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Abstract We prove two sufficient conditions for local reqularity of suitable
weak solutions to the three-dimensional Navier-Stokes equations. One of them
implies smoothness of L3 «-solutions as a particular case.

1 Introduction

In this paper, we address to local properties of weak solutions to the Navier-
Stokes equations. To be precise, let us consider the Navier-Stokes equations,
describing the motion of a viscous incompressible fluid in @), i.e.:

ov+divi®@v—Av=-Vp .
divo =0 } Q.

Here, Q = Bx] — 1,0[ is the unit space-time cylinder. The question is under
what conditions the point z = 0 is a regular point of v. The latter means
that there exists a nonempty neighborhood of the origin such that v is Holder
continuous in the intersection of this neighborhood and the closure of Q).

Our first assumption on the velocity v and the pressure p is that they
form the so-called suitable weak solution to the Navier-Stokes equations in
. The definition of it is as follows.

Definition 1.1 Let w be a open set in R3. We say that a pair u and q is a
suitable weak solution to the Navier-Stokes equations on the set wx|— Ty, T|



if it satisfies the conditions:

U € Loy oo(wx] — Ty, T)) N Ly(=Ty, T; Wy (w)); (1.1)
qEL%(wx] - T, T)); (1.2)
u and q satisfy the Navier-Stokes equations (1.3)
in the sense of distributions; ’
u and q satisfy the local energy inequality )
[o(@ u(@ t)Pde+2 [ |Vul? dedt
w wx]—T1 ] (1.4)

< [ (JuP(Ap + ) +u- V(lul? + 2q)) dedt!

wX]=T1,t[

Vs
for a.a. t € — Ty, T[ and for all nonnegative functions ¢ € C§°(R? x RY),
vanishing in a neighborhood of the parabolic boundary 0'Q = w x {t = =T, }U
Ow X [—Tl,T] Of Q

For discussions about the notion of suitable weak solutions, we refer the
reader to papers [8], [1], [7], [6], [10], [11], and [5].

For the reader convenience, we first formulate known results from the the
so-called e-regularity theory of suitable weak solutions. Explanations and
proofs of the them can be found in the above cited papers.

Lemma 1.2 Consider two functions v and p defined in the space-time cylin-
der Q(z0, R) = B(zg, R)x|to — R? to[, where B(xo, R) C R? stands for the
ball of radius R with the center at the point xy. Assume that v and p form
a suitable weak solution to the Navier-Stokes equations in Q(zo, R). There
exists a universal positive constant € such that if

1
2 / <|v|3 + |p|%> dz < g, (1.5)
Q(20,R)

then, for any k = 0,1, ..., the function z — V*v(z) is Hélder continuous in
the closure of the set Q(z9, R/2) and, moreover,

sup  |VFu(2)| < CoR*F! (1.6)
zGQ(zo,R/2)

for some universal positive constant CY,.
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Lemma 1.3 Assume that v and p form a suitable weak solution to the
Navier-Stokes equations in Q(zo, R). There exists an absolute positive con-
stant €y such that if
1
sup — / v dz < e, (1.7)

0<r<RT
Q(Z()vr)

then there exists a nonempty neighborhood O,, of the point zy such that the
function z — v(z) is Holder continuous in O,, N Q(29, R).

One of the goals of our paper is somehow to weaken condition (1.7).
It might seem that it would be enough to replace this condition with just
boundedness of the left hand in (1.7). But we cannot prove that. Our result
in this direction is as follows.

Theorem 1.4 Let v and p be a suitable weak solution to the Navier-Stokes
equations in @ = Q(0,1). Suppose that v satisfies the condition:

1
My = sup —; [v]* dz < +oo0. (1.8)
0<R<1 R
Q(R)
Here, Q(R) = B(R)x]| — R?,0[ so that Q(1) = Q.
Assume that there exist numbers By > ag > 1, Ty > 1, and py > 0 such
that the following two conditions hold:

1
lim sup s / (o 4 pl}) dz <2, Vaed  (19)
polt

R—0
Q(RZ*,poR)
where
Ag={z=(2,0) || 2] = a0, —Tp <t <0},
for each x, € By, thereis p; = pi(zy) >0 such that
1
lim sup — / v(z,0)*dx =0, 1.10
nsup o(a,0) (1.10)
B(Rz4,p1 R)
where

B()E{[L'ERS ” Tn zﬂg}

Then the function v is Hélder continuous in the closure of the set Q(r) for
some r > 0.



