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Abstract
Let X and Y be CW-complexes, U be an abelian group, and f : [X,Y ] →
U be a map (a homotopy invariant). We say that f has order at most r
if the characteristic function of the rth Cartesian power of the graph of a
continuous map a : X → Y Z-linearly determines f([a]). Suppose that the
CW-complex X is finite and we are in the stable case: dimX < 2n − 1
and Y is (n− 1)-connected. We prove that then the order of f equals its
degree with respect to the Curtis filtration of the group [X,Y ].

1. Introduction

Order of a homotopy invariant. Let X and Y be (topological) spaces. For r ∈ N
(= {0, 1, . . . }), let Er be the group of all functions (X × Y )r → Z. For a map
a ∈ C(X,Y ), let Γa ⊂ X × Y be its graph and Ir(a) ∈ Er be the characteristic
function of the set Γr

a ⊂ (X × Y )r. Let Dr ⊂ Er be the subgroup generated by
the functions Ir(a), a ∈ C(X,Y ).

Let U be an abelian group and f : [X,Y ] → U be a map. Define the order

of f , ord f ∈ N̂ (= N ∪ {∞}), to be the infimum of those r ∈ N for which
there exists a homomorphism l : Dr → U such that f([a]) = l(Ir(a)) for all
a ∈ C(X,Y ). As one easily sees, the existence of such l for some r implies that
for all greater r.

Main result. Suppose thatX is a finite CW-complex, Y is a CW-complex, and we
are in the stable case: dimX ≤ m, Y is (n−1)-connected, and m < 2n−1. The
set [X,Y ] becomes an abelian group canonically. There is the Curtis filtration
B = (Bs)

∞
s=1, [X,Y ] = B1 ⊃ B2 ⊃ . . . , see § 3. It is known [1] that Bs = 0 for

s > 2m−n. The degree of f with respect to B, degB f ∈ N̂, is defined, see below.

(1.1) Theorem. ord f = degB f .

Example: if f is a homomorphism, its order equals the greatest s for which
f |Bs ̸= 0. (If f = 0, then ord f = 0).

Degree of a map between abelian groups with respect to a filtration. Let T and
U be abelian groups, f : T → U be a map, and P = (Ps)

∞
s=1 be a filtration of

the group T : T = P1 ⊃ P2 ⊃ . . . . Define the degree of f with respect to P ,
degP f ∈ N̂, to be the infimum of those r ∈ N for which∑

e1,...,ek=0,1

(−1)e1+...+ekf(e1t1 + . . .+ ektk) = 0

whenever k ∈ N, tl ∈ Psl , l = 1, . . . , k, and s1 + . . .+ sk > r.
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2. Preliminaries

Polyhedra. A polyhedron L is a finite set of affine simplices in R∞ satisfying
the “axioms of a simplicial complex” and equipped with a linear order of the
vertices of each simplex in such a way that the order of the vertices of a simplex
induces the order of the vertices of each of its faces. The body |L| of L is the
union of its simplices. A polyhedral body is the body of some polyhedron.

Morphisms of polyhedra. For polyhedra K and L, a map f : K → L is called a
morphism if a vertex is sent to a vertex, the image of a simplex is spanned by
the images of its vertices, and the non-strict order of vertices is preserved. A
morphism f : K → L induces a continuous map |f | : |K| → |L|.
Generation. A simplex y ∈ L generates a subpolyhedron ¯̄y ⊂ L. A set T ⊂ L
generates a subpolyhedron T̄ ⊂ L.

Small sets. A set T ⊂ L is small if there exists a simplex y ∈ L with ¯̄y ⊃ T ; the
least of such simplices is spanned by T .

The distance ρL. For x, y ∈ L, let ρL(x, y) ∈ N̂ be the infimum of lengths of edge
chains connecting x and y. (The orientation of edges is disregarded; the length
of a chain is the number of its edges.) If ρL(x, y) < a, ρL(y, z) < b (x, y, z ∈ L,
a, b ∈ N), then ρL(x, z) < a+ b.

Neighbourhoods OL. For y ∈ L and d ∈ N, putOL(y, d) = {z ∈ L : ρL(y, z) < d}.
For T ⊂ L, let OL(T, d) be the union of the sets OL(y, d), y ∈ T .

Separation ϵL. For T ⊂ L, put ϵL(T ) = inf{ρL(x, y) : x, y ∈ T, x ̸= y} ∈ N̂.

Subdivisions. Equip the barycentric subdivision of L with the following order: the
greater dimension of a simplex is, the higher its barycentre is. Let δL denote the
resulting polyhedron. Let ϕL : δL → L be the morphism taking the barycentre
of a simplex to the highest of its vertices. Equip the barycentric subdivision
of L with the opposite order. Let δ′L denote the resulting polyhedron. Let
ϕ′
L : δ

′L → L be the morphism taking the barycentre of a simplex to the lowest of
its vertices. Put ∆L = δ′δL and ΦL = ϕL ◦ϕ′

δL : ∆L → L. The map |ΦL| : |L| =
|∆L| → |L| is homotopic to the identity. The image of the star of each simplex
of ∆L under ΦL is small. Thus, if ρ∆L(x, y) ≤ 2d (x, y ∈ ∆L, d ∈ N), then
ρL(ΦL(x),ΦL(y)) ≤ d.

The empty simplex. Put L◦ = L ∪ {∅}. Let the empty simplex generate the
empty subpolyhedron: ¯̄∅ = ∅. For x, y ∈ L◦, we have x ∩ y ∈ L◦.

Completion. Adding degenerate simplices to L, we get a simplicial set L̂. We
have L ⊂ L̂0 ∪ L̂1 ∪ . . . . The spaces |L| and |L̂| are canonically homeomorphic.

A moprhism f : K → L of polyhedra induces a simplicial map f̂ : K̂ → L̂. The
correspondence f 7→ f̂ is bijective.

Sections. For a simplicial set E, let E(L) be the set of simplicial maps v : L̂ → E,
sections. A section v ∈ E(L) induces a map |v| ∈ C(|L|, |E|). For a subpolyhe-
dron K ⊂ L, we have the restriction v|K ∈ E(K). For a morphism f : K → L of
polyhedra, we have the composition v◦f ∈ E(K). A simplicial map t : D → E in-
duces a map t# : D(L) → E(L). For a simplicial groupG and a section v ∈ G(L),
put σ(v) = {y ∈ L : v|¯̄y ̸= 1}.
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Quasisections. For a set T ⊂ L and a simplicial set E, put

ET =
∏
y∈T

E(¯̄y).

For v ∈ E(L), put v∥T = (v|¯̄y)y∈T ∈ ET . For a quasisection w ∈ EL and
a morphism f : K → L of polyhedra, define the composition w ◦ f ∈ EK by

(w ◦ f)x = wf(x) ◦ f ′
x, x ∈ K, where f ′

x : ¯̄x → f(x) are the restrictions of f . We

have the map f# : EL → EK , f#(w) = w ◦ f . For a simplicial map t : D → E
and a quasisection v ∈ DL, we have the composition t ◦ v ∈ EL.

Free groups. For a set E with a marked element ∗, we have the group FE given
by the generators e, e ∈ E, and the relation ∗ = 1. The map i : E → FE,
i(e) = e, is called canonical.

The lower central series and the abelianization. For a group G, let (γsG)∞s=1 be
its lower central series. Put G+ = G/γ2G.

Free abelian groups. For a set E, we have the abelian group ⟨E⟩ with the base
(‘e’)e∈E . The map j : E → ⟨E⟩, j(e) = ‘e’, is called canonical. Let ⟨E⟩△ be the
kernel of the homomorphism ⟨E⟩ → Z, ‘e’ 7→ 1. A map t : D → E induces a
homomorphism ⟨t⟩ : ⟨D⟩ → ⟨E⟩.

