Order of a homotopy invariant in the stable case

Semën Podkorytov

Abstract

Let X and Y be CW-complexes, U be an abelian group, and $f: [X, Y] \rightarrow U$ be a map (a homotopy invariant). We say that f has order at most r if the characteristic function of the rth Cartesian power of the graph of a continuous map $a: X \rightarrow Y$ **Z**-linearly determines f([a]). Suppose that the CW-complex X is finite and we are in the stable case: dim X < 2n - 1 and Y is (n - 1)-connected. We prove that then the order of f equals its degree with respect to the Curtis filtration of the group [X, Y].

1. Introduction

Order of a homotopy invariant. Let X and Y be (topological) spaces. For $r \in \mathbf{N}$ $(= \{0, 1, ...\})$, let E_r be the group of all functions $(X \times Y)^r \to \mathbf{Z}$. For a map $a \in C(X, Y)$, let $\Gamma_a \subset X \times Y$ be its graph and $I_r(a) \in E_r$ be the characteristic function of the set $\Gamma_a^r \subset (X \times Y)^r$. Let $D_r \subset E_r$ be the subgroup generated by the functions $I_r(a)$, $a \in C(X, Y)$.

Let U be an abelian group and $f: [X, Y] \to U$ be a map. Define the *order* of f, ord $f \in \hat{\mathbf{N}} (= \mathbf{N} \cup \{\infty\})$, to be the infimum of those $r \in \mathbf{N}$ for which there exists a homomorphism $l: D_r \to U$ such that $f([a]) = l(I_r(a))$ for all $a \in C(X, Y)$. As one easily sees, the existence of such l for some r implies that for all greater r.

Main result. Suppose that X is a finite CW-complex, Y is a CW-complex, and we are in the stable case: dim $X \leq m$, Y is (n-1)-connected, and m < 2n-1. The set [X, Y] becomes an abelian group canonically. There is the Curtis filtration $B = (B_s)_{s=1}^{\infty}$, $[X, Y] = B_1 \supset B_2 \supset \ldots$, see § 3. It is known [1] that $B_s = 0$ for $s > 2^{m-n}$. The degree of f with respect to B, deg_B $f \in \hat{\mathbf{N}}$, is defined, see below.

(1.1) Theorem. ord $f = \deg_B f$.

 e_1

Example: if f is a homomorphism, its order equals the greatest s for which $f|B_s \neq 0$. (If f = 0, then ord f = 0).

Degree of a map between abelian groups with respect to a filtration. Let T and U be abelian groups, $f: T \to U$ be a map, and $P = (P_s)_{s=1}^{\infty}$ be a filtration of the group $T: T = P_1 \supset P_2 \supset \ldots$. Define the degree of f with respect to P, $\deg_P f \in \hat{\mathbf{N}}$, to be the infimum of those $r \in \mathbf{N}$ for which

$$\sum_{k,\dots,e_k=0,1} (-1)^{e_1+\dots+e_k} f(e_1 t_1 + \dots + e_k t_k) = 0$$

whenever $k \in \mathbf{N}$, $t_l \in P_{s_l}$, $l = 1, \ldots, k$, and $s_1 + \ldots + s_k > r$.

2. Preliminaries

Polyhedra. A polyhedron L is a finite set of affine simplices in \mathbf{R}^{∞} satisfying the "axioms of a simplicial complex" and equipped with a linear order of the vertices of each simplex in such a way that the order of the vertices of a simplex induces the order of the vertices of each of its faces. The body |L| of L is the union of its simplices. A polyhedral body is the body of some polyhedron.

Morphisms of polyhedra. For polyhedra K and L, a map $f: K \to L$ is called a morphism if a vertex is sent to a vertex, the image of a simplex is spanned by the images of its vertices, and the non-strict order of vertices is preserved. A morphism $f: K \to L$ induces a continuous map $|f|: |K| \to |L|$.

Generation. A simplex $y \in L$ generates a subpolyhedron $\overline{y} \subset L$. A set $T \subset L$ generates a subpolyhedron $\overline{T} \subset L$.

Small sets. A set $T \subset L$ is small if there exists a simplex $y \in L$ with $\overline{y} \supset T$; the least of such simplices is spanned by T.

The distance ρ_L . For $x, y \in L$, let $\rho_L(x, y) \in \hat{\mathbf{N}}$ be the infimum of lengths of edge chains connecting x and y. (The orientation of edges is disregarded; the length of a chain is the number of its edges.) If $\rho_L(x, y) < a$, $\rho_L(y, z) < b$ $(x, y, z \in L, a, b \in \mathbf{N})$, then $\rho_L(x, z) < a + b$.

Neighbourhoods O_L . For $y \in L$ and $d \in \mathbf{N}$, put $O_L(y, d) = \{z \in L : \rho_L(y, z) < d\}$. For $T \subset L$, let $O_L(T, d)$ be the union of the sets $O_L(y, d), y \in T$.

Separation ϵ_L . For $T \subset L$, put $\epsilon_L(T) = \inf\{\rho_L(x,y) : x, y \in T, x \neq y\} \in \mathbb{N}$.

Subdivisions. Equip the barycentric subdivision of L with the following order: the greater dimension of a simplex is, the higher its barycentre is. Let δL denote the resulting polyhedron. Let $\phi_L : \delta L \to L$ be the morphism taking the barycentre of a simplex to the highest of its vertices. Equip the barycentric subdivision of L with the opposite order. Let $\delta' L$ denote the resulting polyhedron. Let $\phi'_L : \delta L \to L$ be the morphism taking polyhedron. Let $\phi'_L : \delta' L \to L$ be the morphism taking the barycentre of a simplex to the lowest of its vertices. Put $\Delta L = \delta' \delta L$ and $\Phi_L = \phi_L \circ \phi'_{\delta L} : \Delta L \to L$. The map $|\Phi_L| : |L| = |\Delta L| \to |L|$ is homotopic to the identity. The image of the star of each simplex of ΔL under Φ_L is small. Thus, if $\rho_{\Delta L}(x, y) \leq 2d$ $(x, y \in \Delta L, d \in \mathbf{N})$, then $\rho_L(\Phi_L(x), \Phi_L(y)) \leq d$.

The empty simplex. Put $L^{\circ} = L \cup \{\emptyset\}$. Let the empty simplex generate the empty subpolyhedron: $\overline{\emptyset} = \emptyset$. For $x, y \in L^{\circ}$, we have $x \cap y \in L^{\circ}$.

Completion. Adding degenerate simplices to L, we get a simplicial set \hat{L} . We have $L \subset \hat{L}_0 \cup \hat{L}_1 \cup \ldots$ The spaces |L| and $|\hat{L}|$ are canonically homeomorphic. A mopphism $f: K \to L$ of polyhedra induces a simplicial map $\hat{f}: \hat{K} \to \hat{L}$. The correspondence $f \mapsto \hat{f}$ is bijective.

Sections. For a simplicial set E, let E(L) be the set of simplicial maps $v: \hat{L} \to E$, sections. A section $v \in E(L)$ induces a map $|v| \in C(|L|, |E|)$. For a subpolyhedron $K \subset L$, we have the restriction $v|_K \in E(K)$. For a morphism $f: K \to L$ of polyhedra, we have the composition $v \circ f \in E(K)$. A simplicial map $t: D \to E$ induces a map $t_{\#}: D(L) \to E(L)$. For a simplicial group G and a section $v \in G(L)$, put $\sigma(v) = \{y \in L : v|_{\bar{y}} \neq 1\}$. Quasisections. For a set $T \subset L$ and a simplicial set E, put

$$E_T = \prod_{y \in T} E(\bar{y}).$$

For $v \in E(L)$, put $v||_T = (v|_{\bar{y}})_{y \in T} \in E_T$. For a quasisection $w \in E_L$ and a morphism $f: K \to L$ of polyhedra, define the composition $w \circ f \in E_K$ by $(w \circ f)_x = w_{f(x)} \circ f'_x, x \in K$, where $f'_x: \bar{x} \to \overline{f(x)}$ are the restrictions of f. We have the map $f^{\#}: E_L \to E_K, f^{\#}(w) = w \circ f$. For a simplicial map $t: D \to E$ and a quasisection $v \in D_L$, we have the composition $t \circ v \in E_L$.

Free groups. For a set E with a marked element *, we have the group FE given by the generators $\underline{e}, e \in E$, and the relation $\underline{*} = 1$. The map $i: E \to FE$, $i(e) = \underline{e}$, is called *canonical*.

The lower central series and the abelianization. For a group G, let $(\gamma_s G)_{s=1}^{\infty}$ be its lower central series. Put $G^+ = G/\gamma_2 G$.

Free abelian groups. For a set E, we have the abelian group $\langle E \rangle$ with the base $(`e')_{e \in E}$. The map $j: E \to \langle E \rangle$, j(e) = `e', is called *canonical*. Let $\langle E \rangle_{\Delta}$ be the kernel of the homomorphism $\langle E \rangle \to \mathbf{Z}$, $`e' \mapsto 1$. A map $t: D \to E$ induces a homomorphism $\langle t \rangle: \langle D \rangle \to \langle E \rangle$.

Let L be a polyhedron, E be a simplicial set, and $V \in \langle E(L) \rangle$ be an element (an *ensemble*). Let $|V| \in \langle C(|L|, |E|) \rangle$ denote the image of V under the homomorphism induced by the map $|?|: E(L) \to C(|L|, |E|)$. For a subpolyhedron $K \subset L$, the ensemble $V|_K \in \langle E(K) \rangle$ is defined similarly; for a set $T \subset L$, we have the element $V|_T \in \langle E_T \rangle$. For spaces X and Y and an ensemble $A \in \langle C(X, Y) \rangle$, we have the element $[A] \in \langle [X, Y] \rangle$. For a set $Z \subset X$, we have the ensemble $A|_Z \in \langle C(Z, Y) \rangle$.

