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Abstract We prove two sufficient conditions for local regularity of suitable
weak solutions to the three-dimensional Navier-Stokes equations. One of them
implies smoothness of L3,∞-solutions as a particular case.

1 Introduction

In this paper, we address to local properties of weak solutions to the Navier-
Stokes equations. To be precise, let us consider the Navier-Stokes equations,
describing the motion of a viscous incompressible fluid in Q, i.e.:

∂tv + div v ⊗ v −∆ v = −∇ p
div v = 0

}
in Q.

Here, Q = B×]− 1, 0[ is the unit space-time cylinder. The question is under
what conditions the point z = 0 is a regular point of v. The latter means
that there exists a nonempty neighborhood of the origin such that v is Hölder
continuous in the intersection of this neighborhood and the closure of Q.

Our first assumption on the velocity v and the pressure p is that they
form the so-called suitable weak solution to the Navier-Stokes equations in
Q. The definition of it is as follows.

Definition 1.1 Let ω be a open set in R3. We say that a pair u and q is a
suitable weak solution to the Navier-Stokes equations on the set ω×]− T1, T [
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if it satisfies the conditions:

u ∈ L2,∞(ω×]− T1, T [) ∩ L2(−T1, T ; W 1
2 (ω)); (1.1)

q ∈ L 3
2
(ω×]− T1, T [); (1.2)

u and q satisfy the Navier-Stokes equations
in the sense of distributions;

(1.3)

u and q satisfy the local energy inequality

∫
ω

ϕ(x, t)|u(x, t)|2 dx + 2
∫

ω×]−T1,t[

ϕ|∇u|2 dxdt′

≤ ∫
ω×]−T1,t[

(|u|2(∆ϕ + ∂tϕ) + u · ∇ϕ(|u|2 + 2q)) dxdt′





(1.4)

for a.a. t ∈] − T1, T [ and for all nonnegative functions ϕ ∈ C∞
0 (R3 × R1),

vanishing in a neighborhood of the parabolic boundary ∂′Q ≡ ω×{t = −T1}∪
∂ω × [−T1, T ] of Q.

For discussions about the notion of suitable weak solutions, we refer the
reader to papers [8], [1], [7], [6], [10], [11], and [5].

For the reader convenience, we first formulate known results from the the
so-called ε-regularity theory of suitable weak solutions. Explanations and
proofs of the them can be found in the above cited papers.

Lemma 1.2 Consider two functions v and p defined in the space-time cylin-
der Q(z0, R) = B(x0, R)×]t0 − R2, t0[, where B(x0, R) ⊂ R3 stands for the
ball of radius R with the center at the point x0. Assume that v and p form
a suitable weak solution to the Navier-Stokes equations in Q(z0, R). There
exists a universal positive constant ε such that if

1

R2

∫

Q(z0,R)

(
|v|3 + |p| 32

)
dz < ε, (1.5)

then, for any k = 0, 1, ..., the function z 7→ ∇kv(z) is Hölder continuous in
the closure of the set Q(z0, R/2) and, moreover,

sup
z∈Q(z0,R/2)

|∇kv(z)| < CkR
−k−1 (1.6)

for some universal positive constant Ck.
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Lemma 1.3 Assume that v and p form a suitable weak solution to the
Navier-Stokes equations in Q(z0, R). There exists an absolute positive con-
stant ε0 such that if

sup
0<r≤R

1

r2

∫

Q(z0,r)

|v|3 dz < ε0, (1.7)

then there exists a nonempty neighborhood Oz0 of the point z0 such that the
function z 7→ v(z) is Hölder continuous in Oz0 ∩Q(z0, R).

One of the goals of our paper is somehow to weaken condition (1.7).
It might seem that it would be enough to replace this condition with just
boundedness of the left hand in (1.7). But we cannot prove that. Our result
in this direction is as follows.