Let L be a polyhedron, E be a simplicial set, and V ∈ ⟨E(L)⟩ be an element
(an ensemble). Let |V | ∈ ⟨C(|L|, |E|)⟩ denote the image of V under the ho-
momorphism induced by the map |?| : E(L) → C(|L|, |E|). For a subpolyhedron
K ⊂ L, the ensemble V |K ∈ ⟨E(K)⟩ is defined similarly; for a set T ⊂ L, we have
the element V ∥T ∈ ⟨ET ⟩. For spaces X and Y and an ensemble A ∈ ⟨C(X,Y )⟩,
we have the element [A] ∈ ⟨[X,Y ]⟩. For a set Z ⊂ X, we have the ensemble
A|Z ∈ ⟨C(Z, Y )⟩.

For a simplicial group G and an ensemble V ∈ ⟨G(L)⟩,

V =
∑

v∈G(L)

mv‘v’

(mv ∈ Z), put

Σ(V ) =
∪

v∈G(L) :mv ̸=0

σ(v).

Group rings. For a group G, ⟨G⟩ is the group ring, ⟨G⟩△ is its (two-sided) ideal.
For s ∈ N+ (= N \ {0}), the ideal ⟨G⟩s△ is additively generated by all elements
of the form (‘g1’− 1) . . . (‘gs’− 1), g1, . . . , gs ∈ G.

Simplicial application. Natural constructions can be applied to simplicial objects
dimension-wise. For a pointed simplicial set E, we have the simplicial group
FE and the canonical simplicial map i : E → FE. The map i is a model of the
canonical map of a pointed space to the loop space of its suspension (Milnor’s
model, see [2]). For a simplicial group G, we have the simplicial abelian group
G+, the simplicial ring ⟨G⟩, the canonical simplicial map j : G → ⟨G⟩, and the
simplicial subgroups γsG ⊂ G, s ∈ N+, and ⟨G⟩s△ ⊂ ⟨G⟩, s ∈ N.
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Simplicial trifles. A simplicial map between pointed simplicial sets is called
bound if it preserves the pointing. A simplicial abelian group D is called free if
the abelian groups Dn, n ∈ N, are free. For a simplicial set E, let E(m) ⊂ E
(m ∈ N) denote its m-skeleton.

Fusion. Let L be a polyhedron and G be a simplicial group. Let j : G → ⟨G⟩ be
the canonical map. The ring homomorphism J : ⟨G(L)⟩ → ⟨G⟩(L), J(‘v’) = j◦v,
is called fusion.

3. The Curtis filtration in the stable case

Let X and Y be CW-complexes. Suppose that dimX ≤ m, Y is (n − 1)-
connected, and m < 2n − 1. We shall construct a filtration B = (Bs)

∞
s=1 of

the abelian group [X,Y ], [X,Y ] = B1 ⊃ B2 ⊃ . . . , the Curtis filtration. There
are a simplicial set E and a homotopy equivalence k : Y → |E|. Let us point E.
We have the simplicial group G = FE. By the Freudenthal theorem, the canoni-
cal simplicial map i : E → G is (2n−1)-connected. The map h = |i|◦k : Y → |G|
is also (2n − 1)-connected. Let js : γsG → G, s ∈ N+, be the inclusions. For
s ∈ N+, we have the chain of groups and homomorphisms

[X,Y ]
h∗ // [X, |G|] [X, |γsG|].

|js|∗oo

Since m < 2n − 1, h∗ is an isomorphism. Put Bs = h−1
∗ (im |js|∗). (The result

does not depend on the choice of E etc.)

4. A claim on Lie rings

Here U denotes the universal enveloping ring functor.

(4.1) Let L and M be Lie rings, free as abelian groups, and k : L → M be an
injective homomorphism. Then the homomorphism Uk : UL → UM is injective.

This follows easily from the Poincaré–Birkhoff–Witt theorem.

5. A claim on group rings

Let V and W be groups and t : V → W be a homomorphism. We have the
ring homomorphism ⟨t⟩ : ⟨V ⟩ → ⟨W ⟩. For s ∈ N, let Is ⊂ ⟨V ⟩ be the subgroup
generated by all elements of the form (‘v1’ − 1) . . . (‘vk’ − 1), where k ∈ N,
vl ∈ t−1(γslW ), and s1 + . . . + sk ≥ s. It is easy to see that Is are ideals,
Is ⊃ Is+1, and IsIt ⊂ Is+t.

(5.1) Suppose that W is a product of a finite number of free groups. Then
⟨t⟩−1(⟨W ⟩s△) = Is, s ∈ N.

Proof. If w ∈ γsW , then ‘w’−1 ∈ ⟨W ⟩s△ (this holds for arbitrary W [3, III.1.3]).
This yields the inclusion ⟨t⟩−1(⟨W ⟩s△) ⊃ Is.
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We have the graded rings P , Ps = Is/Is+1, and Q, Qs = ⟨W ⟩s△/⟨W ⟩s+1
△ .

Since ⟨t⟩(Is) ⊂ ⟨W ⟩s△, the homomorphism ⟨t⟩ induces a graded ring homomor-
phism l : P → Q. We shall show that l is injective. Then induction on s with
application of the 5-lemma shows that the induced homomorphism ⟨V ⟩/Is →
⟨W ⟩/⟨W ⟩s△ is injective, which is the desired equality.

We have the graded Lie rings L, Ls = t−1(γsW )/t−1(γs+1W ), and M , Ms =
γsW/γs+1W (the product is induced by the group commutator, see [3, VIII.2]).
The homomorphism t induces a graded Lie ring homomorphism k : L → M ,
which is obviously injective.

We have the commutative diagram

L
k //

f

��

M

g

��
P

l / / Q,

where f and g are the representations with the components fs : Ls → Ps, fs(v) =
‘v’− 1, v ∈ t−1(γsW ), and gs : Ms → Qs, gs(w) = ‘w’− 1, w ∈ γsW . Extending
the representations f and g to homomorphisms of the universal enveloping rings,
we get the commutative diagram

UL
Uk //

f̃

��

UM

g̃

��
P

l // Q.

By Magnus’ method, one easily shows that g̃ is an isomorphism, and M is
free as an abelian group (cf. [3, VIII.6]). By (4.1), the homomorphism Uk is
injective. The ring P is generated by elements of the form ‘v’ − 1 ∈ Ps, where
s ∈ N+, v ∈ t−1(γsW ). They belong to the image of the representation f and,
consequently, of the homomorphism f̃ , which is thus surjective. Therefore, the
homomorphism l is injective (and f̃ is an isomorphism.)

6. Some ideals of the group ring of a product of groups

Let (Gi)i∈I be a finite collection of groups. For J ⊂ I, put

GJ =
∏
i∈J

Gi,

and let pJ : GI → GJ be the projection homomorphism. We have the ring
homomorphisms ⟨pJ⟩ : ⟨GI⟩ → ⟨GJ ⟩.

(6.1) For s ∈ N, we have ∩
#J<s

ker⟨pJ⟩ ⊂ ⟨GI⟩s△.
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Proof. We have

⟨GI⟩ =
⊗
i∈I

⟨Gi⟩.

Since ⟨Gi⟩ = ⟨Gi⟩△ ⊕ ⟨1⟩,

⟨GI⟩ =
⊕
J⊂I

S(J), S(J) =
⊗
i∈I

Ti(J),

where the subgroup Ti(J) ⊂ ⟨Gi⟩ is: ⟨Gi⟩△ if i ∈ J , and ⟨1⟩ otherwise. Obviously,
⟨pJ⟩|S(J ′) is: a monomorphism if J ′ ⊂ J , and zero otherwise. Therefore,∩

#J<s

ker⟨pJ ⟩ =
⊕
#J≥s

S(J).

Now it suffices to note that S(J) ⊂ ⟨GI⟩#J
△ .

7. The functions η and θ

Let L be a polyhedron and G be a simplicial group. We have the homomorphism
?∥L : G(L) → GL. For V ∈ ⟨G(L)⟩, put η(V ) = sup{s ∈ N : V ∥L ∈ ⟨GL⟩s△} ∈ N̂.
For s ∈ N, we have the subgroup Is ⊂ ⟨G(L)⟩ generated by all elements of
the form (‘v1’ − 1) . . . (‘vk’ − 1), where k ∈ N, vl ∈ (γslG)(L) ⊂ G(L), and
s1 + . . .+ sk ≥ s. (It is an ideal.)