For a simplicial group G and an ensemble $V \in \langle G(L) \rangle$,

$$V = \sum_{v \in G(L)} m_v `v'$$

 $(m_v \in \mathbf{Z})$, put

$$\Sigma(V) = \bigcup_{v \in G(L) : m_v \neq 0} \sigma(v)$$

Group rings. For a group G, $\langle G \rangle$ is the group ring, $\langle G \rangle_{\Delta}$ is its (two-sided) ideal. For $s \in \mathbf{N}_+$ (= $\mathbf{N} \setminus \{0\}$), the ideal $\langle G \rangle_{\Delta}^s$ is additively generated by all elements of the form $(`g_1` - 1) \dots (`g_s` - 1), g_1, \dots, g_s \in G$.

Simplicial application. Natural constructions can be applied to simplicial objects dimension-wise. For a pointed simplicial set E, we have the simplicial group FE and the canonical simplicial map $i: E \to FE$. The map i is a model of the canonical map of a pointed space to the loop space of its suspension (*Milnor's model*, see [2]). For a simplicial group G, we have the simplicial abelian group G^+ , the simplicial ring $\langle G \rangle$, the canonical simplicial map $j: G \to \langle G \rangle$, and the simplicial subgroups $\gamma_s G \subset G$, $s \in \mathbf{N}_+$, and $\langle G \rangle_{\Delta}^{s} \subset \langle G \rangle$, $s \in \mathbf{N}$.

Simplicial trifles. A simplicial map between pointed simplicial sets is called *bound* if it preserves the pointing. A simplicial abelian group D is called *free* if the abelian groups D_n , $n \in \mathbf{N}$, are free. For a simplicial set E, let $E_{(m)} \subset E$ $(m \in \mathbf{N})$ denote its *m*-skeleton.

Fusion. Let L be a polyhedron and G be a simplicial group. Let $j: G \to \langle G \rangle$ be the canonical map. The ring homomorphism $J: \langle G(L) \rangle \to \langle G \rangle(L), J(`v') = j \circ v$, is called *fusion*.

3. The Curtis filtration in the stable case

Let X and Y be CW-complexes. Suppose that dim $X \leq m$, Y is (n-1)connected, and m < 2n-1. We shall construct a filtration $B = (B_s)_{s=1}^{\infty}$ of the abelian group [X, Y], $[X, Y] = B_1 \supset B_2 \supset \ldots$, the *Curtis filtration*. There are a simplicial set E and a homotopy equivalence $k: Y \to |E|$. Let us point E. We have the simplicial group G = FE. By the Freudenthal theorem, the canonical simplicial map $i: E \to G$ is (2n-1)-connected. The map $h = |i| \circ k: Y \to |G|$ is also (2n-1)-connected. Let $j_s: \gamma_s G \to G$, $s \in \mathbf{N}_+$, be the inclusions. For $s \in \mathbf{N}_+$, we have the chain of groups and homomorphisms

$$[X,Y] \xrightarrow{h_*} [X,|G|] \xleftarrow{|j_s|_*} [X,|\gamma_s G|].$$

Since m < 2n - 1, h_* is an isomorphism. Put $B_s = h_*^{-1}(\operatorname{im} |j_s|_*)$. (The result does not depend on the choice of E etc.)

4. A claim on Lie rings

Here U denotes the universal enveloping ring functor.

(4.1) Let L and M be Lie rings, free as abelian groups, and $k: L \to M$ be an injective homomorphism. Then the homomorphism $Uk: UL \to UM$ is injective.

This follows easily from the Poincaré–Birkhoff–Witt theorem.

5. A claim on group rings

Let V and W be groups and $t: V \to W$ be a homomorphism. We have the ring homomorphism $\langle t \rangle : \langle V \rangle \to \langle W \rangle$. For $s \in \mathbf{N}$, let $I_s \subset \langle V \rangle$ be the subgroup generated by all elements of the form $(`v_1` - 1) \dots (`v_k` - 1)$, where $k \in \mathbf{N}$, $v_l \in t^{-1}(\gamma_{s_l}W)$, and $s_1 + \dots + s_k \geq s$. It is easy to see that I_s are ideals, $I_s \supset I_{s+1}$, and $I_s I_t \subset I_{s+t}$.

(5.1) Suppose that W is a product of a finite number of free groups. Then $\langle t \rangle^{-1} (\langle W \rangle^s_{\Delta}) = I_s, s \in \mathbf{N}.$

Proof. If $w \in \gamma_s W$, then $w' - 1 \in \langle W \rangle^s_{\Delta}$ (this holds for arbitrary W [3, III.1.3]). This yields the inclusion $\langle t \rangle^{-1} (\langle W \rangle^s_{\Delta}) \supset I_s$.

We have the graded rings P, $P_s = I_s/I_{s+1}$, and Q, $Q_s = \langle W \rangle^s_{\Delta} / \langle W \rangle^{s+1}_{\Delta}$. Since $\langle t \rangle (I_s) \subset \langle W \rangle^s_{\Delta}$, the homomorphism $\langle t \rangle$ induces a graded ring homomorphism $l: P \to Q$. We shall show that l is injective. Then induction on s with application of the 5-lemma shows that the induced homomorphism $\langle V \rangle / I_s \to \langle W \rangle / \langle W \rangle^s_{\Delta}$ is injective, which is the desired equality.

We have the graded Lie rings L, $L_s = t^{-1}(\gamma_s W)/t^{-1}(\gamma_{s+1}W)$, and M, $M_s = \gamma_s W/\gamma_{s+1}W$ (the product is induced by the group commutator, see [3, VIII.2]). The homomorphism t induces a graded Lie ring homomorphism $k: L \to M$, which is obviously injective.

We have the commutative diagram

$$\begin{array}{cccc}
L & \stackrel{k}{\longrightarrow} & M \\
f & & & \downarrow^{g} \\
P & \stackrel{l}{\longrightarrow} & Q,
\end{array}$$

where f and g are the representations with the components $f_s: L_s \to P_s, f_s(v) =$ ' $v'-1, v \in t^{-1}(\gamma_s W)$, and $g_s: M_s \to Q_s, g_s(w) =$ ' $w'-1, w \in \gamma_s W$. Extending the representations f and g to homomorphisms of the universal enveloping rings, we get the commutative diagram

By Magnus' method, one easily shows that \tilde{g} is an isomorphism, and M is free as an abelian group (cf. [3, VIII.6]). By (4.1), the homomorphism Uk is injective. The ring P is generated by elements of the form ' $v' - 1 \in P_s$, where $s \in \mathbf{N}_+, v \in t^{-1}(\gamma_s W)$. They belong to the image of the representation f and, consequently, of the homomorphism \tilde{f} , which is thus surjective. Therefore, the homomorphism l is injective (and \tilde{f} is an isomorphism.)

6. Some ideals of the group ring of a product of groups

Let $(G_i)_{i \in I}$ be a finite collection of groups. For $J \subset I$, put

$$G_J = \prod_{i \in J} G_i,$$

and let $p_J: G_I \to G_J$ be the projection homomorphism. We have the ring homomorphisms $\langle p_J \rangle: \langle G_I \rangle \to \langle G_J \rangle$.

(6.1) For $s \in \mathbf{N}$, we have

$$\bigcap_{\#J < s} \ker \langle p_J \rangle \subset \langle G_I \rangle^s_{\Delta}.$$

Proof. We have

$$\langle G_I \rangle = \bigotimes_{i \in I} \langle G_i \rangle.$$

Since $\langle G_i \rangle = \langle G_i \rangle_{\Delta} \oplus \langle 1 \rangle$,

$$\langle G_I \rangle = \bigoplus_{J \subset I} S(J), \qquad S(J) = \bigotimes_{i \in I} T_i(J),$$

where the subgroup $T_i(J) \subset \langle G_i \rangle$ is: $\langle G_i \rangle_{\Delta}$ if $i \in J$, and $\langle 1 \rangle$ otherwise. Obviously, $\langle p_J \rangle | S(J')$ is: a monomorphism if $J' \subset J$, and zero otherwise. Therefore,

$$\bigcap_{\#J < s} \ker \langle p_J \rangle = \bigoplus_{\#J \ge s} S(J).$$

Now it suffices to note that $S(J) \subset \langle G_I \rangle_{\Delta}^{\#J}$.

7. The functions η and θ

Let *L* be a polyhedron and *G* be a simplicial group. We have the homomorphism $?||_L: G(L) \to G_L$. For $V \in \langle G(L) \rangle$, put $\eta(V) = \sup\{s \in \mathbf{N} : V||_L \in \langle G_L \rangle_{\Delta}^s\} \in \hat{\mathbf{N}}$. For $s \in \mathbf{N}$, we have the subgroup $I_s \subset \langle G(L) \rangle$ generated by all elements of the form $(`v_1` - 1) \dots (`v_k` - 1)$, where $k \in \mathbf{N}$, $v_l \in (\gamma_{s_l}G)(L) \subset G(L)$, and $s_1 + \dots + s_k \geq s$. (It is an ideal.)

(7.1) Suppose that the groups G_n , $n \in \mathbb{N}$, are free. Then $\{V \in \langle G(L) \rangle : \eta(V) \ge s\} = I_s$, $s \in \mathbb{N}$.

This follows from (5.1).

For a simplicial set E and an ensemble $V \in \langle E(L) \rangle$, put $\theta(V) = \inf\{\#T : T \subset L, V \|_T \neq 0\} \in \hat{\mathbf{N}}$.

(7.2) For $V \in \langle G(L) \rangle$, we have $\theta(V) \leq \eta(V)$.

This follows from (6.1).

