We consider
a vector-valued function u : Q+ → Rn, which is ”sufficiently regular” and
satisfies

|∂tu + ∆u| ≤ c1(|∇u|+ |u|) in Q+ (5.1)

for some c1 > 0 and
u(·, 0) = 0 in Rn

+. (5.2)

Do (5.1) and (5.2) imply u ≡ 0 in Q+? We prove that the answer is positive
if we impose natural restrictions on the growth of the function u at infinity.
For example, we can consider

|u(x, t)| ≤ eM |x|2 (5.3)

for all (x, t) ∈ Q+ and for some M > 0. Natural regularity assumptions,
under which (5.1)–(5.3) can be considered are, for example, as follows:

u and distributional derivatives ∂tu, ∇2u are square
integrable over bounded subdomains of Q+.

}
(5.4)

We can formulate the main result result of this section.

Theorem 5.1 Using the notation introduced above, assume that u satisfies
conditions (5.1)–(5.4). Then u ≡ 0 in Q+.

This extends the main result of [5] and [6], where an analogue of Theorem
5.1 was proved for Q+ replaced with (Rn \ B(R))×]0, T [. Similarly to those
papers, the proof of Theorem 5.1 is based on two Carleman-type inequalities,
see (6.1) and (6.12).

Such results are of interest in control theory, see for example [27]. The
point is that the boundary conditions are not controlled by our assumptions.

It is an easy exercise for the reader to prove that Theorem 5.1 is true for
functions u : Q+ → Rm with 1 ≤ m < +∞.

We start with proofs of several lemmas. The first of them plays the crucial
role in our approach. It enables us to apply powerful technique of Carleman’s
inequalities.

Lemma 5.2 Suppose that conditions (5.1), (5.2), and (5.4) are fulfilled.
There exists an absolute positive constant A0 < 1/32 with the following prop-
erties. If

|u(x, t)| ≤ eA|x|2 (5.5)
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for all (x, t) ∈ Q+ and for some A ∈ [0, A0], then there are constants β(A) >
0, γ(c1) ∈]0, 1/12[, and c2(c1, A) > 0 such that

|u(x, t)| ≤ c2e
4A|x′|2e−β

x2
n
t (5.6)

for all (x, t) ∈ (Rn
+ + 2en)×]0, γ[.

Proof In what follows, we always assume that the function u is extended
by zero to negative values of t.

According to the regularity theory of solutions to parabolic equations, see
[18], we may assume

|u(x, t)|+ |∇u(x, t)| ≤ c3e
2A|x|2 (5.7)

for all (x, t) ∈ (Rn
+ + en)×]0, 1/2[.

We fix xn > 2 and t ∈]0, γ[ and introduce the new function v by usual
parabolic scaling

v(y, s) = u(x + λy, λ2s− t/2).

The function v is well defined on the set Qρ = B(ρ)×]0, 2[, where ρ =
(xn− 1)/λ and λ =

√
3t ∈]0, 1/2[. Then, relations (5.1), (5.2), and (5.7) take

the form:
|∂sv + ∆v| ≤ c1λ(|∇v|+ |v|) a.e. in Qρ; (5.8)

|v(y, s)|+ |∇v(y, s)| ≤ c3e
4A|x|2e4Aλ2|y|2 (5.9)

for (y, s) ∈ Qρ;
v(y, s) = 0 (5.10)

for y ∈ B(ρ) and for s ∈]0, 1/6].
In order to apply inequality (6.1), we choose two smooth cut-off functions:

φρ(y) =

{
0 |y| > ρ− 1/2
1 |y| < ρ− 1

,

φt(s) =

{
0 7/4 < s < 2
1 0 < s < 3/2

.

These functions take values in [0, 1]. In addition, function φρ satisfies the
conditions: |∇kφρ| < Ck, k = 1, 2. We let η(y, s) = φρ(y)φt(s) and w = ηv.
It follows from (5.8) that

|∂sw + ∆w| ≤ c1λ(|∇w|+ |w|) + χc4(|∇v|+ |v|). (5.11)
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Here, c4 is a positive constant depending on c1 and Ck only, χ(y, s) = 1 if
(y, s) ∈ ω = {ρ− 1 < |y| < ρ, 0 < s < 2} ∪ {|y| < ρ− 1, 3/2 < s < 2} and
χ(y, s) = 0 if (y, s) /∈ ω. Obviously, function w has the compact support in
Rn×]0, 2[ and we may use inequality (6.1), see Proposition 6.1. As a result,
we have

I ≡ ∫
Qρ

h−2a(s)e−
|y|2
4s (|w|2 + |∇w|2) dyds ≤ c010(c2

1λ
2I + c2

6I1), (5.12)

where

I1 =

∫

Qρ

χ(y, s)h−2a(s)e−
|y|2
4s (|v|2 + |∇v|2) dyds.

