An iterated sum formula
for a spheroid’s homotopy class modulo 2–torsion

S. S. Podkorytov

Abstract
Let \(X \) be a simply connected pointed space with finitely generated homotopy groups. Let \(\Pi_n(X) \) denote the set of all continuous maps \(a: I^n \to X \) taking \(\partial I^n \) to the basepoint. For \(a \in \Pi_n(X) \), let \([a] \in \pi_n(X) \) be its homotopy class. For an open set \(E \subset I^n \), let \(\Pi(E, X) \) be the set of all continuous maps \(a: E \to X \) taking \(E \cap \partial I^n \) to the basepoint. For a cover \(\Gamma \) of \(I^n \), let \(\Gamma(r) \) be the set of all unions of at most \(r \) elements of \(\Gamma \). Put \(r = (n-1)! \). We prove that for any finite open cover \(\Gamma \) of \(I^n \) there exist maps \(f_E: \Pi(E, X) \to \pi_n(X) \otimes \mathbb{Z}[1/2] \), \(E \in \Gamma(r) \), such that

\[
[a] \otimes 1 = \sum_{E \in \Gamma(r)} f_E(a|_E)
\]

for all \(a \in \Pi_n(X) \).

1. Introduction
Let \(X \) be a (pointed) space. An \(n \)-spheroid in \(X \) is a (continuous) map \(a: I^n \to X \) taking \(\partial I^n \) to the basepoint. Let \(\Pi_n(X) \) denote the set of all \(n \)-spheroids in \(X \). For \(a \in \Pi_n(X) \), let \([a] \in \pi_n(X) \) be its homotopy class. For an open set \(E \subset I^n \), let \(\Pi(E, X) \) be the set of all maps \(a: E \to X \) taking \(E \cap \partial I^n \) to the basepoint. For a cover \(\Gamma \) of \(I^n \), let \(\Gamma(r) \) be the set of all unions of at most \(r \) elements of \(\Gamma \).

Let \(L \) be an abelian group. Consider a functional (i.e. a function) \(f: \Pi_n(X) \to L \). We define the degree of \(f \) (denoted \(\text{deg} f \)) to be the infimum of \(r \) such that for any finite open cover \(\Gamma \) of \(I^n \) there exist functionals \(f_E: \Pi(E, X) \to L, E \in \Gamma(r) \), such that

\[
f(a) = \sum_{E \in \Gamma(r)} f_E(a|_E)
\]

for all \(a \in \Pi_n(X) \). We are interested in functionals of finite degree.

This definition is motivated by the notion of order-restricted perceptron [2]. For relation to Vassiliev knot invariants, see [5]. An example of a functional \(f: \Pi_n(X) \to \mathbb{R} \) with \(\text{deg} \leq r \) is given by

\[
f(a) = \int_{u_1, \ldots, u_r \in I^n} p(u_1, a(u_1), \ldots, u_r, a(u_r)) \, du_1 \ldots du_r,
\]
there are functionals form an open cover of \(\pi \) in \(Z[1/2] \) by \(q(a) = [a] \otimes 1 \). Then \(\deg q \leq (n - 1)! \).

This may be viewed as a finite sum version of Chen’s iterated integrals. For a related result, see [3]. Possibly, the \(Z[1/2] \) factor and the factorial sign may be removed. Claim 1.2 implies that \(\deg a \leq n \) for \(X = S^2 \lor S^2 \).

1.2. Claim. Let \(f: \Pi_n(X) \to L \) be a homotopy invariant functional with \(\deg f \leq r \). Let \(b_0, b \in \Pi_n(X) \) be spheroids with

\[
[b_0] = 0, \quad [b] = [[[v_0, v_1], v_2], \ldots, v_r],
\]

where \(v_s \in \pi_{k_s}(X) \) (\(k_0 + \ldots + k_r = n + r ; [\cdot, \cdot] \) denotes the Whitehead product). Then \(f(b) = f(b_0) \).

(A functional \(f: \Pi_n(X) \to L \) is homotopy invariant if \(f(a) \) depends only on \([a]\).)

Proof (cf. [2, Theorem 3.2]). Put

\[
T = S^{k_0} \lor \ldots \lor S^{k_r}.
\]

Let \(g: T \to X \) be a map whose restriction to the \(s \)th wedge summand represents \(v_s \). Let \(e_s \in \pi_{k_s}(T) \) be the elements represented by the canonical embeddings \(S^{k_s} \to T \). Let \(z \in \Pi_n(T) \) be a spheroid with \([z] = [[[e_0, e_1], e_2], \ldots, e_r] \). We have \([g \circ z] = [b] \). For every \(k \), choose maps \(p_i^k: S^k \to S^k \), \(i = 0, 1 \), such that \(p_i^k \) has degree \(i \) and \(p_i^k|_{U^k} = p_i^k|_{U^k} \) for some open neighbourhood \(U^k \) of the basepoint. Put

\[
p_{i_0, \ldots, i_r} = p_{i_0}^{k_0} \lor \ldots \lor p_{i_r}^{k_r}: T \to T, \quad i_0, \ldots, i_r = 0, 1.
\]