8. Product of affine functions

(8.1) Let V be a group, H be a ring, and $a_1, \ldots, a_r \colon V \to H$ be homomorphisms (to the additive group; $r \in \mathbf{N}$). We have the additive homomorphism $Q \colon \langle V \rangle \to H$,

$$Q(v') = \prod_{s=1}^{r} (1 + a_s(v)).$$

Then $Q|\langle V \rangle^{r+1}_{\wedge} = 0.$

This follows from [3, V.2.1].

		-

9. Strict and *r*-strict homomorphisms

Let V and W be groups. An additive homomorphism $h: \langle V \rangle \to \langle W \rangle$ is called *strict* if $h(\langle V \rangle^s_{\Delta}) \subset \langle W \rangle^s_{\Delta}$ for all $s \in \mathbf{N}$ and *r*-strict $(r \in \mathbf{N})$ if this holds for $s \leq r$.

(9.1) Let $t: V \to W$ be a homomorphism. Then the homomorphism $\langle t \rangle : \langle V \rangle \to \langle W \rangle$ is strict.

(9.2) Let $f, g: \langle V \rangle \to \langle W \rangle$ be r-strict $(r \in \mathbb{N})$ homomorphisms. Then the homomorphism $h: \langle V \rangle \to \langle W \rangle$, h(`v') = f(`v')g(`v'), is r-strict.

Proof. Take $s \in \mathbf{N}_+$, $s \leq r$, and $v_1, \ldots, v_s \in V$. Put $x_t = v_t' - 1 \in \langle V \rangle_{\Delta}$. Let us show that $h(x_1 \ldots x_s) \in \langle W \rangle_{\Delta}^s$. We have

$$(-1)^{s}h(x_{1}\dots x_{s}) = \sum_{e_{1},\dots,e_{s}=0,1} (-1)^{e_{1}+\dots+e_{s}}h(`v_{1}^{e_{1}}\dots v_{s}^{e_{s}}`) =$$

$$= \sum_{e_{1},\dots,e_{s}=0,1} (-1)^{e_{1}+\dots+e_{s}}f(`v_{1}^{e_{1}}\dots v_{s}^{e_{s}}`)g(`v_{1}^{e_{1}}\dots v_{s}^{e_{s}}`) =$$

$$= \sum_{e_{1},\dots,e_{s}=0,1} (-1)^{e_{1}+\dots+e_{s}}f(\prod_{t=1}^{s}(1+e_{t}x_{t}))g(\prod_{t=1}^{s}(1+e_{t}x_{t})) =$$

$$= \sum_{e_{1},\dots,e_{s}=0,1} (-1)^{e_{1}+\dots+e_{s}} (\sum_{a_{1},\dots,a_{s}=0,1} e_{1}^{a_{1}}\dots e_{s}^{a_{s}}f(x_{1}^{a_{1}}\dots x_{s}^{a_{s}})) \cdot$$

$$\cdot (\sum_{b_{1},\dots,b_{s}=0,1} e_{1}^{b_{1}}\dots e_{s}^{b_{s}}g(x_{1}^{b_{1}}\dots x_{s}^{b_{s}})) =$$

$$= \sum_{a_{1},b_{1},\dots,a_{s},b_{s}=0,1} (\sum_{e_{1},\dots,e_{s}=0,1} (-1)^{e_{1}+\dots+e_{s}} e_{1}^{a_{1}+b_{1}}\dots e_{s}^{a_{s}+b_{s}})f(x_{1}^{a_{1}}\dots x_{s}^{a_{s}}) \cdot$$

$$\cdot g(x_{1}^{b_{1}}\dots x_{s}^{b_{s}}).$$

Fix $a_1, b_1, \ldots, a_s, b_s$. We show that the corresponding summand of the outer sum belongs to $\langle W \rangle^s_{\Delta}$. Put $a = a_1 + \ldots + a_s$, $b = b_1 + \ldots + b_s$. Since $a, b \leq s \leq r$ and the homomorphisms f and g are r-strict, we have

$$f(x_1^{a_1}\dots x_s^{a_s})g(x_1^{b_1}\dots x_s^{b_s}) \in \langle W \rangle_{\Delta}^{a+b}.$$

If $a + b \ge s$, this suffices. Otherwise, there is t such that $a_t = b_t = 0$. Then the quantity $e_1^{a_1+b_1} \dots e_s^{a_s+b_s}$ does not depend on e_t , and thus the inner sum equals zero.

10. Group ring of a free group

Let E be a pointed set. Put G = FE. Let $i: E \to G$ be the canonical map. For $s \in \mathbf{N}$, we have the ponted set $E^{\wedge s} = E \wedge \ldots \wedge E$ ($E^{\wedge 0}$ is the 0-sphere) and the homomorphism $k_s: \langle E^{\wedge s} \rangle_{\Delta} \to \langle G \rangle_{\Delta}^s$,

$$k_s((e_1,\ldots,e_s)'-(*)) = \prod_{t=1}^s ((\underline{e_t}'-1)),$$

where $* \in E^{\wedge s}$ is the marked element. By [3, VIII.6.2], the composition

$$\langle E^{\wedge s} \rangle_{\vartriangle} \xrightarrow{k_s} \langle G \rangle^s_{\vartriangle} \xrightarrow{\text{projection}} \langle G \rangle^s_{\vartriangle} / \langle G \rangle^{s+1}_{\vartriangle}$$

is an isomorphism. Therefore, $\langle G \rangle^s_{\vartriangle} = D^s \oplus \langle G \rangle^{s+1}_{\vartriangle}$, where $D^s \cong \langle E^{\land s} \rangle_{\vartriangle}$.

11. Lift of a simplicial homomorphism

(11.1) Consider the diagram

$$\begin{array}{c} Q \\ \downarrow f \\ D \xrightarrow{s} P \end{array}$$

of simplicial abelian groups and homomorphisms. Suppose that D is free and m-connected ($m \in \mathbf{N}$) and f is surjective. Then there exists a simplicial homomorphism $t: D \to Q$ such that $f \circ t | D_{(m)} = s | D_{(m)}$.

Proof. Let \heartsuit denote the normalization functor. The complex D^{\heartsuit} is free. Thus $D^{\heartsuit} = C^0 \oplus C^1 \oplus \ldots$, where C^n is a free complex with $C_i^n = 0$ for $i \neq n, n+1$ and the differential $\partial : C_{n+1}^n \to C_n^n$ injective. The complex D^{\heartsuit} is *m*-connected. Thus, for $n \leq m$, the differential $\partial : C_{n+1}^n \to C_n^n$ is an isomorphism. The morphism $f^{\heartsuit} : Q^{\heartsuit} \to P^{\heartsuit}$ is surjective. Thus, for $n \leq m$, there is a morphism $g^n : C^n \to Q^{\heartsuit}$ such that $f^{\heartsuit} \circ g^n = s^{\heartsuit} | C^n$. We have the morphism $h: D^{\heartsuit} \to Q^{\heartsuit}$ with $h | C^n$ equal to: g^n if $n \leq m$, and zero otherwise. Obviously, $(f^{\heartsuit} \circ h)_n = s_n^{\heartsuit}$ for $n \leq m$. The Dold–Kan correspondence yields the simplicial homomorphism $t: D \to Q$ with $t^{\heartsuit} = h$. It has the desired property. \Box

12. The function μ_L

Let L be a polyhedron. For $x \in L^{\circ}$, put $\mu_L(x) = 1 - \chi(\operatorname{lk}_L x)$ (χ is the Euler characteristic; lk is the link; convention: $\operatorname{lk}_L \emptyset = L$).

(12.1) For $y, z \in L^{\circ}$, we have

$$\sum_{x \in L^{\circ} : x \cap y = z} \mu_L(x) = \begin{cases} 1 & \text{if } y = z, \\ 0 & \text{otherwise.} \end{cases}$$

Proof. For $t \in L^{\circ}$, we have

$$\sum_{x \in L^{\circ} : x \subset t, \ x \cap y = z} (-1)^{\dim x} = \begin{cases} (-1)^{\dim z} & \text{if } z \subset t \subset y, \\ 0 & \text{otherwise} \end{cases}$$

(convention: dim $\emptyset = -1$). For $x \in L^{\circ}$, we have

$$\chi(\operatorname{lk}_L x) = \sum_{t \in L^\circ : x \subsetneq t} (-1)^{\dim t - \dim x - 1},$$

and thus

$$\mu_L(x) = \sum_{t \in L^\circ : x \subset t} (-1)^{\dim t - \dim x}$$

We have

$$\sum_{x \in L^{\circ} : x \cap y = z} \mu_L(x) = \sum_{x, t \in L^{\circ} : x \subset t, \ x \cap y = z} (-1)^{\dim t - \dim x} =$$
$$= \sum_{t \in L^{\circ}} (-1)^{\dim t} \sum_{x \in L^{\circ} : x \subset t, \ x \cap y = z} (-1)^{\dim x} =$$
$$= \sum_{t \in L^{\circ} : z \subset t \subset y} (-1)^{\dim t + \dim z} = \begin{cases} 1 & \text{if } y = z, \\ 0 & \text{otherwise.} \end{cases}$$

13. Dummy of a simplicial group

A model of the path fibration. Let B be the cosimplicial simplicial pointed set where B_m^n is the set of non-strictly increasing partial maps $b: [m] \dashrightarrow [n]$ (we have dom $b \subset [m]$) with the marked element o_m^n , dom $o_m^n = \emptyset$, and the structure maps are obvious. For $n \in \mathbf{N}$, we have the pointed simplicial set B^n .

Let G be a simplicial group. Let G, the dummy, be the simplicial group where \tilde{G}_n is the group of bound simplicial maps $B^n \to G$ and the structure homomorphisms are induced by the cosimplicial structure.

(13.1) The space $|\tilde{G}|$ is contractible.