Theorem 1.4 Let v and p be a suitable weak solution to the Navier-Stokes
equations in Q ≡ Q(0, 1). Suppose that v satisfies the condition:

M0 ≡ sup
0<R<1

1

R2

∫

Q(R)

|v|3 dz < +∞. (1.8)

Here, Q(R) ≡ B(R)×]−R2, 0[ so that Q(1) = Q.
Assume that there exist numbers β0 ≥ α0 ≥ 1, T0 > 1, and ρ0 > 0 such

that the following two conditions hold:

lim sup
R→0

1

ρ2
0R

2

∫

Q(Rz?,ρ0R)

(
|v|3 + |p| 32

)
dz < ε, ∀z? ∈ A0, (1.9)

where
A0 ≡ {z = (x, t) ‖ |x| ≥ α0, −T0 ≤ t ≤ 0},

for each x? ∈ B0, there is ρ1 = ρ1(x?) > 0 such that

lim sup
R→0

1

ρ1R

∫

B(Rx?,ρ1R)

|v(x, 0)|2 dx = 0, (1.10)

where
B0 ≡ {x ∈ R3 ‖ xn ≥ β0}.

Then the function v is Hölder continuous in the closure of the set Q(r) for
some r > 0.
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However, because of condition (1.9), Theorem 1.4 still looks like another
statement of the ε-regularity theory.

Our next result includes smoothness of local L3,∞-solutions proved in [12],
[2], [3], and [5] as a particular case.

Theorem 1.5 Let v and p be a suitable weak solution to the Navier-Stokes
equations in Q. Suppose that v satisfies the condition

M ′
0 ≡ sup

z0∈Q(1/2)

sup
0<R≤1/4

1

R2

∫

Q(z0,R)

|v|3 dz < +∞. (1.11)

Assume also that there are numbers β0 ≥ 1 and T1 > 3 such that condition
(1.10) holds and

M2 ≡ lim sup
a→+∞

lim sup
R→0

1

R2

0∫

−T1R2

∫

B(Ra)

|v|3 dz < +∞. (1.12)

Then the function v is Hölder continuous in the closure of the set Q(r) for
some r > 0.

2 Auxiliary Results

We start with a lemma on a kind of decay estimate for the pressure p.

Lemma 2.1 We let

C(r) ≡ 1

r2

∫

Q(r)

|v|3 dz, D(r) ≡ 1

r2

∫

Q(r)

|p| 32 dz.

Assume that v and p form a suitable weak solutions to the Navier-Stokes
equations and satisfy condition (1.8). Then, for each α ∈]0, 1[, a constant
c1 = c1(α) exists such that

D(r) ≤ c1

{
rαD(1) + M0

}
(2.1)

for any r ∈]0, 1]. Here, M0 is the constant in (1.8).
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Proof. In [9], the following estimate was established

D(r) ≤ c2

{(r

ρ

)
D(ρ) +

(ρ

r

)2

C(ρ)
}

, (2.2)

which is valid for all 0 < r < ρ ≤ 1 and for some universal constant c2.
Fix α ∈]0, 1[ and choose τ = τ(α) ∈]0, 1[ so that

c2τ
1−α ≤ 1. (2.3)

By (1.8), (2.2), and (2.3), we have

D(τρ) ≤ ταD(ρ) +
c2

τ 2
C(ρ) ≤ ταD(ρ) +

c2

τ 2
M0

for any ρ ∈]0, 1]. We may iterate the latter estimate. As a result, we find

D(τ k) ≤ ταkD(1) +
c2

τ 2
M0

1

1− τα
(2.4)

for any k = 1, 2, .... Required estimate (2.1) can be easily deduced from (2.4).
Lemma 2.1 is proved.

Now, we are in a position to prove the main blow-up lemma.

Lemma 2.2 Assume that v and p form a suitable weak solutions to the
Navier-Stokes equations and satisfy condition (1.8). Assume that z = 0
is a singular point of v. There exists a pair of functions u and q defined on
Q− = R3×] −∞, 0[ with the following properties. For any a > 0, they form
a suitable weak solution to the Navier-Stokes equations in Q(a). In addition,

u ∈ C([−a2, 0]; Lβ(B(a))) (2.5)

for any a > 0 and for any β ∈ [1, 2[,

∫

Q(1)

|u|3 dz ≥ ε0 > 0, (2.6)

where ε0 is the constant of Lemma 1.3,

1

ρ2

∫

Q(z?,ρ)

(|u|3 + |q| 32 ) dz ≤ lim sup
R→0

1

ρ2R2

∫

Q(Rz?,ρR)

(|v|3 + |p| 32 ) dz (2.7)
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for any z? ∈ Q− and for any ρ > 0, and

( 1

ρ7/4

∫

B(x?,ρ)

|u(x, 0)| 54 dx
) 4

5 ≤ c3 lim sup
R→0

( 1

ρR

∫

B(Rx?,ρR)

|v(x, 0)|2 dz
) 1

2
(2.8)

for any x? ∈ R3, for any ρ > 0, and for some universal positive constant c3.