We have

\[
[p_{i_0, \ldots, i_r} \circ z] = [i_0 \ldots i_r][z]
\]

in \(\pi_n(T) \) and thus

\[
[g \circ p_{i_0, \ldots, i_r} \circ z] = [i_0 \ldots i_r][b]
\]

in \(\pi_n(X) \). The sets

\[
V_s = U^{k_0} \lor \ldots \lor S^{k_r} \lor \ldots \lor U^{k_r}, \quad s = 0, \ldots, r,
\]

form an open cover of \(T \). Put \(\Gamma = \{ z^{-1}(V_s) \mid s = 0, \ldots, r \} \). Since \(\deg f \leq r \), there are functionals \(f_E: \Pi(E, X) \to L, E \in \Gamma(r) \), such that

\[
f(a) = \sum_{E \in \Gamma(r)} f_E(a|_E)
\]
for all \(a \in \Pi_n(X) \). We have
\[
(-1)^r (f(b_0) - f(b)) = \sum_{i_0, \ldots, i_r = 0, 1} (-1)^{i_0 + \cdots + i_r} f(g \circ p_{i_0, \ldots, i_r} \circ z) = \\
\sum_{E \in \Gamma(r)} \sum_{i_0, \ldots, i_r = 0, 1} (-1)^{i_0 + \cdots + i_r} f_E (g \circ p_{i_0, \ldots, i_r} \circ z|_E).
\]
Take \(E \in \Gamma(r) \). We have
\[
z(E) \subset S^{k_0} \lor \cdots \lor U^{k_s} \lor \cdots \lor S^{k_r}
\]
for some \(s \). Thus \(p_{i_0, \ldots, i_r} \circ z|_E \) does not depend on \(i_s \). Thus the inner sum equals zero. \(\square \)

Conventions and notation. Maps are continuous, unlike functions. A space is a pointed space. A subspace contains the basepoint. Maps between spaces are basepoint preserving. This applies also to homotopies etc. A cell space is a pointed CW complex. \(\text{sk}_n X \) denotes the \(n \)-skeleton of a cell space \(X \).

The homotopy relation is denoted \(\sim \); \(\sim_A \) is used for homotopy rel \(A \). For a pair \((X, A)\), \(\text{in}_{(X, A)} : A \to X \) and \(\text{pr}_{(X, A)} : X \to X/A \) are the inclusion and the projection. The subscript of \(\text{in} \) and \(\text{pr} \) is often omitted.

2. Making a loop space simply connected

The aim of this section is to prove Corollary 2.11. First fix some notation.

Homotopy fibres and cofibres. Let \(X \) and \(Y \) be spaces, \(g : X \to Y \) be a map. Then we have the homotopy fibre sequence
\[
F(g) \xrightarrow{p(g)} X \xrightarrow{g} Y,
\]
where \(F(g) = \{ (x, v) \in X \times PY \mid g(x) = v(1) \} \) and \(p(g) \) is the fibraton defined by \(p(g)(x, v) = x \). We have the homotopy cofibre sequence
\[
X \xrightarrow{g} Y \xrightarrow{i(g)} C(g),
\]
where \(C(g) \) is the unreduced cone of \(g \) and \(i(g) \) is the canonical embedding.

2.A. A Moore space

Fix \(d > 0 \). Let \(M_d \) be the space obtained from \(S^1 \) by attaching a 2-cell via a map \(S^1 \to S^1 \) of degree \(d \). Our aim here is to prove Corollary 2.5.

2.1. Lemma. Let
\[
F \xrightarrow{i} E \xrightarrow{p} B
\]
be a fibre sequence. Suppose B and E are path-connected, p induces an isomorphism on π_1, and the canonical action of $\pi_1(B)$ on $\pi_2(B)$ is trivial. Then the canonical action of $\pi_1(B)$ on $H_1(F)$ is trivial.

Proof. The group $\pi_1(E)$ acts canonically on $\pi_1(F)$ (see [1, 5.1.7.3]); it also acts on $\pi_2(B)$ and $H_1(F)$ through $p_* : \pi_1(E) \to \pi_1(B)$. The boundary homomorphism ∂ and the Hurewicz homomorphism h

\[\pi_2(B) \xrightarrow{\partial} \pi_1(F) \xrightarrow{h} H_1(F) \]

respect these actions (regarding ∂, see [1, 5.1.8.4]). Since ∂, h, and p_* are epimorphisms, $\pi_1(B)$ acts trivially on $H_1(F)$. □

2.2. Claim. $H_2(\Omega \Sigma M_d) \cong \mathbb{Z}_d$.

Easily seen from the homology spectral sequence of the path fibration of ΣM_d. □

2.3. Claim. If d is odd, $\pi_3(\Sigma M_d) \cong \mathbb{Z}_d$.

Proof. There is a fibration $U \to \Sigma M_d$ with fibre of homotopy type $K(\mathbb{Z}_d, 1)$ and U 2-connected. We have $\pi_3(\Sigma M_d) \cong H_3(U)$. Using the cohomology spectral sequence, we get\(^1\) $H_3(U) \cong \mathbb{Z}_d$. □

2.4. Claim. Suppose d is odd. Then the canonical embedding $j : M_d \to \Omega \Sigma M_d$ induces zero homomorphism on π_2.