Choosing γ = γ(c1) sufficiently small, we can assume that the inequality
c010c2

1λ
2 ≤ 1/2 holds and then (5.12) implies

I ≤ c5(c1)I1. (5.13)

On the other hand, if A < 1/32, then

8Aλ2 − 1

4s
< − 1

8s
(5.14)

for s ∈]0, 2]. By (5.9) and (5.14), we have

I1 ≤ c2
3e

8A|x|2
2∫
0

∫
B(ρ)

χ(y, s)h−2a(s)e−
|y|2
8s dyds

≤ c6e
8A|x|2

[
h−2a(3/2) +

2∫
0

h−2a(s)e−
(ρ−1)2

8s ds
]
.

(5.15)

Now, taking into account (5.15), we deduce the bound

D ≡
∫

B(1)

1∫

1
2

|w|2 dyds =

∫

B(1)

1∫

1
2

|v|2 dyds

≤ c7

∫

Qρ

h−2a(s)e−
|y|2
4s (|w|2 + |∇w|2) dyds
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≤ c8(c1)e
8A|x|2

[
h−2a(3/2) +

2∫

0

h−2a(s)e−
ρ2

32s ds
]

= c8e
8A|x|2−2βρ2

[
h−2a(3/2)e2βρ2

+

2∫

0

h−2a(s)e2βρ2− ρ2

32s ds
]
.

We can take β = 8A < 1/256 and then choose

a = βρ2/ ln h(3/2).

Since ρ ≥ xn, such a choice leads to the estimate

D ≤ c8e
8A|x′|2e−βρ2

[
1 +

2∫

0

g(s) ds
]
,

where g(s) = h−2a(s)e−
ρ2

64s . It is easy to check that g′(s) ≥ 0 for s ∈]0, 2[ if
β < 1

96
ln h(3/2). So, we have

D ≤ 2c8e
8A|x′|2e−βρ2 ≤ 2c8e

8A|x′|2e−
βx2

n
12t . (5.16)

On the other hand, the regularity theory implies

|v(0, 1/2)|2 = |u(x, t)|2 ≤ c′8D. (5.17)

Combining (5.16) and (5.17), we complete the proof of Lemma 5.2. Lemma
5.2 is proved. 2

Next lemma will be a consequence of Lemma 5.2 and the second Carleman
inequality (see (6.12)).

Lemma 5.3 Suppose that the function u satisfies conditions (5.1), (5.2),
(5.4), and (5.5). There exists a number γ1(c1, c?) ∈]0, γ/2] such that

u(x, t) = 0 (5.18)

for all x ∈ Rn
+ and for all t ∈]0, γ1[.
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Proof As usual, by Lemma 5.2 and by the regularity theory, we may assume

|u(x, t)|+ |∇u(x, t)| ≤ c9(c1, A)e8A|x′|2e−β
x2

n
2t (5.19)

for all x ∈ Rn
+ + 3en and for all t ∈]0, γ/2].

By scaling, we define function v(y, s) = u(λy, λ2s − γ1) for (y, s) ∈ Q+

with λ =
√

2γ1. This function satisfies the relations:

|∂sv + ∆v| ≤ c1λ(|∇v|+ |v|) a.e. in Q+; (5.20)

v(y, s) = 0 (5.21)

for all y ∈ Rn
+ and for all s ∈]0, 1/2[;

|∇v(y, s)|+ |v(y, s)| ≤ c9e
8Aλ2|y′|2e

− βλ2y2
n

2(λ2s−γ1) ≤ c9e
8Aλ2|y′|2e−β

y2
n

2s (5.22)

for all 1/2 < s < 1 and for all y ∈ Rn
+ + 3

λ
en. Since A < 1/32 and λ ≤ √

γ ≤
1/
√

12, (5.22) can be reduced to the form

|∇v(y, s)|+ |v(y, s)| ≤ c11e
|y′|2
48 e−β

y2
n

2s (5.23)

for the same y and s as in (5.22).
Let us fix two smooth cut-off functions:

ψ1(yn) =

{
0 yn < 3

λ
+ 1

1 yn > 3
λ

+ 3
2

,

and

ψ2(r) =

{
1 r > −1/2
0 r < −3/4

.