(7.1) Suppose that the groups Gn, n ∈ N, are free. Then {V ∈ ⟨G(L)⟩ : η(V ) ≥
s} = Is, s ∈ N.

This follows from (5.1).

For a simplicial set E and an ensemble V ∈ ⟨E(L)⟩, put θ(V ) = inf{#T :

T ⊂ L, V ∥T ̸= 0} ∈ N̂.

(7.2) For V ∈ ⟨G(L)⟩, we have θ(V ) ≤ η(V ).

This follows from (6.1).

8. Product of affine functions

(8.1) Let V be a group, H be a ring, and a1, . . . , ar : V → H be homomorphisms
(to the additive group; r ∈ N). We have the additive homomorphism Q : ⟨V ⟩ →
H,

Q(‘v’) =
r∏

s=1

(1 + as(v)).

Then Q|⟨V ⟩r+1
△ = 0.

This follows from [3, V.2.1].
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9. Strict and r-strict homomorphisms

Let V and W be groups. An additive homomorphism h : ⟨V ⟩ → ⟨W ⟩ is called
strict if h(⟨V ⟩s△) ⊂ ⟨W ⟩s△ for all s ∈ N and r-strict (r ∈ N) if this holds for
s ≤ r.

(9.1) Let t : V → W be a homomorphism. Then the homomorphism ⟨t⟩ : ⟨V ⟩ →
⟨W ⟩ is strict.

(9.2) Let f, g : ⟨V ⟩ → ⟨W ⟩ be r-strict (r ∈ N) homomorphisms. Then the ho-
momorphism h : ⟨V ⟩ → ⟨W ⟩, h(‘v’) = f(‘v’)g(‘v’), is r-strict.

Proof. Take s ∈ N+, s ≤ r, and v1, . . . , vs ∈ V . Put xt = ‘vt’ − 1 ∈ ⟨V ⟩△. Let
us show that h(x1 . . . xs) ∈ ⟨W ⟩s△. We have

(−1)sh(x1 . . . xs) =
∑

e1,...,es=0,1

(−1)e1+...+esh(‘ve11 . . . vess ’) =

=
∑

e1,...,es=0,1

(−1)e1+...+esf(‘ve11 . . . vess ’)g(‘ve11 . . . vess ’) =

=
∑

e1,...,es=0,1

(−1)e1+...+esf
( s∏
t=1

(1 + etxt)
)
g
( s∏
t=1

(1 + etxt)
)
=

=
∑

e1,...,es=0,1

(−1)e1+...+es
( ∑
a1,...,as=0,1

ea1
1 . . . eas

s f(xa1
1 . . . xas

s )
)
·

·
( ∑
b1,...,bs=0,1

eb11 . . . ebss g(xb1
1 . . . xbs

s )
)
=

=
∑

a1,b1,...,as,bs=0,1

( ∑
e1,...,es=0,1

(−1)e1+...+esea1+b1
1 . . . eas+bs

s

)
f(xa1

1 . . . xas
s )·

· g(xb1
1 . . . xbs

s ).

Fix a1, b1, . . . , as, bs. We show that the corresponding summand of the outer
sum belongs to ⟨W ⟩s△. Put a = a1+ . . .+as, b = b1+ . . .+ bs. Since a, b ≤ s ≤ r
and the homomorphisms f and g are r-strict, we have

f(xa1
1 . . . xas

s )g(xb1
1 . . . xbs

s ) ∈ ⟨W ⟩a+b
△ .

If a+ b ≥ s, this suffices. Otherwise, there is t such that at = bt = 0. Then the
quantity ea1+b1

1 . . . eas+bs
s does not depend on et, and thus the inner sum equals

zero.

10. Group ring of a free group

Let E be a pointed set. Put G = FE. Let i : E → G be the canonical map. For
s ∈ N, we have the ponted set E∧s = E ∧ . . .∧E (E∧0 is the 0-sphere) and the
homomorphism ks : ⟨E∧s⟩△ → ⟨G⟩s△,

ks(‘(e1, . . . , es)’− ‘ ∗ ’) =
s∏

t=1

(‘et’− 1),
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where ∗ ∈ E∧s is the marked element. By [3, VIII.6.2], the composition

⟨E∧s⟩△
ks // ⟨G⟩s△

projection // ⟨G⟩s△/⟨G⟩s+1
△

is an isomorphism. Therefore, ⟨G⟩s△ = Ds ⊕ ⟨G⟩s+1
△ , where Ds ∼= ⟨E∧s⟩△.

11. Lift of a simplicial homomorphism

(11.1) Consider the diagram

Q

f

��
D

s // P

of simplicial abelian groups and homomorphisms. Suppose that D is free and
m-connected (m ∈ N) and f is surjective. Then there exists a simplicial homo-
morphism t : D → Q such that f ◦ t|D(m) = s|D(m).

Proof. Let ♡ denote the normalization functor. The complex D♡ is free. Thus
D♡ = C0⊕C1⊕. . . , where Cn is a free complex with Cn

i = 0 for i ̸= n, n+1 and
the differential ∂ : Cn

n+1 → Cn
n injective. The complex D♡ ism-connected. Thus,

for n ≤ m, the differential ∂ : Cn
n+1 → Cn

n is an isomorphism. The morphism
f♡ : Q♡ → P♡ is surjective. Thus, for n ≤ m, there is a morphism gn : Cn → Q♡

such that f♡ ◦ gn = s♡|Cn. We have the morphism h : D♡ → Q♡ with h|Cn

equal to: gn if n ≤ m, and zero otherwise. Obviously, (f♡ ◦h)n = s♡n for n ≤ m.
The Dold–Kan correspondence yields the simplicial homomorphism t : D → Q
with t♡ = h. It has the desired property.

12. The function µL

Let L be a polyhedron. For x ∈ L◦, put µL(x) = 1 − χ(lkL x) (χ is the Euler
characteristic; lk is the link; convention: lkL ∅ = L).

(12.1) For y, z ∈ L◦, we have

∑
x∈L◦ : x∩y=z

µL(x) =

{
1 if y = z,

0 otherwise.

Proof. For t ∈ L◦, we have

∑
x∈L◦ :x⊂t, x∩y=z

(−1)dim x =

{
(−1)dim z if z ⊂ t ⊂ y,

0 otherwise

(convention: dim∅ = −1). For x ∈ L◦, we have

χ(lkL x) =
∑

t∈L◦ : x t

(−1)dim t−dim x−1,
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and thus
µL(x) =

∑
t∈L◦ : x⊂t

(−1)dim t−dim x.

We have∑
x∈L◦ : x∩y=z

µL(x) =
∑

x,t∈L◦ :x⊂t, x∩y=z

(−1)dim t−dim x =

=
∑
t∈L◦

(−1)dim t
∑

x∈L◦ :x⊂t, x∩y=z

(−1)dim x =

=
∑

t∈L◦ : z⊂t⊂y

(−1)dim t+dim z =

{
1 if y = z,

0 otherwise.

13. Dummy of a simplicial group

A model of the path fibration. Let B be the cosimplicial simplicial pointed set
where Bn

m is the set of non-strictly increasing partial maps b : [m] 99K [n] (we
have dom b ⊂ [m]) with the marked element onm, dom onm = ∅, and the structure
maps are obvious. For n ∈ N, we have the pointed simplicial set Bn.

Let G be a simplicial group. Let G̃, the dummy, be the simplicial group
where G̃n is the group of bound simplicial maps Bn → G and the structure
homomorphisms are induced by the cosimplicial structure.

(13.1) The space |G̃| is contractible.

Proof. Let I be the simplicial set that is the standard 1-simplex: In is the set of
non-strictly increasing maps s : [n] → [1]. The collection of maps In×Bn

m → Bn
m,

(s, b) 7→ b|(s◦b)−1(1),m,n ∈ N, induces a contracting homotopy I×G̃ → G̃.