However, because of condition (1.9), Theorem 1.4 still looks like another
statement of the e-regularity theory.

Our next result includes smoothness of local L «-solutions proved in [12],
2], [3], and [5] as a particular case.

Theorem 1.5 Let v and p be a suitable weak solution to the Navier-Stokes
equations in Q). Suppose that v satisfies the condition

1
My= sup sup —- / lv|* dz < +o0. (1.11)
20€q(1/2) 0<R<1/a R
Q(z0,R)

Assume also that there are numbers By > 1 and T > 3 such that condition
(1.10) holds and

a——+00 R—0

0
1
My = lim sup lim sup o3 / / lv|? dz < +oo0. (1.12)
)

—T1R?2 B(Ra

Then the function v is Hélder continuous in the closure of the set Q(r) for
some r > 0.

2 Auxiliary Results
We start with a lemma on a kind of decay estimate for the pressure p.

Lemma 2.1 We let
1 1 3
C(r) = . / v dz, D(r) = 3 / Ip|2 dz.
Q(r) Q(r)

Assume that v and p form a suitable weak solutions to the Navier-Stokes
equations and satisfy condition (1.8). Then, for each a €]0,1], a constant
c1 = c1(«) exists such that

D(r) < cl{TO‘D(l) + MO} (2.1)

for any r €]0,1]. Here, My is the constant in (1.8).



PROOF. In [9], the following estimate was established

D) < eof (5) Do) + (£) )} (2:2)

r

which is valid for all 0 < r < p <1 and for some universal constant c.
Fix a €]0, 1] and choose 7 = 7(«) €]0, 1] so that

cr! T < 1 (2.3)
By (1.8), (2.2), and (2.3), we have
C
D(rp) < 7°D(p) + 5C(p) < 7°D(p) + My

for any p €]0,1]. We may iterate the latter estimate. As a result, we find

1
1—712

D(*) < +*D(1) + 2 M, (2.4)
T

for any k = 1,2, .... Required estimate (2.1) can be easily deduced from (2.4).
Lemma 2.1 is proved.
Now, we are in a position to prove the main blow-up lemma.

Lemma 2.2 Assume that v and p form a suitable weak solutions to the
Navier-Stokes equations and satisfy condition (1.8). Assume that z = 0
1 a singular point of v. There exists a pair of functions u and q defined on
Q_ = R3x] — 00, 0[ with the following properties. For any a > 0, they form
a suitable weak solution to the Navier-Stokes equations in Q(a). In addition,

u € C([~a’,0]; Ly(B(a))) (2.5)

for any a > 0 and for any 5 € [1,2],

/ lul*dz > ey > 0, (2.6)
QM)

where g is the constant of Lemma 1.3,

1 3 : 1 3
5 [ Pl <timow [ (P e @)

Q(z+,p) Q(Rzx,pR)




for any z, € Q_ and for any p > 0, and

1 5 3 : 1 5 o\ 2
(W / |u(z,0)|4 dx) <cs hr}rgl_sgp <p_R / |v(z,0)] dz> (2.8)
B(I*,p) B(Rx*va)
for any x, € R3, for any p > 0, and for some universal positive constant cz.
PROOF By Lemma 2.1 and condition (1.8), we show that

1 3
i / (Ivl3 + \pP) dz < My < 400 (2.9)
Q(R)
for any R €0, 1].
Since the origin is a singular point, there exists a sequence { Ry > 0},
tending to zero as k — 400, such that (see Lemma 1.3)

1
= / [v]>dz > g9 > 0 (2.10)
kQ(Rk)

forany k =1,2,....
We extend v and p to zero outside () and denote these extensions by v
and p. For any e = (y,s) € R3 x R!, we let

u"(y,s) = Ryv(Ryy, Ris),  ¢"(y,s) = Rip(Ryy, Ri.s).