We set (see Proposition 6.2 for the definition of φ(1) and φ(2))

φB(yn, s) =
1

a
φ(2)(yn, s)−B = (1− s)

y2α
n

sα
−B,

where α ∈]1/2, 1[ is fixed, B = 2
a
φ(2)( 3

λ
+ 2, 1/2), and

η(yn, s) = ψ1(yn)ψ2(φB(yn, s)/B), w(y, s) = η(yn, s)v(y, s).
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Although function w is not compactly supported in Q1
+ = (R3

+ + en)×]0, 1[,
but, by the statement of Lemma 5.2 and by the special structure of the weight
in (6.12), we can claim validity of (6.12) for w. As a result, we have

∫

Q1
+

s2e2φ(1)

e2aφB(|w|2 + |∇w|2) dyds

≤ c?

∫

Q1
+

s2e2φ(1)

e2aφB |∂sw + ∆w|2 dyds.

Arguing as in the proof of Lemma 5.2, we can select γ1(c1, c?) so small that

I ≡
∫

Q1
+

s2e2aφB(|w|2 + |∇w|2)e− |y
′|2
4s dyds

≤ c10(c1, c?)

∫

(Rn
++( 3

λ
+1)en)×]1/2,1[

χ(yn, s)(syn)2e2aφB(|v|2 + |∇v|2)e− |y
′|2
4s dyds,

where χ(yn, s) = 1 if (yn, s) ∈ ω, χ(yn, s) = 0 if (yn, s) /∈ ω, and

ω ≡ {(yn, s) ‖ yn > 1, 1/2 < s < 1, φB(yn, s) < −D/2},
where D = −2φB( 3

λ
+ 3

2
, 1

2
) > 0. Now, we wish to estimate the right hand

side of the last inequality with the help of (5.23). We find

I ≤ c11e
−Da

+∞∫

3
λ
+1

1∫

1/2

(yns)
2e−β

y2
n
s dynds

∫

Rn−1

e( 1
24
− 1

4s
)|y′|2 dy′.

Passing to the limit as a → +∞, we see that v(y, s) = 0 if 1/2 ≤ s < 1
and φB(yn, s) > 0. Using unique continuation through spatial boundaries,
see Section 4, we show that v(y, s) = 0 if y ∈ Rn

+ and 0 < s < 1. Lemma 5.3
is proved. 2

Now, Theorem 5.1 follows from Lemmas 5.2 and 5.3 with the help of more
or less standard arguments. We shall demonstrate them just for complete-
ness.

Lemma 5.4 Suppose that the function u meets all conditions of Lemma 5.3.
Then u ≡ 0 in Q+.
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Proof By Lemma 5.3, u(x, t) = 0 for x ∈ Rn
+ and for t ∈]0, γ1[. By scaling,

we introduce the function u(1)(y, s) = u(
√

1− γ1y, (1− γ1)s + γ1). It easy to
check that function u(1) is well-defined in Q+ and satisfies all conditions of
Lemma 5.3 with the same constants c1 and A. Therefore, u(1)(y, s) = 0 for
yn > 0 and for 0 < s < γ1. The latter means that u(x, t) = 0 for xn > 0 and
for 0 < t < γ2 = γ1 + (1− γ1)γ1. Then, we introduce the function

u(2)(y, s) = u(
√

1− γ2y, (1− γ2)s + γ2), (y, s) ∈ Q+,

and apply Lemma 5.3. After k steps we shall see that u(x, t) = 0 for xn > 0
and for 0 < t < γk+1, where γk+1 = γk + (1 − γk)γ1 → 1. Lemma 5.4 is
proved. 2

Proof of Theorem 5.1 Assume that A0 < M . Then λ2 ≡ A0

2M
<

1
2
. Introducing function v(y, s) = u(λy, λ2s), (y, s) ∈ Q+, we see that this

function satisfies all conditions of Lemma 5.4 with constants c1 and A = 1
2
A0.

Therefore, u(x, t) = 0 for xn > 0 and for 0 < t < A0

2M
. Now, we repeat

arguments of Lemma 5.4, replacing γ1 to A0

2M
and A to M , and end up with

the proof of the theorem. Theorem 5.1 is proved. 2

6 Carleman-Type Inequalities

The first Carleman-type inequality is essentially the same as the one used in
[5] and [6] (see also [3], [8], and [46]).

Proposition 6.1 For any function u ∈ C∞
0 (Rn×]0, 2[;Rn) and for any pos-

itive number a, the following inequality is valid:

∫
Rn×]0,2[

h−2a(t)e−
|x|2
4t

(
a
t
|u|2 + |∇u|2

)
dxdt

≤ c0

∫
Rn×]0,2[

h−2a(t)e−
|x|2
4t |∂tu + ∆u|2 dxdt.