Evaluation at the elements in ∈ Bn
n , in = id: [n] → [n], yields the simplicial

homomorphism p : G̃ → G, the projection.

(13.2) Suppose that G0 = 1. Then p is surjective.

Proof. Take an element g ∈ Gn (n ∈ N). We seek an element g̃ ∈ G̃n with
pn(g̃) = g, that is, a bound simplicial map g̃ : Bn → G with g̃n(in) = g. Let
V ⊂ Bn be the simplicial subset generated by the elements in and ln ∈ Bn

1 ,
dom ln = {0}, ln(0) = 0. It is the wedge of the standard n-simplex and 1-
simplex. We have the simplicial map f : V → G, fn(in) = g, f1(ln) = 1. Since
V is contractible and G is a Kan set, f extends to Bn, which yields the desired
g̃.

Extension of sections. Let L be a polyhedron. Take simplices x, y ∈ L of di-
mensions r, s, respectively. Let i : [r] → L and j : [s] → L be the increasing
enumerations of their vertices. We have the partial map t = i−1 ◦ j : [s] 99K [r].
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For a bound simplicial map g̃ : Br → G, let exy(g̃) : B
s → G be the bound sim-

plicial map such that exy(g̃)m(b) = g̃m(t ◦ b) for b : [m] 99K [s] (m ∈ N). Thus

we have the homomorphism exy : G̃r → G̃s.

For x ∈ L, dimx = r, let the homomorphism Ex : G̃(¯̄x) → G̃(L) be given
by Ex(v)s(y) = exy(vr(x)) (y ∈ L, dim y = s). Extend this construction to the

case x ∈ L◦: put E∅(1) = 1 (we have G̃( ¯̄∅) = 1).

(13.3) For x ∈ L◦ and v ∈ G̃(¯̄x), we have

(a) Ex(v)|¯̄x = v;

(b) Ex(v)|¯̄y = Ex∩y(v|¯̄x∩¯̄y)|¯̄y (y ∈ L◦);

(c) σ(Ex(v)) ⊂ OL(x, 1) if x ̸= ∅.

Realization. Let J̃ : ⟨G̃(L)⟩ → ⟨G̃⟩(L) and J̃x : ⟨G̃(¯̄x)⟩ → ⟨G̃⟩(¯̄x), x ∈ L, be
fusions. Obviously, J̃x are isomorphisms. We have the additive homomorphism,
the realization, R : ⟨G̃⟩(L) → ⟨G̃(L)⟩,

R(w) =
∑
x∈L

µL(x)(⟨Ex⟩ ◦ J̃−1
x )(w|¯̄x).

We have R(⟨G̃⟩△(L)) ⊂ ⟨G̃(L)⟩△.

(13.4) For w ∈ ⟨G̃⟩△(L), we have J̃(R(w)) = w.

Proof. For z ∈ L◦, we have the homomorphism Hz : ⟨G̃⟩(¯̄z) → ⟨G̃(L)⟩ with
Hz = ⟨Ez⟩ ◦ J̃−1

z , z ̸= ∅, and H∅ = 0. It follows from (13.3 b) that for x, y ∈ L◦

and u ∈ ⟨G̃⟩△(¯̄x), we have Hx(u)|¯̄y = Hx∩y(u|¯̄x∩¯̄y)|¯̄y. For y ∈ L, we have

J̃(R(w))|¯̄y = J̃y(R(w)|¯̄y) =

=
∑
x∈L◦

µL(x)J̃y(Hx(w|¯̄x)|¯̄y) =
∑
x∈L◦

µL(x)J̃y(Hx∩y(w|¯̄x∩¯̄y)|¯̄y) =

=
∑
z∈L◦

( ∑
x∈L◦ : x∩y=z

µL(x)
)
J̃y(Hz(w|¯̄z)|¯̄y)

by (12.1)
= J̃y(Hy(w|¯̄y)|¯̄y) =

= J̃y(⟨Ey⟩(J̃−1
y (w|¯̄y))|¯̄y)

by (13.3 a)
= J̃y(J̃

−1
y (w|¯̄y)) = w|¯̄y.

(13.5) For w ∈ ⟨G̃⟩(L), we have Σ(R(w)) ⊂ OL(σ(w), 1).

This follows from (13.3 c).

(13.6) We have R(⟨G̃⟩s△(L)) ⊂ ⟨G̃(L)⟩s△, s ∈ N.

Proof. For w ∈ ⟨G̃⟩s△(L) and x ∈ L, we have w|¯̄x ∈ ⟨G̃⟩s△(¯̄x), J̃−1
x (w|¯̄x) ∈

⟨G̃(¯̄x)⟩s△, and, by (9.1), ⟨Ex⟩(J̃−1
x (w|¯̄x)) ∈ ⟨G̃(L)⟩s△. Summing over x ∈ L, we

get R(w) ∈ ⟨G̃(L)⟩s△.
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14. Partitions

Let L be a polyhedron and D be a simplicial abelian group. A collection
(hz : D(¯̄z) → D(L))z∈L of homomorphisms is called a partition if for w ∈ D(L),
we have ∑

z∈L

hz(w|¯̄z) = w

and σ(hz(w)) ⊂ OL(z, 1) for all z ∈ L.

(14.1) Suppose that dimL ≤ m (m ∈ N) and D is free and m-connected. Then
there exists a partition (hz : D(¯̄z) → D(L))z∈L.

Proof. We shall use the Dold–Kan correspondence. There is a decomposition
D = D0 ⊕ D1 ⊕ . . . , where Dn is a simplicial abelian group such that its
normalization Cn is concentrated in dimensions n and n+1 and the differential
∂ : Cn

n+1 → Cn
n is injective (cf. proof of (11.1)). It suffices to construct a partition

(hn
z : D

n(¯̄z) → Dn(L))z∈L for each n. Take n ≤ m. Then ∂ : Cn
n+1 → Cn

n is an
isomorphism, since D is m-connected. Thus a section on a polyhedron with
values in Dn is the same as an n-cochain on it with coefficients in Cn

n . Let hn
z

be: the extension of a cochain by zero if dim z = n, and zero otherwise. Take
n > m. Then Dn(L) = 0 since dimL ≤ m. Thus there is the zero partition.

15. Modification of an ensemble of sections

Fix numbers b1, . . . , b5, c ∈ N such that each is sufficiently great with respect to
the previous, namely: b1 ≥ 2, b2 ≥ b1 +2, b3 ≥ 2b2, b4 ≥ 2b1 + b3, b5 ≥ 2b2 + b4,
2c−1 ≥ 2b5 + 1.

The morphism e : L → K. Let K be a polyhedron with dimK ≤ m (m ∈
N). Put L = ∆cK and e = ΦK ◦ . . . ◦ Φ∆c−1K : L → K. For z ∈ L, the set
e(OL(z, b5)) ⊂ K is small (this follows from the properties of the operation ∆
and the inequaity 2c−1 ≥ 2b5 + 1).

The morphisms ez. Take a simplex z ∈ L. Since b2 ≤ b5, the set e(OL(z, b2)) is
small. It spans a simplex x ∈ K. Let u ∈ K be the highest vertex of x. We shall
construct a morphism ez : L → K with the following properties:

(1) ez(OL(z, b1)) = {u};

(2) ez(OL(z, b2)) ⊂ ¯̄x;

(3) ez agrees with e outside OL(z, b2).

Put L1 = δ∆c−1K. We have L = δ′L1. Let B1 ⊂ L1 be the subpolyhedron
generated by the simplices whose centres (which are vertices of L) belong to
OL(z, b1 + 1). Put B = δ′B1. We have B ⊂ L (a subpolyhedron). We have
OL(z, b1) ⊂ B and (since b2 ≥ b1 + 2) OL(B, 1) ⊂ OL(z, b2). The polyhedron
L has no edges outcoming from B. Let ez take a vertex t ∈ L to: u if t ∈ B,
and e(t) otherwise. One easily checks that ez is well-defined and has the desired
properties.
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The morphisms eZ . Take a set Z ⊂ L with ϵL(Z) ≥ b3. Define a morphism
eZ : L → K by the following conditions:

(1) for z ∈ Z, the morphisms eZ and ez agree on OL(z, b2);

(2) the morphisms eZ and e agree outside OL(Z, b2).