Proof By Lemma 2.1 and condition (1.8), we show that

1

R2

∫

Q(R)

(
|v|3 + |p| 32

)
dz ≤ M1 < +∞ (2.9)

for any R ∈]0, 1].
Since the origin is a singular point, there exists a sequence {Rk > 0}∞k=1,

tending to zero as k → +∞, such that (see Lemma 1.3)

1

R2
k

∫

Q(Rk)

|v|3 dz ≥ ε0 > 0 (2.10)

for any k = 1, 2, ....
We extend v and p to zero outside Q and denote these extensions by v

and p. For any e = (y, s) ∈ R3 × R1, we let

uk(y, s) = Rkv(Rky,R2
ks), qk(y, s) = R2

kp(Rky,R2
ks).

We can state that the pair uk and qk is a suitable weak solution to the Navier-
Stokes equations in the cylinder Q(1/Rk). In particular, it satisfies the local
energy inequality:

∫

B(1/Rk)

φ(y, s)|uk(y, s)|2 dy + 2

∫

B(1/Rk)×]−1/R2
k,s[

φ|∇uk|2 dyds′ ≤

≤
∫

B(1/Rk)×]−1/R2
k,s[

[
|uk|2(∂tφ + ∆φ) + uk · ∇φ(|uk|2 + 2qk)

]
dyds′ (2.11)

for a.a. s ∈]−1/R2
k, 0[ and for all non-negative functions φ ∈ C∞

0 (R3+1) van-
ishing in a neighborhood of the parabolic boundary of the cylinder Q(1/Rk).
Moreover, by our scaling, we have

1

a2

∫

Q(a)

(
|uk|3 + |qk| 32

)
de =

1

a2R2
k

∫

Q(aRk)

(
|v|3 + |p| 32

)
dz ≤ M1 (2.12)
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if aRk < 1. Thanks to (2.11), (2.12) and the known multiplicative inequality,
we may find subsequences of uk and qk still denoted in the same way such
that, for any a > 0,

uk ⇀ u in L3(Q(a)),

qk ⇀ q in L 3
2
(Q(a)),

∇uk ⇀ ∇u in L2(Q(a)),

uk ?
⇀u in L2,∞(Q(a)),

uk ⇀ u in L 10
3
(Q(a)).

To evaluate the derivative of v in t, we use the Navier-Stokes equations
written in the following form:

−
∫

Q(a)

uk · ∂tw dyds =

∫

Q(a)

[
(uk ⊗ uk −∇uk) : ∇w + qkdiv w

]
dyds

for any w ∈ L3(−a2, 0;
◦

W 1
3(B(a))). This gives us

∂tu
k ⇀ ∂tu in L 3

2
(−a2, 0; (

◦
W

1

3(B(a)))′)

and thus, by compactness arguments,

uk → u in L3(Q(a)). (2.13)

Letting k →∞, we pass to the limit in the Navier-Stokes equations and the
local energy inequality and show that the pair of functions u and q, defined
on Q− = R3×] − ∞, 0[, is a suitable weak solution to the Navier-Stokes
equations in Q(a) for any a > 0. This is a nontrivial solution since the limit
function satisfies (2.6).