(6.1)

Here, c0 is an absolute positive constant and h(t) = te
1−t
3 .

Proof of Proposition 6.1 Our proof follows standard techniques used
in the L2-theory of Carleman inequalities, see for example [13] and [46].
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Let u be an arbitrary function from C∞
0 (Rn×]0, 2[;Rn). We set φ(x, t) =

− |x|2
8t
− (a + 1) ln h(t) and v = eφu. Then, we have

Lv ≡ eφ(∂tu + ∆u) = ∂tv − div(v ⊗∇φ)−∇v∇φ + ∆v + (|∇φ|2 − ∂tφ)v.

The main trick in the above approach is the decomposition of operator tL
into symmetric and skew symmetric parts, i.e.,

tL = S + A, (6.2)

where

Sv ≡ t(∆v + (|∇φ|2 − ∂tφ)v)− 1

2
v (6.3)

and

Av ≡ 1

2
(∂t(tv) + t∂tv)− t(div(v ⊗∇φ) +∇v∇φ). (6.4)

Obviously,

∫
t2e2φ|∂tu + ∆u|2 dxdt =

∫
t2|Lv|2 dxdt

=
∫ |Sv|2 dxdt +

∫ |Av|2 dxdt +
∫

[S, A]v · v dxdt,
(6.5)

where [S, A] = SA−AS is the commutator of S and A. Simple calculations
show that

I ≡ ∫
[S, A]v · v dxdt =

= 4
∫

t2
[
φ,ijv,i · v,j + φ,ijφ,iφ,j|v|2

]
dxdt

+
∫

t2|v|2(∂2
t φ− 2∂t|∇φ|2 −∆2φ) dxdt

+
∫

t|∇v|2 dxdt− ∫
t|v|2(|∇φ|2 − ∂tφ) dxdt.

(6.6)

Here and in what follows, we adopt the convention on summation over re-
peated Latin indices, running from 1 to n. Partial derivatives in spatial
variables are denoted by comma in lower indices, i.e., v,i = ∂v

∂xi
, ∇v = (vi,j),

etc. Given choice of function φ, we have

I = (a + 1)

∫
t2

[
−

(h′(t)
h(t)

)′
− h′(t))

th(t)

]
|v|2 dxdt =

a + 1

3

∫
t|v|2 dxdt. (6.7)
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By the simple identity

|∇v|2 =
1

2
(∂t + ∆)|v|2 − v · (∂tv + ∆v), (6.8)

we find ∫
t2|∇v|2 dxdt = − ∫

t|v|2 dxdt− ∫
t2v · Lv dxdt

+
∫

t2|v|2(|∇φ|2 − ∂tφ) dxdt.
(6.9)

In our case,

|∇φ|2 − ∂tφ = −|∇φ|2 + (a + 1)
h′(t)
h(t)

.

The latter relation (together with (6.7)) implies the bound

∫
t2(|∇v|2 + |v|2|∇φ|2) dxdt

≤ 3I − ∫
t2v · Lv dxdt ≤ b1

∫
t2|Lv|2 dxdt,

(6.10)

where b1 is an absolute positive constant. Since

eφ|∇u| ≤ |∇v|+ |v||∇φ|, (6.11)

it follows from (6.5)–(6.10) that

∫
h−2a(t)(th−1(t))2

(
(a + 1)

|u|2
t

+ |∇u|2
)
e−

|x|2
4t dxdt

≤ b2

∫
h−2a(t)(th−1(t))2|∂tu + ∆u|2e− |x|

2

4t dxdt.

Here, b2 is an absolute positive constant. Inequality (6.1) is proved. 2

The second Carleman-type inequality is, in a sense, an anisotropic one.

Proposition 6.2 Let
φ = φ(1) + φ(2),

where φ(1)(x, t) = − |x′|2
8t

and φ(2)(x, t) = a(1 − t)x2α
n

tα
, x′ = (x1, x2, ..., xn−1)

so that x = (x′, xn), and en = (0, 0, ..., 0, 1). Then, for any function u ∈

38



C∞
0 ((Rn

+ + en)×]0, 1[;Rn) and for any number a > a0(α), the following in-
equality is valid:

∫
(Rn

++en)×]0,1[

t2e2φ(x,t)
(
a |u|

2

t2
+ |∇u|2

t

)
dxdt

≤ c?

∫
(Rn

++en)×]0,1[

t2e2φ(x,t)|∂tu + ∆u|2 dxdt.