Since b3 ≥ 2b2, eZ is well-defined.

The simplicial groups G and D. Let E be an (n−1)-connected (n ∈ N) simplicial
set with a single vertex. Suppose that m ≤ 2n− 1. Put G = FE. Let i : E → G
and j : G → ⟨G⟩ be the canonical simplicial maps and q : G → G+ be the
simplicial homomorphism that is the projection. We shall need a decomposition
⟨G⟩ ∼= ⟨1⟩ ⊕ G+ ⊕ D (cf. § 10) and some related simplicial homomorphisms.
Let d : ⟨G⟩ → ⟨G⟩ be the simplicial homomorphism that is the identity on ⟨G⟩△
and zero on ⟨1⟩. We have the simplicial homomorphisms f : ⟨G⟩ → G+ with
f ◦ j = q and g : G+ → ⟨G⟩ with g ◦ q ◦ i = d ◦ j ◦ i. We have f ◦ g = id. Put
D = ⟨G⟩2△ ⊂ ⟨G⟩. Let k : D → ⟨G⟩ be the inclusion. We have the simplicial
homomorphism l : ⟨G⟩ → D such that k ◦ l + g ◦ f = d. We have l ◦ k = id.

E
i // G

j

��

q

!!D
DD

DD
DD

D

D
k // ⟨G⟩
l

ff
f // G+

g
ii

The simplicial abelian group D is free. By the Freudenthal theorem, the map
i : E → G is (2n− 1)-connected. Since m ≤ 2n− 1, it is m-connected. Using the
Dold–Thom theorem, we see that the simplicial homomorphism ⟨i⟩ : ⟨E⟩ → ⟨G⟩
is m-connected. One easily sees that (⟨i⟩, k) : ⟨E⟩⊕D → ⟨G⟩ is an isomorphism.
Thus D is m-connected.

For s ∈ N, let D(s) ⊂ D be the simplicial subgroup equal to: ⟨G⟩s△ for s ≥ 2,
and D otherwise.

Decomposition of D. Let r ∈ N, r ≥ 2, be a number. By § 10, we have the
decomposition D = D2 ⊕ . . . ⊕Dr where ⟨G⟩s△ = Ds ⊕ . . . ⊕Dr, s = 2, . . . , r.
(We have Ds ∼= ⟨E∧s⟩△ for s < r and Dr = ⟨G⟩r△.) Since D is free and m-
connected, the groups Ds are free and m-connected.

The partition h. By (14.1), for each s = 2, . . . , r, there is a partition (hs
z : D

s(¯̄z) →
Ds(L))z∈L. Combining them, we get the partition (hz : D(¯̄z) → D(L))z∈L. We
have hz(D

(s)(¯̄z)) ⊂ D(s)(L), s ∈ N, s ≤ r.

The simplicial homomorphism X. Let G̃ be the dummy of G, p : G̃ → G be the
projection. By (13.2), p is surjective. Thus, for the simplicial homomorphism
⟨p⟩ : ⟨G̃⟩ → ⟨G⟩, we have ⟨p⟩(⟨G̃⟩s△) = ⟨G⟩s△, s ∈ N. Applying (11.1) to each
component Ds of the decomposition of D, we get the simplicial homomorphism
X : D → ⟨G̃⟩ with the following properties:
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(1) the diagram

⟨G̃⟩

⟨p⟩
��

D(m)

X|D(m)

77ppppppppppppp
inclusion // ⟨G⟩

is commutative;

(2) X(D(s)) ⊂ ⟨G̃⟩s△, s ∈ N, s ≤ r.

We have imX ⊂ ⟨G̃⟩△.
The homomorphism V . Let J : ⟨G(L)⟩ → ⟨G⟩(L) be the fusion, R : ⟨G̃⟩(L) →
⟨G̃(L)⟩ be the realization. We have the composition

V : D(L)
X# // ⟨G̃⟩(L) R // ⟨G̃(L)⟩

⟨p#⟩ // ⟨G(L)⟩.

We have imV ⊂ ⟨G(L)⟩△.

(15.1) The diagram

⟨G(L)⟩

J

��
D(L)

V

::vvvvvvvvv k# // ⟨G⟩(L)

is commutative.

Proof. Let J̃ : ⟨G̃(L)⟩ → ⟨G̃⟩(L) be the fusion. The diagram

⟨G̃⟩(L) R // ⟨G̃(L)⟩

J̃

��

⟨p#⟩ // ⟨G(L)⟩

J

��
D(L)

X#

OO

X# // ⟨G̃⟩(L)
⟨p⟩# // ⟨G⟩(L)

is commutative (we invoke (13.4) taking into account that imX ⊂ ⟨G̃⟩△). We
have J ◦ V = ⟨p⟩# ◦X# = k# by the property (1) of X.

(15.2) For w ∈ D(L), we have Σ(V (w)) ⊂ OL(σ(w), 1).

This follows from (13.5).

(15.3) We have V (D(s)(L)) ⊂ ⟨G(L)⟩s△, s ∈ N, s ≤ r.

This follows from the property (2) of X and the claims (13.6) and (9.1).
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The maps Pz, P . For z ∈ L, we have the map Pz : G(K) → ⟨G(L)⟩, Pz(u) =
(V ◦ hz)(l ◦ j ◦ u ◦ e|¯̄z). We have Pz(u) ∈ ⟨G(L)⟩△ since imV ⊂ ⟨G̃(L)⟩△. We
have Σ(Pz(u)) ⊂ OL(z, b1) (by the definition of a partition, the claim (15.2),
and the inequality b1 ≥ 2).

We have the map P : G(K) → ⟨G(L)⟩, P (u) = V (l ◦ j ◦ u ◦ e). We have∑
z∈L

Pz(u) = P (u).

The homomorphism M . We have the additive homomorphism M : ⟨G(K)⟩ →
⟨G(L)⟩,

M(‘u’) =
∑

Z⊂L : ϵL(Z)≥b3

(−1)#Z ‘u ◦ eZ ’
∏
z∈Z

Pz(u).

Here and in all our
∏
’s, we mean that the order of factors is induced by some

fixed order on L. (Moreover, one can see that the factors commute everywhere.)

(15.4) For U ∈ ⟨G(K)⟩, we have θ(M(U)) ≥ min(θ(U) + 1, η(U)).

Proof. Suppose that θ(U) ≥ s − 1 and η(U) ≥ s (s ∈ N+). We show that
θ(M(U)) ≥ s. Take a set T ⊂ L with #T < s. We show that M(U)∥T = 0.

The case ϵL(T ) ≥ b4. Put I = {Z ⊂ L : ϵL(Z) ≥ b3}. For u ∈ G(K), we
have

M(‘u’)∥T =
∑
Z∈I

(−1)#Z ‘u ◦ eZ ’∥T
∏
z∈Z

Pz(u)∥T .

The sets OL(y, b1), y ∈ T , (balls) do not intersect. Moreover, the distance (ρL)
between simplices of distinct balls is at least b3 (since b4 ≥ 2b1 + b3). The
distance between simplices of a ball is smaller than b3 (since b3 ≥ 2b1). Let I0
be the set of sets Z ⊂ L that are contained in the union of the balls and have
at most one simplex in each ball. Show that our sum over Z ∈ I equals the
same sum but over Z ∈ I0. We have I0 ⊂ I. If Z ∈ I \ I0, there is a simplex
z ∈ Z \ OL(T, b1); then Pz(u)∥T = 0 because: Pz(u) ∈ ⟨G(L)⟩△, Σ(Pz(u)) ⊂
OL(z, b1), and OL(z, b1) ∩ T = ∅. Thus the corresponding summand is zero.