Proof. Consider the homotopy fibre sequence

\[F(j) \xrightarrow{p(j)} M_d \xrightarrow{j} \Omega \Sigma M_d. \]

By Lemma 2.1, the action of $\pi_1(\Omega \Sigma M_d)$ on $H_1(F(j))$ is trivial. Using the homology spectral sequence and Claim 2.2, we get $H_1(F(j)) \cong \mathbb{Z}_d$. The boundary homomorphism $\partial : \pi_2(\Omega \Sigma M_d) \to \pi_1(F(j))$ is an epimorphism. Thus $\pi_1(F(j))$ is abelian and thus isomorphic to \mathbb{Z}_d. By Claim 2.3, $\pi_2(\Omega \Sigma M_d) \cong \mathbb{Z}_d$. Thus ∂ is an isomorphism. Thus $j_* : \pi_2(M_d) \to \pi_2(\Omega \Sigma M_d)$ is zero. □

2.5. Corollary. Suppose d is odd. Let X be a space, $f : M_d \to \Omega X$ be a map. Then f induces zero homomorphism on π_2.

Proof. Let $g : \Sigma M_d \to X$ be the map adjoint to f. Then $f = \Omega g \circ j$, where j is as in Claim 2.4. □

2.B. Two technical lemmas

2.6. Lemma. Let X be a space, $A \subset X$ be a closed subspace such that (X, A) is a Borsuk pair. Suppose X and A are homotopy equivalent to cell spaces of dimension at most n and $n-1$, respectively. Let Y be a cell space and $f : X \to Y$

\(^1\)This does not work for d even. This results in the $\mathbb{Z}[1/2]$ factor in Theorem 1.1.
be a map with \(f(A) \subset sk_n Y \). Then \(f \) is rel \(A \) homotopic to a map \(h: X \to Y \) with \(h(X) \subset sk_n Y \).

This is used only for \(n = 3 \).

Proof. The map \(f \) is homotopic to a map \(g: X \to Y \) with \(g(X) \subset sk_n Y \). Let \(k: X \times [0, 1] \to Y \) be the corresponding homotopy:

\[
k(x, 0) = f(x), \quad k(x, 1) = g(x), \quad x \in X.
\]

The map \(k|_{A \times [0,1]} \) is rel \(A \times \{0,1\} \) homotopic to a map \(q: A \times [0,1] \to Y \) with image in \(sk_n Y \). Since \((X, A)\) is a Borsuk pair, there is a map \(l: X \times [1,2] \to Y \) with image in \(sk_n Y \) such that \(l(x, 1) = q(x), x \in X \), and \(l(x, 1+t) = q(x, 1-t) \), \(x \in A \), \(t \in [0,1] \). Let \(m: X \times [0,2] \to Y \) be the map with \(m|_{X \times [0,1]} = k \), \(m|_{X \times [1,2]} = l \). The map \(m|_{A \times [0,2]} \) is rel \(A \times \{0,2\} \) homotopic to the map \(\tilde{c}: A \times [0,2] \to Y \), \(c(x,t) = f(x) \). By the Strom theorem [4, Lecture I, Proposition 2],

\[
(X \times [0,2], X \times \{0,2\} \cup A \times \{0,2\})
\]

is a Borsuk pair. Thus there is a map \(\tilde{m}: X \times [0,2] \to Y \) with \(\tilde{m}|_{A \times [0,2]} = m|_{A \times [0,2]} \), \(\tilde{m}|_{A \times [0,2]} = c \). Put \(h(x) = \tilde{m}(x, 2) \). Then \(h \) is the desired homotopy. \(\square \)

2.7. Lemma. Let \(V \) be a Hausdorff space, \(T \subset V \) be a compact subspace. Let \(W \) be a space, \(a: V \to W \), \(b: V/T \to W \), \(c: T \to W \) be maps such that \(b \circ \text{pr}_{(V,T)} = a \), \(c = a|_{T} \) (so \(c \) is constant). Let \(j: F(c) \to F(a) \) and \(l: F(a) \to F(b) \) be the maps induced by \(\text{in}_{(V,T)} \) and \(\text{pr}_{(V,T)} \), respectively. Let \(Y \) be a space, \(X \subset Y \) be a subspace, \(s: F(a) \to X \) and \(t: F(b) \to Y \) be maps such that \(\text{in}_{(Y,X)} \circ s \) and \(t \circ l \) are rel \(j(F(c)) \) homotopic. Then there exists a unique map \(r: F(b) \to X \) such that \(r \circ l = s \). The maps \(\text{in}_{(V,Y)} \circ r \) and \(t \) are homotopic rel \(p(b)^{-1}(q_0) \), where \(q_0 \in V/T \) is the basepoint.