We can state that the pair «* and ¢* is a suitable weak solution to the Navier-
Stokes equations in the cylinder Q(1/Ry). In particular, it satisfies the local
energy inequality:

/ ¢(ya S)|uk(ya S)|2 dy+2 / ¢|Vuk|2dyds’ S

B(1/Rx) B(1/Rg)x]=1/R,s|
< / ([ [2(00 + A0) + b - Vo([ub? + 2¢5)| dyds’ (2.1

B(1/Rk)x]—1/R3,s

for a.a. s €] —1/R%,0[ and for all non-negative functions ¢ € C5°(R3*!) van-
ishing in a neighborhood of the parabolic boundary of the cylinder Q(1/Ry).
Moreover, by our scaling, we have

1 1
o B R e B (iR 70 KSR EAE)
Qa) " QR
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if aRj, < 1. Thanks to (2.11), (2.12) and the known multiplicative inequality,
we may find subsequences of u* and ¢* still denoted in the same way such
that, for any a > 0,

uF ~u  in L3(Q(a)),

¢ —q in Ls(Q(a)),

Vub =~ Vu in Ly(Q(a)),
uF Sy in  Loo(Q(a)),
ub — in L%O(Q(a))'

To evaluate the derivative of v in t, we use the Navier-Stokes equations
written in the following form:

- / ub - O,w dyds = / [(uk @ u" — VuF): Vw + ¢"divw| dyds
Q(a) Q(a)

for any w € L3(—a?, 0; Vf/é(B(a))) This gives us

ol

O’ = O in Ly(—a* 0; (W5(B(a))))
and thus, by compactness arguments,
ub —uin Ls(Qa)). (2.13)

Letting k — oo, we pass to the limit in the Navier-Stokes equations and the
local energy inequality and show that the pair of functions u and ¢, defined
on Q_ = R3x] — 00,0], is a suitable weak solution to the Navier-Stokes
equations in @(a) for any a > 0. This is a nontrivial solution since the limit
function satisfies (2.6).

We know that the convective term divu* ® u”* is bounded, for example,
in Ls (Q( )) for each Rra < 1. Using an appropriated choice of a cut-off
functlon the coercive estimates for Stokes system, multiplicative inequalities
and duality arguments, we can show that the following norms are bounded:

Hatukllg,Q(a), ||v2uk‘|%,Q(a)7 ||Vq H5,Q(a
for Rpa < 1. This implies that
Ty in  C([—a® 0]; Ls(B(a)))

5
1
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for any a > 0. Relation (2.5) can be obtained now by the interpolation.
Now, our goal is to prove (2.7) and (2.8). This is an easy task. Indeed,
by the scaling, we have the following two relations:

1 3 1 3
5 [ WP rlaha == [l e

02
k
Q(2x,p) Q(Rpzx,pRy)

for any z, € )_, and

4 4

(7L/4 / \Uk(x,0)|idx>5:(m / |U($,0)|3da;>5

p
0 B(x«,p0) B(Rgxx,p0Ry,)

1

Cg(Po%Rk / lv(x,0)]? dz)§

B(Rgzx,p0R)

IN

for any z, € R?® and for some universal positive constant c3. Taking the limit
as k — 400, we find (2.7) and (2.8). Lemma 2.2 is proved.

3 Proof of Theorem 1.4

We see that, by (1.9) and (2.7),
1

%
Q(Z* 7PO)

(Juf +|g|2)dz < &

for any z, € Ag. According to Lemma 1.2, we can state that, for any k =
0,1,2, ..., the function V*u is Holder continuous in the set

Q = (R?\ B(ao)) x [T, 0]

and, moreover,
sup(Ju(2)| + |V u(z)| < M (3.1)
zGQ

for some positive constant M. From (3.1) it follows that the vorticity w =
V A u satisfies the inequality

|0yw — Aw| < M(|w| + |Vw|) (3.2)
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at least in Q = (R? \ B(3ao))x] — L(Tp +1),0].

On the hand, condition (1.10) and inequality (2.8) say that u(-,0) = 0 in
By and, therefore, w(-,0) = 0 in By. By the backward uniqueness result (see
2] and [3]), we state that

w(z,t) =0, T, > Gy, —1<t<O.

The unique continuation through spatial boundaries implies (see, for exam-
ple, [3] and references there)

w=0 in (R*\B(B))x]—1,0[
The same arguments as in [12] and in [5] allows us to state that in fact
w=0 in R®x]—1,0].

In turn, this means that, for a.a t €] — 1,0, u(-,¢) is bounded harmonic
function defined in the whole R3. So, as a result, we have

u(z,t) = a(t), tel—1,0[
Here, the function a can be found by solving the Navier-Stokes equations
a/(t) =-V q(xa t)

and, therefore,
q(x,t) = —d'(t)xr + b(t).

