Инварианты Васильева гладких подмногообразий

С. С. Подкорытов

Фиксируем m-мерное гладкое многообразие V. Пусть Ξ — множество компактных n-мерных подмногообразий многообразия V с редукцией структурной группы нормального расслоения к фиксированной группе Ли с представлением в группе $GL_{m-n}(\mathbf{R})$. Фиксируем класс $\xi \subset \Xi$ вложенной кобордантности таких подмногообразий.

Определение.

Пусть Q — абелева группа. Функционал $f:\xi\to Q$ будем называть инвариантом Васильева порядка не выше d, если его значение не меняется при изотопии и выполнено следующее требование. Выберем произвольные подмногообразие $X\in \xi$, число $k,\ 0\le k\le n+1$, и набор оснащённых вложений $r_i:D^k\times D^{n-k+1}\to V,\ 0\le i\le d$, с непересекающимися образами таких, что $r_i(D^k\times D^{n-k+1})\cap X=r_i(\partial D^k\times D^{n-k+1})$, причём на этих пересечениях оснащения согласованы с редукцией. Для каждого подмножества $I\subset \{i:0\le i\le d\}$ рассмотрим подмногообразие $X_I\in \xi$, которое получается из подмногообразия X вложенными перестройками вдоль вложений $r_i,\ i\in I$. Нужно, чтобы тогда выполнялось соотношение

$$\sum_{I} (-1)^{\#I} f(X_I) = 0.$$

Определение.

Функционал $\varphi: \xi \to \mathbf{Z}_2$ будем называть *разрешающим*, если его значение не меняется при изотопии и меняется при каждой перестройке. Если существует разрешающий функционал, то будем говорить, что класс ξ *разрешим*.

Обозначения.

Для каждого целого $i \geq 0$ определим отображение $\beta_i : \mathbf{Z} \to \mathbf{Z}$ формулой

$$\beta_i(x) = \frac{1}{i!} x \cdot \ldots \cdot (x - i + 1).$$

Определим отображение $\delta: \mathbf{Z}_2 \to \mathbf{Z}$, полагая $\delta(0) = 0$, $\delta(1) = 1$.

Утверждение.

Будем предполагать, что многообразие V связно и m-n>1.

Случай $n \equiv 0 \pmod{2}$. Для любого инварианта Васильева $f: \xi \to Q$ порядка не выше d существует единственный набор элементов $q_i \in Q, 0 \le i \le d$, такой, что

$$f(X) = \sum_{i=0}^{d} \beta_i([\frac{1}{2}\chi(X)])q_i, \qquad X \in \xi.$$

Случай $n \equiv 1 \pmod{2}$. Если $\varphi : \xi \to \mathbf{Z}_2$ — разрешающий функционал, то для любого инварианта Васильева $f : \xi \to Q$ порядка не выше d существует единственная пара элементов $q_0, q \in Q$, $2^d q = 0$, такая, что

$$f(X) = q_0 + \delta(\varphi(X))q, \qquad X \in \xi.$$

Если класс ξ неразрешим, то любой инвариант Васильева конечного порядка постоянен.

Определение.

Пусть Q — абелева группа. Вудем говорить, что функционал $F:\Xi\to Q$ имеет степень не выше d, если выполнено следующее требование. Выберем произвольный конечный набор пар $(a_j,X_j),\,a_j\in {\bf Z},\,X_j\in\Xi,\,1\le j\le N,$ такой, что любое множество точек $E\subset V$ такое, что $\#E\le d$, имеет окрестность $U\subset V$ такую, что выполняется формальное соотношение

$$\sum_{j=1}^{N} a_j(U \cap X_j) = 0.$$

Нужно, чтобы тогда выполнялось соотношение

$$\sum_{j=1}^{N} a_j F(X_j) = 0.$$

Гипотеза.

Если класс ξ разрешим, то существует функционал конечной степени Φ : $\Xi \to {\bf Z}_2$ такой, что его значение не меняется при изотопии и $\Phi | \xi$ — разрешающий функционал.