Put
I ′0 =

⨿
S⊂T

WS ,

where WS is the set of maps w : S → L such that w(y) ∈ OL(y, b1), y ∈ S. We
have the bijection I ′0 → I0, (S,w) 7→ w(S). Thus

M(‘u’)∥T =
∑

(S,w)∈I′
0

(−1)#S ‘u ◦ ew(S)’∥T
∏
y∈S

Pw(y)(u)∥T .

For y ∈ T , let ty : G(¯̄y) → GT be the canonical monomorphism of a factor
to a product. Show that for (S,w) ∈ I ′0,

(u ◦ ew(S))∥T =
∏

y∈T\S

ty(u ◦ e|¯̄y).
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If y ∈ S, we have y ∈ OL(w(y), b1), and ew(S) sends the simplex y to a vertex
of K; then u ◦ ew(S)|¯̄y = 1 since G0 = 1. If y ∈ T \ S, we have y /∈ OL(w(S), b2)
(since b4 ≥ b1 + b2), and ew(S)|¯̄y = e|¯̄y. Thus we have the desired equality.

For (S,w) ∈ I ′0 and y ∈ S, we have Pw(y)(u)∥T = ⟨ty⟩(Pw(y)(u)|¯̄y). This is
because Σ(Pw(y)(u)) ⊂ OL(w(y), b1) and OL(w(y), b1) ∩ T = {y} (since b4 ≥
2b1).

Thus

M(‘u’)∥T =
∑

(S,w)∈I′
0

(−1)#S
( ∏
y∈T\S

‘ty(u ◦ e|¯̄y)’
)(∏

y∈S

⟨ty⟩(Pw(y)(u)|¯̄y)
)
=

=
∑
S⊂T

(−1)#S
( ∏
y∈T\S

‘ty(u ◦ e|¯̄y)’
)( ∑

w∈WS

∏
y∈S

⟨ty⟩(Pw(y)(u)|¯̄y)
)
=

=
∑
S⊂T

(−1)#S
( ∏
y∈T\S

⟨ty⟩(‘u ◦ e’|¯̄y)
)(∏

y∈S

∑
z∈OL(y,b1)

⟨ty⟩(Pz(u)|¯̄y)
)
=

=
∏
y∈T

⟨ty⟩
(
‘u ◦ e’|¯̄y −

∑
z∈OL(y,b1)

Pz(u)|¯̄y
)
.

We may extend the domain of the last sum to z ∈ L because for z ∈ L\OL(y, b1),
we have Pz(u)|¯̄y = 0 because: Pz(u) ∈ ⟨G(L)⟩△, Σ(Pz(u)) ⊂ OL(z, b1), and
OL(z, b1) ∩ ¯̄y = ∅ for such z. We have

M(‘u’)∥T =
∏
y∈T

⟨ty⟩(‘u ◦ e’|¯̄y − P (u)|¯̄y).

For y ∈ T , let Jy : ⟨G(¯̄y)⟩ → ⟨G⟩(¯̄y) be the fusion. Obviously, it is an isomor-
phism. We have the commutative diagram

⟨G(L)⟩

J

��

?| ¯̄y // ⟨G(¯̄y)⟩

Jy

��
D(L)

V

::vvvvvvvvv k# // ⟨G⟩(L)
?| ¯̄y // ⟨G⟩(¯̄y)

(we invoke (15.1)). We have Jy(‘u◦e’|¯̄y−P (u)|¯̄y) = Jy(‘u◦e’|¯̄y−V (l◦j◦u◦e)|¯̄y) =
j ◦ u ◦ e|¯̄y − k ◦ l ◦ j ◦ u ◦ e|¯̄y = 1 + g ◦ f ◦ j ◦ u ◦ e|¯̄y = 1 + g ◦ q ◦ u ◦ e|¯̄y. We
have the homomorphism ay : GK → ⟨GT ⟩ (in the additive group), ay(v) =
(⟨ty⟩ ◦ J−1

y )((g ◦ q ◦ v ◦ e)y). We have

M(‘u’)∥T =
∏
y∈T

(1 + ay(u∥K)).

Since η(U) > #T , by (8.1), M(U)∥T = 0.
The converse case. There are distinct simplices y0, y1 ∈ T with ρL(y0, y1) <

b4. For each y ∈ T \ {y1}, consider the simplex x ∈ K spanned by the set
e(OL(y, b5)). Let S ⊂ K be the set of these simplices. We have #S < s− 1. For
each y ∈ T , there exists a simplex y′ ∈ T\{y1} such thatOL(y, 2b2) ⊂ OL(y

′, b5):
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we may let y′ be equal to: y0 if y = y1, and y otherwise (we use the inequality
b5 ≥ 2b2 + b4). Thus, for every y ∈ T , there exists a simplex x ∈ S such that
e(OL(y, 2b2)) ⊂ ¯̄x. Let e′ : OL(T, b1) → S̄ be the abridgement of e (we use the
inequality b1 ≤ 2b2).

Take a set Z ⊂ L such that ϵL(Z) ≥ b3. Show that eZ(T̄ ) ⊂ S̄. It suffices
to check that eZ(y) ∈ S̄ for y ∈ T . If y /∈ OL(Z, b2), then eZ(y) = e(y) ∈ S̄.
Otherwise, y ∈ OL(z, b2) for some z ∈ Z. Then eZ(y) = ez(y) ∈ ¯̄x, where x ∈ K
is the simplex spanned by e(OL(z, b2)). We have e(OL(z, b2)) ⊂ e(OL(y, 2b2))
Thus eZ(y) ∈ S̄. Let ẽZ : T̄ → S̄ be the abridgement of eZ .

We have the additive homomorphism M̃ : ⟨G(S̄)⟩ → ⟨G(T̄ )⟩,

M̃(‘ũ’) =
∑

Z⊂OL(T,b1) : ϵL(Z)≥b3

(−1)#Z ‘ũ ◦ ẽZ ’
∏
z∈Z

(V ◦ hz)(l ◦ j ◦ ũ ◦ e′|¯̄z)|T̄ .

Show that the diagram

⟨G(K)⟩

?|S̄
��

M // ⟨G(L)⟩

?|T̄
��

⟨G(S̄)⟩ M̃ // ⟨G(T̄ )⟩

is commutative. We have

M(‘u’)|T̄ =
∑

Z⊂L : ϵL(Z)≥b3

(−1)#Z ‘u ◦ eZ ’|T̄
∏
z∈Z

Pz(u)|T̄ .

The summands with Z ̸⊂ OL(T, b1) equal zero (if z ∈ Z \ OL(T, b1), then
Pz(u)|T̄ = 0 because: Pz(u) ∈ ⟨G(L)⟩△, Σ(Pz(u)) ⊂ OL(z, b1), and OL(z, b1) ∩
T̄ = ∅). We get

M(‘u’)|T̄ =
∑

Z⊂OL(T,b1) : ϵL(Z)≥b3

(−1)#Z ‘u◦eZ ’|T̄
∏
z∈Z

(V ◦hz)(l◦j ◦u◦e|¯̄z)|T̄ =

= M̃(‘u’|S̄).

Since θ(U) > #S, U∥S = 0. Thus U |S̄ = 0. We get M(U)|T̄ = M̃(U |S̄) = 0.
Thus M(U)∥T = 0.

(15.5) For U ∈ ⟨G(K)⟩, we have η(M(U)) ≥ min(η(U), r).

Proof. We have the additive homomorphism N : ⟨GK⟩ → ⟨GL⟩,

N(‘v’) =
∑

Z⊂L : ϵL(Z)≥b3

(−1)#Z ‘v ◦ eZ ’
∏
z∈Z

(V ◦ hz)((l ◦ j ◦ v ◦ e)z)∥L.