/ |q|%dz < e

Q(2x,p0)
for all z, € Ay. Obviously, the last two relations are in a contradiction if
a’ # 0. So, we have proved that u is a constant in R3x] — 1,0[. But u is
a Holder continuous function far away from the origin and equal to zero for
T, > fp and t = 0. So, u is identically equal to zero in R*x| — 1,0[ which
contradicts with (2.6). Theorem 1.4 is proved.
It is curious that conditions (1.8) and (1.9) are fulfilled if

But we know that

e
S|

o(z, 8> + |p(z, t)|? <

C
|z| + /—t

for (z,t) € @ and for some constant c.
However, it is not clear whether L ..-solutions satisfy condition (1.9).
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4 Proof of Theorem 1.5

Our first observation is that Lemma 2.2 can be strengthened in the following
way.

Lemma 4.1 We let
C(ZO7T;U) = ﬁ |U‘ dZ, D(Zlbr;p) = ﬁ |p‘2 dz.
Q(zo0,7) Q(z20,7)

Assume that v and p form a suitable weak solutions to the Navier-Stokes
equations and satisfy condition (1.11). Then, for each o €]0,1[, a constant
¢, = d(«) exists such that

D(z,7;p) < c’l{ro‘D(l) + M(’)} (4.1)

for any r €]0,1/4] and for any zo € Q(1/2). Here, M} is the constant in
(1.11).

The proof is the same as the proof of Lemma 2.1.

Now, assume that z = 0 is a singular point. Since (1.8) holds, we can use
arguments of the proof of Lemma 2.2. First of all, we note that all statements
of Lemma 2.2 are valid for blow-up functions u and ¢ as well. Moreover, for
scaled functions u*, we have the identity

//Wdz_ / JRERE

*Tl B a) 7T1R2 B Rka)

for any a > 0. Thanks to (2.13), passage to the limit as k — 400 gives us:

//|u|3de§limsup 2/ /]v|3dz
k——+o0 R

—T1 B(a —T1R? B(Rya)
< hmsup / / [v|? dz.
R—0
7T1R2 B(Ra)
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It remains to pass to the limit as a — 400 and take into account condition
(1.12). As a result, we find

0

//|UI3de < M. (4.2)

_Tl R3

Now, we introduce the notation:

1 3
Bleor) = [ (uf +laff)de.

Q(eo,r)

For D(eqg,7;q), we have the decay estimate similar to (2.2)

Dieo,r:0) < ex{rDleo, 1:0) + (1) Cleo, 1)} (4.3

for all 0 < r < 1 and for some absolute constant c¢o. From (4.3), it follows
that

Bleo,r) < (14 e){rDieo. i)+ (5) Cleo 1w} (4)

for the same r as in (4.3).
Now, our goal is to show that

D(ep,1;q) < L < +o0, Veg € R¥x] — 00, 0], (4.5)

where a positive constant L depends on M{ and D(1) only. To this end, we
first observe that

D(eo, 1;q) < llim inf D(eg, 1; ¢"). (4.6)
——+00
On the other hand,
D(eo, 1;¢") = D(2*, Ri;p), 2" = (Riyo, Riso). (4.7)

For the definition of the scaled pressure ¢* and its properties, we refer the
reader to Lemma 2.2. For sufficiently large k, we have

Ryeo € Q(1/2), Ry, < 1/4.

Then, by Lemma 4.1,
D(z*, Ry;p) < c’l{RgD(l) + Mé} (4.8)
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Clearly, that (4.5) follows from (4.6)—(4.8).
Combining (4.4) and (4.5), we find

E(eg,m) < (1+ 02){7’L + (%)20(60, 1;u)} (4.9)

for any 0 < 7 < 1 and for any ¢y € R*x]| — 00,0]. Now, let & be the number
of Lemma 1.2. We may fix a positive number r €]0, 1] so that

(14 co)rL < e/3. (4.10)

For this fixed r, according (4.2), there exists a number R > 10 such that

0

/ / IUI?’deSg(f—f@). (4.11)

~T1 R3\B(R/2)

Obviously, (4.11) implies the estimate

(14 ¢o) <%>2C’(eo, Liu)<e/3

whenever ey € (R*\ B(R))x] — T1/2,0[ is. Combining the latter inequality
with (4.9) and (4.10), we show

E(ep,7) <€ (4.12)
for any ¢y € (R®\ B(R))x] — T1/2,0[. It remains to repeat arguments

of Theorem 1.4 and complete the proof by getting the same contradiction.
Theorem 1.5 is proved.
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