(6.12)

Here, c? = c?(α) is a positive constant and α ∈]1/2, 1[ is fixed.

Proof Let u ∈ C∞
0 (Q1

+;Rn). We are going to use formulae (6.2)–(6.6) for
new functions u, v, and φ. All integrals in those formulae are taken now over
Q1

+.
First, we observe that

∇φ = ∇φ(1) +∇φ(2)

∇φ(1)(x, t) = −x′
4t

, ∇φ(2)(x, t) = 2αa1−t
tα

x2α−1
n en.

(6.13)

Therefore,

∇φ(1) · ∇φ(2) = 0, |∇φ|2 = |∇φ(1)|2 + |∇φ(2)|2. (6.14)

Moreover,

∇2φ = ∇2φ(1) +∇2φ(2),

φ
(1)
,ij =




− δij

4t
if 1 ≤ i, j ≤ n− 1

0 if i = n or j = n

,

φ
(2)
,ij =





0 if i 6= n or j 6= n

2α(2α− 1)a1−t
tα

x2α−2
n if i = n and j = n

.

(6.15)

In particular, (6.15) implies

φ,ijφ,iφ,j = − 1
4t
|∇φ(1)|2 + 2α(2α− 1)a1−t

tα
x2α−2

n |∇φ(2)|2 ≥ − 1
4t
|x′|2
16t3

. (6.16)
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Using (6.14)–(6.16), we present integral I in (6.6) in the following way:

I = I1 + I2 +

∫
t|∇v|2 dxdt, (6.17)

where
Is = 4

∫
t2

[
φ

(s)
,ij v,i · v,j + φ

(s)
,ij φ

(s)
,i φ

(s)
,j |v|2

]
dxdt

+
∫

t2|v|2
(
∂2

t φ
(s) − 2∂t|∇φ(s)|2 −∆2φ(s)

−1
t
|∇φ(s)|2 + 1

t
∂tφ

(s)
)

dxdt, s = 1, 2.

Direct calculations give us

I1 = −
∫

t(|∇v|2 − |v,n|2) dxdt

and, therefore,

I =

∫
t|v,n|2 dxdt + I2. (6.18)

Now, our aim is to estimate I2 from below. Since α ∈]1/2, 1[, we can skip
the fist integral in the expression for I2. As a result, we have

I2 ≥
∫

t2|v|2(A1 + A2 + A3) dxdt, (6.19)

where
A1 = −∂t|∇φ(2)|2,

A2 = A1 −∆2φ(2) − 1

t
|∇φ(2)|2,

A3 = ∂2
t φ

(2) +
1

t
∂tφ

(2).

For A2, we find

A2 ≥ 1− t

tα
x2α−4

n a(2α− 1)
[4α2ax2α+2

n

tα+1
− 2α(2α− 2)(2α− 3)

]
.

Since xn ≥ 1 and 0 < t < 1, we see that A2 > 0 for all a ≥ 2. Hence, it
follows from (6.18) and (6.19) that

I ≥
∫

t2|v|2(A1 + A3) dxdt. (6.20)
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It is not difficult to check the following inequality

A3 ≥ a(2α− 1)
x2α

n

tα+2
. (6.21)

On the other hand,

−∂t|∇φ(2)|2 − 1

t
|∇φ(2)|2 ≥ (2α− 1)

1− t

t2α+1
4α2a2x2(2α−1)

n ≥ 0

and thus

A1 ≥ 1

t
|∇φ(2)|2. (6.22)

Combining (6.20)–(6.22), we deduce from (6.5) the estimate

∫
t2|Lv|2 dxdt ≥ I

≥ a(2α− 1)
∫ x2α

n

tα
|v|2 dxdt +

∫
t|v|2|∇φ(2)|2 dxdt

≥ a(2α− 1)
∫ |v|2 dxdt +

∫
t|v|2|∇φ(2)|2 dxdt.

(6.23)

Using (6.8), we can find the following analog of (6.9)

∫
t|∇v|2 dxdt = −1

2

∫ |v|2 dxdt− ∫
tv · Lv dxdt

+
∫

t|v|2(|∇φ|2 − ∂tφ) dxdt.
(6.24)

Due to special structure of φ, we have

|∇φ|2 − ∂tφ = |∇φ(1)|2 − ∂tφ
(1) + |∇φ(2)|2 − ∂tφ

(2)

= −|∇φ(1)|2 + |∇φ(2)|2 − ∂tφ
(2)

and, therefore, (6.24) can be reduced to the form

∫ (
t|∇v|2 + t|v|2(|∇φ(1)|2 + |∇φ(2)|2)

)
dxdt

=
∫

t
(
|∇v|2 + |v|2|∇φ|2

)
dxdt = −1

2

∫ |v|2 dxdt

− ∫
tv · Lv dxdt + 2

∫
t|v|2|∇φ(2)|2 dxdt− ∫

t|v|2∂tφ
(2) dxdt.