This is because \(l \) is a quotient map. \(\square \)
2.C. A $K(G, 1)$ space and some its subquotients

Let G be a finitely generated abelian group and

$$G = G_1 \oplus \ldots \oplus G_r$$

be its decomposition into cyclic summands. For each $s = 1, \ldots, r$, take a cell space V_s of homotopy type $K(G_s, 1)$ such that $sk_2 V_s$ is either S^1 or M_d (see 2.A) for proper d. Put $T_s = sk_1 V_s$ (=S^1), $U_s = sk_3 V_s$,

$$V = V_1 \times \ldots \times V_r, \quad T = T_1 \times \ldots \times T_r, \quad U = U_1 \times \ldots \times U_r.$$ We have $T \subset U \subset V$. V is a $K(G, 1)$ space.

2.8. Claim. Let X be a simply connected space with $\pi_2(X) \cong G$, Q be a space of weak homotopy type $K(G, 2)$, $b: X \to Q$ be a map inducing an isomorphism on π_2, and $m: V \to \Omega Q$ be a weak homotopy equivalence. Suppose G has no 2-torsion. Then there exists a map $f: U \to \Omega X$ such that $\Omega b \circ f \sim m|_U$.

\[\begin{array}{ccc}
U & \xrightarrow{\text{in}} & V \\
\downarrow^{f} & & \downarrow^{m} \\
\Omega X & \xrightarrow{\Omega b} & \Omega Q
\end{array} \]

Proof. We naturally have $U_s \subset U$, $s = 1, \ldots, r$. For every s, there is a map $f'_s: sk_2 U_s \to \Omega X$ such that $\Omega b \circ f'_s$ and $m|_{sk_2 U_s}$ induce the same homomorphism on π_1. By Corollary 2.5, f'_s induces zero homomorphism on π_2. Thus it extends to a map $f_s: U_s \to \Omega X$. Since ΩX is a loop space, there is a map $f: U \to \Omega X$ such that $f|_{U_s} = f_s$ for every s. The maps $\Omega b \circ f$ and $m|_U$ are homotopic since they induce the same homomorphism on π_1. \qed

2.9. Lemma. For every q, there exist a cell space Z and a map $k: Z \to U/T$ such that $\text{in}_{(V/T, U/T)} \circ k$ induces an isomorphism $\pi_q(Z) \to \pi_q(V/T)$.

Proof. For $q \leq 2$, put $Z = U/T$, $k = \text{id}$. We shall construct a single k to serve all $q > 2$.

Take some s. If G_s is finite, let W_s be a space of homotopy type $K(Z, 2)$; otherwise, let W_s be a point. There is a map $a_s: V_s \to W_s$ with $F(a_s)$ homotopy equivalent to S^1. The map $c_s = a_s|_{T_s}$ is null-homotopic. We choose a_s in such a way that c_s is constant. Let $j_s: F(c_s) \to F(a_s)$ be the map induced by $\text{in}_{(V_s, T_s)}$. Since c_s is constant, $F(c_s) = T_s \times \Omega W_s$. Thus $F(c_s)$ is homotopy equivalent to a cell space of dimension at most 2. By [4, Lecture II, Proposition 5], $(F(a_s), j_s(F(c_s)))$ is a Borsuk pair. By Lemma 2.6, there is a map $f_s: F(a_s) \to U_s$ such that $\text{in}_{(V_s, U_s)} \circ f_s$ is rel $j_s(F(c_s))$ homotopic to $p(a_s)$.

6
Put $W = W_1 \times \ldots \times W_r, \ a = a_1 \times \ldots \times a_r: V \to W, \ c = c_1 \times \ldots \times c_r: T \to W$.

Since $a|_T$ is constant, there is a map $b: V/T \to W$ such that $b \circ \text{pr}_{(V,T)} = a$. Let $j: F(c) \to F(a)$ and $l: F(a) \to F(b)$ be the maps induced by $\text{in}_{(V,T)}$ and $\text{pr}_{(V,T)}$, respectively.

We make natural identifications

$$F(a) = F(a_1) \times \ldots \times F(a_r), \quad F(c) = F(c_1) \times \ldots \times F(c_r).$$

Then $p(a) = p(a_1) \times \ldots \times p(a_r)$ and $j = j_1 \times \ldots \times j_r$. Put

$$f = f_1 \times \ldots \times f_r: F(a) \to U.$$

The map $\text{in}_{(V,U)} \circ f$ is rel $j(F(c))$ homotopic to $p(a)$. Put $g = \text{pr}_{(U,T)} \circ f$. We have

$$\text{in}_{(V/T,U/T)} \circ g = \text{pr}_{(V,T)} \circ \text{in}_{(V,U)} \circ f \sim_{j(F(c))} \text{pr}_{(V,T)} \circ p(a) = p(b) \circ l.$$