The diagram

⟨G(K)⟩

?∥K

��

M // ⟨G(L)⟩

?∥L

��
⟨GK⟩ N // ⟨GL⟩
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is commutative. It suffices to show that N is r-strict. For z ∈ L, we have the ho-
momorphism tz : GK → G(¯̄z), tz(v) = (v ◦ e)z, and the additive homomorphism
Bz : ⟨G(¯̄z)⟩ → ⟨G(L)⟩, Bz(‘v’) = (V ◦hz)(l◦j ◦v). We have the homomorphisms

e#Z : GK → GL and ?∥L : G(L) → GL. We have (for v ∈ GK)

N(‘v’) =
∑

Z⊂L : ϵL(Z)≥b3

(−1)#Z⟨e#Z ⟩(‘v’)
∏
z∈Z

(Bz ◦ ⟨tz⟩)(‘v’)∥L.

By (9.1) and (9.2), it suffices to show that the homomorphisms Bz are r-strict.
The homomorphism Bz equals the composition

⟨G(¯̄z)⟩ Jz // ⟨G⟩(¯̄z)
l# // D(¯̄z)

hz // D(L)
V // ⟨G(L)⟩,

where Jz is the fusion. For s ∈ N, we have: Jz(⟨G(¯̄z)⟩s△) = ⟨G⟩s△(¯̄z); l#(⟨G⟩s△(¯̄z)) =
D(s)(¯̄z) (since l is identical on D); hz(D

(s)(¯̄z)) ⊂ D(s)(L) for s ≤ r (a prop-
erty of the partition h); V (D(s)(L)) ⊂ ⟨G(L)⟩s△ for s ≤ r (by (15.3)). Thus
Bz(⟨G(¯̄z)⟩s△) ⊂ ⟨G(L)⟩s△ for s ≤ r, which is what we need.

Put Q = |K| (= |L|).

(15.6) For U ∈ ⟨G(K)⟩, we have [|M(U)|] = [|U |] in the ring ⟨[Q, |G|]⟩.

Proof. Take u ∈ G(K) and z ∈ L. We have Pz(u) ∈ ⟨G(L)⟩△. By the con-
struction of Pz, all the sections in the ensemble Pz(u) lift to G̃. By (13.1),
the space |G̃| is contractible. Thus [|Pz(u)|] = 0. Applying the ring homomor-
phism [|?|] : ⟨G(L)⟩ → ⟨[Q, |G|]⟩ to the equality defining M , we get [|M(‘u’)|] =
[|‘u ◦ e’|] = [|‘u’|] since |e| : Q → Q is homotopic to the identity.

16. Main procedure

Let K be a polyhedron with dimK ≤ m (m ∈ N) and E be an (n − 1)-
connected (n ∈ N) simplicial set with a single vertex. Suppose that m ≤ 2n−1.
Put Q = |K| and G = FE.

(16.1) Let U ∈ ⟨G(K)⟩ be an ensemble with η(U) ≥ s (s ∈ N). Then there exist
a polyhedron L with the body Q and an ensemble V ∈ ⟨G(L)⟩ with θ(V ) ≥ s and
[|V |] = [|U |] in ⟨[Q, |G|]⟩.

Proof. To get the desired pair (L, V ), take the pair (K,U) and apply the pair
(∆c,M) of operations of § 15 s times. We choose r ≥ s. The desired properties
follow from (15.4), (15.5), and (15.6).

17. The function θ: the topological version

Let X and Y be spaces. For A ∈ ⟨C(X,Y )⟩, put θ(A) = inf{#V : finite V ⊂
X, A|V ̸= 0} ∈ N̂.

Let X ′ and Y ′ be spaces, g : X ′ → X and h : Y → Y ′ be continuous maps.
We have the map t : C(X,Y ) → C(X ′, Y ′), t(a) = h ◦ a ◦ g. We have the
homomorphism ⟨t⟩ : ⟨C(X,Y )⟩ → ⟨C(X ′, Y ′)⟩.
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(17.1) For A ∈ ⟨C(X,Y )⟩, we have θ(⟨t⟩(A)⟩ ≥ θ(A).

Proof. Take a finite V ′ ⊂ X ′ with #V ′ < θ(A). We show that ⟨t⟩(A)|V ′ = 0.
Put V = g(V ′) ⊂ X. We have #V < θ(A). Thus A|V = 0. Let g̃ : V ′ → V be
the abridgement of g. We have the map t̃ : C(V, Y ) → C(V ′, Y ′), t̃(ã) = h◦ ã◦ g̃.
The diagram

C(X,Y )

?|V
��

t // C(X ′, Y ′)

?|V ′

��
C(V, Y )

t̃ // C(V ′, Y ′)

is commutative. We have ⟨t⟩(A)|V ′ = ⟨t̃⟩(A|V ) = 0.

A characterization of the order. Let U be an abelian group and f : [X,Y ] → U
be a map. We have the homomorphism f̄ : ⟨[X,Y ]⟩ → U , f̄(‘w’) = f(w).

(17.2) The condition ord f ≤ r (r ∈ N) is equivalent to the condition that
f̄([A]) = 0 for every A ∈ ⟨C(X,Y )⟩ with θ(A) > r.

Proof. Let Er, Ir, andDr be as in § 1. We have the homomorphism h : ⟨C(X,Y )⟩ →
Dr, h(‘a’) = Ir(a). It is surjective. One easily sees that for A ∈ ⟨C(X,Y )⟩, the
conditions h(A) = 0 and θ(A) > r are equivalent. We have the homomorphism
f̃ : ⟨C(X,Y )⟩ → U , f̃(A) = f̄([A]). The condition ord f ≤ r is equivalent to the
existence of a homomorphism l : Dr → U with l ◦h = f̃ . The latter is equivalent
to the condition f̃ | kerh = 0, that is, the condition that f̄([A]) = 0 for every
A ∈ ⟨C(X,Y )⟩ with θ(A) > r.

18. Geometric realization and simplicial approximation

Let K be a polyhedron and E be a simplicial set. Put Q = |K|.

(18.1) For U ∈ ⟨E(K)⟩, we have θ(|U |) = θ(U).

(18.2) Let B ∈ ⟨C(Q, |E|)⟩ be an ensemble. Then there exist a polyhedron L
with the body Q and an ensemble V ∈ ⟨E(L)⟩ with θ(V ) ≥ θ(B) and [|V |] = [B]
in ⟨[Q, |E|]⟩.

Proof. There are a finite set I, a map k : I → C(Q, |E|), and an element g ∈ ⟨I⟩
such that ⟨k⟩(g) = B. Put bi = k(i), i ∈ I. For q ∈ Q, we have the equivalence
Rq = {(i, j) : bi(q) = bj(q)} on I. For a finite set W ⊂ Q, put

RW =
∩
q∈W

Rq.

The map i 7→ bi|W is subordinate to the equivalence RW (that is, constant on
the classes of RW ). We have the commutative diagram

I

pW

��

k // C(Q, |E|)

?|W
��

I/RW
kW // C(W, |E|),
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where pW is the projection. The map kW is injective. We have ⟨kW ⟩(⟨pW ⟩(g)) =
⟨k⟩(g)|W = B|W . If #W < θ(B), then B|W = 0, and thus ⟨pW ⟩(g) = 0.

We have the continuous map b = (bi)i∈I : Q → |E|I . Let h : |EI | → |E|I
be the canonical continuous bijection. Since I is finite and Q is Haudorff and
compact, the map c = h−1 ◦ b : Q → |EI | is continuous.

To each equivalence R on I assign the simplicial subsetD(R) ⊂ EI ,D(R)n =
{(ei)i∈I ∈ EI

n : (i, j) ∈ R ⇒ ei = ej} (the diagonal). For q ∈ Q, we have
c(q) ∈ |D(Rq)| ⊂ |EI |. We have the simplicial subset M ⊂ EI ,

M =
∪
q∈Q

D(Rq).

We have c(Q) ⊂ |M | ⊂ |EI |. Let c′ : Q → |M | be the abridgement of c. By the
simplicial approximation theorem, there are a polyhedron L with the body Q
and a section u′ ∈ M(L) such that the map |u′| : Q → |M | is homotopic to c′.
Let u ∈ EI(L) be the composition of u′ and the inclusion M → EI . We have
u = (ui)i∈I , where ui ∈ E(L). The map |ui| : Q → |E| is homotopic to bi. We
have the map l : I → E(L), l(i) = ui. Put V = ⟨l⟩(g). We have [|V |] = [B].