(6.25)

41



But

−t∂tφ
(2) ≤ a

x2α
n

tα

and, by (6.11) and (6.25),

1
2

∫
te2φ|∇u|2 ≤ − ∫

v · (tLv) dxdt

+2
∫

t|v|2|∇φ(2)|2 dxdt + a
∫ x2α

n

tα
|v|2 dxdt.

(6.26)

The Cauchy-Scwartz inequality, (6.23), and (6.26) imply required inequality
(6.12). 2

7 Appendix

Heat Equation
We start with derivation of the known estimates for solutions to the Cauchy
problem for the heat equation. So, let us consider the following initial prob-
lem

∂tu−∆u = 0 in QT , (7.1)

u(·, 0) = a(·) in R3. (7.2)

Lemma 7.1 For solutions to problem (7.1) and (7.2), the following bounds
are valid:

‖u(·, t)‖s ≤ c1(s, s1)t
− 1

l ‖a‖s1 , t > 0, (7.3)

for s ≥ s1

‖u‖s,l,QT
≤ c1(s, s1)‖a‖s1 (7.4)

for s > s1. Here,
1

l
=

3

2

( 1

s1

− 1

s

)
. (7.5)

Remark 7.2 Estimates (7.4) were proved in [18], Chapter 3, Theorem 9.1.

Proof We are not going to prove Lemma 7.1 in full generality. Our aim
is just to show how it can be done. First, we note that the solution to the
Cauchy problem has the form

u(·, t) = Γ(·, t) ∗ a(·), (7.6)
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where Γ is the fundamental solution to the heat operator, i.e.,

Γ(x, t) =
1

(4πt)
3
2





e−
|x|2
4t if t > 0

0 if t ≤ 0.

Then, (7.3) can be derived from (7.6) with the help of Hölder inequality and
scaling arguments.

Estimate (7.5) is a little bit more delicate and we prove it for the special
case s = 5 and s1 = 3. We may assume

a ∈ C∞
0 . (7.7)

Then, all further operations will be obviously legal. The required estimate
can be achieved by passing to the limit.

Multiplying (7.1) by |u|u and integrating by parts, we find

1
3
∂t‖u(·, t)‖3

3 +
∫
R3

|u(·, t)||∇u(·, t)|2 dx + 4
9
‖∇|u(·, t)| 32‖2

2 = 0. (7.8)

Setting g = |u| 32 , we observe that (7.8) implies the estimate

|g|22,QT
≡ ess sup

0<t<T
‖g(·, t)‖2

2 + ‖∇g‖2
2,QT

≤ c2‖a‖3
3, (7.9)

where c2 is an absolute positive constant. Now, by the multiplicative inequal-
ity (see [18]),

‖g(·, t)‖ 10
3
≤ c′2‖g(·, t)‖

2
5
2 ‖∇g(·, t)‖

3
5
2 (7.10)

and, therefore,

‖u‖5,QT
= ‖g‖

2
3
10
3

,QT
≤ c′′2‖a‖3

for some absolute positive constant c′′2. Lemma 7.1 is proved. 2

Stokes System
Simple arguments of the previous subsection also work in the case of the

Cauchy problem for the Stokes system:

∂tu−∆u = divf −∇q
divu = 0

}
in QT , (7.11)

u(·, 0) = a(·) in R3. (7.12)
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Theorem 7.3 Assume that

f ∈ L 5
2
(QT ) ∩ L2(QT ) (7.13)

and
a ∈ L3 ∩

◦
J. (7.14)

For any T > 0, there exists a pair of functions u and q with the following
properties:

u ∈ C([0, T ]; L2) ∩ L2(0, T ;
◦
J

1
2), ∂tu ∈ L2(0, T ; (

◦
J

1
2)
′); (7.15)

u ∈ C([0, T ]; L3) ∩ L5(QT ) ∩ L4(QT ); (7.16)

q ∈ L2(QT ) ∩ L 5
2
(QT ); (7.17)

u and q satisfy equations (7.11) in the sense of distributions; (7.18)

initial condition holds in the sense ‖u(·, t)− a(·)‖3 → 0 as t → 0; (7.19)

‖u‖3,∞,QT
+ ‖u‖5,QT

≤ c3(‖f‖ 5
2
,QT

+ ‖a‖3); (7.20)

‖u‖4,QT
≤ c3(‖f‖ 5

2
,QT

+ ‖a‖3 + ‖f‖2,QT
+ ‖a‖2), (7.21)

where c3 is an absolute positive constant.