By Lemma 2.7, there is a map $h: F(b) \to U/T$ such that $h \circ l = g$ and $\text{in}_{(V/T,U/T)} \circ h \sim p(b)$. Since $\pi_q(W) = 0$ for $q \neq 2$, $p(b)$ induces isomorphisms on $\pi_q, q \geq 2$. Thus the map $\text{in}_{(V/T,U/T)} \circ h$ does so. Thus for any $q > 2$ we may let $e: Z \to F(b)$ be a cell approximation and put $k = h \circ e$. □

\begin{center}
\begin{tikzcd}
F(c) \arrow{r}{j} \arrow{d}{p(c)} & F(a) \arrow{r}{l} \arrow{d}{p(a)} & F(b) \\
V \arrow{r}{\text{in}} & U \arrow{r}{\text{in}} & V/T \\
T \arrow{u}{c} & \arrow{u}{a} & \arrow{u}{b}
\end{tikzcd}
\end{center}
2.D. Treating a loop space

2.10. Lemma. Let X be a simply connected space with finitely generated homotopy groups. Suppose $\pi_2(X)$ has no 2–torsion. Then there exist a simply connected space Y with finitely generated homotopy groups and a map $t: \Omega X \to Y$ inducing split monomorphisms on π_q, $q > 1$.

(It follows easily that Y may be obtained by attaching 2–cells to ΩX.)

Proof. Put $G = \pi_2(X)$. There are a space Q of weak homotopy type $K(G, 2)$ and a map $b: X \to Q$ inducing an isomorphism on π_2. Consider the piece of the Puppe sequence of b:

$$\begin{array}{c}
(\Omega X \xrightarrow{\Omega b} \Omega Q \xrightarrow{j} F(b))
\end{array}$$

There is a standard homotopy equivalence $e: \Omega X \to F(b)$ such that $p(j) \circ e = \Omega b$. Let V be the $K(G, 1)$ space considered in 2.C. Let $T \subset U \subset V$ be as there.

There is a weak homotopy equivalence $m: V \to \Omega Q$. By Claim 2.8, $m|_U$ lifts (up to homotopy) along Ωb. Thus $j \circ m|_U$ is null-homotopic. Thus there is a map $h: C(m|_U) \to F(b)$ such that $h \circ m|_T = j$. Let $s: C(m|_T) \to C(m|_U)$ be the map induced by $m|_U$. Put $g = h \circ s$. Let $r: F(j) \to F(g)$ be the map induced by $i(m|_T)$. Put $Y = F(g)$, $t = r \circ e$.

Let us check the desired properties. Since b is 3–connected, $F(b)$ is 2–connected. Since $m|_T$ is 1–connected, $C(m|_T)$ is 1–connected. Therefore g is 2–connected. Thus $F(g)$ is 1–connected, i.e. Y is simply connected. One checks similarly that $\pi_q(Y)$ are finitely generated.
We have the commutative diagram

\[
\begin{array}{ccc}
V/T & \xrightarrow{\rho} & C(in(V,T)) \\
\downarrow & & \downarrow m' \\
V/U & \xrightarrow{\sigma} & C(in(V,U))
\end{array}
\]

where \(\phi\) is induced by \(in(U,T)\), \(\rho\) and \(\sigma\) are the standard homotopy equivalences (contractions), \(m'\) and \(m''\) are the weak equivalences induced by \(m\). Take \(q > 1\).

Using Lemma 2.9, we get a cell space \(Z_q\) and a map \(l_q: Z_q \to V/T\) inducing an isomorphism on \(\pi_q\) and such that \(pr(V/T,U/T) \circ l_q\) is constant. Using the diagram, we get a map \(v_q: Z_q \to C(m|T)\) inducing an isomorphism on \(\pi_q\) and such that \(s \circ v_q\) is null-homotopic. Since \(g = h \circ s\), \(g \circ v_q\) is null-homotopic. Thus \(v_q\) lifts along \(p(g)\): there is a map \(w_q: Z_q \to F(g)\) such that \(p(g) \circ w_q = v_q\). Consider the commutative diagram

\[
\begin{array}{cccc}
\pi_{q+1}(\Omega Q) & \xrightarrow{j^*} & \pi_{q+1}(F(b)) & \xrightarrow{\partial_j} & \pi_q(F(j)) \\
\downarrow \quad \quad \quad \quad \quad \quad \downarrow i(m|T)_* & & \downarrow r_* & & \quad \downarrow \quad \quad \quad \quad \quad \quad \downarrow i(m|T)_* \\
\pi_{q+1}(F(g)) & \xrightarrow{g^*} & \pi_{q+1}(C(m|T)) & \xrightarrow{\partial_q} & \pi_q(C(m|T)) \\
\downarrow w_{q+1} & & \downarrow v_{q+1} & & \quad \downarrow \quad \quad \quad \quad \quad \quad \quad \downarrow v_q \\
\pi_{q+1}(Z_{q+1}) & \xrightarrow{w_q} & \pi_q(Z_q)
\end{array}
\]

where the rows are pieces of the exact sequences of the maps \(j\) and \(g\). We see that \(\partial_j\) is an isomorphism and \(\partial_q\) is a split monomorphism. Thus \(r_*\) is a split monomorphism. Since \(t = r \circ e\), where \(e\) is a homotopy equivalence, \(t\) induces a split monomorphism on \(\pi_q\). □

2.11. Corollary. Let \(X\) be a simply connected space with finitely generated homotopy groups. Then there exist a simply connected space \(Y\) with finitely generated homotopy groups and a map \(t: \Omega X \to Y\) such that for every \(q > 1\) the homomorphism \(t_* \otimes \text{id}: \pi_q(\Omega X) \otimes \mathbb{Z}[1/2] \to \pi_q(Y) \otimes \mathbb{Z}[1/2]\) is a split monomorphism.