Proof. Let I be the simplicial set that is the standard 1-simplex: I_n is the set of non-strictly increasing maps $s: [n] \to [1]$. The collection of maps $I_n \times B_m^n \to B_m^n$, $(s,b) \mapsto b|(s \circ b)^{-1}(1), m, n \in \mathbf{N}$, induces a contracting homotopy $I \times \tilde{G} \to \tilde{G}$. \Box

Evaluation at the elements $i_n \in B_n^n$, $i_n = id: [n] \to [n]$, yields the simplicial homomorphism $p: \tilde{G} \to G$, the projection.

(13.2) Suppose that $G_0 = 1$. Then p is surjective.

Proof. Take an element $g \in G_n$ $(n \in \mathbf{N})$. We seek an element $\tilde{g} \in \tilde{G}_n$ with $p_n(\tilde{g}) = g$, that is, a bound simplicial map $\tilde{g} \colon B^n \to G$ with $\tilde{g}_n(i_n) = g$. Let $V \subset B^n$ be the simplicial subset generated by the elements i_n and $l_n \in B_1^n$, dom $l_n = \{0\}, \ l_n(0) = 0$. It is the wedge of the standard *n*-simplex and 1-simplex. We have the simplicial map $f \colon V \to G, \ f_n(i_n) = g, \ f_1(l_n) = 1$. Since V is contractible and G is a Kan set, f extends to B^n , which yields the desired \tilde{g} .

Extension of sections. Let L be a polyhedron. Take simplices $x, y \in L$ of dimensions r, s, respectively. Let $i: [r] \to L$ and $j: [s] \to L$ be the increasing enumerations of their vertices. We have the partial map $t = i^{-1} \circ j: [s] \dashrightarrow [r]$.

For a bound simplicial map $\tilde{g}: B^r \to G$, let $e_{xy}(\tilde{g}): B^s \to G$ be the bound simplicial map such that $e_{xy}(\tilde{g})_m(b) = \tilde{g}_m(t \circ b)$ for $b: [m] \dashrightarrow [s] \ (m \in \mathbb{N})$. Thus we have the homomorphism $e_{xy}: \tilde{G}_r \to \tilde{G}_s$.

For $x \in L$, dim x = r, let the homomorphism $E_x : \tilde{G}(\bar{x}) \to \tilde{G}(L)$ be given by $E_x(v)_s(y) = e_{xy}(v_r(x))$ $(y \in L, \dim y = s)$. Extend this construction to the case $x \in L^\circ$: put $E_{\emptyset}(1) = 1$ (we have $\tilde{G}(\bar{\emptyset}) = 1$).

(13.3) For $x \in L^{\circ}$ and $v \in \tilde{G}(\bar{x})$, we have

- (a) $E_x(v)|_{\bar{x}} = v;$
- (b) $E_x(v)|_{\bar{y}} = E_{x \cap y}(v|_{\bar{x} \cap \bar{y}})|_{\bar{y}} \ (y \in L^\circ);$ (c) $\sigma(E_x(v)) \subset O_L(x, 1) \ if \ x \neq \varnothing.$
- Realization. Let $\tilde{J}: \langle \tilde{G}(L) \rangle \to \langle \tilde{G} \rangle(L)$ and $\tilde{J}_x: \langle \tilde{G}(\bar{x}) \rangle \to \langle \tilde{G} \rangle(\bar{x}), x \in L$, be fusions. Obviously, \tilde{J}_x are isomorphisms. We have the additive homomorphism, the realization, $R: \langle \tilde{G} \rangle(L) \to \langle \tilde{G}(L) \rangle$,

$$R(w) = \sum_{x \in L} \mu_L(x) (\langle E_x \rangle \circ \tilde{J}_x^{-1}) (w|_{\bar{x}}).$$

We have $R(\langle \tilde{G} \rangle_{\Delta}(L)) \subset \langle \tilde{G}(L) \rangle_{\Delta}$.

(13.4) For $w \in \langle \tilde{G} \rangle_{\Delta}(L)$, we have $\tilde{J}(R(w)) = w$.

Proof. For $z \in L^{\circ}$, we have the homomorphism $H_z : \langle \tilde{G} \rangle (\bar{z}) \to \langle \tilde{G}(L) \rangle$ with $H_z = \langle E_z \rangle \circ \tilde{J}_z^{-1}, z \neq \emptyset$, and $H_{\emptyset} = 0$. It follows from (13.3 b) that for $x, y \in L^{\circ}$ and $u \in \langle \tilde{G} \rangle_{\Delta}(\bar{x})$, we have $H_x(u)|_{\bar{y}} = H_{x \cap y}(u|_{\bar{x} \cap \bar{y}})|_{\bar{y}}$. For $y \in L$, we have

$$\begin{split} \tilde{J}(R(w))|_{\bar{y}} &= \tilde{J}_{y}(R(w)|_{\bar{y}}) = \\ &= \sum_{x \in L^{\circ}} \mu_{L}(x) \tilde{J}_{y}(H_{x}(w|_{\bar{x}})|_{\bar{y}}) = \sum_{x \in L^{\circ}} \mu_{L}(x) \tilde{J}_{y}(H_{x \cap y}(w|_{\bar{x} \cap \bar{y}})|_{\bar{y}}) = \\ &= \sum_{z \in L^{\circ}} \Big(\sum_{x \in L^{\circ} : x \cap y = z} \mu_{L}(x)\Big) \tilde{J}_{y}(H_{z}(w|_{\bar{z}})|_{\bar{y}}) \stackrel{\text{by (12.1)}}{=} \tilde{J}_{y}(H_{y}(w|_{\bar{y}})|_{\bar{y}}) = \\ &= \tilde{J}_{y}(\langle E_{y} \rangle (\tilde{J}_{y}^{-1}(w|_{\bar{y}}))|_{\bar{y}}) \stackrel{\text{by (13.3 a)}}{=} \tilde{J}_{y}(\tilde{J}_{y}^{-1}(w|_{\bar{y}})) = w|_{\bar{y}}. \quad \Box \end{split}$$

(13.5) For $w \in \langle \tilde{G} \rangle(L)$, we have $\Sigma(R(w)) \subset O_L(\sigma(w), 1)$.

This follows from (13.3 c).

(13.6) We have $R(\langle \tilde{G} \rangle^s_{\Delta}(L)) \subset \langle \tilde{G}(L) \rangle^s_{\Delta}, s \in \mathbb{N}$.

Proof. For $w \in \langle \tilde{G} \rangle^s_{\Delta}(L)$ and $x \in L$, we have $w|_{\bar{x}} \in \langle \tilde{G} \rangle^s_{\Delta}(\bar{x}), \ \tilde{J}_x^{-1}(w|_{\bar{x}}) \in \langle \tilde{G}(\bar{x}) \rangle^s_{\Delta}$, and, by (9.1), $\langle E_x \rangle (\tilde{J}_x^{-1}(w|_{\bar{x}})) \in \langle \tilde{G}(L) \rangle^s_{\Delta}$. Summing over $x \in L$, we get $R(w) \in \langle \tilde{G}(L) \rangle^s_{\Delta}$.

14. Partitions

Let L be a polyhedron and D be a simplicial abelian group. A collection $(h_z: D(\overline{z}) \to D(L))_{z \in L}$ of homomorphisms is called a *partition* if for $w \in D(L)$, we have

$$\sum_{z \in L} h_z(w|_{\bar{z}}) = u$$

and $\sigma(h_z(w)) \subset O_L(z,1)$ for all $z \in L$.

(14.1) Suppose that dim $L \leq m \ (m \in \mathbf{N})$ and D is free and m-connected. Then there exists a partition $(h_z : D(\overline{z}) \to D(L))_{z \in L}$.

Proof. We shall use the Dold–Kan correspondence. There is a decomposition $D = D^0 \oplus D^1 \oplus \ldots$, where D^n is a simplicial abelian group such that its normalization C^n is concentrated in dimensions n and n+1 and the differential $\partial: C_{n+1}^n \to C_n^n$ is injective (cf. proof of (11.1)). It suffices to construct a partition $(h_z^n: D^n(\bar{z}) \to D^n(L))_{z \in L}$ for each n. Take $n \leq m$. Then $\partial: C_{n+1}^n \to C_n^n$ is an isomorphism, since D is m-connected. Thus a section on a polyhedron with values in D^n is the same as an n-cochain on it with coefficients in C_n^n . Let h_z^n be: the extension of a cochain by zero if dim z = n, and zero otherwise. Take n > m. Then $D^n(L) = 0$ since dim $L \leq m$. Thus there is the zero partition. \Box

15. Modification of an ensemble of sections

Fix numbers $b_1, \ldots, b_5, c \in \mathbb{N}$ such that each is sufficiently great with respect to the previous, namely: $b_1 \ge 2, b_2 \ge b_1 + 2, b_3 \ge 2b_2, b_4 \ge 2b_1 + b_3, b_5 \ge 2b_2 + b_4, 2^{c-1} \ge 2b_5 + 1.$

The morphism $e: L \to K$. Let K be a polyhedron with dim $K \leq m$ ($m \in \mathbb{N}$). Put $L = \Delta^c K$ and $e = \Phi_K \circ \ldots \circ \Phi_{\Delta^{c-1}K} : L \to K$. For $z \in L$, the set $e(O_L(z, b_5)) \subset K$ is small (this follows from the properties of the operation Δ and the inequality $2^{c-1} \geq 2b_5 + 1$).

The morphisms e_z . Take a simplex $z \in L$. Since $b_2 \leq b_5$, the set $e(O_L(z, b_2))$ is small. It spans a simplex $x \in K$. Let $u \in K$ be the highest vertex of x. We shall construct a morphism $e_z : L \to K$ with the following properties:

- (1) $e_z(O_L(z, b_1)) = \{u\};$
- (2) $e_z(O_L(z, b_2)) \subset \overline{\bar{x}};$
- (3) e_z agrees with e outside $O_L(z, b_2)$.