Proof As usual, we can assume that, in addition,

f ∈ C∞
0 (QT ), a ∈ C∞

0 (R3).

The general case is treated with the help of suitable approximations.
L2-estimates are obvious:

‖u‖2,∞,QT
+ ‖∇u‖2,QT

+ ‖∂tu‖
L2(0,T ;(

◦
J1

2)′)
≤ C(‖a‖2 + ‖f‖2). (7.22)

Here, C is an absolute positive constant.
Next, taking divergence of the first equation in (7.11), we find the equation

for the pressure
∆q = div divf.

Therefore, (7.17) is proved and, moreover,

‖q‖ 5
2
≤ C0‖f‖ 5

2
. (7.23)
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As in the proof of Lemma 7.1, we test our equation with |u|u and, making
use of Hölder inequality, arrive at the estimate

1
3
∂t‖u‖3

3 +
∫
R3

|u||∇u|2 dx + 4
9

∫
R3

|∇v|2 dx =
∫
R3

(p div(|u|u)

−f : ∇(|u|u)) dx ≤ C1

( ∫
R3

(|f |2 + |q|2)|u| dx
) 1

2
( ∫
R3

|u||∇u|2 dx
) 1

2

≤ (see (7.23)) ≤ C1

( ∫
R3

|u||∇u|2 dx
) 1

2‖v‖
1
3
10
3

‖f‖ 5
2
≡ A,

(7.24)

where v = |u| 32 . The right hand side in (7.24) can be evaluated with the help
of the multiplicative inequality (see (7.10)) in the following way:

A ≤ C2

( ∫

R3

|u||∇u|2 dx
) 1

2
(‖v‖

1
3
2 )

2
5 (‖∇v‖

1
3
2 )

3
5‖f‖ 5

2
.

Applying Young’s inequality twice and the identity ‖v‖2
2 = ‖u‖3

3, we find
from (7.24) and from the last bound the basic estimate

∂t‖u‖3
3 +

∫
R3

|u||∇u|2 dx +
∫
R3

|∇v|2 dx ≤ C3‖u‖
1
2
3 ‖f‖

5
2
5
2

. (7.25)

Obviously, (7.25) implies the inequality

‖u‖3,∞,QT
≤ C4(‖f‖ 5

2
,QT

+ ‖a‖3), (7.26)

where C4 is an absolute positive constant. Then, by (7.25) and by (7.26),

∫

QT

(|u||∇u|2 + |∇v|2) dxdt ≤ C5(‖f‖ 5
2
,QT

+ ‖a‖3)
3

and thus (see (7.10))

‖u‖5,QT
≤ C6‖u‖

2
5
3,∞,QT

‖∇v‖
2
5
2,QT

≤ C ′
6(‖f‖ 5

2
,QT

+ ‖a‖3),

where C ′
6 is an absolute positive constant.
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On the other hand, another multiplicative inequality says that

‖u‖4,QT
≤ C7‖u‖

3
4
3,∞,QT

‖∇u‖
1
4
2,QT

≤ C ′
7(‖u‖3,∞,QT

+ ‖∇u‖2,QT
).

So, (7.20) and (7.21) are proved.
It remains to show that

u ∈ C([0, T ]; L3). (7.27)

To do this, let us go back to the first identity in (7.24). It gives us:

T∫

0

∣∣∣∂t‖u‖3
3

∣∣∣ dt ≤ C8

[
‖f‖2

5
2
,QT
‖u‖5,QT

+

∫

QT

(|u||∇u|2 + |∇v|2) dxdt
]
.

Hence, we can claim that the function t 7→ ‖u(·, t)‖3 is continuous. But, by
known arguments, the function t 7→ ∫

R3

u(x, t) ·w(x) dx is continuous on [0, T ]

for all w ∈ L 3
2
. These two facts imply (7.27). Theorem 7.3 is proved. 2

Navier-Stokes System
Here, we are going to consider the Cauchy problem for the Navier-Stokes

equations:
∂tu + divu⊗ u−∆u = −∇q

divu = 0

}
in QT , (7.28)

u(·, 0) = a(·) in R3. (7.29)

The following statement is due to T. Kato [21].