Proof. By attaching 3- and 4-cells to \(X\), we may quotient \(H_2\) by 2-torsion without changing \(H_q\) for \(q > 2\). By Serre, \(\pi_q \otimes \mathbb{Z}[1/2]\) are not changed. Then apply Lemma 2.10. □
3. Dimension descent

3.1. Lemma. Let X be a simply connected space, Γ be a finite open cover of I^n ($n > 1$). Then there exist a finite open cover Δ of I^{n-1}, a function $\lambda: \Delta \to \Gamma(n-1)$, and a function $\Phi: \Pi_n(X) \to \Pi_n(X)$ such that (1) $[\Phi(a)] = [a]$ for all $a \in \Pi_n(X)$ and (2) for $F \in \Delta$, $a, a' \in \Pi_n(X)$, the implication holds

$$a|_{\lambda(F)} = a'|_{\lambda(F)} \Rightarrow \Phi(a)|_{F \times I} = \Phi(a')|_{F \times I}.$$

Proof. Choose $\epsilon > 0$ such that every open ball $B(u, 3\epsilon)$ ($u \in I^n$) is contained in some $E \in \Gamma$. Choose a rectilinear triangulation T of I^n with simplices of diameter less than ϵ. Let T' be the barycentric subdivision of T. By cosk$^2 T$ we denote the union of all simplices of T' that do not intersect $sk_1 T$. (So cosk$^2 T$ is a polyhedron of dimension $n - 2$; its complement collapses to $sk_1 T$.)

There is a homeomorphism $l: I^n \to I^n$ preserving simplices of T and such that

$$|v \times I \cap l^{-1}(\cosk^2 T)| \leq n - 1$$

for every $v \in I^{n-1}$. (Such l is obtained by generic simplex-wise perturbation of the identity map.) The map l preserves ∂I^n and has degree 1.

For $v \in I^{n-1}$, let $2\rho(v)$ be the least positive distance between $v \times I$ and $l^{-1}(t)$, where t runs over simplices of T'. Let Δ be a finite cover of I^{n-1} formed by some of the balls $B(v, \rho(v))$, $v \in I^{n-1}$.

Let us construct the function λ. Take $F \in \Delta$. We have $F = B(v, \rho(v))$ for some $v \in I^{n-1}$. For each

$$u \in v \times I \cap l^{-1}(\cosk^2 T)$$

there are at most $n - 1$ such u), choose $E \in \Gamma$ containing $B(u, 3\epsilon)$. Put $\lambda(F)$ be the union of these E.

Choose $\delta > 0$ such that $\delta \leq \epsilon$ and $\delta \leq \rho(v)$ for $B(v, \rho(v)) \in \Delta$. Let Q be the open δ-neighbourhood of $l^{-1}(\cosk^2 T)$. Put $P = l(I^n \setminus Q)$. The set P is closed and does not intersect $\cosk^2 T$. Thus there is a map $k: I^n \to I^n$ preserving the simplices of T with $k(P) \subset sk_1 T$. The map k preserves ∂I^n and has degree 1.

Take $a \in \Pi_n(X)$. We homotop a to get a map $\Theta(a)$ taking $sk_1 T$ to the basepoint. The homotopy is constructed by induction on the skeleta of T. There are no obstructions since X is simply connected. To extend the homotopy to some simplex s of T, we need to know only $a|_s$ and the homotopy constructed on ∂s (we need no information from the outside of s).

Therefore there is a function $\Theta: \Pi_n(X) \to \Pi_n(X)$ such that (a) $[\Theta(a)] = [a]$ for all $a \in \Pi_n(X)$, (b) for every simplex s of T and any $a, a' \in \Pi_n(X)$, the implication holds

$$a|_s = a'|_s \Rightarrow \Theta(a)|_s = \Theta(a')|_s,$$

and (c) for any $a \in \Pi_n(X)$, $\Theta(a)$ takes $sk_1 T$ to the basepoint.
For $a \in \Pi_n(X)$, put $\Phi(a) = \Theta(a) \circ k \circ l$. The property (1) is obvious. Let us check the property (2). Take $F \in \Delta$ and $a, a' \in \Pi_n(X)$ such that $a|_{\lambda(F)} = a'|_{\lambda(F)}$. We should show that $\Phi(a)|_{F \times I} = \Phi(a')|_{F \times I}$. Take $u_0 \in F \times I$. Let us show that $\Phi(a)(u_0) = \Phi(a')(u_0)$.