We know that the convective term div uk ⊗ uk is bounded, for example,
in L 5

4
(Q(a)) for each Rka < 1. Using an appropriated choice of a cut-off

function, the coercive estimates for Stokes system, multiplicative inequalities
and duality arguments, we can show that the following norms are bounded:

‖∂tu
k‖ 5

4
,Q(a), ‖∇2uk‖ 5

4
,Q(a), ‖∇qk‖ 5

4
,Q(a)

for Rka < 1. This implies that

uk → u in C([−a2, 0]; L 5
4
(B(a)))
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for any a > 0. Relation (2.5) can be obtained now by the interpolation.
Now, our goal is to prove (2.7) and (2.8). This is an easy task. Indeed,

by the scaling, we have the following two relations:

1

ρ2

∫

Q(z?,ρ)

(|uk|3 + |q| 32 ) dz =
1

ρ2R2
k

∫

Q(Rkz?,ρRk)

(|v|3 + |p| 32 ) dz

for any z? ∈ Q−, and

( 1

ρ
7/4
0

∫

B(x?,ρ0)

|uk(x, 0)| 54 dx
) 4

5
=

( 1

(ρ0Rk)7/4

∫

B(Rkx?,ρ0Rk)

|v(x, 0)| 54 dx
) 4

5

≤ c3

( 1

ρ0Rk

∫

B(Rkx?,ρ0Rk)

|v(x, 0)|2 dz
) 1

2

for any x? ∈ R3 and for some universal positive constant c3. Taking the limit
as k → +∞, we find (2.7) and (2.8). Lemma 2.2 is proved.

3 Proof of Theorem 1.4

We see that, by (1.9) and (2.7),

1

ρ2
0

∫

Q(z?,ρ0)

(|u|3 + |q| 32 ) dz < ε

for any z? ∈ A0. According to Lemma 1.2, we can state that, for any k =
0, 1, 2, ..., the function ∇ku is Hölder continuous in the set

Q̃ = (R3 \B(α0))× [−T0, 0]

and, moreover,
sup
z∈ eQ

(|u(z)|+ |∇u(z)| < M (3.1)

for some positive constant M . From (3.1) it follows that the vorticity ω =
∇∧ u satisfies the inequality

|∂tω −∆ω| ≤ M(|ω|+ |∇ω|) (3.2)
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at least in Q̃1 = (R3 \B(3
2
α0))×]− 1

2
(T0 + 1), 0[.

On the hand, condition (1.10) and inequality (2.8) say that u(·, 0) = 0 in
B0 and, therefore, ω(·, 0) = 0 in B0. By the backward uniqueness result (see
[2] and [3]), we state that

ω(x, t) = 0, xn > β0, −1 < t < 0.

The unique continuation through spatial boundaries implies (see, for exam-
ple, [3] and references there)

ω ≡ 0 in (R3 \B(β0))×]− 1, 0[.

The same arguments as in [12] and in [5] allows us to state that in fact

ω ≡ 0 in R3×]− 1, 0[.

In turn, this means that, for a.a t ∈] − 1, 0[, u(·, t) is bounded harmonic
function defined in the whole R3. So, as a result, we have

u(x, t) = a(t), t ∈]− 1, 0[.

Here, the function a can be found by solving the Navier-Stokes equations

a′(t) = −∇ q(x, t)

and, therefore,
q(x, t) = −a′(t)x + b(t).

But we know that
1

ρ2
0

∫

Q(z?,ρ0)

|q| 32 dz < ε1

for all z? ∈ A0. Obviously, the last two relations are in a contradiction if
a′ 6= 0. So, we have proved that u is a constant in R3×] − 1, 0[. But u is
a Hölder continuous function far away from the origin and equal to zero for
xn > β0 and t = 0. So, u is identically equal to zero in R3×] − 1, 0[ which
contradicts with (2.6). Theorem 1.4 is proved.

It is curious that conditions (1.8) and (1.9) are fulfilled if

|v(x, t)|2 + |p(x, t)| 32 ≤ c

|x|+√−t

for (x, t) ∈ Q and for some constant c.
However, it is not clear whether L3,∞-solutions satisfy condition (1.9).
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4 Proof of Theorem 1.5

Our first observation is that Lemma 2.2 can be strengthened in the following
way.

Lemma 4.1 We let

C(z0, r; v) ≡ 1

r2

∫

Q(z0,r)

|v|3 dz, D(z0, r; p) ≡ 1

r2

∫

Q(z0,r)

|p| 32 dz.