Put $L_1 = \delta \Delta^{c-1} K$. We have $L = \delta' L_1$. Let $B_1 \subset L_1$ be the subpolyhedron generated by the simplices whose centres (which are vertices of L) belong to $O_L(z, b_1 + 1)$. Put $B = \delta' B_1$. We have $B \subset L$ (a subpolyhedron). We have $O_L(z, b_1) \subset B$ and (since $b_2 \geq b_1 + 2$) $O_L(B, 1) \subset O_L(z, b_2)$. The polyhedron L has no edges outcoming from B. Let e_z take a vertex $t \in L$ to: u if $t \in B$, and e(t) otherwise. One easily checks that e_z is well-defined and has the desired properties. The morphisms e_Z . Take a set $Z \subset L$ with $\epsilon_L(Z) \geq b_3$. Define a morphism $e_Z \colon L \to K$ by the following conditions:

- (1) for $z \in Z$, the morphisms e_Z and e_z agree on $O_L(z, b_2)$;
- (2) the morphisms e_Z and e agree outside $O_L(Z, b_2)$.

Since $b_3 \ge 2b_2$, e_Z is well-defined.

The simplicial groups G and D. Let E be an (n-1)-connected $(n \in \mathbf{N})$ simplicial set with a single vertex. Suppose that $m \leq 2n-1$. Put G = FE. Let $i: E \to G$ and $j: G \to \langle G \rangle$ be the canonical simplicial maps and $q: G \to G^+$ be the simplicial homomorphism that is the projection. We shall need a decomposition $\langle G \rangle \cong \langle 1 \rangle \oplus G^+ \oplus D$ (cf. § 10) and some related simplicial homomorphisms. Let $d: \langle G \rangle \to \langle G \rangle$ be the simplicial homomorphism that is the identity on $\langle G \rangle_{\Delta}$ and zero on $\langle 1 \rangle$. We have the simplicial homomorphisms $f: \langle G \rangle \to G^+$ with $f \circ j = q$ and $g: G^+ \to \langle G \rangle$ with $g \circ q \circ i = d \circ j \circ i$. We have $f \circ g = \text{id}$. Put $D = \langle G \rangle_{\Delta}^2 \subset \langle G \rangle$. Let $k: D \to \langle G \rangle$ be the inclusion. We have the simplicial homomorphism $l: \langle G \rangle \to D$ such that $k \circ l + g \circ f = d$. We have $l \circ k = \text{id}$.

The simplicial abelian group D is free. By the Freudenthal theorem, the map $i: E \to G$ is (2n-1)-connected. Since $m \leq 2n-1$, it is *m*-connected. Using the Dold–Thom theorem, we see that the simplicial homomorphism $\langle i \rangle \colon \langle E \rangle \to \langle G \rangle$ is *m*-connected. One easily sees that $(\langle i \rangle, k) \colon \langle E \rangle \oplus D \to \langle G \rangle$ is an isomorphism. Thus D is *m*-connected.

For $s \in \mathbf{N}$, let $D^{(s)} \subset D$ be the simplicial subgroup equal to: $\langle G \rangle^s_{\Delta}$ for $s \geq 2$, and D otherwise.

Decomposition of D. Let $r \in \mathbf{N}$, $r \geq 2$, be a number. By § 10, we have the decomposition $D = D^2 \oplus \ldots \oplus D^r$ where $\langle G \rangle^s_{\Delta} = D^s \oplus \ldots \oplus D^r$, $s = 2, \ldots, r$. (We have $D^s \cong \langle E^{\wedge s} \rangle_{\Delta}$ for s < r and $D^r = \langle G \rangle^r_{\Delta}$.) Since D is free and *m*-connected, the groups D^s are free and *m*-connected.

The partition h. By (14.1), for each s = 2, ..., r, there is a partition $(h_z^s \colon D^s(\overline{z}) \to D^s(L))_{z \in L}$. Combining them, we get the partition $(h_z \colon D(\overline{z}) \to D(L))_{z \in L}$. We have $h_z(D^{(s)}(\overline{z})) \subset D^{(s)}(L)$, $s \in \mathbf{N}$, $s \leq r$.

The simplicial homomorphism X. Let \tilde{G} be the dummy of G, $p: \tilde{G} \to G$ be the projection. By (13.2), p is surjective. Thus, for the simplicial homomorphism $\langle p \rangle : \langle \tilde{G} \rangle \to \langle G \rangle$, we have $\langle p \rangle (\langle \tilde{G} \rangle^s_{\Delta}) = \langle G \rangle^s_{\Delta}$, $s \in \mathbb{N}$. Applying (11.1) to each component D^s of the decomposition of D, we get the simplicial homomorphism $X: D \to \langle \tilde{G} \rangle$ with the following properties:

(1) the diagram

is commutative;

(2)
$$X(D^{(s)}) \subset \langle \tilde{G} \rangle^s_{\Delta}, s \in \mathbf{N}, s \leq r.$$

We have $\operatorname{im} X \subset \langle \tilde{G} \rangle_{\Delta}$.

The homomorphism V. Let $J: \langle G(L) \rangle \to \langle G \rangle(L)$ be the fusion, $R: \langle \tilde{G} \rangle(L) \to \langle \tilde{G}(L) \rangle$ be the realization. We have the composition

$$V: D(L) \xrightarrow{X_{\#}} \langle \tilde{G} \rangle(L) \xrightarrow{R} \langle \tilde{G}(L) \rangle \xrightarrow{\langle p_{\#} \rangle} \langle G(L) \rangle.$$

We have im $V \subset \langle G(L) \rangle_{\Delta}$.

(15.1) The diagram

is commutative.

Proof. Let $\tilde{J} \colon \langle \tilde{G}(L) \rangle \to \langle \tilde{G} \rangle(L)$ be the fusion. The diagram

$$\begin{array}{c} \langle \tilde{G} \rangle(L) \xrightarrow{R} \langle \tilde{G}(L) \rangle \xrightarrow{\langle p_{\#} \rangle} \langle G(L) \rangle \\ \\ X_{\#} \uparrow & & \downarrow \tilde{J} & \downarrow J \\ D(L) \xrightarrow{X_{\#}} \langle \tilde{G} \rangle(L) \xrightarrow{\langle p \rangle_{\#}} \langle G \rangle(L) \end{array}$$

is commutative (we invoke (13.4) taking into account that im $X \subset \langle \tilde{G} \rangle_{\triangle}$). We have $J \circ V = \langle p \rangle_{\#} \circ X_{\#} = k_{\#}$ by the property (1) of X.

(15.2) For
$$w \in D(L)$$
, we have $\Sigma(V(w)) \subset O_L(\sigma(w), 1)$.

This follows from (13.5).

(15.3) We have $V(D^{(s)}(L)) \subset \langle G(L) \rangle^s_{\Delta}, s \in \mathbb{N}, s \leq r.$

This follows from the property (2) of X and the claims (13.6) and (9.1). \Box

The maps P_z , P. For $z \in L$, we have the map $P_z : G(K) \to \langle G(L) \rangle$, $P_z(u) = (V \circ h_z)(l \circ j \circ u \circ e|_{\bar{z}})$. We have $P_z(u) \in \langle G(L) \rangle_{\Delta}$ since im $V \subset \langle \tilde{G}(L) \rangle_{\Delta}$. We have $\Sigma(P_z(u)) \subset O_L(z, b_1)$ (by the definition of a partition, the claim (15.2), and the inequality $b_1 \geq 2$).

We have the map $P \colon G(K) \to \langle G(L) \rangle$, $P(u) = V(l \circ j \circ u \circ e)$. We have

$$\sum_{z \in L} P_z(u) = P(u)$$

The homomorphism M. We have the additive homomorphism $M: \langle G(K) \rangle \rightarrow \langle G(L) \rangle$,

$$M(`u') = \sum_{Z \subset L : \epsilon_L(Z) \ge b_3} (-1)^{\#Z} `u \circ e_Z' \prod_{z \in Z} P_z(u).$$

Here and in all our \prod 's, we mean that the order of factors is induced by some fixed order on L. (Moreover, one can see that the factors commute everywhere.)

(15.4) For $U \in \langle G(K) \rangle$, we have $\theta(M(U)) \ge \min(\theta(U) + 1, \eta(U))$.

Proof. Suppose that $\theta(U) \ge s - 1$ and $\eta(U) \ge s$ $(s \in \mathbf{N}_+)$. We show that $\theta(M(U)) \ge s$. Take a set $T \subset L$ with #T < s. We show that $M(U)||_T = 0$.