If $l(u_0) \in P$, then $k(l(u_0)) \in sk_3 T$ and thus $\Phi(a)(u_0) = \Phi(a')(u_0) = x_0$, where $x_0 \in X$ is the basepoint. Consider the converse case. Since $P = l(F \setminus Q)$, we have $u_0 \in Q$. Thus $\dist(u_0, l^{-1}(\cos^2 T)) < \delta$. Thus there is a simplex t of $\cos^2 T$ such that $\dist(u_0, l^{-1}(t)) < \delta$. We have $F = B(v, \rho(v))$ for some $v \in I^{n-1}$. We have

$$\dist(v \times I, l^{-1}(t)) \leq \dist(v \times I, u_0) + \dist(u_0, l^{-1}(t)) < \rho(v) + \delta \leq 2\rho(v).$$

By definition of $\rho(v)$, this means that $\dist(v \times I, l^{-1}(t)) = 0$. Thus there is a point $u \in v \times I \cap l^{-1}(t)$. Since l preserves simplices of T, $\diam l^{-1}(t) < \epsilon$. We have

$$\dist(u_0, u) \leq \dist(u_0, l^{-1}(t)) + \diam l^{-1}(t) < \delta + \epsilon \leq 2\epsilon.$$

The point u_0 belongs to some simplex s of T. We have

$$s \subset B(u_0, \epsilon) \subset B(u, 3\epsilon) \subset \lambda(F).$$

Thus $a|_s = a'|_s$. Thus $\Theta(a)|_s = \Theta(a')|_s$. Since k and l preserve s, $\Phi(a)|_s = \Phi(a')|_s$, which suffices. □

3.B. Functionals of finite degree

For a space X, the formula $\Xi(a)(t_1, \ldots, t_{n-1})(t) = a(t_1, \ldots, t_{n-1}, t) \ (t_1, \ldots, t_{n-1}, t \in I)$ defines a bijection $\Xi : \Pi_n(X) \to \Pi_{n-1}(\Omega X)$, which we call standard. The induced isomorphism $\xi : \pi_n(X) \to \pi_{n-1}(\Omega X)$ we also call standard. For an open set $F \subset I^{n-1}$, the bijection $\Xi_F : \Pi(F \times I, X) \to \Pi(F, \Omega X)$ defined by that formula is also called standard.

3.2. Corollary. Let X be a simply connected space, L be an abelian group, $g : \Pi_{n-1}(\Omega X) \to L$ be a homotopy invariant functional ($n > 1$). Let $\Xi : \Pi_n(X) \to \Pi_{n-1}(\Omega X)$ be the standard bijection. Then $\deg g \circ \Xi \leq (n-1) \deg g$.

Proof. Suppose $\deg g \leq r$. Let us show that $\deg g \circ \Xi \leq (n-1) \deg g$. Let Γ be a finite open cover of I^n. By Lemma 3.1, there are a finite open cover Δ of I^{n-1}, a function $\lambda : \Delta \to \Gamma((n-1) r)$, and a function $\Phi : \Pi_n(X) \to \Pi_n(X)$ satisfying the conditions (1), (2) of the lemma.

For each $F \in \Delta(r)$, choose a decomposition $F = F_1 \cup \ldots \cup F_s$, $0 \leq s \leq r$, with $F_1, \ldots, F_s \in \Delta$ and put $\mu(F) = \lambda(F_1) \cup \ldots \cup \lambda(F_s)$. So we have a function $\mu : \Delta(r) \to \Gamma((n-1)r)$. It follows from the condition (2) that for $F \in \Delta(r)$, $a, a' \in \Pi_n(X)$ the implication holds

$$a|_{\mu(F)} = a'|_{\mu(F)} \Rightarrow \Phi(a)|_{F \times I} = \Phi(a')|_{F \times I}.$$

Thus for every $F \in \Delta(r)$ there is a function $\Phi_F : \Pi(\mu(F), X) \to \Pi(F \times I, X)$ such that $\Phi_F(a|_{\mu(F)}) = \Phi(a)|_{F \times I}$ for all $a \in \Pi_n(X)$. For every $F \in \Delta(r)$, we
have the commutative diagram

\[
\begin{array}{ccc}
\Pi_n(X) & \xrightarrow{\Phi} & \Pi_n(X) \\
\downarrow & & \downarrow \\
\Pi(\mu(F), X) & \xrightarrow{\Phi_F} & \Pi(F \times I, X)
\end{array}
\xrightarrow{\Xi_F} \begin{array}{c}
\Pi_n(X) \\
\downarrow \\
\Pi(F, \Omega X),
\end{array}
\]

where Ξ_F is the standard bijection and the vertical arrows are the restriction functions.