For a simplex y ∈ L, dim y = s, we have us(y) ∈ Ms, that is, there is a point
q = qy ∈ Q such that us(y) ∈ D(Rq)s, that is, ui|¯̄y = uj |¯̄y for (i, j) ∈ Rq, that
is, the map i 7→ ui|¯̄y is subordinate to Rq.

Take a set T ⊂ L. Put W = {qy : y ∈ T}. We have #W ≤ #T . The map
i 7→ ui∥T is subordinate to RW . We have the commutative diagram

I

pW

��

l // E(L)

?∥T

��
I/RW

lT // ET .

We have V ∥T = ⟨l⟩(g)∥T = ⟨lT ⟩(⟨pW ⟩(g)). If #T < θ(B), then: #W < θ(B),
⟨pW ⟩(g) = 0, and V ∥T = 0. Thus θ(V ) ≥ θ(B).

19. Some subgroups of ⟨[Q, |G|]⟩.

Let Q be a polyhedral body, dimQ ≤ m (m ∈ N), and E be a (n−1)-connected
(n ∈ N) simplicial set with a single vertex. Suppose that m ≤ 2n − 1. Put
G = FE. Define the subgroups P,Ms, Js ⊂ ⟨C(Q, |G|)⟩, s ∈ N: put P =
⟨C(Q, |G(m)|)⟩ (we have C(Q, |G(m)|) ⊂ C(Q, |G|)), Ms = {B : θ(B) ≥ s}, and
let Js be generated by all elements of the form (‘b1’−1) . . . (‘bk’−1), where k ∈ N,
bl ∈ C(Q, |γslG|) ⊂ C(Q, |G|), and s1 + . . . + sk ≥ s. (Ms and Js are ideals.
Conjecture: Ms ⊂ Js.) For a subgroup S ⊂ ⟨C(Q, |G|)⟩, let [S] ⊂ ⟨[Q, |G|]⟩ be
its image under the homomorphism [?] : ⟨C(Q, |G|)⟩ → ⟨[Q, |G|]⟩.

(19.1) For s ∈ N, we have [Ms] = [P ∩Ms] = [Js].

Proof. The inclusion [Ms] ⊂ [Js]. Take an element B ∈ Ms. We have θ(B) ≥ s.
By (18.2), there are a polyhedron L with the body Q and an ensemble V ∈
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⟨G(L)⟩ with θ(V ) ≥ s and [|V |] = [B]. It suffices to show that |V | ∈ Js. By
(7.2), η(V ) ≥ s. Let Is ⊂ ⟨G(L)⟩ be, as in § 7, the subgroup generated by all
elements of the form (‘v1’−1) . . . (‘vk’−1), where k ∈ N, vl ∈ (γslG)(L) ⊂ G(L),
and s1 + . . .+ sk ≥ s. By (7.1), V ∈ Is. Obviously, |V | ∈ Js.

The inclusion [P ∩Ms] ⊃ [Js]. Take an element B ∈ ⟨C(Q, |G|)⟩, B = (‘b1’−
1) . . . (‘bk’−1), where k ∈ N, bl ∈ C(Q, |γslG|) ⊂ C(Q, |G|), and s1+. . .+sk ≥ s.
Such elements generate Js. Thus it suffices to show that [B] ∈ [P ∩Ms]. Choose
a polyhedron K with the body Q. Since γsG are Kan sets, there are sections
ul ∈ (γslG)(K) with [|ul|] = [bl] in [Q, |G|]. Put U = (‘u1’ − 1) . . . (‘uk’ − 1) ∈
⟨G(L)⟩. We have [|U |] = [B] in ⟨[Q, |G|]⟩. By (7.1), η(U) ≥ s. By (16.1), there
are a polyhedron L with the body Q and an ensemble V ∈ ⟨G(L)⟩ with θ(V ) ≥ s
and [|V |] = [|U |] in ⟨[Q, |G|]⟩. Obviously, |V | ∈ P . By (18.1), θ(|V |) ≥ s. Thus,
[B] = [|V |] and |V | ∈ P ∩Ms.

20. Step from [Q, |G|] to [X,Y ]

Let X be a finite CW-complex, dimX ≤ m (m ∈ N), and Y be an (n − 1)-
connected (n ∈ N) CW-complex. Suppose that m < 2n − 1. We have the
subgroups Ls ⊂ ⟨C(X,Y )⟩, s ∈ N: Ls = {A : θ(A) ≥ s}. Let B = (Bs)

∞
s=1 be

the Curtis filtration of [X,Y ]. For s ∈ N, we have the subgroup Hs ⊂ ⟨[X,Y ]⟩
generated by all elements of the form (‘w1’ − 1) . . . (‘wk’ − 1), where k ∈ N,
wl ∈ Bsl , and s1+. . .+sk ≥ s. (It is an ideal.) For a subgroup R ⊂ ⟨C(X,Y )⟩, let
[R] ⊂ ⟨[X,Y ]⟩ be its image under the homomorphism [?] : ⟨C(X,Y )⟩ → ⟨[X,Y ]⟩.

(20.1) We have [Ls] = Hs, s ∈ N.

Proof. There are a polyhedral body Q, dimQ ≤ m, and a homotopy equivalence
g : Q → X. Let g′ : X → Q be a homotopy inverse map. There are a simplicial set
E with a single vertex and a homotopy equivalence k : Y → |E|. Put G = FE.
Let i : E → G be the canonical simplicial map. By the Freudenthal theorem, it is
(2n−1)-connected. The map h = |i|◦k : Y → |G| is also (2n−1)-connected. Since
m ≤ 2n−1, there is a map h′ : |G(m)| → Y such that the map h◦h′ is homotopic
to the inclusion |G(m)| → |G|. We have the map t : C(X,Y ) → C(Q, |G|),
t(a) = h ◦ a ◦ g. Since m < 2n − 1, it induces an isomorphism t̄ : [X,Y ] →
[Q, |G|]. We have the map t′ : C(Q, |G(m)|) → C(X,Y ), t′(b) = h′ ◦ b ◦ g′. For
b ∈ C(Q, |G(m)|) ⊂ C(Q, |G|), we have [t′(b)] = t̄−1([b]). One can see that

t̄(Bs) = {[b] ∈ [Q, |G|] : b ∈ C(Q, |γsG|) ⊂ C(Q, |G|)}, s ∈ N. (∗)

Let P,Ms, Js ⊂ ⟨C(Q, |G|)⟩ be as in § 19. We have the homomorphisms
⟨t⟩ : ⟨C(X,Y )⟩ → ⟨C(Q, |G|)⟩ and ⟨t′⟩ : P = ⟨C(Q, |G(m)|)⟩ → ⟨C(X,Y )⟩. By
(17.1), ⟨t⟩(Ls) ⊂ Ms, and ⟨t′⟩(P ∩ Ms) ⊂ Ls. We have the ring isomorphism
⟨t̄⟩ : ⟨[X,Y ]⟩ → ⟨[Q, |G|]⟩. It follows from (∗) that ⟨t̄⟩(Hs) = [Js]. Using (19.1),
we get ⟨t̄⟩([Ls]) = [⟨t⟩(Ls)] ⊂ [Ms] = [Js] = ⟨t̄⟩(Hs). Hence [Ls] ⊂ Hs, and
[Ls] ⊃ [⟨t′⟩(P ∩Ms)] = ⟨t̄−1⟩([P ∩Ms]) = ⟨t̄⟩−1([Js]) = Hs.

Proof of Theorem (1.1). We have the homomorphism f̄ : ⟨[X,Y ]⟩ → U , f̄(‘w’) =
f(w). By (17.2), the condition ord f < s (s ∈ N+) is equivalent to the condition
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f̄ |[Ls] = 0. Obviously, the condition degB f < s is equivalent to the condition
f̄ |Hs = 0. Now note that [Ls] = Hs by (20.1).
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