The case $\epsilon_L(T) \ge b_4$. Put $I = \{Z \subset L : \epsilon_L(Z) \ge b_3\}$. For $u \in G(K)$, we have

$$M(`u')\|_{T} = \sum_{Z \in I} (-1)^{\#Z} `u \circ e_{Z}'\|_{T} \prod_{z \in Z} P_{z}(u)\|_{T}.$$

The sets $O_L(y, b_1), y \in T$, (balls) do not intersect. Moreover, the distance (ρ_L) between simplices of distinct balls is at least b_3 (since $b_4 \geq 2b_1 + b_3$). The distance between simplices of a ball is smaller than b_3 (since $b_3 \geq 2b_1$). Let I_0 be the set of sets $Z \subset L$ that are contained in the union of the balls and have at most one simplex in each ball. Show that our sum over $Z \in I$ equals the same sum but over $Z \in I_0$. We have $I_0 \subset I$. If $Z \in I \setminus I_0$, there is a simplex $z \in Z \setminus O_L(T, b_1)$; then $P_z(u)||_T = 0$ because: $P_z(u) \in \langle G(L) \rangle_{\Delta}$, $\Sigma(P_z(u)) \subset O_L(z, b_1)$, and $O_L(z, b_1) \cap T = \emptyset$. Thus the corresponding summand is zero. Put

$$I_0' = \coprod_{S \subset T} W_S,$$

where W_S is the set of maps $w: S \to L$ such that $w(y) \in O_L(y, b_1), y \in S$. We have the bijection $I'_0 \to I_0, (S, w) \mapsto w(S)$. Thus

$$M(`u')\|_{T} = \sum_{(S,w)\in I'_{0}} (-1)^{\#S} u \circ e_{w(S)}'\|_{T} \prod_{y\in S} P_{w(y)}(u)\|_{T}.$$

For $y \in T$, let $t_y \colon G(\overline{y}) \to G_T$ be the canonical monomorphism of a factor to a product. Show that for $(S, w) \in I'_0$,

$$(u \circ e_{w(S)}) \|_T = \prod_{y \in T \setminus S} t_y(u \circ e|_{\bar{y}}).$$

If $y \in S$, we have $y \in O_L(w(y), b_1)$, and $e_{w(S)}$ sends the simplex y to a vertex of K; then $u \circ e_{w(S)}|_{\bar{y}} = 1$ since $G_0 = 1$. If $y \in T \setminus S$, we have $y \notin O_L(w(S), b_2)$ (since $b_4 \ge b_1 + b_2$), and $e_{w(S)}|_{\bar{y}} = e|_{\bar{y}}$. Thus we have the desired equality. For $(S, w) \in I'_0$ and $y \in S$, we have $P_{w(y)}(u)|_T = \langle t_y \rangle (P_{w(y)}(u)|_{\bar{y}})$. This is

For $(S, w) \in I'_0$ and $y \in S$, we have $P_{w(y)}(u)||_T = \langle t_y \rangle (P_{w(y)}(u)|_{\bar{y}})$. This is because $\Sigma(P_{w(y)}(u)) \subset O_L(w(y), b_1)$ and $O_L(w(y), b_1) \cap T = \{y\}$ (since $b_4 \ge 2b_1$).

Thus

$$\begin{split} M(`u')\|_{T} &= \sum_{(S,w)\in I'_{0}} (-1)^{\#S} \big(\prod_{y\in T\backslash S} `t_{y}(u\circ e|_{\bar{y}})'\big) \big(\prod_{y\in S} \langle t_{y}\rangle (P_{w(y)}(u)|_{\bar{y}})\big) = \\ &= \sum_{S\subset T} (-1)^{\#S} \big(\prod_{y\in T\backslash S} `t_{y}(u\circ e|_{\bar{y}})'\big) \big(\sum_{w\in W_{S}} \prod_{y\in S} \langle t_{y}\rangle (P_{w(y)}(u)|_{\bar{y}})\big) = \\ &= \sum_{S\subset T} (-1)^{\#S} \big(\prod_{y\in T\backslash S} \langle t_{y}\rangle (`u\circ e'|_{\bar{y}})\big) \big(\prod_{y\in S} \sum_{z\in O_{L}(y,b_{1})} \langle t_{y}\rangle (P_{z}(u)|_{\bar{y}})\big) = \\ &= \prod_{y\in T} \langle t_{y}\rangle (`u\circ e'|_{\bar{y}} - \sum_{z\in O_{L}(y,b_{1})} P_{z}(u)|_{\bar{y}}). \end{split}$$

We may extend the domain of the last sum to $z \in L$ because for $z \in L \setminus O_L(y, b_1)$, we have $P_z(u)|_{\bar{y}} = 0$ because: $P_z(u) \in \langle G(L) \rangle_{\Delta}$, $\Sigma(P_z(u)) \subset O_L(z, b_1)$, and $O_L(z, b_1) \cap \bar{y} = \emptyset$ for such z. We have

$$M(`u')||_T = \prod_{y \in T} \langle t_y \rangle (`u \circ e'|_{\bar{y}} - P(u)|_{\bar{y}}).$$

For $y \in T$, let $J_y \colon \langle G(\bar{y}) \rangle \to \langle G \rangle(\bar{y})$ be the fusion. Obviously, it is an isomorphism. We have the commutative diagram

$$\begin{array}{c} \langle G(L) \rangle \xrightarrow{?|_{\bar{y}}} \langle G(\bar{y}) \rangle \\ & \swarrow \\ V & \downarrow_J & \downarrow_{J_y} \\ D(L) \xrightarrow{k_{\#}} \langle G \rangle(L) \xrightarrow{?|_{\bar{y}}} \langle G \rangle(\bar{y}) \end{array}$$

(we invoke (15.1)). We have $J_y(`u \circ e'|_{\bar{y}} - P(u)|_{\bar{y}}) = J_y(`u \circ e'|_{\bar{y}} - V(l \circ j \circ u \circ e)|_{\bar{y}}) = j \circ u \circ e|_{\bar{y}} - k \circ l \circ j \circ u \circ e|_{\bar{y}} = 1 + g \circ f \circ j \circ u \circ e|_{\bar{y}} = 1 + g \circ q \circ u \circ e|_{\bar{y}}.$ We have the homomorphism $a_y \colon G_K \to \langle G_T \rangle$ (in the additive group), $a_y(v) = (\langle t_y \rangle \circ J_y^{-1})((g \circ q \circ v \circ e)_y)$. We have

$$M('u')\|_T = \prod_{y \in T} (1 + a_y(u\|_K)).$$

Since $\eta(U) > \#T$, by (8.1), $M(U)||_T = 0$.

The converse case. There are distinct simplices $y_0, y_1 \in T$ with $\rho_L(y_0, y_1) < b_4$. For each $y \in T \setminus \{y_1\}$, consider the simplex $x \in K$ spanned by the set $e(O_L(y, b_5))$. Let $S \subset K$ be the set of these simplices. We have #S < s - 1. For each $y \in T$, there exists a simplex $y' \in T \setminus \{y_1\}$ such that $O_L(y, 2b_2) \subset O_L(y', b_5)$:

we may let y' be equal to: y_0 if $y = y_1$, and y otherwise (we use the inequality $b_5 \ge 2b_2 + b_4$). Thus, for every $y \in T$, there exists a simplex $x \in S$ such that $e(O_L(y, 2b_2)) \subset \overline{x}$. Let $e' : \overline{O_L(T, b_1)} \to \overline{S}$ be the abridgement of e (we use the inequality $b_1 \le 2b_2$).

Take a set $Z \subset L$ such that $\epsilon_L(Z) \geq b_3$. Show that $e_Z(\bar{T}) \subset \bar{S}$. It suffices to check that $e_Z(y) \in \bar{S}$ for $y \in T$. If $y \notin O_L(Z, b_2)$, then $e_Z(y) = e(y) \in \bar{S}$. Otherwise, $y \in O_L(z, b_2)$ for some $z \in Z$. Then $e_Z(y) = e_z(y) \in \bar{x}$, where $x \in K$ is the simplex spanned by $e(O_L(z, b_2))$. We have $e(O_L(z, b_2)) \subset e(O_L(y, 2b_2))$ Thus $e_Z(y) \in \bar{S}$. Let $\tilde{e}_Z : \bar{T} \to \bar{S}$ be the abridgement of e_Z .

We have the additive homomorphism $\tilde{M} \colon \langle G(\bar{S}) \rangle \to \langle G(\bar{T}) \rangle$,

$$\tilde{M}(\tilde{u}) = \sum_{Z \subset O_L(T, b_1) : \epsilon_L(Z) \ge b_3} (-1)^{\#Z} \tilde{u} \circ \tilde{e}_Z, \prod_{z \in Z} (V \circ h_z) (l \circ j \circ \tilde{u} \circ e'|_{\bar{z}})|_{\bar{T}}.$$

Show that the diagram

$$\begin{array}{c|c} \langle G(K) \rangle & \stackrel{M}{\longrightarrow} \langle G(L) \rangle \\ & & \\ ?|_{\bar{S}} & & \\ & & \\ \langle G(\bar{S}) \rangle & \stackrel{\tilde{M}}{\longrightarrow} \langle G(\bar{T}) \rangle \end{array}$$

is commutative. We have

$$M(`u')|_{\bar{T}} = \sum_{Z \subset L : \epsilon_L(Z) \ge b_3} (-1)^{\#Z} \cdot u \circ e_Z'|_{\bar{T}} \prod_{z \in Z} P_z(u)|_{\bar{T}}.$$

The summands with $Z \not\subset O_L(T, b_1)$ equal zero (if $z \in Z \setminus O_L(T, b_1)$, then $P_z(u)|_{\bar{T}} = 0$ because: $P_z(u) \in \langle G(L) \rangle_{\Delta}$, $\Sigma(P_z(u)) \subset O_L(z, b_1)$, and $O_L(z, b_1) \cap \bar{T} = \emptyset$). We get

$$M(`u')|_{\bar{T}} = \sum_{Z \subset O_L(T,b_1): \epsilon_L(Z) \ge b_3} (-1)^{\#Z} \cdot u \circ e_Z'|_{\bar{T}} \prod_{z \in Z} (V \circ h_z) (l \circ j \circ u \circ e|_{\bar{z}})|_{\bar{T}} = \tilde{M}(`u'|_{\bar{S}}).$$

Since $\theta(U) > \#S$, $U||_S = 0$. Thus $U|_{\bar{S}} = 0$. We get $M(U)|_{\bar{T}} = \tilde{M}(U|_{\bar{S}}) = 0$. Thus $M(U)|_T = 0$.

(15.5) For $U \in \langle G(K) \rangle$, we have $\eta(M(U)) \ge \min(\eta(U), r)$.