Since $\deg g \leq r$, there are functionals $g_F : \Pi(F, \Omega X) \to L$, $F \in \Delta(r)$, such that

\[g(b) = \sum_{F \in \Delta(r)} g_F(b|_F)\]

for all $b \in \Pi_{n-1}(\Omega X)$. For $E \in \Gamma((n-1)r)$, define a functional $f_E : \Pi(E, X) \to L$ by

\[f_E(a) = \sum_{F \in \mu^{-1}(E)} g_F(\Xi_F(\Phi_F(a))).\]

For $a \in \Pi_n(X)$, we have

\[g(\Xi(a)) = g(\Xi(\Phi(a))) = \sum_{F \in \Delta(r)} g_F(\Xi(\Phi(a)|_F)) = \sum_{F \in \Delta(r)} g_F(\Xi_F(\Phi_F(a|_{\mu(F)}))) = \sum_{E \in \Gamma((n-1)r)} \sum_{F \in \mu^{-1}(E)} g_F(\Xi_F(\Phi_F(a|_E))) = \sum_{E \in \Gamma((n-1)r)} f_E(a|_E).\]

\[\square\]

3.3. Lemma. Let X and Y be spaces, $t : X \to Y$ be a map. Let L be an abelian group, $g : \Pi_n(Y) \to L$ be a functional. Then $\deg g \circ t_\# \leq \deg g$.

(Obvious.) \[\square\]

3.4. Lemma. Let X be a space. Define $l : \Pi_n(X) \to H_n(X)$ by $l(a) = a_\#(u)$, where $u \in H_n(I^n, \partial I^n)$ is the fundamental class. Then $\deg l \leq 1$.

Proof. Let Γ be a finite open cover of I^n. Represent u by a (singular) cycle $U \in Z_n(I^n, \partial I^n)$ subordinate to Γ:

\[U = \sum_{E \in \Gamma} \text{in}(I^n, E)_\#(U_E),\]

where $U_E \in C_n(E, E \cap \partial I^n)$ are some chains.

The subgroup $Z_n(X) \subset C_n(X)$ is a direct summand. Thus there is a homomorphism $k : C_n(X) \to H_n(X)$ such that $k(T) = [T]$ for all $T \in Z_n(X)$. For $E \in \Gamma$, define $l_E : \Pi(E, X) \to H_n(X)$ by $l_E(a) = k(a_\#(U_E))$. For $a \in \Pi_n(X)$, we have

\[l(a) = [a_\#(U)] = k(a_\#(U)) = \sum_{E \in \Gamma} k((a|_E)_\#(U_E)) = \sum_{E \in \Gamma} l_E(a|_E).\]

12
Proof of Theorem 1.1. Induction on \(n \). For \(n = 2 \), consider the commutative diagram

\[
\begin{array}{ccc}
\Pi_2(X) & \xrightarrow{t} & H_2(X) \\
\downarrow{l} & & \downarrow{h} \\
\pi_2(X) & \xrightarrow{p} & \pi_2(X) \otimes \mathbb{Z}[1/2],
\end{array}
\]

where \(p \) is the natural projection, \(m \) is defined by \(m(v) = v \oplus 1 \), \(h \) is the Hurewicz isomorphism, and \(l \) is as in Lemma 3.4, thus \(\deg l \leq 1 \). We see that \(\deg p \leq 1 \) and thus \(\deg q \leq 1 \).

Take \(n > 2 \). By Corollary 2.11, there are a simply connected space \(Y \) with finitely generated homotopy groups and a map \(t: \Omega X \to Y \) such that for every \(q > 1 \) the homomorphism \(t_* \otimes \text{id}: \pi_q(\Omega X) \otimes \mathbb{Z}[1/2] \to \pi_q(Y) \otimes \mathbb{Z}[1/2] \) is a split monomorphism. Consider the commutative diagram

\[
\begin{array}{ccc}
\Pi_n(X) & \xrightarrow{\Xi} & \Pi_{n-1}(\Omega X) \\
\downarrow{q} & & \downarrow{q'} \\
\pi_n(X) \otimes \mathbb{Z}[1/2] & \xrightarrow{\xi \otimes \text{id}} & \pi_{n-1}(\Omega X) \otimes \mathbb{Z}[1/2] \\
\downarrow{t_* \otimes \text{id}} & & \downarrow{t_* \otimes \text{id}} \\
\pi_n(Y) \otimes \mathbb{Z}[1/2] & \xrightarrow{\xi \otimes \text{id}} & \pi_{n-1}(Y) \otimes \mathbb{Z}[1/2],
\end{array}
\]

where \(\Xi \) is the standard bijection, \(\xi \) is the standard isomorphism, \(q' \) and \(q'' \) are defined similarly to \(q \). Since \(\xi \otimes \text{id} \) is an isomorphism, \(\deg q = \deg(\xi \otimes \text{id}) \circ q = \deg q' \circ \Xi \). By Corollary 3.2, \(\deg q' \circ \Xi \leq (n-1) \deg q' \). Since \(t_* \otimes \text{id} \) is a split monomorphism, \(\deg q' = \deg(t_* \otimes \text{id}) \circ q' = \deg q'' \circ t_* \). By Lemma 3.3, \(\deg q'' \circ t_* \leq \deg q'' \). By induction hypothesis, \(\deg q'' \leq (n-2)! \). Therefore \(\deg q \leq (n-1)! \). □

References