Assume that v and p form a suitable weak solutions to the Navier-Stokes
equations and satisfy condition (1.11). Then, for each α ∈]0, 1[, a constant
c′1 = c′1(α) exists such that

D(z0, r; p) ≤ c′1
{

rαD(1) + M ′
0

}
(4.1)

for any r ∈]0, 1/4] and for any z0 ∈ Q(1/2). Here, M ′
0 is the constant in

(1.11).

The proof is the same as the proof of Lemma 2.1.
Now, assume that z = 0 is a singular point. Since (1.8) holds, we can use

arguments of the proof of Lemma 2.2. First of all, we note that all statements
of Lemma 2.2 are valid for blow-up functions u and q as well. Moreover, for
scaled functions uk, we have the identity

0∫

−T1

∫

B(a)

|uk|3 dz =
1

R2
k

0∫

−T1R2
k

∫

B(Rka)

|v|3 dz

for any a > 0. Thanks to (2.13), passage to the limit as k → +∞ gives us:

0∫

−T1

∫

B(a)

|u|3 de ≤ lim sup
k→+∞

1

R2
k

0∫

−T1R2
k

∫

B(Rka)

|v|3 dz

≤ lim sup
R→0

1

R2

0∫

−T1R2

∫

B(Ra)

|v|3 dz.
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It remains to pass to the limit as a → +∞ and take into account condition
(1.12). As a result, we find

0∫

−T1

∫

R3

|u|3 de ≤ M2. (4.2)

Now, we introduce the notation:

E(e0, r) ≡ 1

r2

∫

Q(e0,r)

(|u|3 + |q| 32 ) de.

For D(e0, r; q), we have the decay estimate similar to (2.2)

D(e0, r; q) ≤ c2

{
rD(e0, 1; q) +

(1

r

)2

C(e0, 1; u)
}

(4.3)

for all 0 < r ≤ 1 and for some absolute constant c2. From (4.3), it follows
that

E(e0, r) ≤ (1 + c2)
{

rD(e0, 1; q) +
(1

r

)2

C(e0, 1; u)
}

(4.4)

for the same r as in (4.3).
Now, our goal is to show that

D(e0, 1; q) ≤ L < +∞, ∀e0 ∈ R3×]−∞, 0], (4.5)

where a positive constant L depends on M ′
0 and D(1) only. To this end, we

first observe that
D(e0, 1; q) ≤ lim inf

k→+∞
D(e0, 1; qk). (4.6)

On the other hand,

D(e0, 1; qk) = D(zk, Rk; p), zk = (Rky0, R
2
ks0). (4.7)

For the definition of the scaled pressure qk and its properties, we refer the
reader to Lemma 2.2. For sufficiently large k, we have

Rke0 ∈ Q(1/2), Rk ≤ 1/4.

Then, by Lemma 4.1,

D(zk, Rk; p) ≤ c′1
{

Rα
kD(1) + M ′

0

}
. (4.8)
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Clearly, that (4.5) follows from (4.6)–(4.8).
Combining (4.4) and (4.5), we find

E(e0, r) ≤ (1 + c2)
{

rL +
(1

r

)2

C(e0, 1; u)
}

(4.9)

for any 0 < r ≤ 1 and for any e0 ∈ R3×]−∞, 0]. Now, let ε be the number
of Lemma 1.2. We may fix a positive number r ∈]0, 1] so that

(1 + c2)rL < ε/3. (4.10)

For this fixed r, according (4.2), there exists a number R > 10 such that

0∫

−T1

∫

R3\B(R/2)

|u|3 de ≤ εr2

3(1 + c2)
. (4.11)

Obviously, (4.11) implies the estimate

(1 + c2)
(1

r

)2

C(e0, 1; u) < ε/3

whenever e0 ∈ (R3 \ B(R))×] − T1/2, 0[ is. Combining the latter inequality
with (4.9) and (4.10), we show

E(e0, r) < ε (4.12)

for any e0 ∈ (R3 \ B(R))×] − T1/2, 0[. It remains to repeat arguments
of Theorem 1.4 and complete the proof by getting the same contradiction.
Theorem 1.5 is proved.
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