Proof. We have the additive homomorphism $N: \langle G_K \rangle \to \langle G_L \rangle$,

$$N('v') = \sum_{Z \subset L : \epsilon_L(Z) \ge b_3} (-1)^{\#Z} v \circ e_Z' \prod_{z \in Z} (V \circ h_z) ((l \circ j \circ v \circ e)_z) \|_L.$$

The diagram

$$\begin{array}{c|c} \langle G(K) \rangle & \stackrel{M}{\longrightarrow} \langle G(L) \rangle \\ \hline \\ ? \parallel_{K} & & ? \parallel_{L} \\ \langle G_{K} \rangle & \stackrel{N}{\longrightarrow} \langle G_{L} \rangle \end{array}$$

is commutative. It suffices to show that N is r-strict. For $z \in L$, we have the homomorphism $t_z \colon G_K \to G(\overline{z}), t_z(v) = (v \circ e)_z$, and the additive homomorphism $B_z \colon \langle G(\overline{z}) \rangle \to \langle G(L) \rangle, B_z(`v') = (V \circ h_z)(l \circ j \circ v)$. We have the homomorphisms $e_Z^{\#} \colon G_K \to G_L$ and $\|L \colon G(L) \to G_L$. We have (for $v \in G_K$)

$$N(`v') = \sum_{Z \subset L : \epsilon_L(Z) \ge b_3} (-1)^{\#Z} \langle e_Z^{\#} \rangle (`v') \prod_{z \in Z} (B_z \circ \langle t_z \rangle) (`v') \|_L.$$

By (9.1) and (9.2), it suffices to show that the homomorphisms B_z are r-strict. The homomorphism B_z equals the composition

$$\langle G(\bar{z})\rangle \xrightarrow{J_z} \langle G\rangle(\bar{z}) \xrightarrow{l_{\#}} D(\bar{z}) \xrightarrow{h_z} D(L) \xrightarrow{V} \langle G(L)\rangle,$$

where J_z is the fusion. For $s \in \mathbf{N}$, we have: $J_z(\langle G(\bar{z}) \rangle^s_{\Delta}) = \langle G \rangle^s_{\Delta}(\bar{z}); l_{\#}(\langle G \rangle^s_{\Delta}(\bar{z})) = D^{(s)}(\bar{z})$ (since l is identical on D); $h_z(D^{(s)}(\bar{z})) \subset D^{(s)}(L)$ for $s \leq r$ (a property of the partition h); $V(D^{(s)}(L)) \subset \langle G(L) \rangle^s_{\Delta}$ for $s \leq r$ (by (15.3)). Thus $B_z(\langle G(\bar{z}) \rangle^s_{\Delta}) \subset \langle G(L) \rangle^s_{\Delta}$ for $s \leq r$, which is what we need. \Box

Put Q = |K| (= |L|).

(15.6) For
$$U \in \langle G(K) \rangle$$
, we have $[|M(U)|] = [|U|]$ in the ring $\langle [Q, |G|] \rangle$

Proof. Take $u \in G(K)$ and $z \in L$. We have $P_z(u) \in \langle G(L) \rangle_{\Delta}$. By the construction of P_z , all the sections in the ensemble $P_z(u)$ lift to \tilde{G} . By (13.1), the space $|\tilde{G}|$ is contractible. Thus $[|P_z(u)|] = 0$. Applying the ring homomorphism $[|?|]: \langle G(L) \rangle \rightarrow \langle [Q, |G|] \rangle$ to the equality defining M, we get $[|M(`u')|] = [|`u \circ e']] = [|`u']$ since $|e|: Q \rightarrow Q$ is homotopic to the identity. \Box

16. Main procedure

Let K be a polyhedron with dim $K \leq m$ ($m \in \mathbb{N}$) and E be an (n-1)connected ($n \in \mathbb{N}$) simplicial set with a single vertex. Suppose that $m \leq 2n-1$.
Put Q = |K| and G = FE.

(16.1) Let $U \in \langle G(K) \rangle$ be an ensemble with $\eta(U) \ge s$ ($s \in \mathbb{N}$). Then there exist a polyhedron L with the body Q and an ensemble $V \in \langle G(L) \rangle$ with $\theta(V) \ge s$ and [|V|] = [|U|] in $\langle [Q, |G|] \rangle$.

Proof. To get the desired pair (L, V), take the pair (K, U) and apply the pair (Δ^c, M) of operations of § 15 s times. We choose $r \ge s$. The desired properties follow from (15.4), (15.5), and (15.6).

17. The function θ : the topological version

Let X and Y be spaces. For $A \in \langle C(X, Y) \rangle$, put $\theta(A) = \inf\{\#V : \text{finite } V \subset X, A|_V \neq 0\} \in \hat{\mathbf{N}}$.

Let X' and Y' be spaces, $g: X' \to X$ and $h: Y \to Y'$ be continuous maps. We have the map $t: C(X,Y) \to C(X',Y'), t(a) = h \circ a \circ g$. We have the homomorphism $\langle t \rangle : \langle C(X,Y) \rangle \to \langle C(X',Y') \rangle$. (17.1) For $A \in \langle C(X, Y) \rangle$, we have $\theta(\langle t \rangle \langle A \rangle) \geq \theta(A)$.

Proof. Take a finite $V' \subset X'$ with $\#V' < \theta(A)$. We show that $\langle t \rangle (A)|_{V'} = 0$. Put $V = g(V') \subset X$. We have $\#V < \theta(A)$. Thus $A|_V = 0$. Let $\tilde{g} \colon V' \to V$ be the abridgement of g. We have the map $\tilde{t} \colon C(V,Y) \to C(V',Y'), \tilde{t}(\tilde{a}) = h \circ \tilde{a} \circ \tilde{g}$. The diagram

$$\begin{array}{c} C(X,Y) \xrightarrow{t} C(X',Y') \\ \begin{array}{c} \\ ?|_{V} \\ \\ \\ C(V,Y) \xrightarrow{\tilde{t}} C(V',Y') \end{array}$$

is commutative. We have $\langle t \rangle (A)|_{V'} = \langle \tilde{t} \rangle (A|_V) = 0.$

A characterization of the order. Let U be an abelian group and $f: [X, Y] \to U$ be a map. We have the homomorphism $\bar{f}: \langle [X, Y] \rangle \to U, \bar{f}(`w') = f(w)$.

(17.2) The condition ord $f \leq r \ (r \in \mathbf{N})$ is equivalent to the condition that $\overline{f}([A]) = 0$ for every $A \in \langle C(X, Y) \rangle$ with $\theta(A) > r$.

Proof. Let E_r , I_r , and D_r be as in § 1. We have the homomorphism $h: \langle C(X,Y) \rangle \to D_r$, $h(`a') = I_r(a)$. It is surjective. One easily sees that for $A \in \langle C(X,Y) \rangle$, the conditions h(A) = 0 and $\theta(A) > r$ are equivalent. We have the homomorphism $\tilde{f}: \langle C(X,Y) \rangle \to U$, $\tilde{f}(A) = \bar{f}([A])$. The condition ord $f \leq r$ is equivalent to the existence of a homomorphism $l: D_r \to U$ with $l \circ h = \tilde{f}$. The latter is equivalent to the condition $\tilde{f} | \ker h = 0$, that is, the condition that $\bar{f}([A]) = 0$ for every $A \in \langle C(X,Y) \rangle$ with $\theta(A) > r$.

18. Geometric realization and simplicial approximation

Let K be a polyhedron and E be a simplicial set. Put Q = |K|.

(18.1) For
$$U \in \langle E(K) \rangle$$
, we have $\theta(|U|) = \theta(U)$.

(18.2) Let $B \in \langle C(Q, |E|) \rangle$ be an ensemble. Then there exist a polyhedron L with the body Q and an ensemble $V \in \langle E(L) \rangle$ with $\theta(V) \ge \theta(B)$ and [|V|] = [B] in $\langle [Q, |E|] \rangle$.

Proof. There are a finite set I, a map $k: I \to C(Q, |E|)$, and an element $g \in \langle I \rangle$ such that $\langle k \rangle(g) = B$. Put $b_i = k(i), i \in I$. For $q \in Q$, we have the equivalence $R_q = \{(i,j): b_i(q) = b_j(q)\}$ on I. For a finite set $W \subset Q$, put

$$R_W = \bigcap_{q \in W} R_q.$$

The map $i \mapsto b_i|_W$ is subordinate to the equivalence R_W (that is, constant on the classes of R_W). We have the commutative diagram

$$I \xrightarrow{k} C(Q, |E|)$$

$$p_W \bigvee \qquad \qquad \downarrow^{?|_W}$$

$$I/R_W \xrightarrow{k_W} C(W, |E|),$$

where p_W is the projection. The map k_W is injective. We have $\langle k_W \rangle (\langle p_W \rangle (g)) = \langle k \rangle (g)|_W = B|_W$. If $\#W < \theta(B)$, then $B|_W = 0$, and thus $\langle p_W \rangle (g) = 0$.

We have the continuous map $b = (b_i)_{i \in I} \colon Q \to |E|^I$. Let $h \colon |E^I| \to |E|^I$ be the canonical continuous bijection. Since I is finite and Q is Haudorff and compact, the map $c = h^{-1} \circ b \colon Q \to |E^I|$ is continuous.

To each equivalence R on I assign the simplicial subset $D(R) \subset E^I$, $D(R)_n = \{(e_i)_{i \in I} \in E_n^I : (i, j) \in R \Rightarrow e_i = e_j\}$ (the diagonal). For $q \in Q$, we have $c(q) \in |D(R_q)| \subset |E^I|$. We have the simplicial subset $M \subset E^I$,

$$M = \bigcup_{q \in Q} D(R_q).$$

We have $c(Q) \subset |M| \subset |E^I|$. Let $c' : Q \to |M|$ be the abridgement of c. By the simplicial approximation theorem, there are a polyhedron L with the body Q and a section $u' \in M(L)$ such that the map $|u'| : Q \to |M|$ is homotopic to c'. Let $u \in E^I(L)$ be the composition of u' and the inclusion $M \to E^I$. We have $u = (u_i)_{i \in I}$, where $u_i \in E(L)$. The map $|u_i| : Q \to |E|$ is homotopic to b_i . We have the map $l: I \to E(L), l(i) = u_i$. Put $V = \langle l \rangle(g)$. We have [|V|] = [B].