Theorem 7.4 Assume that condition (7.14) holds. Then, a positive number
T?, depending on a only, exists and possesses the following property. There
exists a unique pair of functions u and q such that:

u ∈ C([0, T?]; L2) ∩ L2(0, T?;
◦
J

1
2), ∂tu ∈ L2(0, T?; (

◦
J

1
2)
′); (7.30)

u ∈ C([0, T?]; L3) ∩ L5(QT?) ∩ L4(QT?); (7.31)

q ∈ C([0, T?]; L 3
2
) ∩ L2(QT?) ∩ L 5

2
(QT?); (7.32)

u and q meet equations (7.28) in the sense of distributions; (7.33)

initial condition holds in the sense ‖u(·, t)− a(·)‖3 → 0 as t → 0. (7.34)
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Proof The proof is more or less standard (see, for instance, [9] and [23])
and based on successive iterations. We let

u1(·, t) = Γ(·, t) ∗ a(·), t > 0,

κ(T?) = ‖u1‖5,QT?
+ ‖u1‖4,QT?

(7.35)

and
uk+1 = w + u1,

where w is a solution to the following Cauchy problem:

∂tw −∆w = −divuk ⊗ uk −∇qk

divw = 0

}
in QT? , (7.36)

w(·, 0) = 0 in R3. (7.37)

We also let
f = −uk ⊗ uk.

According to Theorem 7.3, we have the estimate (see (7.20) and (7.21))

‖uk+1 − u1‖5,QT?
+ ‖uk+1 − u1‖4,QT?

≤ 2c3(‖uk‖5,QT?
+ ‖uk‖4,QT?

)2.

It can be rewritten in the form

‖uk+1‖5,QT?
+ ‖uk+1‖4,QT?

≤ 2c3(‖uk‖5,QT?
+ ‖uk‖4,QT?

)2

+‖u1‖5,QT?
+ ‖u1‖4,QT?

.
(7.38)

Now, our aim is to show that a number T? can be chosen to fulfill the
following conditions:

‖uk+1‖5,QT?
+ ‖uk+1‖4,QT?

≤ 2κ(T?) (7.39)

for k = 1, 2, .... We argue by induction on k. Then, (7.38) and (7.39) give
us:

‖uk+1‖5,QT?
+ ‖uk+1‖4,QT?

≤ 8c3κ
2(T?) + κ(T?) = κ(T?)(8c3κ(T?) + 1).

Obviously, inequalities (7.39) are valid if we choose T? so that

κ(T?) <
1

8c3

. (7.40)
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To show that this can be done, we introduce

aρ = ωρ ∗ a,

where ωρ is the usual smoothing kernel. We let u1
ρ(·, t) = Γ(·, t) ∗ aρ(·) and

then
κ(T?) ≤ I1

ρ + I2
ρ , (7.41)

where

I1
ρ = ‖u1

ρ‖5,QT?
+ ‖u1

ρ‖4,QT?
, I2

ρ = ‖u1 − u1
ρ‖5,QT?

+ ‖u1 − u1
ρ‖4,QT?

.

Certainly, Theorem 7.3 is valid for the heat equation as well. Therefore,

I2
ρ ≤ C9(‖a− aρ‖3 + ‖a− aρ‖2),

where C9 is an absolute constant. We fix ρ > 0 in such a way that

C9(‖a− aρ‖3 + ‖a− aρ‖2) <
1

16c3

. (7.42)

To estimate I1
ρ , we apply Lemma 7.1. So, we have

‖u1
ρ(·, t)‖5 ≤ c1t

− 3
40‖aρ‖4, ‖u1

ρ(·, t)‖4 ≤ c1t
− 3

40‖aρ‖3

and thus

‖u1
ρ‖5,QT?

≤ C10T
β1
? ‖aρ‖4, ‖u1

ρ‖4,QT?
≤ C10T

β2
? ‖aρ‖3

for some positive absolute constants C10, β1, and β2. It remains to choose
T? > 0 so that

C10(T
β1
? ‖aρ‖4 + T β2

? ‖aρ‖3) <
1

16c3

. (7.43)

Combining (7.41)–(7.43), we prove (7.40). Then, passing to the limit as
k → +∞, we establish all statements of Theorem 7.4, except continuity of u
in t with values in L3 and continuity of q in t with values in L 3

2
. Continuity of

u immediately follows from Theorem 7.3 and observation that f = −u⊗u ∈
L 5

2
(QT?). Continuity of q is a consequence of the pressure equation

∆q = −div div u⊗ u.

Theorem 7.4 is proved. 2

Remark 7.5 It is easy to check that the function u of Theorem 7.4 is in fact
the weak Leray-Hopf solution. Since it belongs to L5(QT?), any other weak
solution coincide with u (see Theorem 1.2).
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