For a simplex $y \in L$, dim y = s, we have $u_s(y) \in M_s$, that is, there is a point $q = q_y \in Q$ such that $u_s(y) \in D(R_q)_s$, that is, $u_i|_{\bar{y}} = u_j|_{\bar{y}}$ for $(i, j) \in R_q$, that is, the map $i \mapsto u_i|_{\bar{y}}$ is subordinate to R_q .

Take a set $T \subset L$. Put $W = \{q_y : y \in T\}$. We have $\#W \leq \#T$. The map $i \mapsto u_i \parallel_T$ is subordinate to R_W . We have the commutative diagram

We have $V||_T = \langle l \rangle(g)||_T = \langle l_T \rangle(\langle p_W \rangle(g))$. If $\#T < \theta(B)$, then: $\#W < \theta(B)$, $\langle p_W \rangle(g) = 0$, and $V||_T = 0$. Thus $\theta(V) \ge \theta(B)$.

19. Some subgroups of $\langle [Q, |G|] \rangle$.

Let Q be a polyhedral body, dim $Q \leq m$ ($m \in \mathbb{N}$), and E be a (n-1)-connected $(n \in \mathbb{N})$ simplicial set with a single vertex. Suppose that $m \leq 2n-1$. Put G = FE. Define the subgroups $P, M_s, J_s \subset \langle C(Q, |G|) \rangle$, $s \in \mathbb{N}$: put $P = \langle C(Q, |G_{(m)}|) \rangle$ (we have $C(Q, |G_{(m)}|) \subset C(Q, |G|)$), $M_s = \{B : \theta(B) \geq s\}$, and let J_s be generated by all elements of the form $({}^{\cdot}b_1{}^{-1}) \dots ({}^{\cdot}b_k{}^{-1})$, where $k \in \mathbb{N}$, $b_l \in C(Q, |\gamma_{s_l}G|) \subset C(Q, |G|)$, and $s_1 + \dots + s_k \geq s$. (M_s and J_s are ideals. Conjecture: $M_s \subset J_s$.) For a subgroup $S \subset \langle C(Q, |G|) \rangle$, let $[S] \subset \langle [Q, |G|] \rangle$ be its image under the homomorphism $[?]: \langle C(Q, |G|) \rangle \rightarrow \langle [Q, |G|] \rangle$.

(19.1) For $s \in \mathbf{N}$, we have $[M_s] = [P \cap M_s] = [J_s]$.

Proof. The inclusion $[M_s] \subset [J_s]$. Take an element $B \in M_s$. We have $\theta(B) \ge s$. By (18.2), there are a polyhedron L with the body Q and an ensemble $V \in$ $\langle G(L) \rangle$ with $\theta(V) \geq s$ and [|V|] = [B]. It suffices to show that $|V| \in J_s$. By (7.2), $\eta(V) \geq s$. Let $I_s \subset \langle G(L) \rangle$ be, as in § 7, the subgroup generated by all elements of the form $(`v_1`-1) \dots (`v_k`-1)$, where $k \in \mathbf{N}$, $v_l \in (\gamma_{s_l}G)(L) \subset G(L)$, and $s_1 + \dots + s_k \geq s$. By (7.1), $V \in I_s$. Obviously, $|V| \in J_s$.

 $\begin{array}{l} The \ inclusion \ [P \cap M_s] \supset [J_s]. \ \text{Take an element } B \in \langle C(Q, |G|) \rangle, \ B = (`b_1` - 1) \dots (`b_k` - 1), \ \text{where } k \in \mathbf{N}, \ b_l \in C(Q, |\gamma_{s_l}G|) \subset C(Q, |G|), \ \text{and } s_1 + \dots + s_k \geq s. \\ \text{Such elements generate } J_s. \ \text{Thus it suffices to show that } [B] \in [P \cap M_s]. \ \text{Choose a polyhedron } K \ \text{with the body } Q. \ \text{Since } \gamma_s G \ \text{are Kan sets, there are sections } u_l \in (\gamma_{s_l}G)(K) \ \text{with } [|u_l|] = [b_l] \ \text{in } [Q, |G|]. \ \text{Put } U = (`u_1` - 1) \dots (`u_k` - 1) \in \langle G(L) \rangle. \ \text{We have } [|U|] = [B] \ \text{in } \langle [Q, |G|] \rangle. \ \text{By } (7.1), \ \eta(U) \geq s. \ \text{By } (16.1), \ \text{there are a polyhedron } L \ \text{with the body } Q \ \text{and an ensemble } V \in \langle G(L) \rangle \ \text{with } \theta(V) \geq s \ \text{and } [|V|] = [|U|] \ \text{in } \langle [Q, |G|] \rangle. \ \text{Obviously, } |V| \in P. \ \text{By } (18.1), \ \theta(|V|) \geq s. \ \text{Thus, } [B] = [|V|] \ \text{and } |V| \in P \cap M_s. \end{array}$

20. Step from [Q, |G|] to [X, Y]

Let X be a finite CW-complex, dim $X \leq m$ $(m \in \mathbf{N})$, and Y be an (n-1)connected $(n \in \mathbf{N})$ CW-complex. Suppose that m < 2n - 1. We have the subgroups $L_s \subset \langle C(X,Y) \rangle$, $s \in \mathbf{N}$: $L_s = \{A \colon \theta(A) \geq s\}$. Let $B = (B_s)_{s=1}^{\infty}$ be the Curtis filtration of [X,Y]. For $s \in \mathbf{N}$, we have the subgroup $H_s \subset \langle [X,Y] \rangle$ generated by all elements of the form $(`w_1` - 1) \dots (`w_k` - 1)$, where $k \in \mathbf{N}$, $w_l \in B_{s_l}$, and $s_1 + \ldots + s_k \geq s$. (It is an ideal.) For a subgroup $R \subset \langle C(X,Y) \rangle$, let $[R] \subset \langle [X,Y] \rangle$ be its image under the homomorphism $[?] \colon \langle C(X,Y) \rangle \rightarrow \langle [X,Y] \rangle$.

(20.1) We have $[L_s] = H_s, s \in \mathbb{N}$.

Proof. There are a polyhedral body Q, dim $Q \leq m$, and a homotopy equivalence $g: Q \to X$. Let $g': X \to Q$ be a homotopy inverse map. There are a simplicial set E with a single vertex and a homotopy equivalence $k: Y \to |E|$. Put G = FE. Let $i: E \to G$ be the canonical simplicial map. By the Freudenthal theorem, it is (2n-1)-connected. The map $h = |i| \circ k: Y \to |G|$ is also (2n-1)-connected. Since $m \leq 2n-1$, there is a map $h': |G_{(m)}| \to Y$ such that the map $h \circ h'$ is homotopic to the inclusion $|G_{(m)}| \to |G|$. We have the map $t: C(X, Y) \to C(Q, |G|)$, $t(a) = h \circ a \circ g$. Since m < 2n - 1, it induces an isomorphism $\overline{t}: [X, Y] \to [Q, |G|]$. We have the map $t': C(Q, |G_{(m)}|) \to C(X, Y), t'(b) = h' \circ b \circ g'$. For $b \in C(Q, |G_{(m)}|) \subset C(Q, |G|)$, we have $[t'(b)] = \overline{t}^{-1}([b])$. One can see that

$$\bar{t}(B_s) = \{ [b] \in [Q, |G|] : b \in C(Q, |\gamma_s G|) \subset C(Q, |G|) \}, \qquad s \in \mathbf{N}.$$
(*)

Let $P, M_s, J_s \subset \langle C(Q, |G|) \rangle$ be as in § 19. We have the homomorphisms $\langle t \rangle \colon \langle C(X, Y) \rangle \to \langle C(Q, |G|) \rangle$ and $\langle t' \rangle \colon P = \langle C(Q, |G_{(m)}|) \rangle \to \langle C(X, Y) \rangle$. By (17.1), $\langle t \rangle \langle L_s \rangle \subset M_s$, and $\langle t' \rangle \langle P \cap M_s \rangle \subset L_s$. We have the ring isomorphism $\langle \bar{t} \rangle \colon \langle [X, Y] \rangle \to \langle [Q, |G|] \rangle$. It follows from (*) that $\langle \bar{t} \rangle \langle H_s \rangle = [J_s]$. Using (19.1), we get $\langle \bar{t} \rangle \langle [L_s] \rangle = [\langle t \rangle \langle L_s \rangle] \subset [M_s] = [J_s] = \langle \bar{t} \rangle \langle H_s \rangle$. Hence $[L_s] \subset H_s$, and $[L_s] \supset [\langle t' \rangle \langle P \cap M_s \rangle] = \langle \bar{t}^{-1} \rangle ([P \cap M_s]) = \langle \bar{t} \rangle^{-1} ([J_s]) = H_s$.

Proof of Theorem (1.1). We have the homomorphism $\overline{f}: \langle [X,Y] \rangle \to U, \overline{f}(`w') = f(w)$. By (17.2), the condition ord $f < s \ (s \in \mathbf{N}_+)$ is equivalent to the condition

 $\bar{f}|[L_s] = 0$. Obviously, the condition $\deg_B f < s$ is equivalent to the condition $\bar{f}|H_s = 0$. Now note that $[L_s] = H_s$ by (20.1).

References

- E. B. Curtis, Some relations between homotopy and homology, Ann. Math. 82 (1965), no. 3, 386–413.
- [2] J. W. Milnor, On the construction FK, preprint, 1956, also in: J. F. Adams, Algebraic topology. A student's guide, Lond. Math. Soc. Lect. Note Ser. 4, Camb. Univ. Press, 1972.
- [3] I. B. S. Passi, Group rings and their augmentation ideals, Lect. Notes Math. 715, Springer, 1979.

ssp@pdmi.ras.ru
http://www.pdmi.ras.ru/~ssp